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Abstract: In this paper, we introduce the concepts of cubic soft (CS) algebra, CS o-subalgebra, and CS 

ideals within the framework of B-algebra. We provide comprehensive characterizations of these new 

structures, elucidating their unique properties and interrelationships. Specifically, we present 

detailed conditions under which a CS subalgebra can be classified as a closed CS ideal. Our analysis 

explores the intricate relationships among closed cubic soft ideals, cubic soft subalgebras, and cubic 

soft o-subalgebras. By doing so, we aim to provide a deeper understanding of how these structures 

interact and coexist within the broader context of B-algebra The findings offer significant insights into 

the application and theoretical underpinnings of cubic soft sets in algebraic systems, contributing to 

the ongoing evolution of fuzzy set theory and its applications in various mathematical domains. Our 

work not only broadens the scope of B-algebra but also enhances its utility in solving complex 

problems where traditional algebraic approaches may fall short. Through this exploration, we seek 

to advance the field and open new avenues for research and practical applications in mathematical 

sciences.  

Keywords: Soft Set, Fuzzy Set, Fuzzy Soft Set, Cubic Soft Subalgebra, Cubic Soft O-subalgebra, Cubic 

Soft Ideals and B-algebra. 

 

1. Introduction 

Lotfi Zadeh pioneered the notion of fuzzy sets (FS) in 1965 [1]. This pioneering innovation was 

quickly followed by his invention of interval-valued fuzzy sets (IVFS) [2], which broadened the scope 

and applications of fuzzy logic in a variety of disciplines. The early notions proposed by Zadeh 

sparked much study and development in the sector, resulting in several advances and modifications 

of his original ideas. Such as the Assessment of solid waste management strategies using an efficient 

complex fuzzy hypersoft algorithm based on entropy and similarity measures [3]. Following Zadeh's 

fundamental work, Jun et al. proposed the concept of the cubic set [4], which marked a significant 

advancement in the study of fuzzy sets. The cubic set idea combines the principles of FS and IVFS 

[1,2], resulting in a more robust and extensible framework for dealing with uncertainty and 

imprecision. Jun et al.'s later work expanded the concept of cubic sets to algebraic structures [5], with 

a special emphasis on cubic subgroups. This was a revolutionary application of cubic sets to group 

theory, providing a fresh perspective and tools for examining and comprehending group structures. 

Here theoretical framework for a decision support system for micro-enterprise supermarket 

investment risk assessment [6].BCK/BCI-algebras were first created by Y. Imai and K. Iseki in 1966 

[7]. These algebras were primarily concerned with propositional calculus and served as the basis for 

several later algebraic systems [8]. Several generalizations and expansions of BCK/BCI-algebras have 

evolved throughout time, including B-algebra, G-algebra, BG-algebra, d-algebra, ku-algebra, and Ps-

algebra. Each of these structures provided fresh insights and applications, broadening the scope of 
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algebraic logic. Neggers and Kim introduced the basic notion of B-algebra [9], and also investigated 

some of its essential features. Park and Kim later established the idea of quadratic B-algebras [10], 

which broadened the concept of B-algebra. M Saeed introduced the theoretical development of cubic 

Pythagorean FSs with its application in MADM [11]. Borumand Saeed's work resulted in the 

development of fuzzy topological B-algebras, as well as the concept of interval-valued fuzzy (IVF) B-

algebra subalgebras. Saeed's contributions included investigating several characterizations of these 

subalgebras, which improved our knowledge of their structure and behavior. 

Walendziak's further contributions included sets of axioms defining B-algebras and establishing 

their independence [12]. Senapati and colleagues made substantial contributions to the study of fuzzy 

substructures within B-algebras. They defined and investigated fuzzy dot subalgebras, fuzzy dot 

ideals, interval-valued fuzzy near ideals, and fuzzy subalgebras about t-norms [13]. This research 

revealed novel features and prospective applications for fuzzy algebraic structures, advancing our 

grasp of their theoretical basis and practical relevance. Molodtsov proposed the notion of soft sets in 

1999 [14], giving researchers a new mathematical tool for dealing with ambiguity and vagueness. 

Muhiuddin and Al-Roky expanded on this approach by merging cubic and soft-set concepts [15]. 

Their research entailed a thorough analysis of the characteristics and applications of cubic soft sets, 

particularly with B-algebras [16]. Exploration of Subalgebras Authors such as Senapati and Iqbal 

investigated cubic soft subalgebras and cubic soft ideals, studying their characterizations and 

linkages within the context of B-algebra [17]. Their findings shed light on the conditions under which 

cubic soft subalgebras [18] might be classified as closed cubic soft ideals [19]. In this study, we define 

cubic soft subalgebra, cubic soft o-subalgebra, and cubic soft ideals in the setting of B-algebra. We 

present thorough descriptions of these structures and investigate their interrelationships. In addition, 

we discuss many criteria under which a cubic soft subalgebra can be characterized as a closed cubic 

soft ideal. The links between closed cubic soft ideals, cubic soft subalgebras, and cubic soft o-

subalgebras are carefully examined, offering a clear grasp of their roles and interactions within the 

larger framework of B-algebra. This study seeks to further the theoretical underpinning and practical 

applications of fuzzy and soft set theories in algebraic structures, contributing to the continuous 

growth and refinement of these fundamental mathematical tools. 

 

Table 1. List of abbreviations. 

