<https://doi.org/10.61356/j.nswa.2024.17247>

On Heptagonal Neutrosophic Semi-open Sets in Heptagonal Neutrosophic Topological Spaces: Testing Proofs by Examples

Subasree R 1^* **D** and BasariKodi K¹ **D**

¹ Department of Mathematics, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India. Emails: subasree@ritrjpm.ac.in, basarikodi@ritrjpm.ac.in.

***** Correspondence: subasree@ritrjpm.ac.in.

Abstract: In terms of heptagonal neutrosophic topological spaces, the purpose of this paper is to present the idea of heptagonal neutrosophic semi-open sets. Additionally, we examine a few of its characterizations and heptagonal neutrosophic semi-interior and heptagonal neutrosophic semi-closure operators.

Keywords: Heptagonal Neutrosophic Topology; Heptagonal Neutrosophic Semi-open Set; Heptagonal Neutrosophic Semi-Interior and Heptagonal Neutrosophic Semi-Closure.

1. Introduction

In the year 1965, Zadeh [1] introduced and investigated fuzzy sets. An intuitionistic fuzzy set was first presented in 1986 by Atanassov [2]. Later, Coker [3] discovered intuitionistic fuzzy topological spaces in 1997. Florentin Smarandache [4] developed concepts such as neutrosophic logic and neutrosophic set in 1999. The truth, falsehood, and indeterminacy membership values are the three components on which he defined the neutrosophic set. The neutrosophic set was created in 2010 by Florentin Smarandache [5] as a generalization of intuitionistic fuzzy sets. In 2012, A.A. Salama and S.A. Albowi [6] introduced and developed the generalized neutrosophic set and generalized Neutrosophic topological spaces.

In 2014, Salama et al. [7] developed the concepts of neutrosophic closed sets and neutrosophic continuous functions. Salama [8] investigated the Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible Application to GIS Topology. In 2020, AL-Nafee et al. [9] explored New Types of Neutrosophic Crisp Closed Sets. In Neutrosophic Topological Spaces, Neutrosophic Semi-open sets were first introduced in 2016 by Iswarya P and K. Bageerathi [10].

Many scientists have constructed neutrosophic topological spaces on bipartitioned, quadripartitioned, and pentapartitioned neutrosophic sets. Kungumaraj et al. recently created heptagonal neutrosophic topological spaces [11]. The idea of heptagonal neutrosophic semi-open sets is introduced and its characterizations are studied in this study. Additionally, we present and investigate the heptagonal neutrosophic semi-interior and semi-closure operators.

The idea of heptagonal neutrosophic semi-open sets in heptagonal neutrosophic topological spaces is presented in this paper. The remaining part of the document is structured as follows: The preliminary information for a better comprehension of the study is contained in Section 2. In Section 3, the notion of the heptagonal neutrosophic semi-open set as well as the fundamental characteristics of these sets are introduced. The fundamental features of the heptagonal neutrosophic semi-interior operator are examined and the classical definition is presented in Section 4. The heptagonal neutrosophic semi-closure operator is defined classically and its fundamental features are examined in Section 5. The concluding Section 6 of the study contains the final results as well as some recommendations for additional research.

2. Preliminaries

Definition 2.1. [4] Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the form A = { $\{x, \alpha_A(x), \beta_A(x), \gamma_A(x)\}$: $x \in X$ } where $\alpha_A(x), \beta_A(x), \gamma_A(x)$ represent the degree of membership, degree of indeterminacy and the degree of non-membership respectively of each element $x \in X$ to the set A.

A Neutrosophic set A = { $(x, \alpha A(x), \beta A(x), \gamma A(x))$: $x \in X$ } can be identified as an ordered triple $\langle \alpha A(x), \beta A(x), \gamma A(x) \rangle$ in] -0, 1 +[on X.

Definition 2.2. [5] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic subsets in X that satisfies the following axioms:

(NT1) 0_N, 1_N∈ τ

(NT2) $G_1 ∩ G_2 ∈ τ$ for any G_1 , $G_2 ∈ τ$

(NT3)∪Gi∈ τ ∀{Gⁱ : i∈ J} ⊆ τ

The pair $(X, τ)$ is used to represent a neutrosophic topological space τ over X.

