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Abstract: Single-valued neutrosophic sets (SVNSs) facilitate the representation of uncertain 

information more extensively than conventional methods. The study of divergence measures of 

SVNSs is important due to their applications in different areas like multi-criteria decision-making 

(MCDM), pattern recognition, cluster analysis, machine learning, etc., In this paper, we introduce a 

divergence measure for SVNSs. The suggested divergence measure is applied to cluster analysis for 

the classification of imprecise data. For establishing the reasonability and advantage of the suggested 

divergence measure in a clustering problem over the existing measures, a comparative assessment is 

also presented. Furthermore, we introduce, an inferior ratio method for handling the MCDM problem 

in the SVN environment. The consistency of the results of the suggested method with existing 

approaches also supports the credibility of its practical usage.  

Keywords: Single-valued Neutrosophic Set, Aggregation Operator, Clustering Analysis, Divergence 

Measure, Inferior Ratio, Multi-Criteria Decision Making (MCDM). 

 

1. Introduction 

The aggregation operator is a crucial tool for unifying the information in a particular sense and 

provides meaningful mathematical output in an uncertain system. However, in recent years, 

aggregation operators played a vital role in various decision-making problems in uncertain 

environments. Bhatia and Singh [19] derived some fuzzy divergence measures using aggregation 

functions. The notion of a fuzzy set (FS) developed by Zadeh [1] is a mathematical and powerful tool 

to deal with imprecise and vague data in real-life problems wherein, the degree of membership or 

truth membership value of each element of the universe assumes a value between [0, 1]. In an FS 

degree of non-membership or false membership is dependent on membership value. So, to assign a 

degree of non-membership as an independent value, Atanassov [2] presented an Intuitionistic Fuzzy 

Set (IFS) as an extension of the FS, where each element of the universal set is associated with the truth 

membership and falsity membership value independently. However, in certain situations, FS and IFS 

are unable to represent some aspects of uncertainties like indeterminacy and restrictiveness, and thus, 

a notion of a neutrosophic set has been introduced as an extension of FS and IFS.  

Smarandache [3] came up with the novel mathematical entity “Neutrosophic (NS) set”. A NS 

assigns to each element of the universe, a membership degree (MD), non-membership degree (NMD), 

and, indeterminacy degree (ID). In a neutrosophic set, the values of MD, NMD, and ID are 

independent of each other and lie in [0, 1]. Wang et al. [4] presented a single-valued neutrosophic set 

(SVNS) as a subclass of the neutrosophic set (NS), to easily apply in science and engineering 

disciplines. Since its inception, a lot of researchers have actively contributed to the development of 

many versions of SVNS such as neutrosophic soft sets, picture FS, interval-valued neutrosophic sets, 

etc. (Maji [5]; Cuong and Kreinovich [6]; Peng and Liu [7]; Ulucay [8]). In the last decade, a lot of 

researchers have proposed several new measures for SVNSs such as entropy measures, distance 
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measures, and similarity measures. Prominent research on information measures concerning FS, IFS, 

and SVNS and are due to (Szmidt and Kacprzyk [9]; Hwang and Yang [10]; Bhandari and Pal [11]; 

Xiao [12]; Wu et al. [13]; Elshabshery and Fattouh [14]; Aydogdu [15]; Qin and Wang [16]; Jin et al. 

[17]).  

In this article, we intend to extend the formulation of SVN divergence measures using 

aggregation operators, and their applications. In the following, we present a literature review 

concerning divergence measures and applications of SVNSs to MCDM and clustering analysis. 

The best option from the set of options based on a specific criterion is determined by the decision-

making process and MCDM is one of its types of decision-making that consists of more than one 

criterion. To solve, an MCDM problem and provide the best optimal solution, the technique for order 

of preference by similarity to the ideal solution (TOPSIS) in a fuzzy environment was suggested in 

[18]. The development of divergence measures for fuzzy sets using various operators’ has been 

considered in [13]. Divergence measure is a mathematical tool in MCDM problems and attracted the 

attention of many researchers in recent years (Bhatia and Singh [19]; Ohlan and Ohlan [20]; Singh and 

Sharma [21]).  Monte et al., [22] first initiated the concept of divergence measure in intuitionistic 

fuzzy sets and studied the characterization of divergence measure between IFSs. Several intuitionistic 

fuzzy divergence measures have been proposed and useful in medical diagnosis, pattern recognition, 

MCDM problems, and clustering analysis over the years. Some prominent references are 

(Maheshwari and Srivastava [23]; Thao [24]; Boran et al. [25]; Ye [26]; and Chai et al. [43]). In the 

Picture fuzzy settings, Wei [27] proposed averaging and geometric averaging operators and applied 

them to handle MCDM problems. In some recent studies, divergence measures have been exploited 

for SVNSs and are effectively being used in MCDM and clustering problems. Guleria et al. [28] 

proposed a divergence measure using Hellinger’s discrimination and discussed some of its algebraic 

properties. To date, several papers are available that attempted to define divergence measures for 

SVNSs along with their applications. Some of the important research is due to (Thao [29]; 

Selvachandran et al. [30]; Broumi et al. [31]; Nancy and Garg [32]). By recognizing the important 

applications of different aggregation operators in the FS, IFS, and, the Picture fuzzy set, we continue 

to extend them to construct aggregation-based divergence measures for SVNSs. Biswas et al. [33] 

proposed a new approach for MCDM issues by extending the conventional TOPSIS to a single-valued 

neutrosophic environment. The TOPSIS method has been widely used for solving MCDM problems, 

but in some situations, it has certain drawbacks. To overcome these limitations, Vencheh and 

Mirjaberi [34] introduced an inferior ratio method for the MCDM problem in the classical fuzzy 

environment. Ganie and Singh [35] proposed an inferior ratio method in the picture fuzzy settings 

and applied it to an MCDM problem.  

Furthermore, for handling classification problems, clustering analysis is a fundamental tool that 

is widely applicable in many real-world scenarios. A lot of researchers applied different techniques 

to study the clustering method in FS, IFS, and SVNSs. In fuzzy sets, the fuzzy clustering approach 

was proposed by Ruspini [36] defining the fuzzy division concept. An intuitionistic fuzzy hierarchical 

algorithm for IFS was proposed by Xu [37] based on the intuitionistic fuzzy aggregation operator and 

the distance measures between IFSs. Based on the fuzzy C-means clustering method and distance 

measure between IFSs, Xu and Wu [38] proposed an intuitionistic fuzzy C – C-means algorithm. The 

clustering algorithms for IFSs by defining the association coefficients and the similarity measures 

were proposed by Zhang et al. [39] and Xu et al. [40]. In the SVN environment, Ye [41] and Huang 

[42] proposed an SVN clustering algorithm to cluster SVN data. 

In the existing literature, various comparison measures have been suggested based on axiomatic 

validation. These measures had been obtained as extensions of fuzzy/ intuitionistic fuzzy comparison 

measures. Sometimes such formulation requires a lot of effort. This motivated us to explore an 

alternate method that can guarantee a larger class of comparison measures with the least effort. In 

this regard, we propose an aggregation operator-based approach for obtaining SVN divergence 
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measures. This enables an experimenter to obtain a class of SVN divergence measures. Moreover, the 

existing SVN distance/ similarity measure produces unreasonable and counterintuitive results in 

some applications. Considering this situation, we are motivated to investigate the applications of the 

proposed methods for removing the drawbacks of the existing measures. 

The innovative contribution of this paper is as. 

 We propose a new aggregation-based divergence measure for SVNSs with its validity proof 

and discuss some of its algebraic properties. 

 We show the presentation of the suggested measure to the MCDM problem and present a 

comparative study to justify the consistency/advantages of the suggested measures. 

 We also examine the applications of the proposed divergence measure in cluster analysis and 

contrast it with existing measures, to assess the advantage of the suggested measure. 

The remaining content of this article is prepared as follows: Section 2 provides some basic 

concepts associated with single-valued neutrosophic divergence measure. In section 3 we present an 

approach to derive divergence measures for SVNSs. Section 4 covers the application of the proposed 

measure to the MCDM problem and cluster analysis. Section 5 concludes the paper with some 

comments on the future directions. 

 

2. Preliminaries 

We present some basic concepts associated with single-valued neutrosophic sets, which have 

been used in this paper: 

Definition 1 [3]. Let 𝑥 be a generic component of the universal set 𝑋. A SVNS 𝐴 in a universal set 

𝑋  is a triplet consists that with MD, ID, and the NMD s.t  𝛼𝐴(𝑥𝑖): 𝑋 → [0, 1],  𝛽𝐴(𝑥𝑖): 𝑋 →

[0, 1] and 𝛾𝐴(𝑥𝑖): 𝑋 → [0, 1]  with condition  

0 ≤ 𝛼𝐴(𝑥𝑖) + 𝛽𝐴(𝑥𝑖) + 𝛾𝐴(𝑥𝑖) ≤ 3. 