Sr. No Abbreviations Meaning 
1 Ss Soft set 
2 Fs Fuzzy set 
3 FSs Fuzzy soft set 
4 CSSA Cubic Soft Sub-Algebra 
5 CSoSA Cubic Soft o-Subalgebra 
6 CSI Cubic Soft Ideals 
7 BA B-Algebra 
8 FSA Fuzzy Subalgebra 
9 FTBA Fuzzy Topological B-Algebra 
10 FdSA Fuzzy dot Subalgebra 

 

2. Preliminaries 

Some basic facts are explained in this section, which are essential to the above article. B-algebra 

is an important branch of logical algebra that has been expanded by much research. We can define B-

algebra as follows: 

An algebra (𝑋,∗ ,0) of type (2,0) is known as a B-algebra if it satisfies the following results: 
B1. 𝑥1 ∗ 𝑥1 = 0

 B2. 𝑥1 ∗ 0 = 𝑥1

 B3. (𝑥1 ∗ 𝑥2) ∗ 𝑥3 = 𝑥1 ∗ (𝑥3 ∗ (0 ∗ 𝑥2))

 

now for all 𝑥1, 𝑥2 ∈ 𝑋. 
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A partial ordering ≤ is defined by 𝑥1 ≤ 𝑥2 ↔ 𝑥1 ∗ 𝑥2 = 0. 

A B-algebra 𝑋  which shows to be (S) if, for all 𝑥1, 𝑥2 ∈ 𝑋 , the set {𝑥3 ∈ 𝑋 ∣ 𝑥3 ∗ 𝑥1 ≤ 𝑥2} has the 

greatest element, written 𝑥1
𝑜𝑥2. 

Example 1. Let 𝑋 = ℝ − ℤ−. An operation on 𝑋 is defined as: 

𝑥1 ∗ 𝑥2 =
𝑛(𝑥1 − 𝑥2)

𝑛 + 𝑥2

 

After that, (𝑋,∗ ,0) is a B-algebra. 

Consider a set 𝑆 which is a non-empty subset of 𝑋 and where 𝑋 is a B-algebra. If the relation 𝑥1 ∗

𝑥2 ∈ 𝑆 for all 𝑥1, 𝑥2 ∈ 𝑆, then 𝑆 is called a 𝑆𝐴 of 𝑋. 

Assume 𝐼 is a subset of 𝑋 s,t it is non-empty and it is known as ideal if it fulfills two axioms for 

any 𝑥1, 𝑥2 ∈ 𝑋 : 

i). 0 ∈ 𝐼, and 

ii). 𝑥1 ∗ 𝑥2 ∈ 𝐼 and 𝑥2 ∈ 𝐼 ⟹ 𝑥1 ∈ 𝐼. 

This ideal I is known as a closed ideal of B-algebra [20] 𝑋 if it fulfills a third condition: 

0 ∗ 𝑥2 ∈ 𝐼 for all 𝑥1 ∈ 𝐼 

Here we have some F-logical concepts: 

Let X be the group of items commonly represented by 𝑥1. Then FS A in 𝑋 is defined as 

𝐴 = {⟨𝑥1, 𝜇𝐴(𝑥1)⟩ ∣ 𝑥1 ∈ 𝑋} 

where 𝜇𝐴(𝑥1) is known as the membership value of 𝑥1 in 𝐴 and 𝜇𝐴(𝑥1) ∈ [0,1]. 

An Interval-Valued Fuzzy Set (IVFS) [21], A over X, is an object having the form 

𝐴 = {⟨𝑥1, 𝜇𝐴(𝑥1)⟩ ∣ 𝑥1 ∈ 𝑋} 

where 𝜇𝐴: 𝑋 → 𝒜([0,1])  is the set of whole subintervals of [0,1] . The interlude 𝜇𝐴(𝑥1) =

[𝜇𝐴
−(𝑥1), 𝜇𝐴

+(𝑥1)] for all 𝑥1 ∈ 𝑋 indicates the value of membership elements 𝑥1 to the set 𝐴. 

Also, 𝜇𝐴
𝑐 (𝑥1) = [1 − 𝜇𝐴

−(𝑥1), 1 − 𝜇𝐴
+(𝑥1)] which shows the complement of 𝜇𝐴. 

Definition 1. Consider two elements 𝑏̃1, 𝑏̃2 ∈ 𝐵̃[0,1]. If 𝑏̃1 = [𝑏1
−, 𝑏1

+]and 𝑏̃2 = [𝑏2
−, 𝑏2

+], then 

max(𝑏̃1, 𝑏̃2) = [max(𝑏1
−, 𝑏2

−), max(𝑏1
+, 𝑏2

+)] 

which is denoted by 𝑏̃1 ∨𝑟 𝑏̃2, and 

min(𝑏̃1, 𝑏̃2) = [min(𝑏1
−, 𝑏2

−), min(𝑏1
+, 𝑏2

+)] 

which is denoted by 𝑏̃1 ∧𝑟 𝑏̃2. 

Thus, if 𝑏̃𝑖 = [𝑏𝑖
−, 𝑏𝑖

+]belongs to 𝐵̃[0,1] for 𝑖 = 1,2,3, …, then we define 

𝑟 − 𝑠𝑢𝑝𝑖(𝑏̃𝑖) = [sup
𝑖

 (𝑏𝑖
−), sup

𝑖
 (𝑏𝑖

+)] 

i.e., 

∨𝑖
𝑟 𝑏̃𝑖 = [∨𝑖 𝑏𝑖

−,∨𝑖 𝑏𝑖
+] 

Similarly, we define 

𝑟 − 𝑖𝑛𝑓𝑖(𝑏̃𝑖) = [inf
𝑖

 (𝑏𝑖
−), inf

𝑖
 (𝑏𝑖

+)] 

i.e., 

∧𝑖
𝑟 𝑏̃𝑖 = [∧𝑖 𝑏𝑖

−,∧𝑖 𝑏𝑖
+] 

Now we call 𝑏̃1 ⪰ 𝑏̃2 ↔ 𝑏1
− ≥ 𝑏2

−and 𝑏1
+ ≥ 𝑏2

+. Here we have some relations 𝑏̃1 ⪯ 𝑏̃2 and 𝑏̃1 = 𝑏̃2 are 

defined. 

