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Abstract: In recent times, the world has experienced a rise in the frequency of forest fires. These fires 

cause severe economic damage and pose a significant threat to human lives. Therefore, it is essential 

to search for solutions that can help combat fires and detect them early. Once a fire reaches a certain 

level, it becomes challenging to control it. Various systems have been proposed to collect data and 

detect forest fires, such as satellites and other traditional methods. However, these solutions have 

been ineffective in terms of cost, coverage of large areas, accuracy, and the safety of human lives. To 

address these limitations, Unmanned Aerial Vehicles (UAVs) or drones have been used for detecting, 

combatting, and early warning of forest fires. UAVs are one of the modern technologies that have 

achieved great progress in monitoring natural disasters and have been widely used in monitoring, 

detecting, and predicting fires. They can fly without a human pilot on board, which makes them ideal 

for preserving human life. In addition, they are equipped with firefighting tools and various tools for 

remote sensing. This is to take high-quality photos or videos of the area to be detected. Different types 

of UAVs are used to fight fires, and here decision-makers face a problem in choosing between these 

types. Therefore, this research proposes a new MCDM model integrated with neutrosophic sets for 

selecting the optimal UAV to combat forest fires; therefore it helps in effectively detecting and 

fighting the fire. The proposed model integrates a Method based on Removal Effects of Criteria 

(MEREC) and Root Assessment Method (RAM) with the context of neutrosophic sets that effectively 

deal with ambiguity for selecting the optimal UAV which use in the detection and combat forest fires.  

Keywords: Forest Fires, MCDM Methods, Root Assessment Method, RAM, MEREC, UAVs, 

Neutrosophic Set. 

 

1. Introduction 

Climate change, environmental disturbances, and human activities have led to many forest fires, 

which cause significant damage and threaten public safety and human lives [1]. It has now become 

necessary to manage forest fires, which means a set of measures and policies taken to prevent forest 

fires, detect them early, predict their occurrence, monitor them, and reduce their harmful effects. 

Therefore, decision-makers face the challenge of finding the best ways to manage forest fires and 

protect the environment from them, including early detection and gathering information about their 

effects. There are traditional methods for monitoring and detecting forest fires, which include, 

satellite imagery, smoke detectors, and human observers [2]. Authors in [3] used satellite thermal 

images to report fire risks. To monitor forest fires, the author in [4] used wireless sensor networks. 

However, there are several issues associated with the current methods of detecting and responding 

to fires. Firstly, these methods can be quite costly. Secondly, they rely heavily on human intervention, 
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which puts the lives of firefighters at risk. Thirdly, the process of detecting fires can be slow, and the 

response process can be even slower, especially when it takes time for the firefighting team to arrive 

at the site of the fire after it has already broken out, and inaccuracy, as satellite images have limited 

accuracy this is due to noise or the distance. 

Recently, there has been a great development in finding more effective methods in fire 

management, as UAVs have been used as a powerful tool for managing fires, fighting them, tracking 

them, and predicting their occurrence through the information collected from them [5-7]. The roots 

of UAVs go back to military applications, and with technological development, they used in many 

applications such as water management [8, 9], agriculture [10, 11], livestock management [12], and 

many more applications due to their advantages, ease of deployment, wind resistance, ability to fly 

long distances and a long time, in addition to its low cost. By utilizing UAVs, it is possible to gather 

information about the density of smoke, which can help in determining the size and location of a fire. 

UAVs can be equipped with various tools such as firefighting equipment, thermal cameras, and 

remote sensors, which make them powerful and effective tools in managing forest fires. With the help 

of UAVs, it becomes easier to identify the areas that require immediate intervention to prevent the 

spread of fire. 

Authors in [13] studied the benefits of using UAVs in forest fire management as well as the 

limitations they face. They have proven that fire detection via the Internet of Things networks 

supported by UAVs is better than using satellite imaging, as discrete-time Markov chain analysis was 

used to calculate the probability of both early detection of forest fires, where, the UAVs collect both 

images and signals from sensors to verify whether the fire alarm is false or not. Based on these signals, 

the UAVs take one of two actions: either resume the normal search process in the case of a “false 

alarm” or send signals to a firefighting station if there are fires [14]. The use of UAVs equipped with 

a global positioning system (GPS) that indicates the location of the fire and high-quality cameras that 

capture accurate images using deep learning capability helps detect and monitor fires better than 

satellites [15]. A group of UAVs were utilized as a swarm, flying together to search for fires and work 

together to extinguish them using information collected from the thermal sensors equipped with the 

UAVs [16]. Multiple UAVs hover around the fire area and send a confirmation signal to the 

firefighting UAV team, then determine the fire locations and assign a UAV to each spot to overcome 

the fire [17]. Since UAVs are powerful and effective tools in the process of managing forest fires, many 

types of UAVs are used in fire management. Hence, decision-makers face a problem in choosing the 

optimal alternative among the available alternatives with different standards, and therefore an 

effective methodology is needed to choose the optimal alternative to a specific situation. In this 

research, the problem was presented as a multi-criteria decision-making problem. The multiple 

criteria decision-making (MCDM) is a method for analyzing the range of options in a scenario or field 

of study that includes the social sciences, engineering, medicine, daily living, and many other fields. 