Definition 2.3. [11] A heptagonal neutrosophic number S is defined and described as

 $S = \{ (p, q, r, s, t, u, v); \mu \}$ $[(p', q', r', s', t', u', v'); \&]$, $[(p'', q'', r'', s'', t'', u'', v''); \eta]$ > where μ , \mathscr{E} , $\eta \in [0, 1]$. The truth membership function $\alpha : \mathbb{R} \to [0, \mu]$, the indeterminacy membership function β : R \Rightarrow [\mathcal{E} , 1], and the falsity membership function γ : R \Rightarrow [η, 1].

Using the ranking technique of heptagonal neutrosophic number is changed as,

$$
\lambda = \frac{(p+q+r+s+t+u+v)}{7}
$$

$$
\mu = \frac{(p'+q'+r'+s'+t'+u'+v')}{7}
$$

$$
\delta = \frac{(p''+q''+r''+s''+t''+u''+v'')}{7}
$$

Definition 2.4.^[11] Let X be a non-empty set and A_{HN} and B_{HN} are HNS of the form $A_{HN} = \langle x; \lambda A_{HN}(x), \mu A_{HN}(x), \delta A_{HN}(x) \rangle$, $B_{HN} = \langle x; \lambda B_{HN}(x), \mu B_{HN}(x), \delta B_{HN}(x) \rangle$, then their heptagonal neutrosophic number operations may be defined as

Inclusive:

- (i) $A_{HN} \subseteq B_{HN} \Rightarrow \lambda A_{HN} (x) \le \lambda B_{HN} (x), \mu A_{HN} (x) \ge \mu B_{HN} (x), \delta A_{HN} (x) \ge \delta B_{HN} (x),$ for all $x \in X$.
- (ii) $B_{HN} \subseteq A_{HN} \Rightarrow \lambda B_{HN} (x) \leq \lambda A_{HN} (x), \mu B_{HN} (x) \geq \mu A_{HN} (x), \delta B_{HN} (x) \geq \delta A_{HN} (x),$ for all $x \in X$.
- **Union and Intersection:**
	- (iii) $A_{HN} \cup B_{HN} = \{ \langle x; (\lambda A_{HN}(x) \lor \lambda B_{HN}(x), \mu A_{HN}(x) \land \mu B_{HN}(x), \delta A_{HN}(x) \land \delta B_{HN}(x) \rangle \}$
	- (iv) $A_{HN} \cap B_{HN} = \{ \langle x; (\lambda A_{HN}(x) \land B_{HN}(x), \mu A_{HN}(x) \lor \mu B_{HN}(x), \delta A_{HN}(x) \lor \delta B_{HN}(x) \rangle \}$
- **Complement:**

Let X be a non-empty set and A_{HN} be the HNS, A_{HN} = $\langle x \rangle$; λ A_{HN} (x) , μ A_{HN} (x) , δ A_{HN} (x) >, then its complement is denoted by A'HN and is defined by

 $A'_{HN} = \langle x; \delta A_{HN}(x), 1-\mu A_{HN}(x), \lambda A_{HN}(x) \rangle$ for all $x \in X$.

Universal and Empty set:

Let A $_{\text{HN}} = \langle x; \lambda A_{\text{HN}}(x), \mu A_{\text{HN}}(x), \delta A_{\text{HN}}(x) \rangle$ be a HNS and the universal set IA and OA of A $_{\text{HN}}$ is defined by

- (v) $I_{HN} = \langle x: (1,0,0) \rangle$ for all $x \in X$.
- (vi) $Q_{HN} = \langle x: (0,1,1) \rangle$ for all $x \in X$.

Definition 2.5. [11] A Heptagonal neutrosophic topology (HNT) on a non-empty set X is a family τ of heptagonal neutrosophic subsets in X satisfies the following axioms:

(HNT1) IHN(*x*), OHN(*x*) ∈ τ

(HNT2)⋃Ai∈τ ,∀{Aⁱ : i∈ J} ⊆ τ

(HNT3) A_1 A_2 \in τ for any A_1 , A_2 \in τ

The pair (X, τ) is used to represent a heptagonal neutrosophic topological space τ over X. The sets in τ are called a heptagonal neutrosophic open set of X. The complement of heptagonal neutrosophic open sets are called heptagonal neutrosophic closed set of X.

Throughout this paper, we denote HNS for heptagonal neutrosophic set HNOS for heptagonal neutrosophic open set HNCS for heptagonal neutrosophic closed set HNTS for heptagonal neutrosophic topological space

Definition 2.6. [11] Let A be a HNS in HNTS $(X, τ)$. Then,

- HNint(AHN) = \bigcup {GHN: GHN is a HNOS in X and GHN \subseteq AHN} is called a heptagonal neutrosophic interior of A. It is the largest HN-open subset contained in AHN.
- HNcl(A_{HN}) = \bigcap {K_{HN}: K_{HN} is a HNCS in X and $A_{HN} \subseteq K_{HN}$ } is called a heptagonal neutrosophic closure of A. It is the smallest HN-closed subset containing AHN.