Definition 2. By taking 𝑈 as an initial universe set, a soft set(Ss) [22] over 𝑈 is a pair (𝐹, 𝐴) such 

that 𝐹 is a mapping which is given by 

𝐹: 𝐴 → 𝑃(𝑈) 

where 𝐴 is a subset of 𝐸 (the set of parameters). Also, a 𝑆 s is a parametrized members of subsets 

of the initial universe 𝑈. For 𝜖 ∈ 𝐴, 𝐹(𝜖) is also assume that the set of 𝜖-estimated attributes of the 

𝑆𝑠(𝐹, 𝐴). 

Definition 3. By taking 𝑈 as an begining universel set, a cubic set in 𝑈 means a structure 

℘ = {{𝑥1, 𝜇̃(𝑥1), 𝑣(𝑥1)} ∣ 𝑥1 ∈ 𝑈} 

where 𝜇̃ (interval valued) and 𝑣 are fuzzy sets in 𝑈 respectively. For the sake of simplicity, a cubic 

set 
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℘ = {{𝑥1, 𝜇̃(𝑥1), 𝑣(𝑥1)} ∣ 𝑥1 ∈ 𝑈} 

is simply denoted by 

℘ = {𝜇̃𝐴, 𝑣𝐴} 

and 𝒞𝑈 represents the family of all cubic sets in 𝑈. 

Definition 4. By taking 𝑈 as an beginning universal set, a soft cubic set [23] is a pair (𝜉, 𝐴) over 𝑈 

such that 𝜉 is a mapping which is given by 

𝜉: 𝐴 → 𝒞𝑈 

where 𝐴 is a subset of 𝐸. Pay attention to the pair (𝜉, 𝐴), which can also be denoted as: 

(𝜉, 𝐴) = {(𝜉(𝜖), 𝜖) ∣ 𝜖 ∈ 𝐴} 

where 𝜉(𝜖) = {𝜇̃𝜉(𝜖), 𝑣𝜉(𝜖)}. 

 

3. Cubic Soft Ideals 

We take an initial universe set U. Here, from now onwards, U will be taken as B-algebra unless 

otherwise stated. 

Definition 5. Let (𝜉, 𝐴) be a cubic soft (CS) set over 𝑈. Then (𝜉, 𝐴) is a CS B-subalgebra over the 

same universe 𝑈, if this is an existing attribute 𝜖 ∈ 𝐴 s,t: 

(𝑆1) 𝜇̃𝜉𝜖
(𝑥1 ∗ 𝑥2) ⪰ min{𝜇̃𝜉𝜖

(𝑥1), 𝜇̃𝜉𝜖
(𝑥2)} 

(𝑆2)𝑣̃𝜉𝜖
(𝑥1 ∗ 𝑥2) ≤ max{𝑣̃𝜉𝜖

(𝑥1), 𝑣̃𝜉𝜖
(𝑥2)} 

for all 𝑥1, 𝑥2 ∈ 𝑈. We briefly denote it as an 𝜖-CS subalgebra over 𝑈. If (𝜉, 𝐴) is an 𝜖-CS subalgebra 

for all 𝜖 ∈ 𝐴, then (𝜉, 𝐴) over 𝑈 is called a CS subalgebra. 

Definition 6. Consider 𝑈 is a B-algebra, which satisfies condition 𝑆, and (𝜉, 𝐴) over 𝑈 is any CSs 

over 𝑈. Then (𝜉, 𝐴) over the same universe 𝑈 is known as CS o-subalgebra, if there exists 𝜖 ∈ 𝐴 

such that: 

(𝑆3) 𝜇̃𝜉𝜖
(𝑥1

𝑜𝑥2) ⪰ min{𝜇̃𝜉𝜖
(𝑥1), 𝜇̃𝜉𝜖

(𝑥2)} 

(𝑆4) 𝑣̃𝜉𝜖
(𝑥1

𝑜𝑥2) ≤ max{𝑣̃𝜉𝜖
(𝑥1), 𝑣̃𝜉𝜖

(𝑥2)} 

for all 𝑥1, 𝑥2 ∈ 𝑈. If (𝜉, 𝐴) over 𝑈 is an 𝜖-CS o-subalgebra (SA) for all 𝜖 ∈ 𝐴, we declare that (𝜉, 𝐴) 

over 𝑈 is a CS o-SA. We briefly denote it as an 𝜖 − 𝐶𝑆𝑜 − 𝑆𝐴 over 𝑈. 