    Note that, 𝛼𝐴(𝑥𝑖), 𝛽𝐴(𝑥𝑖), and 𝛾𝐴(𝑥𝑖) represent the MD, ID, and NMD. Here, indeterminacy 

gets quantified explicitly, while MD and NMD are independent. Some of the basic and important 

operations on SVNSs may be definite as follows: 

Operations on SVNSs 

Let  𝐴 = {〈𝛼𝐴(𝑥𝑖), 𝛽𝐴(𝑥𝑖), 𝛾𝐴(𝑥𝑖)〉| 𝑥𝑖 ∈ 𝑋 }  and  𝐵 =  {〈𝛼𝐵(𝑥𝑖), 𝛽𝐵(𝑥𝑖), 𝛾𝐵(𝑥𝑖)〉| 𝑥𝑖 ∈ 𝑋 } be two 

SVNSs, then the union, intersection, complement, equality, and inclusion of 𝐴 and 𝐵 are presented 

as follows [4]:  

The Union of 𝐴 and 𝐵 is presented as 

𝐴 ∪ 𝐵 = {< 𝑚𝑎𝑥. (𝛼𝐴(𝑥𝑖), 𝛼𝐵(𝑥𝑖)),𝑚𝑖𝑛. (𝛽𝐴(𝑥𝑖), 𝛽𝐵(𝑥𝑖)), 𝑚𝑖𝑛. (𝛾𝐴(𝑥𝑖), 𝛾𝐵(𝑥𝑖))> | 𝑥𝑖 ∈ 𝑋 }. 

The intersection of 𝐴 and 𝐵 is  

𝐴 ∩ 𝐵 = {< 𝑚𝑖𝑛. (𝛼𝐴(𝑥𝑖), 𝛼𝐵(𝑥𝑖)),𝑚𝑎𝑥. (𝛽𝐴(𝑥𝑖), 𝛽𝐵(𝑥𝑖)), 𝑚𝑎𝑥. (𝛾𝐴(𝑥𝑖), 𝛾𝐵(𝑥𝑖)) > | 𝑥𝑖 ∈ 𝑋 }. 

The complement of 𝐴 is defined as 𝐴𝑐 = {< 1 − 𝛼𝐴(𝑥𝑖), 1 − 𝛽𝐴(𝑥𝑖), 1 − 𝛾𝐴(𝑥𝑖) > | 𝑥𝑖 ∈ 𝑋}. 

Let 𝐴 ⊆ 𝐵 then {𝛼𝐴(𝑥𝑖) ≤ 𝛼𝐵(𝑥𝑖), 𝛽𝐴(𝑥𝑖) ≥ 𝛽𝐵(𝑥𝑖), 𝛾𝐴(𝑥𝑖 ≥ 𝛾𝐵(𝑥𝑖) ∀ 𝑥𝑖 ∈ 𝑋}. 

 

Definition 2 [19]. The aggregation operation on SVNSs is the operation by which several SVNSs are 

combined to generate a single set. Mathematically, an aggregation operation is defined by the 

function 𝐴: [0, 1]𝑛 → [0, 1] with conditions: 

Boundary conditions: 𝐴(0, 0, … ,0) = 0, 𝐴(1, 1, … ,1) = 1. 

Monotonicity: 𝐴 is monotonic in each argument. 

Definition 3 [29]. The divergence measure of SVNS 𝐴 and 𝐵 is a function 𝐷: 𝑆𝑉𝑁𝑆(𝑋) × 𝑆𝑉𝑁𝑆(𝑋) →

[0, 1] if it satisfies the next axioms: 

SVNDM1: D(A, B) = 𝐷(𝐵, 𝐴), ∀ 𝐴, 𝐵 ∈ 𝑁𝑆(𝑋); 

SVNDM2: 𝐷(𝐴, 𝐵) ≥ 0; 𝐷(𝐴, 𝐵) = 0;  𝑖𝑓 𝐴 = 𝐵, ∀ 𝐴, 𝐵 ∈ 𝑁𝑆(𝑋); 

SVNDM3: 𝐷(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) ≤  𝐷(𝐴, 𝐵), ∀ 𝐴, 𝐵, 𝐶 ∈ 𝑁𝑆(𝑋); 

SVNDM4:  𝐷(𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶) ≤ 𝐷(𝐴, 𝐵), ∀ 𝐴, 𝐵, 𝐶 ∈ 𝑁𝑆(𝑋). 
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Definition 4 [44]. Degree of confidence is used to measure the confidence level of a comparison 

measure in classifying a pattern 𝑃𝑗 , which belongs to a class of patterns 𝑃𝑖  and it can be written as 

𝐷𝑜𝐶 = ∑ |𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑃𝑖 , 𝑃𝑗) − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑃𝑖 , 𝑃𝑗)|

𝑛

𝑖=1 𝑖≠𝑗

. 

It assures that the better the degree of confidence, the more confident the outcome of the measure 

is. 

 

3. Divergence Measure based on Aggregation Operator 

In this section, we present a new divergence measure for single-valued neutrosophic sets based 

on an aggregation operator. 

3.1 Background 

With the help of aggregation operators, a probabilistic divergence measure for FS was proposed 

by Bhatia and Singh [19]. 

Consider 𝑀(𝑐, 𝑑) and 𝑁(𝑒, 𝑓) to be two aggregation operators then the probabilistic divergence 

measure is given as follows. 

𝐷𝑀(𝑃, 𝑄) = ∑ |𝑀(𝑝𝑖 , 𝑞𝑖) −  𝑁(𝑝𝑖 , 𝑞𝑖)|
𝑛
𝑖=1 .                                                                                                          (1) 

Where 𝑃, 𝑄 is finite discrete probability distributions. Let us suppose 

𝑀(𝑎, 𝑏) =  
𝑎 + 𝑏

2
 , 𝑁(𝑎, 𝑏) =  

𝑎2 + 𝑏2

𝑎 + 𝑏
 

Take 𝑎 = 𝑝𝑖  , 𝑏 = 𝑞𝑖, Then by using (1), Bhatia and Singh [19] obtained the divergence measure  

𝐷𝑀(𝑃, Q) =  ∑
(𝑝𝑖 − 𝑞𝑖)

2

2(𝑝𝑖 + 𝑞𝑖)
.                                                                                                                                          (2)

𝑛

𝑖=1

 

Using Eq. (2), Bhatia and Singh [19] proposed a divergence measure for the fuzzy set. 

 

3.2 Novel SVN Divergence Measures 

We suggest the following divergence measure for SVNSs: 

Using arithmetic mean and geometric mean operators we propose the following divergence 

measure: 

𝐷𝑀1(𝐴, 𝐵) = ∑

[
 
 
 
 

𝛼𝐴(𝑥𝑖)+ 𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖) 𝛼𝐵(𝑥𝑖) +

  
𝛽𝐴(𝑥𝑖)+ 𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖) 𝛽𝐵(𝑥𝑖)   +

𝛾𝐴(𝑥𝑖)+ 𝛾𝐵(𝑥𝑖)

2
  − √𝛾𝐴(𝑥𝑖) 𝛾𝐵(𝑥𝑖) ]

 
 
 
 

𝑛
𝑖=1 .                                  (3) 

Similarly, we propose another divergence measure using aggregation operators:  

Using square root and arithmetic mean operator we propose divergence measure: 

𝐷𝑀2(𝐴, 𝐵) =  ∑   [√
𝛼𝐴

2(𝑥𝑖)+ 𝛼𝐵
2(𝑥𝑖)

2
−  

𝛼𝐴(𝑥𝑖)+ 𝛼𝐵(𝑥𝑖)

2
+ √𝛽𝐴

2(𝑥𝑖)+ 𝛽𝐵
2(𝑥𝑖)

2
 −  

𝛽𝐴(𝑥𝑖)+ 𝛽𝐵(𝑥𝑖)

2
+𝑛

𝑖

                                                          √
𝛾𝐴

2(𝑥𝑖)+ 𝛾𝐵
2(𝑥𝑖)

2
− 

𝛾𝐴(𝑥𝑖)+ 𝛾𝐵(𝑥𝑖)

2
  ].                                                                      (4)    

We can propose similarity measures using the above divergence measures.  

For the divergence measure given in Eq. (3)  and Eq. (4) , we propose the new similarity 

measures for setting 𝐴 and 𝐵. 

𝑆𝑀1(𝐴, 𝐵) = 1 − ∑

[
 
 
 
 
 
𝛼𝐴(𝑥𝑖) +  𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖) +

  
𝛽𝐴(𝑥𝑖) +  𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖) 𝛽𝐵(𝑥𝑖) +

𝛾𝐴(𝑥𝑖) + 𝛾𝐵(𝑥𝑖)

2
  − √𝛾𝐴(𝑥𝑖) 𝛾𝐵(𝑥𝑖)  ]

 
 
 
 
 

𝑛

𝑖=1

.                                                                          (5) 
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𝑆𝑀2(𝐴, 𝐵) = 1 − ∑   

[
 
 
 
 
 
 
 
 
 
√

𝛼𝐴
2(𝑥𝑖) + 𝛼𝐵

2(𝑥𝑖)

2
−

𝛼𝐴(𝑥𝑖) + 𝛼𝐵(𝑥𝑖)

2
+

√
𝛽𝐴

2(𝑥𝑖) + 𝛽𝐵
2(𝑥𝑖)

2
−

𝛽𝐴(𝑥𝑖) + 𝛽𝐵(𝑥𝑖)

2
+

√
𝛾𝐴

2(𝑥𝑖) +  𝛾𝐵
2(𝑥𝑖)

2
−

𝛾𝐴(𝑥𝑖) + 𝛾𝐵(𝑥𝑖)

2
 

]
 
 
 
 
 
 
 
 
 

𝑛

𝑖=1

.                                                             (6) 

Next, we prove the validity of the proposed divergence measure 𝐷𝑀1(𝐴, 𝐵) and 𝐷𝑀2(𝐴, 𝐵) for 

single-valued neutrosophic sets. 