3. HN-Semi Open Sets

Definition 3.1:Let A_{HN} be a HNS of a HNTS X. Then A_{HN} is said to be a Heptagonal Neutrosophic Semi-open [written HN-SO] set of X if there exists a heptagonal neutrosophic open set HNO such that $HNO \subseteq A$ HNCl (HNO).

Example 3.2: Let $X = \{x,y\}$ and A_{HN} , $B_{HN} \in HN(X)$.

AHN = { <*x*; (λ:0.85,0.65,0.55,0.78,0.92,0.63,0.38), (µ: 0.75,0.95,0.63,0.48,0.56,0.88,0.78), (δ: 0.25,0.36,0.45,0.58,0.69,0.72,0.90)>, <*y*; (λ:0.83,0.65,0.72,0.98,0.66,0.53,0.92), (µ:0.73,0.53,0.45,0.38,0.92,0.75,0.63), (δ:0.45,0.35,0.25,0.95,0.85,0.65,0.15)>} and

BHN = { <*x*; (λ:0.86,0.73,0.62,0.52,0.93,0.45,1), (µ:0.43,0.39,0.26,0.75,0.58,0.93,0.88), (δ:0.55,0.73,0.62,0.52,0.95,0.89,0.44)>, <*y*; (λ:0.73,0.62,0.51,0.42,0.33,0.29,0.19), (µ:0.82,0.92,1,0.61,0.54,0.76,0.46), (δ:0.19,0.23,0.63,0.52,0.95,0.82,1)>}

By Ranking Technique, (Definition 2.5)

AHN = { <*x*; (λ:0.68), (µ:0.72), (δ:0.56)>, <*y*; (λ:0.76), (µ:0.63), (δ:0.52)>} and BHN = { <*x*; (λ:0.73), (µ:0.60), (δ:0.67)>, <*y*; (λ:0.44), (µ:0.73), (δ:0.62)>}

For simplicity, we write the Heptagonal Neutrosophic sets after ranking technique as

AHN = { <*x*; (0.68, 0.72, 0.56)>, <*y*; (0.76, 0.63, 0.52)>} and BHN = { <*x*; (0.73, 0.60, 0.67)>, < *y*; (0.44, 0.73, 0.62)>}

Let $X = \{x,y\}$ and HNTS $\tau = \{I_{HN}$, O_{HN}, A_{HN}, B_{HN}, C_{HN}, D_{HN} } where AHN = { <*x*; (0.68, 0.72, 0.56)>, <*y*; (0.76, 0.63, 0.52)>} BHN = { <*x*; (0.73, 0.60, 0.67)>, <*y*; (0.44, 0.73, 0.62)>} CHN = { <*x*; (0.73, 0.60, 0.56)>, <*y*; (0.76, 0.63, 0.52)>} DHN = { <*x*; (0.68, 0.72, 0.67)>, <*y*; (0.44, 0.73, 0.62)>}

Consider the HNS after ranking technique EHN = { <*x*; (0.75, 0.52, 0.48)>, <*y*; (0.82, 0.59, 0.39)>} FHN = { <*x*; (0.58, 0.62, 0.75)>, <*y*; (0.25, 0.85, 0.75)>} Then the HN-semi open sets of $HN(X)$ are ${I}_{HN}$, O_{HN} , A_{HN} , B_{HN} , C_{HN} , D_{HN} , $E_{HN}F'_{HN}$

The following theorems are the characterization of the HN-SO set in HNTS.

Theorem 3.3: A subset A_{HN} in a HNTS X is a HN-Semi open set iff A_{HN} \subseteq HNCl (HNInt (A_{HN})). **Proof:**

Necessity: Let A_{HN} be a HN-semi open set in X. Then HNO \subseteq A_{HN} \subseteq HNCl (HNO) for some heptagonal neutrosophic open set HNO. But HNO \subseteq HNInt (A_{HN}) and thus HNCl (HNO) \subseteq HNCl (HNInt (AHN)). Hence AHN \subseteq HNCl (HNO) \subseteq HNCl (HNInt (AHN)).

Sufficiency: Let AHN \subseteq HNCl (HNInt (AHN)). Since HNO = HNInt (AHN), we have $HNO \subseteq A_{HN} \subseteq HNCI$ (HNO). Hence AHN is a HN-Semi open set.