Definition 7. Consider that (𝜉, 𝐴) over 𝑈 is a CSs, and it is called an 𝜖-CS ideal(CSI) over 𝑈 for 𝜖 ∈

𝐴 if it holds the that results: 
(𝑆5) 𝜇̃𝜉𝜖

(0) ⪰ 𝜇̃𝜉𝜖
(𝑥1), 𝑣𝜉𝜖

(𝑥1) ≤ 𝑣𝜉𝜖
(𝑥1) 

(𝑆6)𝜇̃𝜉𝜖
(𝑥1) ⪰ min{𝜇̃𝜉𝜖

(𝑥1 ∗ 𝑥2), 𝜇̃𝜉𝜖
(𝑥2)} 

(𝑆7)𝑣𝜉𝜖
(𝑥1) ≤ max{𝑣𝜉𝜖

(𝑥1 ∗ 𝑥2), 𝑣𝜉𝜖
(𝑥2)} 

for all 𝑥1, 𝑥2 ∈ 𝑈. If (𝜉, 𝐴) is an 𝜖-CS perfect for all 𝜖 ∈ 𝐴 over 𝑈, we declare that (𝜉, 𝐴) is a CSI. 

 

3.1 Preposition 1 

Consider that (𝜉, 𝐴) over 𝑈 is an 𝜖-CSI, then 
𝑥1 ≤ 𝑥2 ⇔ 𝜇̃𝜉𝜖

(𝑥2) ⪯ 𝜇̃𝜉𝜖
(𝑥1),  𝑣𝜉𝜖

(𝑥2) ≤ 𝑣𝜉𝜖
(𝑥1) 

for all 𝑥1, 𝑥2 ∈ 𝑈. 

Proof. Let 𝑥1, 𝑥2 ∈ 𝑈 be such that 𝑥1 ≤ 𝑥2. Then 𝑥1 ∗ 𝑥2 = 0 and therefore 

𝜇̃𝜉𝜖
⪰ min{𝜇̃𝜉𝜖

(𝑥1 ∗ 𝑥2), 𝜇̃𝜉𝜖
(𝑥2)} = min{𝜇̃𝜉𝜖

(0), 𝜇̃𝜉𝜖
(𝑥2)} = 𝜇̃𝜉𝜖

(𝑥2) 

and 

𝑣𝜉𝜖
(𝑥1) ≤ max{𝑣𝜉𝜖

(𝑥1 ∗ 𝑥2), 𝑣𝜉𝜖
(𝑥2)} = max{𝑣𝜉𝜖

(0), 𝑣𝜉𝜖
(𝑥2)} = 𝑣𝜉𝜖

(𝑥2) 

 

3.2 Preposition 2 

Consider that (𝜉, 𝐴)  over 𝑈  is an 𝜖 -CSI (for a parameter ∈ 𝐴  ). If the uncertainty 𝑥1 ∗ 𝑥2 ≤ 𝑥3 

satisfies in 𝑈, then 

𝜇̃𝜉𝜖
(𝑥1) ⪰ min{𝜇̃𝜉𝜖

(𝑥2), 𝜇̃𝜉𝜖
(𝑥3)} 

and 
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𝑣𝜉𝜖
(𝑥1) ≤ max{𝑣𝜉𝜖

(𝑥2), 𝑣𝜉𝜖
(𝑥3)} 

proof. 

Let us 𝑥1 ∗ 𝑥2 ≤ 𝑧 for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑈. Then 

𝜇̃𝜉𝜖
(𝑥1 ∗ 𝑥2) ⪰ min{𝜇̃𝜉𝜖

(𝑥1 ∗ 𝑥2 ∗ 𝑥3), 𝜇̃𝜉𝜖
(𝑥3)} = min{𝜇̃𝜉𝜖

(0), 𝜇̃𝜉𝜖
(𝑥3)} = 𝜇̃𝜉𝜖

(𝑥3) 

and 

𝑣𝜉𝜖
(𝑥1 ∗ 𝑥2) ≤ max{𝑣𝜉𝜖

((𝑥1 ∗ 𝑥2) ∗ 𝑥3), 𝑣𝜉𝜖
(𝑥3)} = max{𝑣𝜉𝜖

(0), 𝑣𝜉𝜖
(𝑥3)} = 𝑣𝜉𝜖

(𝑥3) 

which implies from the above two equations that 

𝜇̃𝜉𝜖
(𝑥1) ⪰ min{𝜇̃𝜉𝜖

(𝑥1 ∗ 𝑥2), 𝜇̃𝜉𝜖
(𝑥2)} ⪰ min{𝜇̃𝜉𝜖

(𝑥2), 𝜇̃𝜉𝜖
(𝑥3)} 

and 

𝑣𝜉𝜖
(𝑥1) ≤ max{𝑣𝜉𝜖

(𝑥1 ∗ 𝑥2), 𝑣𝜉𝜖
(𝑥2)} ≤ max{𝑣𝜉𝜖

(𝑥2), 𝑣𝜉𝜖
(𝑥3)} 

Theorem 1. In any B-algebra 𝑈, satisfying condition (S), then over 𝑈 every 𝜖 − 𝐶𝑆𝐼(𝜉, 𝐴) is an 𝜖-CS 

o-SA for all 𝜖 ∈. proof. 

Let 𝜖 ∈ 𝐴. Because U satisfies this condition (S), we have (𝑥1
𝑜𝑥2) ∗ 𝑥1 ≤ 𝑥2 for all 𝑥1, 𝑥2 ∈ 𝑈. Hence, 

by using ( 𝑆7), (𝑆8), and Proposition 3.1, this implies that 

𝜇̃𝜉𝜖
(𝑥1

𝑜𝑥2) ⪰ min{𝜇̃𝜉𝜖
((𝑥1

𝑜𝑥2) ∗ 𝑥1), 𝜇̃𝜉𝜖
(𝑥1)} ⪰ min{𝜇̃𝜉𝜖

(𝑥1), 𝜇̃𝜉𝜖
(𝑥2)} 

and 

𝑣𝜉𝜖
(𝑥1

𝑜𝑥2) ≤ max{𝑣𝜉𝜖
((𝑥1

𝑜𝑥2) ∗ 𝑥1), 𝑣𝜉𝜖
(𝑥1)} ≤ max{𝑣𝜉𝜖

(𝑥1), 𝑣𝜉𝜖
(𝑥2)} 

for all 𝑥1, 𝑥2 ∈ 𝑈. Hence, (𝜉, 𝐴) is an 𝜖-CS o-SA for all 𝜖 ∈ 𝐴 over 𝑈. 