Theorem 3.2. The divergence measure DM1 (A, B) given in Eq. (3) is a valid divergence measure for 

SVNSs. 

Proof. To prove this theorem, we need to demonstrate that the divergence measure given in the Eq. 

(3) satisfies the 4 axioms stated in Definition 2.3.  

SVNDM1: It is seen that Eq. (3) is symmetric w.r.t 𝐴 and 𝐵, therefore it holds that  

𝐷𝑀1 (A, B) = 𝐷𝑀1 (B, A). 

SVNDM2: Since,  0 ≤  𝛼𝐴(𝑥𝑖), 𝛽𝐴(𝑥𝑖), 𝛾𝐴(𝑥𝑖) ≤ 1. Also,  0 ≤   𝛼𝐵(𝑥𝑖), 𝛽𝐵(𝑥𝑖), 𝛾𝐵(𝑥𝑖) ≤ 1 

which implies that       
𝛼𝐴(𝑥𝑖)+ 𝛼𝐵(𝑥𝑖)

2
≥ √𝛼𝐴(𝑥𝑖) 𝛼𝐵(𝑥𝑖) ;

𝛽𝐴(𝑥𝑖)+ 𝛽𝐵(𝑥𝑖)

2
 ≥ √𝛽𝐴(𝑥𝑖) 𝛽𝐵(𝑥𝑖)    ; 

𝛾𝐴(𝑥𝑖)+ 𝛾𝐵(𝑥𝑖)

2
 ≥ √𝛾𝐴(𝑥𝑖) 𝛾𝐵(𝑥𝑖). 

which implies that 𝐷𝑀1(𝐴, 𝐵) =  ∑

[
 
 
 
 

𝛼𝐴(𝑥𝑖)+𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)  

+
𝛽𝐴(𝑥𝑖)+𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖) +

𝛾𝐴(𝑥𝑖)+𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖) ]

 
 
 
 

𝑛
𝑖=1 ≥ 0 

i.e., 𝐷𝑀1 (𝐴, 𝐵)  ≥ 0. 

SVNDM3: We split the universal set 𝑋 into 2 disjoint subsets: 

𝑋1 = {

 𝑥𝑖 ∈ 𝑋| 𝛼𝐴(𝑥𝑖) ≥ 𝛼𝐵(𝑥𝑖) ≥ 𝛼𝐶(𝑥𝑖);
 𝛽𝐴(𝑥𝑖) ≤ 𝛽𝐵(𝑥𝑖) ≤ 𝛽𝐶(𝑥𝑖);  

  𝛾𝐴(𝑥𝑖) ≤ 𝛾𝐵(𝑥𝑖) ≤ 𝛾𝐶(𝑥𝑖) 
}                (7) 

𝑋2 = {

𝑥𝑖 ∈ 𝑋| 𝛼𝐴(𝑥𝑖) ≤ 𝛼𝐵(𝑥𝑖) ≤ 𝛼𝐶(𝑥𝑖); 
𝛽𝐴(𝑥𝑖) ≥ 𝛽𝐵(𝑥𝑖) ≥ 𝛽𝐶(𝑥𝑖);    

  𝛾𝐴(𝑥𝑖) ≥ 𝛾𝐵(𝑥𝑖) ≥ 𝛾𝐶(𝑥𝑖) 
}              (8) 

By using Eq. (3), We have 

𝐷𝑀1 (𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) = 

∑

[
 
 
 
 
𝛼𝐴∩𝐶(𝑥𝑖)+𝛼𝐵∩𝐶(𝑥𝑖)

2
− √𝛼𝐴∩𝐶(𝑥𝑖)𝛼𝐵∩𝐶(𝑥𝑖) + 

𝛽𝐴∩𝐶(𝑥𝑖)+𝛽𝐵∩𝐶(𝑥𝑖)

2
− √𝛽𝐴∩𝐶(𝑥𝑖)𝛽𝐵∩𝐶(𝑥𝑖) +

𝛾𝐴∩𝐶(𝑥𝑖)+𝛾𝐵∩𝐶(𝑥𝑖)

2
− √𝛾𝐴∩𝐶(𝑥𝑖)𝛾𝐵∩𝐶(𝑥𝑖) ]

 
 
 
 

𝑋1
+ ∑

[
 
 
 
 

𝛼𝐴∩𝐶(𝑥𝑖)+𝛼𝐵∩𝐶(𝑥𝑖)

2
− √𝛼𝐴∩𝐶(𝑥𝑖)𝛼𝐵∩𝐶(𝑥𝑖)  

+
𝛽𝐴∩𝐶(𝑥𝑖)+𝛽𝐵∩𝐶(𝑥𝑖)

2
− √𝛽𝐴∩𝐶(𝑥𝑖)𝛽𝐵∩𝐶(𝑥𝑖) +

𝛾𝐴∩𝐶(𝑥𝑖)+𝛾𝐵∩𝐶(𝑥𝑖)

2
− √𝛾𝐴∩𝐶(𝑥𝑖)𝛾𝐵∩𝐶(𝑥𝑖) ]

 
 
 
 

𝑋2
  

Now, by using the Eqs. (7) and (8), 𝐷𝑀1(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) will become 

𝐷𝑀1 (𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) = ∑ [

𝛽𝐴(𝑥𝑖)+𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖) + 

  
𝛾𝐴(𝑥𝑖)+𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖)

] 𝑋1
+ ∑ [

𝛼𝐴(𝑥𝑖)+𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)]𝑋2

  

= ∑

[
 
 
 
 
 

𝛼𝐴(𝑥𝑖) + 𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)  

+
𝛽𝐴(𝑥𝑖) + 𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖) +

𝛾𝐴(𝑥𝑖) + 𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖) ]

 
 
 
 
 

𝑋1∪𝑋2

= ∑

(

 
 
 

∑

[
 
 
 
 
 

𝛼𝐴(𝑥𝑖) + 𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)  

+
𝛽𝐴(𝑥𝑖) + 𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖) +

𝛾𝐴(𝑥𝑖) + 𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖) ]

 
 
 
 
 

𝑥1∪𝑥2

)

 
 
 𝑛

𝑖=1

 

which implies that 𝐷𝑀1(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶) ≤   𝐷𝑀1(𝐴, 𝐵). 
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SVNDM4: We can prove on the same lines as that of SVNDM3. Hence, 𝐷𝑀1 (𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶) ≤

 𝐷𝑀1(𝐴, 𝐵).This implies that 𝐷𝑀1 (A, B) is a valid divergence measure.  

Similarly, we can show that the divergence measures 𝐷𝑀2 (A, B) given in Eq. (4) is a valid 

divergence measure. Now, we investigate some properties of the proposed SVNS divergence 

measures. 

Theorem 3.3.  Let A, B, C ∈ SVNS(x), the proposed divergence measure satisfies: 

𝐷𝑀1 (𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 ) = 𝐷𝑀1 (𝐴, 𝐵); 
𝐷𝑀1(𝐴 ∪ 𝐵, 𝐴 ) + 𝐷𝑀1(𝐴 ∩ 𝐵, 𝐴) = 2(𝐷𝑀1 (𝐴, 𝐵)); 

𝐷𝑀1(𝐴 ∪ 𝐵, 𝐶 ) + 𝐷𝑀1(𝐴 ∩ 𝐵, 𝐶) = 2(𝐷𝑀1(𝐴, 𝐶) + 𝐷𝑀1(𝐵, 𝐶)); 

𝐷𝑀1 (𝐴, 𝐴 ∪ 𝐵 ) = 𝐷𝑀1 (𝐵, 𝐴 ∩ 𝐵); 

𝐷𝑀1 (𝐵, 𝐴 ∪ 𝐵 ) = 𝐷𝑀1 (𝐴, 𝐴 ∩ 𝐵). 