It has been used in fire detection operations, where, the FSB system is proposed to predict and detect 

fires using information extracted from sensors that are sent to the fire department through a specific 

sink and an MCDM controller in a fuzzy environment to help decision-makers determine the number 

of sinks to use [18]. The fuzzy-VIKOR method was used to create maps that identify fire-prone areas 

to prevent them and mitigate their effects using multi-criteria decision-making analysis of geographic 

information systems to make informed decisions and determine effective policies for dealing with 

and preventing fire [19]. MCDM methods were also used in fire management to evaluate the 

professional strategies for dealing with firefighters to reduce professional stress. AHP (analytical 

hierarchy process) and DM (Delphi method) methods were used in a fuzzy environment [20]. The 

authors used MCDM methods to determine the important criteria for fire management and gave 

relative weights to each criterion. TOPSIS and SAW methods were applied to choose the best five 

criteria for successful fire management [21]. They proposed a MCDM model using AHP, ANP, and 

DEMATEL methods in the context of a fuzzy environment to choose the best three UAVs for 
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combating fires in tall buildings [22]. Also, authors in [23] proposed a hybrid LNN, OS, and MABAC 

model to choose unmanned aircraft for combating forest fires [23]. 

Previous studies have demonstrated the importance of multi-criteria decision-making (MCDM) 

technology in making decisive and knowledgeable decisions. In light of this, we introduce a new 

MCDM model integrated with the neutrosophic set that effectively deals with ambiguity in the 

decision-making process to evaluate and choose the best UAV for fire management. 

 

1.1 Research Contribution 

Appling new MCDM technique to select the optimal UAV for controlling the forest fire: 

i. Appling the MEREC (Method based on Removal Effects of Criteria) method to determine the 

weight of criteria related to UAVs used for detecting and breaking out forest fire, integrated 

with the neutrosophic set that deals with the concept of truth, falsity, and indeterminacy (T, 

I, and F) to solve the ambiguous information that commonly arises in the decision-making. 

ii. Applying the RAM (Root Assessment Method) method to rank the UAVs (alternatives) to select 

the optimal one for a specific situation, the RAM method is characterized by being easy in 

the computation process, as it relies on the aggregation function and does not use the 

pairwise comparison method, unlike other MCDM methods. 

iii. Also, we applied the MABAC and MARICA methods to the same selection problem, the rank 

results obtained by these MCDM and RAM methods are the same but the RAM method is 

the easiest of them all.  

 

2. Methodology 

We propose an integrated MEREC- RAM method with the context of single-valued neutrosophic 

sets to evaluate the efficiency of UAVs in fire forest management and select the optimal one for a 

specific scenario. We utilize the MEREC method to generate the weight of the evaluation criteria and 

the RAM method to rank the UAVs to select the best one. The framework of our model consists of 

three phases as shown in Figure 1, as the following: 

 

 
Figure 1. The framework of our methodology. 
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Phase 1: Data collection. 

Step 1: Determine the expert's team according to the problem area. The members of the expert team 

have a high level of knowledge and experience in the field of firefighting and UAV engineering. 

Step2: Determine the list of alternatives and evaluation criteria based on the experts' opinion, 

which 𝐶 =  {𝐶1, 𝐶2 … … 𝐶𝑛}  represents the evaluation criteria, and 𝐴 = {𝐴1, 𝐴2, … . 𝐴𝑚}   are the 

alternatives representing the UAVs firefighter type. 

Phase 2: Weight of the evaluation criteria. 

Step 3: Determine the decision matrix. 

Step 3.1: Decisions are often characterized by linguistic ambiguity and uncertainty, and even 

with linguistic variables, they are insufficient to resolve the ambiguity. Therefore, we use the 

neutrosophic set that can effectively deal with uncertainty in decision-making and ambiguity. To 

convert the linguistic scale to an equivalent numerical scale, we use the SVNs scale as shown in Table 

1. Experts first construct the linguistic decision matrix using terms that have the properties of truth, 

indeterminacy, and falsity, collectively referred to as SVNS. Then, they transform the linguistic 

decision matrix into a decision matrix with clear values using the scoring function represented in Eq. 

(1) [24]. 

𝑆𝑐𝑜𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
2+(𝑇𝑟−𝐹−𝐼𝑑)

3
                                                (1) 

Where𝑇𝑟, 𝐹, 𝐼𝑑 refers to truth, false, and indeterminacy respectively. 