Theorem 2. In any B-algebra 𝑈, if (𝜉, 𝐴) is an 𝜖 − 𝐶𝑆𝐼, then it is an 𝜖-CSSA for all 𝜖 ∈ 𝐴 over 𝑈. 

proof. Assume that over 𝑈(𝜉, 𝐴) is an 𝜖-CSI here 𝜖 ∈ 𝐴. Then for any 𝑥1, 𝑥2 ∈ 𝑈, Here in our hand 

𝜇̃𝜉𝜖
(𝑥1 ∗ 𝑥2) ⪰ min{𝜇̃𝜉𝜖

((𝑥1 ∗ 𝑥2) ∗ 𝑥1), 𝜇̃𝜉𝜖
(𝑥1)} = min{𝜇̃𝜉𝜖

(0), 𝜇̃𝜉𝜖
(𝑥1)} = 𝜇̃𝜉𝜖

(𝑥1) 

and 

𝑣𝜉𝜖
(𝑥1 ∗ 𝑥2) ≤ max{𝑣𝜉𝜖

((𝑥1 ∗ 𝑥2) ∗ 𝑥1), 𝑣𝜉𝜖
(𝑥1)} = max{𝑣𝜉𝜖

(0), 𝑣𝜉𝜖
(𝑥1)} = 𝑣𝜉𝜖

(𝑥1) 

Therefore, (𝜉, 𝐴) is an 𝜖-CSSA over 𝑈. 

Definition 8. Consider that 𝑈 is any 𝐵-algebra and 𝐴 is a subset of 𝐸 (the set of parameters). For 

𝜖 ∈ 𝐴, over 𝑈, an 𝜖 − 𝐶𝑆𝐼(𝜉, 𝐴) is said to be closed if 
𝜇̃𝜉𝜖

(0 ∗ 𝑥1) ⪰ 𝜇̃𝜉𝜖
(𝑥1) 

and 
𝑣𝜉𝜖

(0 ∗ 𝑥1) ≤ 𝑣𝜉𝜖
(𝑥1) 

for all 𝑥1 ∈ 𝑈. 

Theorem 3. Every closed CSI in a B-algebra 𝑈 is a CSSA over 𝑈. 

Proof. 

Assume that over 𝑈(𝜉, 𝐴) is a closed CSI. Then 
𝜇̃𝜉𝜖

(0 ∗ 𝑥1) ⪰ 𝜇̃𝜉𝜖
(𝑥1) 

and 
𝑣𝜉𝜖

(0 ∗ 𝑥1) ≤ 𝑣𝜉𝜖
(𝑥1) 

for all 𝑥1 ∈ 𝑈. It follows from this, this, and this, that 

𝜇̃𝜉𝜖
(𝑥1 ∗ 𝑥2) ⪰ min{𝜇̃𝜉𝜖

((𝑥1 ∗ 𝑥2) ∗ 𝑥1), 𝜇̃𝜉𝜖
(𝑥1)} = min{𝜇̃𝜉𝜖

(0 ∗ 𝑥2), 𝜇̃𝜉𝜖
(𝑥1)} ⪰ min{𝜇̃𝜉𝜖

(𝑥2), 𝜇̃𝜉𝜖
(𝑥1)} 

and 

𝑣𝜉𝜖
(𝑥1 ∗ 𝑥2) ≥ min{𝑣𝜉𝜖

((𝑥1 ∗ 𝑥2) ∗ 𝑥1), 𝑣𝜉𝜖
(𝑥1)} = max{𝑣𝜉𝜖

(0 ∗ 𝑥2), 𝑣𝜉𝜖
(𝑥1)} ≤ max{𝑣𝜉𝜖

(𝑥2), 𝑣𝜉𝜖
(𝑥1)} 

for all 𝑥1, 𝑥2 ∈ 𝑈. Therefore, over 𝑈, (𝜉, 𝐴) is a CSI. For the converse of the above theorem, we 

will give a condition such that every CSSA is a closed CSI over 𝑈. 

Theorem 4. Every CSSA is a closed CSI, in a p-semi simple B-algebra U, over U. 

Proof. Assume that over a p-semi simple 𝐵-algebra 𝑈, (𝜉, 𝐴) is a CSSA and let 𝜖 ∈ 𝐴. For each 𝑥1 ∈

𝑈, we have 

1. 𝜇̃𝜉𝜖
(0) = 𝜇̃𝜉𝜖

(𝑥1 ∗ 𝑥1) ⪰ min{𝜇̃𝜉𝜖
(𝑥1), 𝜇̃𝜉𝜖

(𝑥1)} = 𝜇̃𝜉𝜖
(𝑥1), 

2. 𝑣𝜉𝜖
(0) = 𝑣𝜉𝜖

(𝑥1 ∗ 𝑥1) ≤ max{𝑣𝜉𝜖
(𝑥1), 𝑣𝜉𝜖

(𝑥1)} = 𝑣𝜉𝜖
(𝑥1). 