Proof (a). To prove this property, we divide the universal set into two disjoint subsets 

𝑋1 = {

 𝑥𝑖 ∈ 𝑋| 𝛼𝐴(𝑥𝑖) ≥ 𝛼𝐵(𝑥𝑖);
 𝛽𝐴(𝑥𝑖) ≤ 𝛽𝐵(𝑥𝑖);  

  𝛾𝐴(𝑥𝑖) ≤ 𝛾𝐵(𝑥𝑖) 
}                (9) 

𝑋2 = {

𝑥𝑖 ∈ 𝑋| 𝛼𝐴(𝑥𝑖) ≤ 𝛼𝐵(𝑥𝑖); 
𝛽𝐴(𝑥𝑖) ≥ 𝛽𝐵(𝑥𝑖);    

  𝛾𝐴(𝑥𝑖) ≥ 𝛾𝐵(𝑥𝑖) 
}              (10) 

Now, 𝐷𝑀1(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = 

∑

[
 
 
 
 

𝛼𝐴∪𝐵(𝑥𝑖)+𝛼𝐴∩𝐵(𝑥𝑖)

2
− √𝛼𝐴∪𝐵(𝑥𝑖)𝛼𝐴∩𝐵(𝑥𝑖)  

+
𝛽𝐴∪𝐵(𝑥𝑖)+𝛽𝐴∩𝐵(𝑥𝑖)

2
− √𝛽𝐴∪𝐵(𝑥𝑖)𝛽𝐴∩𝐵(𝑥𝑖) +

𝛾𝐴∪𝐵(𝑥𝑖)+𝛾𝐴∩𝐵(𝑥𝑖)

2
− √𝛾𝐴∪𝐵(𝑥𝑖)𝛾𝐴∩𝐵(𝑥𝑖) ]

 
 
 
 

+ ∑

[
 
 
 
 

𝛼𝐴∪𝐵(𝑥𝑖)+𝛼𝐴∩𝐵(𝑥𝑖)

2
− √𝛼𝐴∪𝐵(𝑥𝑖)𝛼𝐴∩𝐵(𝑥𝑖)  

+
𝛽𝐴∪𝐵(𝑥𝑖)+𝛽𝐴∩𝐵(𝑥𝑖)

2
− √𝛽𝐴∪𝐵(𝑥𝑖)𝛽𝐴∩𝐵(𝑥𝑖) +

𝛾𝐴∪𝐵(𝑥𝑖)+𝛾𝐴∩𝐵(𝑥𝑖)

2
− √𝛾𝐴∪𝐵(𝑥𝑖)𝛾𝐴∩𝐵(𝑥𝑖) ]

 
 
 
 

𝑋2𝑋1
  

Using Eqs. (9) and (10), we have 

𝐷𝑀1(𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵) = ∑

[
 
 
 
 
𝛼𝐴(𝑥𝑖)+𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)  

+
𝛽𝐵(𝑥𝑖)+𝛽𝐴(𝑥𝑖)

2
− √𝛽𝐵(𝑥𝑖)𝛽𝐴(𝑥𝑖)

+
𝛾𝐵(𝑥𝑖)+𝛾𝐴(𝑥𝑖)

2
− √𝛾𝐵(𝑥𝑖)𝛾𝐴(𝑥𝑖)]

 
 
 
 

𝑋1
+

∑

[
 
 
 
 

𝛼𝐵(𝑥𝑖)+𝛼𝐴(𝑥𝑖)

2
− √𝛼𝐵(𝑥𝑖)𝛼𝐴(𝑥𝑖)  

+
𝛽𝐴(𝑥𝑖)+𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖) +

𝛾𝐴(𝑥𝑖)+𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖) ]

 
 
 
 

𝑋2
  

= ∑

[
 
 
 
 

(

 
 

𝛼𝐴(𝑥𝑖)+𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)  

+
𝛽𝐵(𝑥𝑖)+𝛽𝐴(𝑥𝑖)

2
− √𝛽𝐵(𝑥𝑖)𝛽𝐴(𝑥𝑖)

+
𝛾𝐵(𝑥𝑖)+𝛾𝐴(𝑥𝑖)

2
− √𝛾𝐵(𝑥𝑖)𝛾𝐴(𝑥𝑖))

 
 

    

(

 
 

+

𝛼𝐵(𝑥𝑖)+𝛼𝐴(𝑥𝑖)

2
− √𝛼𝐵(𝑥𝑖)𝛼𝐴(𝑥𝑖)  

𝛽𝐴(𝑥𝑖)+𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖)

+
𝛾𝐴(𝑥𝑖)+𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖))

 
 

]
 
 
 
 

𝑋1∪𝑋2
≤  

∑

(

 
 
 
 
 
 
 

∑

[
 
 
 
 
 
 
 
 
 

(

 
 

𝛼𝐴(𝑥𝑖)+𝛼𝐵(𝑥𝑖)

2
− √𝛼𝐴(𝑥𝑖)𝛼𝐵(𝑥𝑖)  

+
𝛽𝐵(𝑥𝑖)+𝛽𝐴(𝑥𝑖)

2
− √𝛽𝐵(𝑥𝑖)𝛽𝐴(𝑥𝑖)

𝛾𝐵(𝑥𝑖)+𝛾𝐴(𝑥𝑖)

2
− √𝛾𝐵(𝑥𝑖)𝛾𝐴(𝑥𝑖) )

 
 

  

 +  

(

 
 

𝛼𝐵(𝑥𝑖)+𝛼𝐴(𝑥𝑖)

2
− √𝛼𝐵(𝑥𝑖)𝛼𝐴(𝑥𝑖)  

𝛽𝐴(𝑥𝑖)+𝛽𝐵(𝑥𝑖)

2
− √𝛽𝐴(𝑥𝑖)𝛽𝐵(𝑥𝑖) +

𝛾𝐴(𝑥𝑖)+𝛾𝐵(𝑥𝑖)

2
− √𝛾𝐴(𝑥𝑖)𝛾𝐵(𝑥𝑖) )

 
 

]
 
 
 
 
 
 
 
 
 

𝑋1∪𝑋2

)

 
 
 
 
 
 
 

.𝑛
𝑖=1  

which implies that 𝐷𝑀1(A ∪ 𝐵, 𝐴 ∩ 𝐵 ) ≤ 𝐷1(𝐴, 𝐵). 

Proofs of (𝒃), (𝒄) and (𝒅) also follows on the same lines as that of (𝑎). Similarly, we prove that the 

divergence measure 𝐷2(𝐴, 𝐵) also satisfies all the properties which are given above.  

 

4. Applications 
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In this part, we study the application of the suggested divergence measures in the MCDM 

problem and clustering analysis. 

4.1 Application in MCDM Problems 

In this section, we identify the weakness of the classical SVN TOPSIS method. To overcome the 

limitations, we introduce a new Single-Valued Neutrosophic Inferior Ratio method (SVNIR). This 

method utilizes the proposed divergence measures. 

The weakness of classical SVN TOPSIS: 

The key motive of the MCDM issue is to recognize or select the best option under different 

attributes /criteria. Hwang and Yoon [45] proposed the TOPSIS method which is one of the most 

effective and popular techniques for solving MCDM problems. The idea that came from the TOPSIS 

method is to choose the best alternative nearest to the positive ideal solution and farthest from the 

negative ideal solution. However, the chosen alternative due to TOPSIS is not farthest from the NIS 

for the proposed divergence measures as well as for existing measures as can be shown in the example 

given below: 

Example1. Consider the SVN decision matrix with three alternatives 𝐴𝑖(𝑖 = 1, 2, 3) , and two 

attributes 𝐶𝑖(𝑖 = 1, 2). 

             𝐷 = (

(0.2, 0.1, 0.3) (0.5, 0.1, 0.2)
(0.4, 0.2, 0.3) (0.1, 0.3, 0.2)

(0.6, 0.2, 0.2) (0.2, 0.2, 0.3)
) 

Then the SVN positive ideal solution (SVNPIS) 𝑍+and SVN negative ideal solution (SVNNIS) 

𝑍− are given as  

𝑍+ = (

𝑚𝑎𝑥. (0.2, 0.4, 0.6) 𝑚𝑎𝑥. (0.5, 0.1, 0.2)
𝑚𝑖𝑛. (0.1, 0.2, 0.2) 𝑚𝑖𝑛. (0.1, 0.3, 0.2)

𝑚𝑖𝑛. (0.3, 0.3, 0.2) 𝑚𝑖𝑛. (0.2, 0.2, 0.3)
) = (0.6, 0.1, 0.2) (0.5, 0.1, 0.2). 

𝑍− = (

𝑚𝑖𝑛. (0.2, 0.4, 0.6) 𝑚𝑖𝑛. (0.5, 0.1, 0.2)
𝑚𝑎𝑥. (0.1, 0.2, 0.2) 𝑚𝑎𝑥. (0.1, 0.3, 0.2)

𝑚𝑎𝑥. (0.3, 0.3, 0.2) 𝑚𝑎𝑥. (0.2, 0.2, 0.3)
) = (0.2, 0.2, 0.3) (0.1, 0.3, 0.3). 

Now, we compute the divergence value of every option 𝐴𝑖 from the SVNPIS and SVNNIS by 

using the proposed divergence measure formula given in the Eqs. (3) and (4). Also, compute the 

closeness coefficient of every option and obtain the ranking results in ascending order of closeness 

coefficient as shown in Table 1 and Table 2, respectively. 

 

Table 1. Closeness coefficient and ranking of alternatives by using divergence measure DM1. 