Step 3.2: Aggregate all matrices into one aggregated matrix by utilizing Eq. (2) as the following: 

𝑌𝑖𝑗 =  
∑ 𝑞𝑖𝑗

𝑁
𝑗=1

𝑁
                                                  (2) 

Where 𝑞𝑖𝑗  represents the value of the criterion in the matrix, and N represents the number of 

experts. 

Step 4: Calculate the normalized decision matrix (N) based on the MEREC method. We need to 

scale the elements of the decision matrix using a simple linear normalization. The normalized matrix 

elements are denoted by 𝑛𝑖𝑗
𝑥 , (N) calculated as the following: 

𝑛𝑖𝑗
𝑥 =  {

min 𝑥𝑘𝑗

𝑥𝑖𝑗
     𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡

𝑥𝑖𝑗

max 𝑥𝑘𝑗
    𝑖𝑓 𝑗 ∈ 𝑐𝑜𝑠𝑡       

                                            (3) 

Step 5: Utilize the MEREC method (Method based on Removal Effects of Criteria) to calculate 

the weight of criteria [25]: 

Step 5.1: Calculate the overall performance of the alternatives (𝑠𝑖). In this stage, we evaluate the 

overall performance of various alternatives by using a logarithmic metric with equal weights for 

different criteria. This metric is calculated using a non-linear function, which takes into account the 

normalized value obtained from the previous phase. Note that, Lower values of 𝑛𝑖𝑗
𝑥  will result in 

higher performance values (𝑠𝑖).). The equation used to calculate this measure is as follows: 

𝑠𝑖 = ln(1 + (
1

𝑚
 ∑ |ln(𝑛𝑖𝑗

𝑥 )|))𝑗                                                (4) 

Step 5.2: Calculate the alternatives' performance by removing away each criterion. The process 

of using a logarithmic measure is similar to the previous step. However, in this step, we determine 

the performance of each alternative by eliminating each criterion independently. This means that 

there are 𝑚 sets of performances connected to 𝑚 criteria. To indicate how well the 𝑖𝑡ℎ alternative 

performed overall in terms of eliminating the 𝑗𝑡ℎ  criterion, we use the notation 𝑆𝑆𝑖𝑗 (overall 

performance of 𝑖𝑡ℎ alternative concerning the removal of 𝑗𝑡ℎ criterion). The calculations for this 

step are done using the following Eq. (5): 

𝑠𝑠𝑖𝑗 = ln(1 + (
1

𝑚
 ∑ |ln(𝑛𝑖𝑗

𝑥 )|))𝑘,𝑘≠𝑗                                           (5) 

Step 5.3: Compute the summation of absolute deviations. The elimination effect of the 𝑗𝑡ℎ 

criterion is determined using the values from Steps 5.1 and 5.2. Let 𝐸𝑗 be the result of eliminating the 

𝑗𝑡ℎ condition. The values of 𝐸𝑗 can be calculated using the following formula. 

𝐸𝑗  =  ∑ |𝑠𝑠𝑖𝑗 − 𝑠𝑖  |𝑖                                                 (6) 
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Step 5.4: Determine the final weights of the criteria. 

In this phase, the weight of each criterion is determined objectively by using the removal effects 

(𝐸𝑗) from the previous step. The weight of the 𝑗𝑡ℎ criteria is represented as 𝑤𝑗 . The formula used to 

calculate 𝑤𝑗  is as follows: 

𝑤𝑗 =  
𝐸𝑗

∑ 𝐸𝑘𝑘
                                                       (7) 

Phase 3: Rank the alternatives. 

Step 6: Utilize the RAM method to rank the alternatives, The RAM method aggregates option 

scores across decision criteria to determine each option's utility value. The overall ranking is then 

determined based on these utility values. It included the following steps [26] : 

Step 6.1: Construct a decision matrix with 𝑚 rows and 𝑛 columns, where rows represent the 

number of alternatives 𝐴𝑖 = {𝐴1, 𝐴2, … . 𝐴𝑚} and columns represented the evaluation criteria for each 

alternative 𝐶𝑗 =  {𝐶1, 𝐶2 … … 𝐶𝑛}. The criteria are divided into benefit criteria, preferable to obtain 

higher values, and cost criteria, preferable to obtain lower values. The decision matrix for 

𝑚 alternatives and 𝑛 criteria is constructed as the following: 

𝑋 = [

𝑥01 ⋯ 𝑥0𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

]    𝑤ℎ𝑒𝑟𝑒 𝑖 = 0: 𝑚 , 𝑗 = 1: 𝑛                                       (8) 

Step 6.2: Construct the normalized matrix based on the RAM method as the following: 

𝑟𝑖𝑗 =  
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

                                                      (9) 

Where,  𝑥𝑖𝑗  represent the value of criterion 𝑗 for alternative𝑖, where = 1 ÷ 𝑛  𝑎𝑛𝑑  𝑖 = 1 ÷ 𝑚 . 