Using 𝑆1, 𝑆2, and (1), we get 

3. 𝜇̃𝜉𝜖
(0 ∗ 𝑥1) ⪰ min{𝜇̃𝜉𝜖

(𝑥1), 𝜇̃𝜉𝜖
(𝑥1)} = 𝜇̃𝜉𝜖

(𝑥1), 
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4. 𝑣𝜉𝜖
(0 ∗ 𝑥1) ≤ max{𝑣𝜉𝜖

(𝑥0), 𝑣𝜉𝜖
(𝑥1)} = 𝑣𝜉𝜖

(𝑥1). 

For any 𝑥1, 𝑥2 ∈ 𝑈, we have 

𝜇̃𝜉𝜖
(𝑥1) = 𝜇̃𝜉𝜖

(𝑥2 ∗ (𝑥2 ∗ 𝑥1)) ⪰ min{𝜇̃𝜉𝜖
(𝑥2), 𝜇̃𝜉𝜖

(0 ∗ (𝑥1 ∗ 𝑥2))} ⪰ min{𝜇̃𝜉𝜖
(𝑥1 ∗ 𝑥2), 𝑣𝜉𝜖

(𝑥2)} 

and 

𝑣𝜉𝜖
(𝑥1) = 𝑣𝜉𝜖

(𝑥2 ∗ (𝑥2 ∗ 𝑥1)) ≤ max{𝑣𝜉𝜖
(𝑥2), 𝑣𝜉𝜖

(𝑥2 ∗ 𝑥1)} = max{𝑣𝜉𝜖
(𝑥2), 𝑣𝜉𝜖

(0 ∗ (𝑥1 ∗ 𝑥2))}

≥ max{𝑣𝜉𝜖
(𝑥1 ∗ 𝑥2), 𝑣𝜉𝜖

(𝑥2)} 

By using 𝑆1, 𝑆2, (3.4), and (3), we have that (𝜉, 𝐴) is a closed cubic soft ideal. 

 

3.3 Corollary 

Consider that U is a B-algebra. if it satisfies as below properties. 

i). 𝑈 = {0 ∗ 𝑥1 ∣ 𝑥1 ∈ 𝑈}, 

ii). every component of 𝑈 is minimum, 

iii). (∀𝑥1, 𝑥2 ∈ 𝑈)(𝑥1 ∗ (0 ∗ 𝑥2) = 𝑥2 ∗ (0 ∗ 𝑥1)), 

iv). (∀𝑥1 ∈ 𝑈)(0 ∗ 𝑥1 = 0 ⇒ 𝑥1 = 0), 

v). (∀𝑥1, 𝑥2 ∈ 𝑈)((𝑥1 ∗ 𝑥2) ∗ 𝑥3 = 𝑥1 ∗ (𝑥2 ∗ 𝑥3)), 

vi). (∀𝑥1, 𝑥2 ∈ 𝑈)(𝑥1 ∗ 𝑥2 = 𝑥2 ∗ 𝑥1), 

vii). (∀𝑥1 ∈ 𝑈)(0 ∗ 𝑥1 = 𝑥1), 

viii). (∀𝑥1, 𝑥2, 𝑥3 ∈ 𝑈)((𝑥1 ∗ 𝑥2) ∗ (𝑥1 ∗ 𝑥3) = 𝑥3 ∗ 𝑥2), 

then we conclude that every cubic CSSA is a closed CSI over the same universe 𝑈. 

Theorem 5. In any 𝐵-algebra 𝑈, satisfying condition (S), then over 𝑈(𝜉, 𝐴) is any 𝜖-cubic soft set 

and 𝜖 ∈ 𝐴 (a subset of parameters), then alls are equal: 

1. (𝜉, 𝐴) over 𝑈 is an 𝜖-CSI. 

2. For every 𝑥1, 𝑥2, 𝑥3 ∈ 𝑈, if 𝑥1 ≤ 𝑥2
𝑜𝑥3, then 

𝜇𝜉̃(𝜖)
∼ (𝑥1) ⪰ rmin {𝜇𝜉̃(𝜖)(𝑥2), 𝜇𝜉̃(𝜖)

∼ (𝑥3)} 

and 

𝑣𝜉(𝜖)(𝑥1) ≤ max{𝑣𝜉(𝜖)(𝑥2), 𝑣𝜉(𝜖)(𝑥3)} 

Proof. Consider that (𝜉, 𝐴) over 𝑈 is an 𝜖 − 𝐶𝑆𝐼 and 𝑥1 ≤ 𝑥1
𝑜𝑥2 for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑈. Then 

 
Consider that (𝜉, 𝐴) over 𝑈 is an 𝜖-CSI and 𝑥1 ≤ 𝑥1

𝑜𝑥2 for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑈. Then 

𝜇𝜉̃(𝜖)
∼ (𝑥1) ⪰ rmin {𝜇𝜉̃(𝜖)(𝑥1 ⋅ (𝑥2

𝑜𝑥3)), 𝜇𝜉̃(𝜖)
∼ (𝑥2

𝑜𝑥3)} = rmin {𝜇𝜉̃(𝜖)
∼ (0), 𝜇𝜉̃(𝜖)

∼ (𝑥2
𝑜𝑥3)} = 𝜇𝜉̃(𝜖)(𝑥2

𝑜𝑥3)

⪰ rmin {𝜇𝜉̃(𝜖)
∼ (𝑥2), 𝜇𝜉̃(𝜖)

∼ (𝑥3)} 

and 

𝑣𝜉(𝜖)(𝑥1) ≤ max{𝑣𝜉(𝜖)(𝑥1 ⋅ (𝑥2
𝑜𝑥3)), 𝑣𝜉(𝜖)(𝑥2

𝑜𝑥3)} = max{𝑣𝜉(𝜖)(0), 𝑣𝜉(𝜖)(𝑥2
𝑜𝑥3)} = 𝑣𝜉(𝜖)(𝑥2

𝑜𝑥3) ≤

max{𝑣𝜉(𝜖)(𝑥2), 𝑣𝜉(𝜖)(𝑥3)}. 