 𝑫𝑴𝟏(𝑨𝒊, 𝒁
+) 𝑫𝑴𝟏 (𝑨𝒊, 𝒁

−) 
Closeness 

Coefficient 
Ranking 

𝑨𝟏 0.0586 0.1168 0.6659 1 

𝑨𝟐 0.1269 0.0222 0.1488 3 

𝑨𝟑 0.0559 0.0722 0.5636 2 

 

Table 2. Closeness coefficient and ranking of alternatives by using divergence measure DM2. 

 𝑫𝑴𝟐(𝑨𝒊, 𝒁
+) 𝑫𝑴𝟐 (𝑨𝒊, 𝒁

−) 
Closeness 

Coefficient 
Ranking 

𝑨𝟏 0.1108 0.2140 0.6588 1 

𝑨𝟐 0.2340 0.0433 0.1561 3 

𝑨𝟑 0.1079 0.1375 0.5603 2 

 

From Table 1 and Table 2, we observe that the chosen alternative 𝐴1 is farthest from the SVNNIS 

for the proposed 𝐷𝑀1  and 𝐷𝑀2  i.e., 𝐷𝑀1(𝐴1,  𝑍
−) = 0.1168, and 𝐷𝑀2(𝐴1,  𝑍

−) = 0.2140  but it is 
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not closest to the SVNPIS for 𝐷𝑀1  and 𝐷𝑀2   i.e., 𝐷𝑀1(𝐴1,  𝑍
+) = 0.0586 >  𝐷𝑀1(𝐴3,  𝑍

+) =

0.0559 and 𝐷𝑀2(𝐴1,  𝑍
+) = 0.1108 >  𝐷𝑀2(𝐴3,  𝑍

+) = 0.1079.  

 

 Now refer to Example 1, if we utilize the classical TOPSIS method for some existing measures 

𝐷𝑀3  and 𝐷𝑀4  (Chai et al. [43]), where 𝐷𝑀3 = 
1

|𝑋|
∑ (|𝛼𝐴

2(𝑥) − 𝛼𝐵
2(𝑥)|⋁|𝛽𝐴

2(𝑥) −𝑥∈𝑋

𝛽𝐵
2(𝑥)|⋁|𝛾𝐴

2(𝑥) − 𝛾𝐵
2(𝑥)|) and 𝐷𝑀4 = 1 − 

1

|𝑋|
∑ {

(𝛼𝐴
2(𝑥)⋀𝛼𝐵

2(𝑥))+(𝛽𝐴
2(𝑥)⋀𝛽𝐵

2(𝑥))+(𝛾𝐴
2(𝑥)⋀𝛾𝐵

2(𝑥))

(𝛼𝐴
2(𝑥)⋁𝛼𝐵

2(𝑥))+(𝛽𝐴
2(𝑥)⋁𝛽𝐵

2
(𝑥))+(𝛾𝐴

2(𝑥)⋁𝛾𝐵
2(𝑥))

}𝑥∈𝑋 , 

similar weakness has been identified as shown in Table 3 and Table 4. 

 

Table 3. Closeness coefficient and ranking of alternatives. 

 𝑫𝟑(𝑨𝒊, 𝒁
+) 𝑫𝟑(𝑨𝒊, 𝒁

−) 
Closeness 

Coefficient 
Ranking 

𝑨𝟏 0.0250 0.1200 0.8275 1 

𝑨𝟐 0.0650 0.0600 0.4800 3 

𝑨𝟑 0.0400 0.1750 0.8139 2 

      

From Table 3, it shows that the chosen alternative 𝐴1  is not farthest from the SVNNIS i.e., 

𝐷3(𝐴1,  𝑍
−) = 0.12 <  𝐷3(𝐴3,  𝑍

−) = 0.175 but it is closest to the SVNPIS i.e., 𝐷3(𝐴1,  𝑍
+) = 0.025. 

 

Table 4. Closeness coefficient and ranking of alternative. 

 𝑫𝟒(𝑨𝒊, 𝒁
+) 𝑫𝟒(𝑨𝒊, 𝒁

−) 
Closeness 

coefficient 
Ranking 

𝑨𝟏 0.4021 0.5184 0.5270 2 

𝑨𝟐 0.7067 0.3384 0.3237 3 

𝑨𝟑 0.4156 0.5593 0.5736 1 

       

From Table 4, it shows that the chosen alternative is farthest from the SVNNIS i.e., 𝐷4(𝐴3,  𝑍
−) =

0.5593, but it is not closest to the SVNPIS 𝐷4(𝐴3,  𝑍
+) =0.4156 > 𝐷4(𝐴1,  𝑍

+) = 0.4021. 

 

Example 2. Consider the SVN decision matrix with three alternatives 𝐴𝑖(𝑖 = 1, 2, 3) , and two 

attributes 𝐶𝑖(𝑖 = 1, 2). 

𝐷 = (

(0.1, 0.1, 0.2) (0.6, 0.2, 0.3)
(0.5, 0.2, 0.3) (0.2, 0.2, 0.2)

(0.1, 0.3, 0.3) (0.4, 0.1, 0.3)
) 

 

Then the SVN positive ideal solution (SVNPIS) 𝑍+and SVN negative ideal solution (SVNNIS) 

𝑍− are given as  

𝑍+ = (

𝑚𝑎𝑥. (0.1, 0.5, 0.1) 𝑚𝑎𝑥. (0.6, 0.2, 0.4)
𝑚𝑖𝑛. (0.1, 0.2, 0.3) 𝑚𝑖𝑛. (0.2, 0.2, 0.1)

𝑚𝑖𝑛. (0.2, 0.3, 0.3) 𝑚𝑖𝑛. (0.3, 0.2, 0.3)
) = (0.5, 0.1, 0.2) (0.6, 0.1, 0.2). 

𝑍− = (

𝑚𝑖𝑛. (0.1, 0.5, 0.1) 𝑚𝑖𝑛. (0.6, 0.2, 0.4)
𝑚𝑎𝑥. (0.1, 0.2, 0.3) 𝑚𝑎𝑥. (0.2, 0.2, 0.1)

𝑚𝑎𝑥. (0.2, 0.3, 0.3) 𝑚𝑎𝑥. (0.3, 0.2, 0.3)
)= (0.1, 0.3, 0.3) (0.2, 0.3, 0.3). 

     

Similarly, for another example, we calculate the divergence measure of every option 𝐴𝑖 from 

the SVNPIS and SVNNIS by using the proposed divergence measure formula given in Eq. (4) and 

we compute the closeness coefficient of each alternative and then obtain the ranking results in 

ascending order of closeness coefficient. 
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From the closeness coefficient and ranking results of the alternatives, we observe that the chosen 

alternative 𝐴1 is closest to the SVNPIS for the proposed  𝐷𝑀2 i.e., 𝐷𝑀2(𝐴2,  𝑍
+) = 0.1444but it is 

not farthest from the SVNNIS for 𝐷𝑀2 i. e. , 𝐷𝑀2(𝐴2,  𝑍
−) = 0.1669 < 𝐷𝑀2(𝐴1,  𝑍

−) = 0.1712. 

Now refer to Example 2, if utilizing the classical TOPSIS method for some existing measures (Ye 

[41], Huang [42], Chai, et al. [43], and Nancy and Garg [32]), a similar weakness has been identified. 

Thus, from Examples 1 and 2, we see that the best alternative is neither closest to the SVNPIS nor 

farthest from the SVNNIS. To overcome this weakness of the classical TOPSIS method, we introduced 

the single-valued neutrosophic inferior ratio method (SVNIR) for the MCDM problem. Our proposed 

method constructs a compromise solution that constitutes an idea that the best alternative is closest 

to  SVNPIS and farthest from the SVNNIS. To demonstrate this, we formulate an MCDM algorithm 

in the SVN environment. The flowchart of the algorithm is presented in Figure 1. 

Let us consider a set of m- options i.e., 𝐴𝑖 = (𝐴1, 𝐴2, … ,  𝐴𝑚) and n-criterion 𝑍 = (𝑍1, 𝑍2, … ,  𝑍𝑛).  

To select the best alternative, the proposed algorithm is as follows. 

 

Algorithm 
Step 1. Construct the SVN- decision matrix 𝐸 =  (𝑒𝑖𝑗)𝑚×𝑛

 in which 𝑒𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗)  is an SVN 

value where 𝑏𝑖𝑗  is the indeterminacy-membership value of alternative 𝐴𝑖 , 𝑐𝑖𝑗  is the non-

membership value of alternative 𝐴𝑖. 

Step 2. Compute the normalized SVN decision matrix 𝑁 = (𝑛𝑖𝑗)𝑚×𝑛
 where 

𝑛𝑖𝑗 = {
𝑒𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗)  𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎; 

(𝑒𝑖𝑗)
𝑐 = (𝑐𝑖𝑗 , 𝑏𝑖𝑗 , 𝑎𝑖𝑗)   𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎.