Step 6.3: Determine the normalized values based on the weights of criteria that were calculated 

before by the MEREC method, as the following: 

𝑦𝑖𝑗 =  𝑤𝑗 . 𝑟𝑖𝑗                                                     (10) 

Step 6.4: Calculate the total normalized score, taking into account the criteria weights, as the 

following: 

𝑠𝑏𝑒𝑛 𝑖 =  ∑ 𝑦𝑏𝑒𝑛 𝑖𝑗   , 𝑖𝑓 𝑗 ∈ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑛
𝑗=1                                             (11) 

𝑠𝑐𝑜𝑠𝑡 𝑖 =  ∑ 𝑦𝑐𝑜𝑠𝑡 𝑖𝑗   , 𝑖𝑓 𝑗 ∈ 𝑐𝑜𝑠𝑡 𝑛
𝑗=1                                          (12) 

Step 6.5: Calculate the overall score for each alternative, as the following: 

𝑅𝐼𝑖 =  √2 + 𝑠𝑏𝑒𝑛 𝑖 
2+𝑠𝑐𝑜𝑠𝑡 𝑖                                               (13) 

Step 6.6: Rank the alternatives based on their scores, the optimal alternative has a higher𝑅𝐼𝑖 . 

 

Table 1. Scale of single-valued neutrosophic scale (SVNs) [27]. 

Linguistic Variables Abbreviation True Indeterminacy False 

Extremely Bad 𝐸𝐵 0.00 1.00 1.0 
Very Very Bad 𝑉𝑉𝐵 0.10 0.90 0.90 
Very Bad 𝑉𝐵 0.20 0.85 0.80 
Bad 𝐵 0.30 0.75 0.70 
Medium Bad 𝑀𝐵 0.40 0.65 0.60 
Medium 𝑀 0.50 0.50 0.50 
Medium Good 𝑀𝐺 0.60 0.35 0.40 
Good 𝐺 0.70 0.25 0.30 
Very Good 𝑉𝐺 0.80 0.15 0.20 
Very Very Good 𝑉𝑉𝐺 0.90 0.10 0.10 
Extremely Good 𝐸𝐺 1.00 0.00 0.00 

 

3. Case Study 

Our experiment study is to evaluate our proposed model for selecting the optimal UAV for the 

management of forest fires especially in California wildfires. There is a series of forest fires that occur 

frequently in the state of California, which usually occur in August and November when the winds 
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are hot and dry. In 2017, California witnessed multiple forest fires that destroyed approximately 

1,331,014 acres and caused economic losses amounting to 180 billion. In 2020, approximately 78,823 

acres were burned and destroyed, and in 2023, massive forest fires occurred that reached 3,237 

kilometers, their smoke obscured the sun’s rays, and smoke fog covered the views of the mountains 

surrounding the city and its suburbs. Therefore, there is a need for an effective method to overcome 

the burning of California’s forests in light of dangers such as blazing fires, foggy visibility, hot winds, 

and the covering of vast expanses of forest. Therefore, using UAVs to combat California wildfires is 

an effective solution and our methodology was applied to select the appropriate UAV for those 

conditions.  

Phase1: Data Collection: 

Step 1: In our model, the expert team consists of four highly experts in different specializations 

in the field of firefighting and UAV engineering, as shown in Table 2. 

Step 2: There are five UAVs (alternatives) that are denoted as 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}, each with 

specific criteria 𝐶 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7} as shown in Tables 3 & 4 respectively. 

 

Table 2. Experts definition. 

Experts The description 

Expert 1 PhD degree in the aeronautical engineering field. 

Expert 2 PhD degree in Fire and safety engineering field. 
Expert 3 PhD degree in Fire science field. 
Expert 4 PhD degree in machine learning engineering field. 

 

Table 3. UAVs alternatives for forest fire management. 

Alternatives Description 

𝑨𝟏 

(Mavic Enterprise 3T Series): This thermal version is designed to meet the unique needs of 
aerial operations for firefighting, search and rescue, inspections, and night missions. To help 
professionals locate critical points and make quick choices, the Mavic 3T’s thermal camera 
provides point and area temperature measurements, high-temperature alarms, color palettes, 
and isotherms. With simultaneous split-screen zoom, the Mavic 3T’s thermal and zoom 
cameras support 28× continuous side-by-side zoom for easy comparisons 

𝑨𝟐 

(CXFIRE- drone-Throwing Type): this type uses a powerful and efficient power system and 
firefighting which carries 12 ultra-precise powder fire extinguishing bombs and a projectile 
throwing system. The deployment time of the system is less than 30 seconds, the wind 
resistance is up to 12 m/s, and the operating radius is up to 6 km. The machine is flexible and 
can effectively suppress the fire situation on the spot and open up rescue channels for 
firefighters. 