Conversely, assume that (ii) is valid. Because 0 ≤ 𝑥1
𝑜𝑥1 for all 𝑥1 ∈ 𝑈, It emanates through (ii) 

that. 

𝜇𝜉̃(𝜖)(0) ⪰ rmin {𝜇𝜉̃(𝜖)(𝑥1), 𝜇𝜉̃(𝜖)(𝑥1)} = 𝜇𝜉̃(𝜖)(𝑥1) 

and 

𝑣𝜉(𝜖)(0) ≤ max{𝑣𝜉(𝜖)(𝑥1), 𝑣𝜉(𝜖)(𝑥1)} = 𝑣𝜉(𝜖)(𝑥1) 

for all 𝑥1 ∈ 𝑈. Since 𝑥1 ≤ (𝑥1 ⋅ 𝑥2)𝑜𝑥2 for all 𝑥1, 𝑥2 ∈ 𝑈, we have 

𝜇𝜉̃(𝜖)(𝑥1) ⪰ rmin {𝜇𝜉(𝜖)(𝑥1 ⋅ 𝑥2), 𝜇𝜉(𝜖)(𝑥2)} 

and 

𝑣𝜉(𝜖)(𝑥1) ≤ max{𝑣𝜉(𝜖)(𝑥1 ⋅ 𝑥2), 𝑣𝜉(𝜖)(𝑥2)} 

for all 𝑥1, 𝑥2 ∈ 𝑈. Hence, it concludes that over 𝑈, (𝜉, 𝐴) is an 𝜖-CSI. 

Theorem 6. Consider that over 𝑈, a CSs (𝜉, 𝐴) is an 𝜀-CSI for a given parameter 𝜀 ∈ 𝐴, iff the non-

empty sets 

𝜇𝜉(𝜀)[𝛿1, 𝛿2]: = {𝑥1 ∈ 𝑈 ∣ 𝜇
𝜉̃(𝜀)
𝑥̃ (𝑥1) ⪰ [𝛿1, 𝛿2]} 
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and 

 
are ideals of 𝑈 for all [𝛿1, 𝛿2] ∈ 𝐴̃ ⊆ [0,1] and 𝑡 ∈ [0,1]. 

Proof. Consider that over 𝑈 a CSs (𝜉, 𝐴) is an 𝜀-CSI. Suppose that 𝜇𝜉(𝜀)
∼ [𝛿1, 𝛿2] ∩  

𝑣𝜉(𝜀)

(𝑡) ≠ ∅ for all 

[𝛿1, 𝛿2] ∈ 𝐴̃ ⊆ [0,1] and 𝑡 ∈ [0,1]. evidently, 0 ∈ 𝜇𝜉̃(𝜀)
𝐸̃ [𝛿1, 𝛿2] ∩ 𝐴

𝜉⃗⃗(𝜀)
(𝑡). Suppose that 𝑥1, 𝑥2 ∈ 𝑈 such 

that 𝑥1 ∗ 𝑥2 ∈ 𝜇𝜉̃(𝜀)
∼ [𝛿1, 𝛿2] and 𝑥2 ∈ 𝜇𝜉̃(𝜀)

∼ [𝛿1, 𝛿2]. Then 𝜇𝜉̃(𝜀)
𝑅̃ (𝑥1 ∗ 𝑥2) ⪰ [𝛿1, 𝛿2]. It follows from this 

equation that 

𝜇𝜉(𝜀)(𝑥1) ⪰ rmin {𝜇𝜉(𝜀)(𝑥1 ∗ 𝑥2), 𝜇𝜉(𝜀)(𝑥2)} ⪰ rmin {[𝛿1, 𝛿2], [𝛿1, 𝛿2]} = [𝛿1, 𝛿2] 

 

Consider that over 𝑈  CSs (𝜉, 𝐴)  is an 𝜀 -CSI. Consider that 𝜇𝜉(𝜀)
← [𝛿1, 𝛿2] ∩ 𝑣𝜉(𝜀)

→ (𝑡) ≠ ∅  for all 

[𝛿1, 𝛿2] ∈ 𝑎̃[0,1] and 𝑡 ∈ [0,1]. 0 ∈ 𝜇𝜉(𝜀)
← [𝛿1, 𝛿2] ∩ 𝑣𝜉(𝜀)

→ (𝑡). Suppose that 𝑥1, 𝑥2 ∈ 𝑈 such that 𝑥1 ⋅ 𝑥2 ∈

𝜇𝜉(𝜀)
← [𝛿1, 𝛿2] and 𝑥2 ∈ 𝜇𝜉(𝜀)

← [𝛿1, 𝛿2]. Then 𝜇𝜉(𝜀)(𝑥1 ⋅ 𝑥2) ⪰ [𝛿1, 𝛿2]. It follows from equation this, that 

𝜇𝜉(𝜀)(𝑥1) ⪰ min{𝜇𝜉(𝜀)(𝑥1 ⋅ 𝑥2), 𝜇𝜉(𝜀)(𝑥2)} ⪰ min{[𝛿1, 𝛿2], [𝛿1, 𝛿2]} = [𝛿1, 𝛿2]. 

 
equation this, we have 𝑣𝜉(𝜀)(𝑥1) ≤ max{𝑣𝜉(𝜀)(𝑥1 ⋅ 𝑥2), 𝑣𝜉(𝜀)(𝑥2)} ≤ 𝑡, and so 𝑥1 ∈ →

𝜉(𝜀)
(𝑡). Therefore 

𝜇𝜉(𝜀)
← [𝛿1, 𝛿2] and →

𝑣𝜉(𝜀)

(𝑡) are ideals of 𝑈. 