Theorem 3.4: Let (X, τ) be a HNTS. Then union of two HN-semi-open sets is again a HNsemi-open set in the HNTS X.

Proof: Let A_{HN} and B_{HN} are HN-semi open sets in X. Then A_{HN} \subseteq HNCl (HNInt (A_{HN})) and BHN \subseteq HNCl (HNInt (BHN)). Therefore AHNUBHN \subseteq HNCl (HNInt (AHN)) UHNCl (HNInt (BHN)) = HNCl $(HNInt (A_{HN}) UHNInt (B_{HN}) CHNCl (HNInt (A_{HN}UB_{HN})) [By Theorem 3.3].$ Hence $A_{HN}UB_{HN}$ is a HN-semi open set in X.

Theorem 3.5: Let (X, τ) be a HNTS. Then union of a finite collection of HN-semi open sets is again a HN- semi open set in the HNTS X.

Proof: For each i $\in \Delta$, (A_{HN}) is a HN-semi open sets in X. Then by theorem 3.3, $(A_{HN})_isubseteqHNCl$ (HNInt($(A_{HN})_i$)). Thus, $U_{i∈}_{\Delta}$ (A_{HN})_i $subseteqU_{i∈}_{\Delta}HNCl$ (HNInt($(A_{HN})_i$)) $subseteqHNCl$ $(U_{i\in\Delta}HNInt((A_{HN})_i))$. Hence $U_{i\in\Delta}(A_{HN})_i\subseteq HNCI$ (HNInt($(U_{i\in\Delta}(A_{HN})_i)$). Therefore, the union of a finite collection of HN-semi open sets is again a HN- semi-open set in the HNTS X.

Remark 3.6: The intersection of any two HN-semi open sets need not be a HN- semi-open set as shown in the following example.

Example 3.7: Let $X = \{x,y\}$ and $\tau = \{I_{HN}$, O_{HN}, A_{HN}, B_{HN}, C_{HN}, D_{HN} } where AHN = { <*x*; (0.45,0.45,0.45,0.45,0.45,0.45,0.45)>, <*y*; (0.75,0.75,0.75,0.75,0.75,0.75,0.75)>} BHN = { <*x*; (0.95,0.95,0.95,0.95,0.95,0.95,0.95)>, <*y*; (0.55,0.55,0.55,0.55,0.55,0.55,0.55)>} By ranking technique, AHN = { <*x*; (0.45,0.45,0.45)>, <*y*; (0.75,0.75,0.75)>} BHN = { <*x*; (0.95,0.95,0.95)>, <*y*; (0.55,0.55,0.55)>} CHN =AHN⋃BHN={<*x*; (0.95,0.45,0.45)>, <*y*; (0.75,0.55,0.55)>} DHN =AHN⋂BHN={<*x*; (0.45,0.95,0.95)>, <*y*; (0.55,0.75,0.75)>} τ = {I_{HN}, O_{HN}, A_{HN}, B_{HN}, C_{HN}, D_{HN} }is a HNTS. Then the HN-semi open sets of $HN(X)$ are ${I}_{HN}$, O_{HN} , A_{HN} , B_{HN} , C_{HN} , B'_{HN} , C'_{HN} , D'_{HN} . Here $A_{HN} \cap B'_{HN}$ is not a HN-semi open set, since HNCl(HNInt($A_{HN} \cap B'_{HN}$))= C'HN and A HN B' HN \nsubseteq C' HN.

Neutrosophic Systems with Applications, Vol. 17, 2024 63

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

Theorem 3.8: Let AHN be a HNSO set in the HNTS X and suppose $A_{H N_}B_{H N_}H NCl$ (AHN). Then $B_{H N}$ is HNSO set in X.

Proof: There exists a heptagonal neutrosophic open set HNO such that $HNO \subset A_{HN}$ \subset HNCl (HNO). Since, AHN BHN, HNO BHN. But HNCl (AHN) HNCl (HNO) and thus BHN HNCl (HNO). Hence $HNO \subset B_{HN} \subset HNCI$ (HNO) and B_{HN} is HNSO set in X.

Theorem 3.9: Every heptagonal neutrosophic open set in the HNTS X is a HNSO set in X.

Proof: Let A be a heptagonal neutrosophic open set in HNTS X. Then $A_{HN} = HNInt$ (A_{HN}). Also HNInt (A_{HN}) \subset HNCl (HNInt (A_{HN})). This implies that $A_{HN} \subset$ HNCl (HNInt (A_{HN})). Hence by Theorem 3.3, A_{HN} is a HNSO set in X.