𝑨𝟑 

(CXFIRE-drone powder Fire Extinguishing Drone): this type is used for Petroleum and 
petrochemical sites, urban high-rise buildings, forest fields, and other emergency rescue and 
fire-fighting situations, It can carry 200W pixels, a 1080P high-definition camera, 1W power 
green laser aiming device, and digital wireless broadband image transmission system, that can 
conduct thorough on-site reconnaissance, Window braking function, which distance of 10 
meters, capable of breaking 10mm+10mm to extinguish the fire, in addition to can carry rescue 
materials with an effective weight of ≥20kg. Flying height is 300m climb for 30 sec. 

𝑨𝟒 

(Matrice 300 RTK + Zenmuse H20T): this type is suitable for fire prevention, which Offers 
up to 55 minutes of flight time, and advanced AI. A leading combination of smart features, 
high performance, and reliability. Its triple H20T payload combines an RGB camera with a 
640x512p thermal sensor and laser rangefinder, which allows operators to see what the human 
eye cannot due to high thermal sensitivity and 30 fps video definition. 

𝑨𝟓 

 (CXFIRE- Water Mist Fire Fighting Drone): A drone with a high-level water spray that 
extinguishes fires using water-based solvents and flame retardants, in addition to the surface 
of the aircraft being insulated to ensure the safety of the drone at high temperatures. Effective 
loading of 40 kg, single sortie fire extinguishing 100 m3, it can climb 300 meters in 30 seconds 
and complete a sortie firefighting task in 3 minutes. Flying height is 300m climb for 30 sec. 
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Table 4. The evaluation criteria of UAVs for forest fire management. 

 Criteria Type Definition 

𝑪𝟏 Payload capacity Max The largest capacity that UAVs can carry 

𝑪𝟐 Duration of flight Max 
The ability of the UAV to fly in the air for long periods to 
cover large areas and monitor the fire effectively 

𝑪𝟑 
Data transmission 
speed 

Max 
Transfer data quickly to deliver photos, videos, and location 
coordinates to the firefighting team 

𝑪𝟒 Sensors capabilities Max 

The UAVs are equipped with high sensors such as thermal 
and multi-spectral imaging cameras that capture accurate 
images of fire-affected areas at night or in the presence of 
smoke, a GPS to accurately locate fire locations and 
determine coordinates effectively, gas detector 

𝑪𝟓 Risk Min 
such as collision, wind, exposure to damage, burning, and 
other risks that hinder the UAV from performing its mission 

𝑪𝟔 durability Max 
the rigidity of the outer structure and the ability to avoid 
collisions and  move through the flames of fire and smoke 

𝑪𝟕 Cost Min 
The financial cost of UAVs in terms of maintenance, 
operation, and acquisition 

 

Phase 2: We utilize the MEREC method integrated with single-valued neutrosophic sets to calculate 

the weight of the evaluation criteria. 

Step 3.1: Initially, the linguistic decision matrices are constructed by the expert team, which 

represent the expert assessments of the criteria, as shown in Tables 5, 6, 7, and 8. We use the SVNs 

scale in Table 1 by utilizing Eq. (1) to convert the linguistic decision matrices into crisp decision 

matrices to solve the uncertainty and ambiguity in the linguistic variables, as shown in Tables 9, 10, 

11, and 12. 

Step 3.2: All crisp decision matrices are collected into one matrix called aggregated decision 

matrix by utilizing the arithmetic mean in Eq. (2), as shown in Table 13. 

Step 4: Each element in the aggregated decision matrix needs to be scaled whether it is benefit or 

cost to construct the normalized decision matrix based on the MEREC method by utilizing Eq. (3), as 

shown in Table 14. 

Step5.1 and 5.2: We calculate the overall performance of the alternatives 𝑠𝑖  based on the 

logarithmic metric in Eq. (4), we calculate the performance of each alternative SSi by removing each 

criterion independently utilizing Eq. (5), as shown in Table 15. 

Step5.3 and 5.4: We calculate the sum of absolute deviation 𝐸𝑗 by utilizing Eq. (6) depending on 

the result of Table 15, after calculating the final weight of each evaluation criteria by using the 

removal effect 𝐸𝑗 by utilizing Eq. (7), as shown in Table 16. Figure 2 shows that the risk criteria 𝐶5 

is the highest priority with a weight equal to 0.38438462, and the next most important criterion is 

sensors capabilities 𝐶4 with a weight equal to 0.17259869. The order of criteria in terms of importance 

is as follows: 𝐶5 > 𝐶4 > 𝐶2 > 𝐶3 > 𝐶6 > 𝐶1 > 𝐶7. 