 

Step 3. Obtain the SVNPIS 𝑍+  and SVNNIS 𝑍−  where 𝑍+ = {𝑛1
+, 𝑛2

+, … , 𝑛𝑚
+}  and 𝑍− =

 {𝑛1
−, 𝑛2

−, … , 𝑛𝑚
−} with 𝑛𝑗

+ = (𝑚𝑎𝑥𝑖  (𝑎𝑖𝑗),𝑚𝑖𝑛𝑖(𝑏𝑖𝑗),𝑚𝑖𝑛𝑖  (𝑐𝑖𝑗)),     𝑛𝑗
− = (𝑚𝑖𝑛𝑖  (𝑎𝑖𝑗),𝑚𝑎𝑥𝑖(𝑏𝑖𝑗),𝑚𝑎𝑥. (𝑐𝑖𝑗)),

𝑖 = 1,2,… , 𝑛 and 𝑗 = 1,2, … ,𝑚. 

Step 4. Calculate the divergence measure of every option 𝐴𝑖  (𝑖 = 1,2, … ,𝑚) from SVNPIS 𝑍+ and 

SVNNIS 𝑍−  using our proposed divergence measure given in Eqs. (3) and (4) i.e., calculate 

𝐷𝑀1(𝐴𝑖,  𝑍
+)  𝐷𝑀1(𝐴𝑖,  𝑍

−)  and 𝐷𝑀2(𝐴𝑖 ,  𝑍
+)  𝐷𝑀2(𝐴𝑖 ,  𝑍

−) (𝑖 = 1,2, … ,𝑚).  The smaller of 

𝐷𝑀1(𝐴𝑖, 𝑍
+), 𝐷𝑀2(𝐴𝑖 , 𝑍

+) and greater of 𝐷𝑀1(𝐴𝑖 , 𝑍
−), 𝐷𝑀2(𝐴𝑖 , 𝑍

−), the better of 𝐴𝑖 is. 

Step 5. Compute 𝐷𝑀1(𝑍
+)  and 𝐷𝑀2(𝑍

+)  where 𝐷𝑀1(𝑍
+) = 𝑚𝑖𝑛. (𝐷𝑀1(𝐴𝑖 , 𝑍

+))  and 𝐷𝑀2(𝑍
+) =

𝑚𝑖𝑛. (𝐷𝑀2(𝐴𝑖, 𝑍
+))  and hence the alternative that satisfies 𝐷𝑀1(𝑍

+) = (𝐷𝑀1(𝐴𝑖 , 𝑍
+))  and 

𝐷𝑀2(𝑍
+) = (𝐷𝑀2(𝐴𝑖, 𝑍

+)) is closest to SVNPIS. 

Step 6. Similarly, compute 𝐷𝑀1(𝑍
−)  and 𝐷𝑀2(𝑍

−)  where 𝐷𝑀1(𝑍
−) = 𝑚𝑎𝑥. (𝐷𝑀1(𝐴𝑖 , 𝑍

−))  and 

𝐷𝑀2(𝑍
−) = 𝑚𝑎𝑥. (𝐷𝑀2(𝐴𝑖, 𝑍

−))  and hence the alternative that satisfies 𝐷𝑀1(𝑍
−) = (𝐷𝑀1(𝐴𝑖 , 𝑍

−)) 

and 𝐷𝑀2(𝑍
−) = (𝐷𝑀2(𝐴𝑖, 𝑍

−)) is farthest from SVNNIS. 

Step 7. Calculate 𝜌 (𝐴𝑖)for each alternative where, 𝜌 (𝐴𝑖) =  
𝐷𝑀1(𝐴𝑖,𝑍

−)

𝐷𝑀1(𝑍−)
 - 

𝐷𝑀1(𝐴𝑖,𝑍
+)

𝐷𝑀1(𝑍+)
.            (11) 

Also, 𝜌 (𝐴𝑖) =  
𝐷𝑀2(𝐴𝑖,𝑍

−)

𝐷𝑀2(𝑍−)
 - 

𝐷𝑀2(𝐴𝑖,𝑍
+)

𝐷𝑀2(𝑍+)
                                                   (12) 

Where 𝜌 (𝐴𝑖) measures the degree to which an alternative is closest to SVNPIS and farthest from the 

SVNNIS simultaneously. 

Step 8. Compute the single-valued neutrosophic inferior ratio for each alternative (SVNIR) by using 

Eq. (13). 

𝜁𝑖 = 
𝜌 (𝐴𝑖)

𝑚𝑖𝑛.(𝜌 (𝐴𝑖))
.                                                                     (13) 

Step 9. The options are ranked in ascending order of values of SVNIR (𝜁𝑖). 

Now, we use the SVNIR method for solving the MCDM problem in the SVN environment and the 

flowchart of the following algorithm is shown in Figure 1. For this, we consider an example as follows: 
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Figure 1. Flowchart of SVNIR algorithm. 

Example 3 [46]. Let us assume a manufacturing corporation that needs to choose the best supplier. 

Let us assume that there are five available suppliers 𝐴 = (𝐴1, 𝐴2,  𝐴3, 𝐴4, and, 𝐴5). The capabilities and 

competencies have been computed under four criteria (the level of technology innovation, the control 
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ability of flow, the ability of management, and the level of service) i.e., 𝑍 = (𝑍1,  𝑍2, 𝑍3,  𝑍4). By using 

the SVNIR method, we follow the algorithm given above: 

Step 1. The information for five alternatives corresponding to four attributes is given by decision 

experts in the form of SVN values given in Table 5. 

 

Table 5. SVN decision matrix. 

Alternatives 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 

𝑨𝟏 (0.5, 0.2, 0.3) (0.1, 0.4, 0.3) (0.3, 0.2, 0.5) (0.7, 0.8, 0.9) 

𝑨𝟐 (0.4, 0.3, 0.2) (0.5, 0.6, 0.1) (0.4, 0.3, 0.2) (0.9, 0.1, 0.2) 

𝑨𝟑 (0.6, 0.4, 0.1) (0.1, 0.3, 0.5) (0.7, 0.8, 0.2) (0.3, 0.5, 0.4) 

𝑨𝟒 (0.7, 0.8, 0.4) (0.3, 0.5, 0.4) (0.9, 0.3, 0.2) (0.5, 0.3, 0.4) 

𝑨𝟓 (0.9, 0.5, 0.1) (0.4, 0.3, 0.2) (0.8, 0.8, 0.7) (0.6, 0.3, 0.2) 

 

Step 2. All the criteria are of the same kind in the given example, so there is no need to convert the 

cost criteria into benefit factors or vice-versa. Therefore, the normalized decision matrix is the same 

as given in Table 5. 

Step 3. Obtain SVNPIS 𝑍+  and SVNNIS 𝑍−  where 𝑍+ = (𝑚𝑎𝑥. (0.5, 0.4, 0.6, 0.7, 0.9), min. (0.2,0.3, 0.8, 

0.5), 𝑚𝑖𝑛. (0.3, 0.2, 0.1, 0.4, 0.1)) for criteria 𝑍1.  

𝑍− = (𝑚𝑖𝑛. (0.5, 0.4, 0.6, 0.7, 0.9),𝑚𝑎𝑥. (0.2, 0.3, 0.4, 0.8, 0.5),𝑚𝑎𝑥. (0.3, 0.2, 0.1, 0.4, 0.1)) for criteria 

𝑍1 as shown below: 

𝑍+ = (0.9,0.2, 0.1)(0.5, 0.3, 0.1)(0.9, 0.2, 0.2)(0.9, 0.1, 0.2) 

𝑍− = (0.4, 0.8, 0.4)(0.1, 0.6, 0.5)(0.3, 0.8, 0.7)(0.3, 0.8,0.9). 

Similarly for other criteria, we find 𝑍+ and 𝑍−. 

Step 4. Calculate the divergence measure given in Eqs. (3) and (4) i.e., 𝐷𝑀1(𝐴𝑖,  𝑍
+), 𝐷𝑀1(𝐴𝑖,  𝑍

−) and 

𝐷𝑀2(𝐴𝑖,  𝑍
+) 𝐷𝑀2(𝐴𝑖 ,  𝑍

−) (𝑖 = 1,2,3, 4, 5). The obtained result is given in Table 6. 

 

Table 6. SVNPIS and SVNNIS for each alternative. 

Alternatives 𝑫𝑴𝟏(𝑨𝒊, 𝒁
+) 𝑫𝑴𝟐(𝑨𝒊,  𝒁

−) 𝑫𝑴𝟐(𝑨𝒊, 𝒁
+) 𝑫𝑴𝟐(𝑨𝒊,  𝒁

−) 

𝑨𝟏 0.5760 0.2793 1.0452 0.5208 

𝑨𝟐 0.1444 0.7428 0.2796 1.3496 

𝑨𝟑 0.4653 0.3052 0.8544 0.5803 

𝑨𝟒 0.3098 0.3918 0.5796 0.7432 

𝑨𝟓 0.2643 0.5012 0.4938 0.9350 

 

Step 5. From Table 6 we have, 𝐷𝑀1(𝑍
+) = 0.1444 and 𝐷𝑀2(𝑍

+) = 0.2796 which is closest to the 

SVNPIS. 