Remark 3.10: The converse of the above theorem need not be true as shown in the following example.

Example 3.11: From Example 3.7, B'HN, C'HN, D'HN are HN-semi open sets, but not HN-open sets.

4. Heptagonal Neutrosophic Semi-Interior In Heptagonal Neutrosophic Topological Spaces

In this section, we introduce the heptagonal neutrosophic semi-interior operator and their properties in the heptagonal neutrosophic topological space.

Definition 4.1: Let (X, τ) be a HNTS. Then for a heptagonal neutrosophic subset A_{HN} of X, the heptagonal neutrosophic semi-interior of A_{HN} [HN-SInt (A_{HN}) for short] is the union of all heptagonal neutrosophic semi-open sets of X contained in AHN.

 $HN-SInt (A_{HN}) = U{ S_{HN} : S_{HN} is a HNSO set in X and S_{HN} A_{HN}}$

Proposition 4.2: Let (X, τ) be a HNTS. Then for any heptagonal neutrosophic subsets A_{HN} and B_{HN} of a HNTS X we have

- (i) $HN-SInt(A_{HN}) \subseteq A_{HN}$
- (ii) AHN is HNSO set in $X \Leftrightarrow HN\text{-}SInt (A_{HN}) = A_{HN}$
- (iii) $HN-SInt (HN-SInt (A_{HN})) = HN-SInt (A_{HN})$
- (iv) If $A_{HN} \subseteq B_{HN}$ then HN-SInt $(A_{HN}) \subseteq HN\text{-}SInt(B_{HN})$
- (v) $HN-SInt(A_{HN} \cap B_{HN}) = HN-SInt(A_{HN}) \cap HN-SInt(B_{HN})$
- (vi) $HN-SInt(A_{HN}) \cup HN-SInt(B_{HN}) \subset HN-SInt(A_{HN} \cup B_{HN})$

Proof:

- (i) Follows from Definition 4.1.
- (ii) Let AHN be a HNSO set in X. Then $A_{H N \subseteq H N}$ -SInt($A_{H N}$). By using (i) we get A_{HN} = HN-SInt(A_{HN}). Conversely assume that A_{HN} = HN-SInt(A_{HN}). By using Definition 4.1, AHN is NSO set in X. Thus (ii) is proved.
- (iii) By using (ii), HN-SInt(HN-SInt(A_{HN})) = HN-SInt(A_{HN}). This proves (iii). Since A_{HN} B_{HN}, by using (i), HN-SInt(AHN) \subseteq AHN \subseteq BHN. That is HN-SInt(AHN) \subseteq BHN. Thus (iii) is proved
- (iv) By (iii), $HN\text{-}SInt(HN\text{-}SInt(A_{HN})) \subset HN\text{-}SInt(B_{HN})$. Thus $HN\text{-}SInt(A_{HN}) \subset HN\text{-}SInt(B_{HN})$. Thus (iv) is proved.
- (v) Since AHN $\bigcap B_{H\text{N}}\subset A_{H\text{N}}$ and AHN $\bigcap B_{H\text{N}}\subset B_{H\text{N}}$, by using (iv), HN-SInt (AHN $\bigcap B_{H\text{N}}\subset B_{H\text{N}}$) \subset HN-SInt (AHN) and $HN-SInt(A_{HN} \cap B_{HN}) \subseteq HN-SInt(B_{HN})$. This implies that $HN\text{-}SInt(AHN \cap BHN) \subseteq HN\text{-}SInt(AHN) \cap HN\text{-}SInt(BHN) ---(1).$

 $By(i)$, $HN\text{-}SInt(AHN) \subseteq AHN$ and $HN\text{-}SInt(BHN) \subseteq BHN$. This implies that $HN-SInt(A_{HN})\cap HN-SInt(B_{HN}) \subset A_{HN} \cap B_{HN}.$

Now by (iv), HN-SInt ((HN-SInt(AHN) \bigcap HN-SInt(BHN)) \subset HN-SInt(AHN \bigcap BHN).

 $By (1)$, HN-SInt(HN-SInt (АнN))∩HN-SInt(HN-SInt(ВнN))⊆HN-SInt(АнN∩ ВнN).

By (iii), $HN\text{-}SInt(A_{HN})\bigcap HN\text{-}SInt(B_{HN})\subset HN\text{-}SInt(A_{HN}\bigcap B_{HN})$ -----(2).