Reducing the risks to which the UAV is exposed, such as collision, wind, exposure to damage, 

burning, and other risks that hinder the UAV from performing its mission promptly is the highest 

priority, next priority is the Sensors' capabilities where, the UAVs are equipped with high sensors as, 

thermal and multi-spectral imaging cameras that capture accurate images of fire-affected areas at 

night or in the presence of smoke, GPS to accurately locate fire locations and determine coordinates 

effectively, gas detector all of these to performing its mission efficiently. 

 

Phase 3: We utilize the RAM method to rank the alternatives: 
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Step 6.1: We use the aggregated matrix in Table 13 as the decision matrix for the RAM method 

based on the formula in Eq. (8). 

Step 6.2: We construct the normalized decision matrix by utilizing Eq. (9), as shown in Table 17. 

Step 6.3: We determine the weight of the normalized decision matrix 𝑦𝑖𝑗using the weight of the 

criteria that we calculated before with the MEREC method in Table 16 by utilizing Eq. (10), as shown 

in Table 18. 

Steps 6.4 and 6.5: We calculate the total of weighted normalized scores for all alternatives by 

utilizing Eq. (11) for benefit criteria 𝑠𝑏𝑒𝑛 𝑖and Eq. (12) for cost criteria 𝑠𝑐𝑜𝑠𝑡 𝑖, to clarify: Taking the data 

considered in Table 18, 𝑠𝑏𝑒𝑛 𝑖 & 𝑠𝑐𝑜𝑠𝑡 𝑖 of alternative 𝐴1 can be calculated as follows: 

𝑆𝑏𝑒𝑛 1 =  𝑦11 + 𝑦12+𝑦13 + 𝑦14 + 𝑦16 ,               𝑆𝑐𝑜𝑠𝑡 1 =  𝑦15 +  𝑦17      

After the total weighted normalized score is calculated, we utilize Eq. (13) to calculate the overall 

score for each alternative𝑅𝐼𝑖 , as shown in Table 19. 

Step 6.6: According to the overall score 𝑅𝐼𝑖 , the alternatives will rank, and the optimal alternative 

has a higher𝑅𝐼𝑖 , as shown in Figure 3, alternative 𝐴3 is the optimal alternative, immediately followed 

by 𝐴5 , as the A3 is excellent concerning benefit criteria and cost criteria. Also, based on 𝑅𝐼𝑖  the 

second choice 𝐴5 is very close to the first choice 𝐴3. Therefore, 𝐴3 and 𝐴5 should be ranked high. 

 We also applied the MABAC and MARICA methods to the same selection problem, the rank 

results obtained by these MCDM and RAM methods are compared in Table 20. As is shown in Figure 

4 the priority of alternatives using various MCDM techniques shows that A3 is considered the 

optimal alternative using all methods. 

 

Table 5. The linguistic decision matrix by Expert 1. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 EG M EG MG MB VVG MG 

𝑨𝟐 VVG MG VG G MB G G 

𝑨𝟑 VG G G MG MB MG G 
𝑨𝟒 EG MG VG G VB G G 

𝑨𝟓 VG M VG MG VB MG G 

 

Table 6. The linguistic decision matrix by Expert 2. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 VVG G VVG G MB VG MG 

𝑨𝟐 VG MG VG G B G G 

𝑨𝟑 EG MG VVG G VB VG VG 

𝑨𝟒 VVG M G M VVB M G 

𝑨𝟓 EG M VG M B G MG 

 

Table 7. The linguistic decision matrix by Expert 3. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 EG MG VVG G MB VG MG 

𝑨𝟐 VVG M VG M B G G 
𝑨𝟑 VVG G VVG G VB VG VG 

𝑨𝟒 VG M G MB B MG G 

𝑨𝟓 G M G MB VB MG MG 
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Table 8. The linguistic decision matrix by Expert 4. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 VVG G VG G M G G 
𝑨𝟐 EG M VVG VG VB VG G 

𝑨𝟑 VG MG G MG B MG MG 

𝑨𝟒 VVG M VG MG VB G MG 

𝑨𝟓 G M M M B G G 

 

Table 9. The crisp decision matrix by Expert 1. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 1 0.5 1 0.616667 0.38333333 0.9 0.61666667 

𝑨𝟐 0.9 0.616667 0.816667 0.716667 0.38333333 0.716667 0.71666667 

𝑨𝟑 0.816667 0.716667 0.716667 0.616667 0.38333333 0.616667 0.71666667 
𝑨𝟒 1 0.616667 0.816667 0.716667 0.18333333 0.716667 0.71666667 

𝑨𝟓 0.816667 0.5 0.816667 0.616667 0.18333333 0.616667 0.71666667 

 

Table 10. The crisp decision matrix by Expert 2. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 0.9 0.716667 0.9 0.716667 0.383333 0.816667 0.616667 