Step 6. Also, from Table 6 we get 𝐷𝑀1(𝑍
−) = 0.7428 and 𝐷𝑀2(𝑍

−) = 1.3496 which is farthest from 

SVNNIS. 

Step 7. Calculate 𝜌 (𝐴𝑖)for each alternative using Eqs. (11) and (12) as given in Table 7. 

Table 7. Computed values of 𝜌 (𝐴𝑖). 

𝝆 (𝑨𝒊) 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 

𝑫𝑴𝟏 -3.6053 0 -2.803 -1.6073 -1.1419 

𝑫𝑴𝟐 -3.3523 0 -2.6258 -1.5223 -1.0733 

 

Step 8. Calculate the SVNIR ( 𝜁𝑖 ) for alternative 𝐴𝑖(𝑖 = 1, 2, 3, 4)  using Eq. (13) and rank the 

alternatives in ascending order as shown in Table 8. 
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Table 8. Computed values of 𝜁𝑖. 

𝜻𝒊 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 

𝑫𝑴𝟏 1 0 0.7774 0.4458 0.3167 

𝑫𝑴𝟐 1 0 0.7832 0.4541 0.3201 

 

Ranking due to the proposed measures is 𝐴2 > 𝐴5 > 𝐴4 > 𝐴3 > 𝐴1. Table 8, indicates that the 

best alternative is 𝐴2 which is closest to the SVNPIS and farthest from the SVNNIS. Now, to check 

the reasonability and validity of the proposed measures, we apply the existing method (Nancy and 

Garg [32], Aydogdu [15], Shahzadi et al. [47], Ye [46], Ye [48], Broumi and Smarandache [49]) for 

solving the same investment problem given in Example 3, and the results are listed in Table 9.  

Table 9. Ranking of existing measures with the help of the SVNIR method. 

Measures Ranking 

Nancy and Garg [32] 𝐴2 > 𝐴5 > 𝐴4 > 𝐴3 > 𝐴1 

Aydogdu [15] 𝐴2 > 𝐴5 > 𝐴4 > 𝐴3 > 𝐴1 

Shahzadi et al. [47] 𝐴2 > 𝐴5 > 𝐴4 > 𝐴3 > 𝐴1 

Ye [46] 𝐴2 > 𝐴5 > 𝐴4 > 𝐴1 > 𝐴3 

Ye [48] 𝐴2 > 𝐴5 > 𝐴4 > 𝐴3 > 𝐴1 

Broumi and Smarandache [49] 𝐴2 > 𝐴5 > 𝐴4 > 𝐴3 > 𝐴1 

 

From Table 9, we observe that the prominent existing methods (Nancy and Garg [32], Aydogdu 

[15], Shahzadi et al. [47], Ye [46], Ye [48] Broumi, and Smarandache [49]) indicate that the best 

alternative is 𝐴2, and, the same alternative is indicated by our suggested method. This implies that 

our suggested measure is in agreement with the existing measures in the SVN environment. 

 

4.2 Application of the Proposed Divergence Measure in Clustering Analysis 

Clustering analysis has a tremendous application in various fields like image processing, pattern 

recognition, and data analysis, etc., To date, various scholars investigated the Clustering analysis 

algorithm of FSs, IFSs, HFSs, SVNSs. In the following, we proposed a new distance/similarity 

measure-based clustering approach to cluster SVN data. A numerical example is considered to show 

that the proposed measure is more effective than the existing measures. 

The algorithm of clustering analysis is as follows (Ye [41]): 

Step 1. For SVNSs (𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛) on X, construct an SVN similarity matrix 𝐶 =  (𝑆𝑖𝑗)𝑛×𝑛, with the 

help of the similarity measure of SVNSs given in Eq. (5) and Eq. (6) where 𝑆𝑖𝑗 = 𝑆𝑘 (𝐴𝑖 , 𝐴𝑗) where k 

=1, 2 and i, j =1, 2…, n. 

Step 2. Compute the SVN matrix i.e., check whether 𝐶2 ⊆ 𝐶 , where 𝐶2 = 𝐶 ∘ 𝐶 =  (�̃�𝑖𝑗)𝑚×𝑚  is a 

composition matrix of 𝐶  and, where �̃�𝑖𝑗  = 𝑚𝑎𝑥. (𝑚𝑖𝑛. (𝑆𝑖𝑘 , 𝑆𝑘𝑗));  𝑖, 𝑗 = 1, 2, 3, …𝑚. The process is 

repeated until 𝐶2𝑘
= 𝐶2(𝑘+1)

holds, where 𝐶2𝑘
 is an equivalent similarity matrix and it is denoted as 

𝐶̅ =  𝑆�̅�𝑗𝑛×𝑛
. 

Step 3. Construct 𝜆- cutting matrix  𝐶̅𝜆 = (𝑆�̅�𝑗
𝜆
)

𝑛×𝑛
 for a given confidence level 𝜆 ∈ [0, 1]. 

Where 𝑆𝑖𝑗
𝜆 = {

0 𝑖𝑓 𝑆𝑖𝑗
𝜆  < 𝜆

1 𝑖𝑓 𝑆𝑖𝑗
𝜆 ≥  𝜆

 

Step 4. Finally, we classify/identify SVNSs using the principle; if all features of the 𝑖𝑡ℎ column in 𝐶𝜆 

are the same as the corresponding elements of the 𝑗𝑡ℎ column in 𝐶𝜆, then we say SVNS 𝐴𝑖 and  𝐴𝑗 

are in the same class. 

Example 4. A classification problem adapted from (Ye [41]) is described below: 
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A car market is going to classify five different cars. Every car has five different evaluation factors: 

𝐴1= consumption of fuel,  𝐴2 = degree of friction, 𝐴3 = car price, 𝐴4 = degree of comfort, and 𝐴5 

= design. The information of every car under each evaluation factor is represented by SVNSs, which 

are given below: 

𝐴1 = (0.9, 0.8, 0.9), (0.4, 0.5, 0.6), (0.7, 0.3, 0.5), (0.6, 0.7, 0.6), (0.3, 0.7, 0.1) 

𝐴2 = (0.8, 0.8, 0.2), (0.7, 0.6, 0.7), (0.9, 0.7, 0.6), (0.4, 0.6, 0.1), (0.7, 0.8, 0.5)  

𝐴3 = (0.6, 0.6, 0.7), (0.9, 0.9, 0.2), (0.8, 0.9, 0.7), (0.4, 0.3, 0.1), (0.5, 0.4, 0.1) 

𝐴4 = (0.7, 0.5, 0.3), (0.1, 0.9, 0.8), (0.7, 0.3, 0.2), (0.8, 0.9, 0.2), (0.8, 0.7, 0.6) 

𝐴5 = (0.5, 0.6, 0.4), (0.6, 0.7, 0.8), (0.6, 0.6, 0.5), (0.7, 0.8, 0.1), (0.3, 0.2, 0.2) 

 

Now, we calculate the similarity measure 𝑆𝑀1 corresponding to the divergence measure 𝐷𝑀1 

given in Eqs. (5) and (6) between each pair of SVNSs 𝐴1, 𝐴2, 𝐴3, 𝐴4, and 𝐴5. The result is obtained in 

the form of a matrix 𝐶 which is given below: 

 

𝐶 =  

[
 
 
 
 

1 0.560 0.557 0.543 0.667
0.560 1 0.658 0.658 0.729
0.557 0.658 1 0.229 0.705
0.543 0.658 0.229 1 0.611
0.667 0.729 0.705 0.611 1 ]

 
 
 
 

 

 

𝐶2 = 

[
 
 
 
 

1 0.667 0.667 0.611 0.667
0.667 1 0.705 0.658 0.729
0.667 0.705 1 0.658 0.705
0.611 0.658 0.658 1 0.658
0.667 0.729 0.705 0.658 1 ]

 
 
 
 

 

 

𝐶4 = 

[
 
 
 
 

1 0.667 0.667 0.658 0.667
0.667 1 0.705 0.658 0.729
0.667 0.705 1 0.658 0.705
0.658 0.658 0.658 1 0.658
0.667 0.729 0.705 0.658 1 ]

 
 
 
 

 

 

𝐶8 = 

[
 
 
 
 

1 0.667 0.667 0.658 0.667
0.667 1 0.705 0.658 0.729
0.667 0.705 1 0.658 0.705
0.658 0.658 0.658 1 0.658
0.667 0.729 0.705 0.658 1 ]

 
 
 
 

 

 

Here, we have 𝐶8 ⊆ 𝐶4, so 𝐶4 is an SVN equivalent matrix. Now, to perform clustering for a 

confidence level 𝜆, we construct 𝜆- cutting matrix 𝐶𝜆 = (𝑆𝑖𝑗
𝜆)

𝑚×𝑚
, and based on the result we get 

all the possible classifications of 𝐴𝑗(j = 1, 2, 3, 4, 5) as shown in Table 10. 

Table 10. Clustering result for  𝑆𝑀1. 