From (1) and (2), HN-SInt (A_{HN} B_{HN}) = HN-SInt (A_{HN}) $(HN\text{-}SInt(B_{HN})$. Thus (v) is proved.

(vi) Since AHN \subseteq AHNUBHN and BHN \subseteq AHNU BHN, by (iv), HN-SInt (AHN) \subseteq HN-SInt (AHNU BHN) and HN-SInt (BHN) \subseteq HN-SInt (AHNU BHN). This implies that,

HN-SInt (AHN) \cup HN-SInt (BHN) \subset HN-SInt (AHN \cup BHN). Thus (vi) is proved.

The following example shows that the equality need not be held in Theorem 4.2 (vi). **Example 4.3:** Let $X = \{x,y\}$ and

AHN = { <*x*; (0.45,0.45,0.45,0.45,0.45,0.45,0.45)>, <*y*; (0.75,0.75,0.75,0.75,0.75,0.75,0.75)>}

BHN = { <*x*; (0.95,0.95,0.95,0.95,0.95,0.95,0.95)>, <*y*; (0.55,0.55,0.55,0.55,0.55,0.55,0.55)>}

By ranking technique,

AHN = { <*x*; (0.45,0.45,0.45)>, <*y*; (0.75,0.75,0.75)>}

BHN = { <*x*; (0.95,0.95,0.95)>, <*y*; (0.55,0.55,0.55)>}

CHN =AHN⋃BHN={<*x*; (0.95,0.45,0.45)>, <*y*; (0.75,0.55,0.55)>}

DHN =AHN⋂BHN={<*x*; (0.45,0.95,0.95)>, <*y*; (0.55,0.75,0.75)>}

Then, τ = {I_{HN}, O_{HN}, A_{HN}, B_{HN}, C_{HN}, D_{HN} }is a HNTS

Consider the HNS after the ranking technique,

EHN = { <*x*; (0.75,0.52,0.48)>, <*y*; (0.82,0.59,0.39)>}

Then the HN-semi open sets of $HN(X)$ are $\{I_{HN}$, O_{HN} , A_{HN} , B_{HN} , C_{HN} , D_{HN} , B'_{HN} , C'_{HN} , $D'_{HN}\}$.

Here, HN-SInt (A'HN) \cup HN-SInt (EHN) = C' HN \cup DHN = C' HN

 $HN-SInt (A'HNU EHN) = DHN$

Hence, HN-SInt (A'_{HN}) U HN-SInt $(E_{HN}) \neq HN$ -SInt $(A'_{HN}U E_{HN})$.

5. Heptagonal Neutrosophic Semi-Closure In Heptagonal Neutrosophic Topological Spaces

In this section, we introduce the heptagonal neutrosophic semi-closure operator and its properties in the heptagonal neutrosophic topological space.

Definition 5.1: Let (X,τ) be a HNTS. Then for a heptagonal neutrosophic subset A H_N of X, the heptagonal neutrosophic semi-closure of A_{HN} [HN-SCl (A_{HN}) for short] is the intersection of all heptagonal neutrosophic semi-closed sets of X contained in AHN.

HN-SCl $(A_{HN}) = \bigcup \{ K_{HN} : K_{HN} \text{ is a HNSC set in } X \text{ and } A_{HN} \subset K_{HN} \}.$

Proposition 5.2: Let (X, τ) be a HNTS. Then for any heptagonal neutrosophic subsets A_{HN} and B_{HN} of a HNTS X we have

- (i) AHNC HN-SCI (AHN)
- (ii) AHN is HNSC set in $X \Leftrightarrow HN\text{-}SCl$ (AHN) = AHN
- (iii) $HN-SCl$ ($HN-SCl$ (A_{HN})) = $HN-SCl$ (A_{HN})
- (iv) If A_{HNC} B_{HN} then HN-SCl (A_{HN}) \subseteq HN-SCl (B_{HN})
- (v) $HN-SCl$ ($A_{HN} \cap B_{HN}$) \subseteq $HN-SCl$ (A_{HN}) \cap $HN-SCl$ (B_{HN})
- (vi) $HN-SCl (A_{HN}) U HN-SCl (B_{HN}) = HN-SCl (A_{HN}U B_{HN})$

Proof:

- (i) Follows from Definition 5.1.
- (ii) Let A H_N be a HNSC set in X. Then A H_N contains HN-SCl(A H_N). Now by using (i), we get A_{HN} = HN-SCl(A_{HN}). Conversely assume that A_{HN} = HN-SCl(A_{HN}). By using Definition 5.1, AHN is a HNSC set in X. Thus (ii) is proved.
- (iii) By using (ii), $HN-SCI(HN-SCI(A_{HN})) = HN-SCI(A_{HN})$. This (iii) is proved.
- (iv) Since AHN BHN, by using (i), $B_{HN} \subseteq HN-SCl(B_{HN})$ implies $A_{HN} \subseteq HN-SCl(B_{HN})$. But $HN-SCl(A_{HN})$ is the smallest closed set containing A_{HN} , hence $HN-SCI(A_{HN}) \subset HN-SCI(B_{HN})$. Thus (iv) is proved.
- (v) Since AHN $\bigcap B_{HN} \subset A_{HN} \cap B_{HN} \cap B_{HN}$, by using (iv), HN-SCl (AHN $\bigcap B_{HN} \subset HN\text{-}SCl$ (AHN) and $HN-SCl(A_{HN} \cap B_{HN}) \subset HN-SCl(B_{HN})$. This implies that $HN-SCl(A_{HN} \cap B_{HN}) \subseteq HN-SCl(A_{HN}) \cap HN-SCl(B_{HN})$. Thus (v) is proved.
- (vi) Since AHN \subset AHN \cup BHN and BHN \subset AHN \cup BHN, by (iv), HN-SCl (AHN) \subset HN-SCl (AHN \cup BHN) and $HN-SCI(BHN) \subset HN-SCI(AHNUBHN)$. This implies that, $HN-SCI (A_{HN}) U HN-SCI (B_{HN}) \subset HN-SCI (A_{HN}U B_{HN}) \sim ---(1)$ $By(i)$, $A_{HN} \subseteq HN-SCl(A_{HN})$ and $B_{HN} \subseteq HN-SCl(B_{HN})$. This implies that AHN∪BHN⊂HN-SCl(AHN) U HN-SCl(BHN). Now by (iv), HN-SCl(AHN∪ BHN)⊂HN-SCl ((HN-SCl(AHN)∪HN-SCl(BHN)). $By (1)$, HN-SCl(AHNU BHN) \subseteq HN-SCl(HN-SCl (AHN))UHN-SCl(HN-SCl(BHN)). By (iii), HN-SCl(AHN∪ BHN)⊂HN-SCl(AHN)∪HN-SCl (BHN)-----(2). From (1) and (2), HN-SCl (AHNU BHN) = HN-SCl(AHN)UHN-SCl(BHN). Thus (vi) is proved.

The following example shows that equality need not be held in Theorem 5.2 (vi).

Example 5.3: Let $X = \{x,y\}$ and

AHN = { <*x*; (0.45,0.45,0.45,0.45,0.45,0.45,0.45)>, <*y*; (0.75,0.75,0.75,0.75,0.75,0.75,0.75)>} BHN = { <*x*; (0.95,0.95,0.95,0.95,0.95,0.95,0.95)>, <*y*; (0.55,0.55,0.55,0.55,0.55,0.55,0.55)>} By ranking technique,

AHN = { <*x*; (0.45,0.45,0.45)>, <*y*; (0.75,0.75,0.75)>}

BHN = { <*x*; (0.95,0.95,0.95)>, <*y*; (0.55,0.55,0.55)>}

CHN =AHN⋃BHN={<*x*; (0.95,0.45,0.45)>, <*y*; (0.75,0.55,0.55)>}

DHN =AHN⋂BHN={<*x*; (0.45,0.95,0.95)>, <*y*; (0.55,0.75,0.75)>}

Then, τ = {I_{HN}, O_{HN}, A_{HN}, B_{HN}, C_{HN}, D_{HN}} is a HNTS.

Consider the HNS after the ranking technique,

EHN = { <*x*; (0.75,0.52,0.48)>, <*y*; (0.82,0.59,0.39)>}

Then the HN-semi open sets of HN(X) are {I_{HN}, O_{HN}, A_{HN}, B_{HN}, C_{HN}, D_{HN}, B'_{HN}, C'_{HN}, D'_{HN}}.