𝑨𝟐 0.816667 0.616667 0.816667 0.716667 0.283333 0.716667 0.716667 

𝑨𝟑 1 0.616667 0.9 0.716667 0.183333 0.816667 0.816667 

𝑨𝟒 0.9 0.5 0.716667 0.5 0.1 0.5 0.716667 

𝑨𝟓 1 0.5 0.816667 0.5 0.283333 0.716667 0.616667 

 

Table 11. The crisp decision matrix by Expert 3. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 1 0.616667 0.9 0.716667 0.383333 0.816667 0.61666667 
𝑨𝟐 0.9 0.5 0.816667 0.5 0.283333 0.716667 0.71666667 

𝑨𝟑 0.9 0.716667 0.9 0.716667 0.183333 0.816667 0.81666667 

𝑨𝟒 0.816667 0.5 0.716667 0.383333 0.283333 0.616667 0.71666667 

𝑨𝟓 0.716667 0.5 0.716667 0.383333 0.183333 0.616667 0.61666667 

 

Table 12. The crisp decision matrix by Expert 4. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 0.95 0.6375 0.904167 0.691667 0.4125 0.8125 0.641667 

𝑨𝟐 0.904167 0.558333 0.8375 0.6875 0.283333 0.741667 0.716667 

𝑨𝟑 0.883333 0.666667 0.808333 0.666667 0.258333 0.716667 0.741667 
𝑨𝟒 0.904167 0.529167 0.766667 0.554167 0.1875 0.6375 0.691667 

𝑨𝟓 0.8125 0.5 0.7125 0.5 0.233333 0.666667 0.666667 

 

 

 

 

 

 

 



Neutrosophic Systems with Applications, Vol. 19, 2024                                                 10 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Mai Mohamed, Amira Salam, Jun Ye and Rui Yong, Single-Valued Neutrosophic MCDM Approaches Integrated with 

MEREC and RAM for the Selection of UAVs in Forest Fire Detection and Management 

Table 13. Aggregated decision matrix. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 0.95 0.6375 0.904167 0.691667 0.4125 0.8125 0.641667 
𝑨𝟐 0.904167 0.558333 0.8375 0.6875 0.283333 0.741667 0.716667 

𝑨𝟑 0.883333 0.666667 0.808333 0.666667 0.258333 0.716667 0.741667 

𝑨𝟒 0.904167 0.529167 0.766667 0.554167 0.1875 0.6375 0.691667 

𝑨𝟓 0.8125 0.5 0.7125 0.5 0.233333 0.666667 0.666667 

 

Table 14. Normalized decision matrix based on the MERE method. 

Alternatives 
𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 

Benefit Benefit Benefit Benefit Cost Benefit Cost 
𝑨𝟏 0.85526316 0.78431373 0.78801814 0.72289122 1 0.78461538 0.8651686 

𝑨𝟐 0.89861718 0.89552292 0.85074627 0.72727273 0.68686788 0.85955018 0.9662921 

𝑨𝟑 0.91981167 0.74999963 0.88144366 0.74999963 0.62626182 0.88953447 1 

𝑨𝟒 0.89861718 0.94488129 0.92934742 0.9022551 0.45454545 1 0.9325843 

𝑨𝟓 1 1 1 1 0.56565576 0.95624952 0.8988764 

 

Table 15. The performance of each alternative. 

Alternatives 𝐒𝐢 
𝐒𝐒𝐢 

𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔 𝐂𝟕 
Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝐀𝟏 0.176281 0.15737845 0.14675227 0.14733337 0.13664142 0.17628138 0.14679971 0.15878294 

𝐀𝟐 0.165344 0.15231524 0.15189201 0.14557703 0.12602018 0.11879533 0.14684772 0.16118305 

𝐀𝟑 0.178766 0.16872998 0.14379193 0.16357494 0.14379193 0.12123139 0.16468267 0.17876637 

𝐀𝟒 0.157977 0.14485203 0.1510375 0.1489993 0.14535124 0.05685558 0.15797737 0.14942715 

𝐀𝟓 0.098049 0.09804872 0.09804872 0.09804872 0.09804872 0.02139045 0.09223784 0.08414496 

 

Table 16. The calculation of the weight of the evaluation criteria. 

Alternatives 

|𝒔𝒔𝒊𝒋 − 𝒔𝒊 | 
𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 0.01890293 0.02952911 0.02894802 0.03963996 0 0.02948168 0.01749844 

𝑨𝟐 0.01302838 0.01345161 0.01976659 0.03932344 0.04654829 0.0184959 0.00416057 

𝑨𝟑 0.01003639 0.03497444 0.01519143 0.03497444 0.05753498 0.0140837 0 

𝑨𝟒 0.01312534 0.00693987 0.00897807 0.01262613 0.10112179 0 0.00855022 

𝑨𝟓 0 0 0 0 0.07665827 0.00581088 0.01390376 

𝑬𝒋 0.05509304 0.08489503 0.07288411 0.12656397 0.28186333 0.06787216 0.04411299 

𝒘𝒋 0.07513186 0.11577364 0.09939403 0.17259869 0.38438462 0.09255909 0.06015807 

 

 
Figure 2. The Final weight of the evaluation criteria. 
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Table 17. The normalized decision matrix is based on the RAM method. 