Confidence level  Possible classification  

𝟎 ≤ 𝝀 ≤ 𝟎. 𝟔𝟓𝟖 {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 } 

𝟎. 𝟔𝟓𝟖 ≤ 𝝀 ≤ 𝟎. 𝟔𝟔𝟕 {𝐴1, 𝐴2, 𝐴3}, {𝐴4}, {𝐴5} 

𝟎. 𝟔𝟔𝟕 ≤ 𝝀 ≤ 𝟎. 𝟕𝟎𝟓 {𝐴1}, {𝐴2, 𝐴3}, {𝐴4}, {𝐴5} 

𝟎. 𝟕𝟎𝟓 ≤ 𝝀 ≤ 𝟎. 𝟕𝟐𝟗 {𝐴1}, {𝐴2, 𝐴5}, {𝐴3}, {𝐴4} 

𝟎. 𝟕𝟐𝟗 ≤ 𝝀 ≤ 𝟏 {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5} 

 

Similarly, we find the similarity measure 𝑆𝑀2 corresponding to the divergence measure 𝐷𝑀2 

between each pair of SVNSs 𝐴1, 𝐴2, 𝐴3, 𝐴4, and 𝐴5. From the calculation, we observe that 𝐶8 ⊆ 𝐶4, so 

𝐶4 is an SVN equivalent matrix. Now, for a confidence level 𝜆, we construct 𝜆- cutting matrix 𝐶𝜆 =
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 (𝑆𝑖𝑗
𝜆)

𝑚×𝑚
 by performing cluster analysis and based on the result we get all the classifications of 𝐴𝑗(j 

= 1, 2, 3, 4, 5) as given in Table 11. 

Table 11. Clustering result for  𝑆𝑀2. 

Confidence level Possible classification  

𝟎 ≤ 𝝀 ≤ 𝟎. 𝟕𝟎𝟔 {𝐴1, 𝐴2, 𝐴3,𝐴4, 𝐴5} 

𝟎. 𝟕𝟎𝟔 ≤ 𝝀 ≤ 𝟎. 𝟕𝟏𝟎 {𝐴1, 𝐴2, 𝐴3}, {𝐴4}, {𝐴5} 

𝟎. 𝟕𝟏𝟎 ≤ 𝝀 ≤ 𝟎. 𝟕𝟑𝟐 {𝐴1}, {𝐴2, 𝐴3, 𝐴5}, {𝐴4} 

𝟎. 𝟕𝟑𝟐 ≤ 𝝀 ≤ 𝟎. 𝟕𝟓𝟓 {𝐴1}, {𝐴2, 𝐴5}{𝐴3}, {𝐴4} 

𝟎. 𝟕𝟓𝟓 ≤ 𝝀 ≤ 𝟏 {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5} 

 

If we apply Shahzadi et al. [47] for the clustering of five different cars as given in Example 4. We 

construct the SVN similarity matrix and follow the same algorithm. Here, we have 𝐶4 ⊆ 𝐶2, so 𝐶2 is 

an SVN equivalent matrix. Now, to perform clustering for a confidence level 𝜆, we construct 𝜆- 

cutting matrix 𝐶𝜆 = (𝑆𝑖𝑗
𝜆)

𝑚×𝑚
, and based on the result we get all the classifications of 𝐴𝑗(j = 1, 2, 3, 

4, 5) as shown in Table 12. 

Table 12. Clustering result for Shahzadi et al. [47]. 

Confidence level Possible classification  

𝟎 ≤ 𝝀 ≤ 𝟎. 𝟕𝟓𝟑 {𝐴1, 𝐴2, 𝐴3,𝐴4, 𝐴5} 

𝟎. 𝟕𝟓𝟑 ≤ 𝝀 ≤ 𝟎. 𝟕𝟓𝟔 {𝐴1}, {𝐴2, 𝐴3, 𝐴4,𝐴5} 

𝟎. 𝟕𝟓𝟔 ≤ 𝝀 ≤ 𝟎. 𝟕𝟕𝟔 {𝐴1}, {𝐴2, 𝐴4, 𝐴5}{𝐴3} 

𝟎. 𝟕𝟕𝟔 ≤ 𝝀 ≤ 𝟎. 𝟕𝟖𝟑 {𝐴1}, {𝐴2, 𝐴5}, {𝐴3}, {𝐴4} 

𝟎. 𝟕𝟖𝟑 ≤ 𝝀 ≤ 𝟏 {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5} 

 

Now, if we utilize Aydogdu [15], Ye [48], and Sahin et al. [50] existed measures to cluster the five 

different cars as mentioned in Example 4. We compute the SVN similarity matrix follow the same 

algorithm and obtain the 𝐶2, 𝐶2, and 𝐶4  as SVN equivalent matrix respectively. Now, to perform 

clustering for a confidence level 𝜆, we construct 𝜆- cutting matrix 𝐶𝜆 = (𝑆𝑖𝑗
𝜆)

𝑚×𝑚
, and based on the 

result we get all the classifications of 𝐴𝑗(j = 1, 2, 3, 4, 5) as given in Tables 13-15. 

Table 13. Clustering result for Aydogdu [15]. 

Confidence level Possible classification  

𝟎 ≤ 𝝀 ≤ 𝟎. 𝟕𝟔𝟔 {𝐴1, 𝐴2, 𝐴3,𝐴4, 𝐴5} 

𝟎. 𝟕𝟔𝟔 ≤ 𝝀 ≤ 𝟎. 𝟕𝟕𝟑 {𝐴1, 𝐴2, 𝐴5}, {𝐴3}, {𝐴4} 

𝟎. 𝟕𝟕𝟑 ≤ 𝝀 ≤ 𝟎. 𝟕𝟖𝟎 {𝐴1}, {𝐴2, 𝐴5}, {𝐴3}, {𝐴4} 

𝟎. 𝟕𝟖𝟎 ≤ 𝝀 ≤ 𝟏 {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5} 

 

Table 14. Clustering result for Ye [48]. 

Confidence level Possible classification  

𝟎 ≤ 𝝀 ≤ 𝟎. 𝟗𝟐𝟐 {𝐴1, 𝐴2, 𝐴3,𝐴4, 𝐴5} 

𝟎. 𝟗𝟐𝟐 ≤ 𝝀 ≤ 𝟎. 𝟗𝟐𝟒 {𝐴1, 𝐴2, 𝐴5}, {𝐴3}, {𝐴4} 

𝟎. 𝟗𝟐𝟒 ≤ 𝝀 ≤ 𝟎. 𝟗𝟐𝟔 {𝐴1}, {𝐴2, 𝐴5}, {𝐴3}, {𝐴4} 

𝟎. 𝟗𝟐𝟔 ≤ 𝝀 ≤ 𝟏 {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5} 
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Table 15. Clustering result for Sahin et al. [50]. 

Confidence level Possible classification  

𝟎 ≤ 𝝀 ≤ 𝟎. 𝟖𝟐𝟒 {𝐴1, 𝐴2, 𝐴3,𝐴4, 𝐴5} 

𝟎. 𝟖𝟐𝟒 ≤ 𝝀 ≤ 𝟎. 𝟖𝟐𝟔 {𝐴1, 𝐴3}, {𝐴2, 𝐴4, 𝐴5} 

𝟎. 𝟖𝟐𝟔 ≤ 𝝀 ≤ 𝟎. 𝟖𝟗𝟑 {𝐴1}, {𝐴3}, {𝐴2, 𝐴4, 𝐴5} 

𝟎. 𝟖𝟗𝟑 ≤ 𝝀 ≤ 𝟎. 𝟗𝟏𝟏 {𝐴1}, {𝐴3}, {𝐴2, 𝐴5}, {𝐴4} 

𝟎. 𝟗𝟏𝟏 ≤ 𝝀 ≤ 𝟏 {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5} 

 

Analysis: The classification result obtained from clustering analysis by using our proposed measure 

and some existing measures is shown above. From the classification table, it has been observed that 

the confidence level range in our proposed measures  𝑆𝑀1  and 𝑆𝑀2 is wider as compared to the 

existing measure. Due to this, classification is possible at a lower confidence level by our proposed 

measures. Therefore, our proposed measure is more effective than the existing measures. 

 

5. Conclusion 

This article presented an aggregation-based divergence measure for SVNSs and verified its 

properties. In an MCDM problem, the proposed divergence measures have been utilized to improve 

and/or overcome the drawbacks that are inherent in the existing classical TOPSIS method. A novel 

single-valued neutrosophic inferior ratio (SVNIR) method was introduced to address the drawbacks 

of existing measures and validated using numerical examples. Comparative studies in the context of 

decision-making and clustering analysis established the reasonability and superiority of the proposed 

method. 

The main limitation of the proposed method is that it is expert-based and a non-academic 

decision-maker may face difficulty during its implementation. Moreover, the unavailability of real 

data in the neutrosophic framework is also a bottleneck to applying the method to real data-related 

problems. 

In the future, we will focus on some other versions of neutrosophic sets by using aggregation 

operators like an interval-valued neutrosophic set, neutrosophic soft sets, refined neutrosophic sets, 

etc., and study their application to different fields of artificial intelligence. 
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