Here, HN-SCl (A'HN) U HN-SCl (EHN) = C' HNU DHN = C' HN

 $HN-SCI$ $(A'_{HN}U E_{HN}) = D_{HN}$

Hence, HN-SCl (A'HN) \cup HN-SCl (EHN) \neq HN-SCl (A'HN \cup EHN)

Proposition 5.4: Let (X, τ) be a HNTS. Then for any heptagonal neutrosophic subsets A H _Nof a HNTS X, we have

- (i) $(HN\text{-}SInt(A_{HN}))' = HN\text{-}SCI(A'_{HN})$
- (ii) $(HN\text{-}SCl(A_{HN}))' = HN\text{-}SInt(A'_{HN})$

Proof:

- (i) By definition 4.1, HN-SInt $(A_{HN}) = U \{ S_{HN} : S_{HN} \}$ is a HNSO set in X and $S_{HN} \subseteq A_{HN} \}$ Taking the complement on both sides, $(HN\text{-}SInt(A_{HN}))' = \bigcap \{ S'_{HN} : S'_{HN} \text{ is a HNSC set in } X \text{ and } A'_{HN} \subseteq S'_{HN} \}$ Now, replace S'HN with KHN, we get $(HN\text{-}SInt(A_{HN}))' = \bigcap \{K_{HN} : K_{HN} \text{ is a HNSC set in } X \text{ and } A'_{HN} \subseteq K_{HN}\}$ By definition 5.1, $(HN\text{-}SInt(A_{HN}))' = HN\text{-}SCl(A'_{HN})$. Thus (i) is proved.
- (ii) From (i) for the HNS A'_{HN} We write, $(HN\text{-}SInt(A'_{HN}))' = HN\text{-}SCI(A_{HN})$ Taking the complement on both sides we get $HN\text{-}SInt(A'_{HN}) = (HN\text{-}SCI(A_{HN}))'.$ Thus (ii) is proved.

6. Conclusion

The notion of heptagonal neutrosophic semi-open sets and their characterization were presented and examined in this paper. It can also be expanded upon in the areas of quotient, continuous, and contra-continuous mappings. It is possible to investigate the set's homeomorphism, connectedness, and compactness in further detail.

Acknowledgments

The author is grateful to the editorial and reviewers, as well as the correspondent author, who offered assistance in the form of advice, assessment, and checking during the study period.

Author Contributions

All authors contributed equally to this research.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the privacy-preserving nature of the data but are available from the corresponding author upon reasonable request.

Funding

This research was not supported by any funding agency or institute.

Conflict of interest

The authors declare that there is no conflict of interest in the research.

References

- 1. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- 2. Atanassov K. (1986), Intuitionistic fuzzy sets. Fuzzy sets and systems 20, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3.
- 3. Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems, 88(1), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0.
- 4. Smarandache, F. (1999), A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, ISBN 978-1-59973-080-6, Rehoboth, NM.
- 5. Smarandache, F. (2010), Neutrosophic Set A Generalization of Intuitionistic Fuzzy sets, Journal of defence Sources Management, 1, 107-116.
- 6. Salama, A. A., & Alblowi, S. A. (2012). Generalized neutrosophic set and generalized neutrosophic topological spaces. 2(7).https://doi.org/10.5923/j.computer.20120207.01.

- 7. Salama, A. A., Smarandache, F., Kromov, V., (2014). Neutrosophic Closed Set and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, 4, 4-8. https://doi.org/10.5281/zenodo.571492.
- 8. Salama, A. A. (2015). Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible Application to GIS Topology, Neutrosophic Sets and Systems, 7, 18-22. https://doi.org/10.5281/zenodo.571234
- 9. AL-Nafee, B. A., Smarandache, F. and Salama, A. A. (2020) New Types of Neutrosophic Crisp Closed Sets, Neutrosophic Sets and Systems, 36, 175-183. https://doi.org/10.5281/zenodo.4065428.
- 10. Iswarya, P., & Bageerathi, K. (2016). On neutrosophic semi-open sets in neutrosophic topological spaces. 37, https://doi.org/10.14445/22315373/IJMTT-V37P529
- 11. Kungumaraj, E., Durgadevi, S., & Tharani, N. P. (2023). Heptagonal Neutrosophic Topology. Neutrosophic Sets and Systems, 60(1), 335-356. https://doi.org/10.5281/zenodo.10224216

Received: 02 Jan 2024, **Revised:** 30 Mar 2024,

Accepted: 29Apr 2024, **Available online:** 02 May 2024.

© 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Disclaimer/Publisher's Note: The perspectives, opinions, and data shared in all publications are the sole responsibility of the individual authors and contributors, and do not necessarily reflect the views of Sciences Force or the editorial team. Sciences Force and the editorial team disclaim any liability for potential harm to individuals or property resulting from the ideas, methods, instructions, or products referenced in the content.