Alternatives 
C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

𝑨𝟏 0.21328343 0.22046107 0.22440544 0.22311832 0.30000022 0.22727266 0.18554218 

𝑨𝟐 0.20299351 0.19308344 0.20785934 0.22177412 0.20606051 0.20745924 0.20722891 

𝑨𝟑 0.19831609 0.23054764 0.20062038 0.2150538 0.18787868 0.20046624 0.21445782 

𝑨𝟒 0.20299351 0.18299721 0.19027928 0.17876349 0.13636374 0.17832163 0.2 

𝑨𝟓 0.18241346 0.17291064 0.17683556 0.16129027 0.16969685 0.18648023 0.19277109 

 

Table 18. Weighted normalized decision matrix based on RAM method. 

Alternatives C1 C2 C3 C4 C5 C6 C7 

Benefit Benefit Benefit Benefit Cost Benefit Cost 

Weight 0.07513186 0.11577364 0.09939403 0.17259869 0.38438462 0.09255909 0.06015807 
𝑨𝟏 0.01602438 0.02552358 0.02230456 0.03850993 0.11531547 0.02103615 0.01116186 

𝑨𝟐 0.01525128 0.02235397 0.02065998 0.03827792 0.07920649 0.01920224 0.01246649 

𝑨𝟑 0.01489986 0.02669134 0.01994047 0.037118 0.07221768 0.01855497 0.01290137 

𝑨𝟒 0.01525128 0.02118625 0.01891262 0.03085434 0.05241612 0.01650529 0.01203161 

𝑨𝟓 0.01370506 0.02001849 0.0175764 0.02783849 0.06522886 0.01726044 0.01159674 

 

Table 19. The overall score for each alternative. 

Alternatives 𝒔𝒃𝒆𝒏 𝒊 𝒔𝒄𝒐𝒔𝒕 𝒊 √𝟐 + 𝒔𝒃𝒆𝒏 𝒊 
𝟐+𝒔𝒄𝒐𝒔𝒕 𝒊  Rank 

𝑨𝟏 0.1233986 0.44454269 1.360755969 5 

𝑨𝟐 0.11574539 0.12647733 1.422501865 4 

𝑨𝟑 0.11720464 0.09167298 1.431339705 1 

𝑨𝟒 0.10270979 0.08511904 1.428240667 3 

𝑨𝟓 0.09639889 0.06444774 1.431261828 2 

 

 

 
Figure 3. The rank of the alternatives is based on the RAM method. 
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Table 20. Ordering of alternatives using various MCDM techniques. 

Priority of alternatives RAM MABAC MARICA 

1 𝐴3 𝐴3 𝐴3 
2 𝐴5 𝐴2 𝐴2 
3 𝐴4 𝐴1 𝐴1 
4 𝐴2 𝐴4 𝐴4 
5 𝐴1 𝐴5 𝐴5 

 

 
Figure 4. The priority of alternatives using various MCDM techniques. 

 

4. Conclusion 

The forests of California and others are exposed to many fires, causing huge economic and 

human losses. The traditional methods used to put out fires are not satisfactorily effective, and 

therefore UAVs have been used to manage fires effectively. Given the presence of many types of 

drones used to put out fires, the purpose of this study is to select the most appropriate UAV to 

manage forest fires effectively using MCDM methods through a neutrosophic environment to deal 

with ambiguity in the decision-making process, where five types of UAVs (alternatives) and seven 

criteria were presented for evaluation by 4 specialized experts. The MEREC method was applied to 

calculate the relative weights of each criterion, and then the RAM method was applied to arrange the 

alternatives and choose the optimal one. The RAM method is characterized by ease in the calculation 

process because it relies on the aggregation function and less time spent. We also applied MABAC 

and MARICA methods to arrange the alternatives, and all methods led to A3 (CXFIRE-drone powder 

Fire Extinguishing Drone) being the optimal choice for the problem proposed as it is equipped with 

a 1080P high-definition camera that can capture images with a resolution. It also has a 1W power 

green laser aiming device and a digital wireless broadband image transmission system for conducting 

thorough on-site reconnaissance. Additionally, it has a window braking function that can break glass 

up to a distance of 10 meters and a thickness of 10mm+10mm to extinguish the fire. Furthermore, this 

device can carry rescue materials with an effective weight of at least 20kg. 
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