Contra-wise, we consider that 𝜇𝜉(𝜀)
𝑈← [𝛿1, 𝛿2] and 𝑣𝜉(𝜀)

→ (𝑡) are ideals of 𝑈 for all [𝛿1, 𝛿2] ∈ 𝑏̃[0,1] 

and 𝑡 ∈ [0,1]. Now, we suppose As is present 𝑏 ∈ 𝑈 s.t 𝜇𝜉(𝜀)(0) ⋡ 𝜇𝜉(𝜀)(𝑏) or 𝜇𝜉(𝜀)(0) > 𝜇𝜉(𝜀)(𝑏). Let 

𝜇𝜉(𝜀)(0) = [0−, 0+]  and 𝜇𝜉(𝜀)(𝑏) = [𝑏−, 𝑏+] . Then 0− < 𝑏− and 0+ < 𝑏+ which gives that 0− < 𝛿1 <

𝑏−and 0+ < 𝛿2 < 𝑏+, that is 𝜇𝜉(𝜀)(0) = [0−, 0+] < [𝛿1, 𝛿2] < [𝑏−, 𝑏+]by taking [𝛿1, 𝛿2]: = [
1

2
(0− + 𝑏+)]. 

Hence 0 does not belong to 𝜇𝜉(𝜀)
← [𝛿1, 𝛿2]. Also, 0 does not belong to →

𝜉(𝜀)
(𝑏𝑡) where 𝑏𝑡 = 𝑣𝜉(𝜀)(𝑏). This 

is a contradiction, and so equation this is valid. 

Imagine there exists. 𝑐, 𝑑 ∈ 𝑈 s.t: 

3.  𝜇𝜉(𝜀)(𝑐) ⋡ min{𝜇𝜉(𝜀)(𝑐 ⋅ 𝑑), 𝜇𝜉(𝜀)(𝑑)}, 

or 

4. 𝑣𝜉(𝜀)(𝑐) > max{𝑣𝜉(𝜀)(𝑐 ⋅ 𝑑), 𝑣𝜉(𝜀)(𝑑)}. 

For the case of 5, let 𝜇𝜉(𝜀)(𝑐) = [𝛿1, 𝛿2], 𝜇𝜉(𝜀)(𝑐 ⋅ 𝑑) = [𝛾1, 𝛾2]  and 𝜇𝜉(𝜀)(𝑑) = [𝛾3, 𝛾4] . Then 

[𝛿1, 𝛿2] ⊈  min{[𝛾1, 𝛾2], [𝛾3, 𝛾4]} = [min{𝛾1, 𝛾2}, min{𝛾3, 𝛾4}] . Hence 𝛿1 < min{𝛾1, 𝛾2}  and 𝛿2 <

min{𝛾3, 𝛾4}. Taking [𝜏1, 𝜏2] =
1

2
(𝜇𝜉(𝜀)(𝑐) + min{𝜇𝜉(𝜀)(𝑐 ⋅ 𝑑), 𝜇𝜉(𝜀)(𝑑)}) It suggests that: 

[𝜏1, 𝜏2] =
1

2
([𝛿1, 𝛿2] + [min{𝛾1, 𝛾2}, min{𝛾3, 𝛾4}]) = [

1

2
(𝛿1 + min{𝛾1, 𝛾2}),

1

2
(𝛿2 + min{𝛾3, 𝛾4})] 

This entails that. min{𝛾1, 𝛾2} > 𝜏1 =
1

2
(𝛿1 + min{𝛾1, 𝛾2}) > 𝛿1  and min{𝛾3, 𝛾4} > 𝜏2 =

1

2
(𝛿2 + 

min{𝛾3, 𝛾4}) > 𝛿2. 

And so that [min{𝛾1, 𝛾2}, min{𝛾2, 𝛾4}] ≻ [𝜏1, 𝜏2] ≻ [𝛿1, 𝛿2] = 𝜇𝜉(𝜀)(𝑎). 

Therefore, 𝑐 ∉ 𝜇𝜉 ⇒ (𝜀)[𝜏1, 𝜏2] . Additionally, we note that 𝜇𝜉(𝜀)(𝑐 ⋅ 𝑑) = [𝛾1, 𝛾2] ⪰

[min{𝛾1, 𝛾3}, min{𝛾2, 𝛾4}] ≻  [𝜏1, 𝜏2] , and 𝜇𝜉(𝜀)(𝑑) = [𝛾3, 𝛾4] ⪰ [min{𝛾1, 𝛾3}, min{𝛾2, 𝛾4}] ≻ [𝜏1, 𝜏2] 

which implies that 𝑐 ⋅ 𝑑, 𝑑 ∈ 𝜇𝜉 ⇒ (𝜀)[𝜏1, 𝜏2] . Given that this is contradictory, 𝜇𝜉(𝜀)(𝑥1) ⪰

min {𝜇𝜉(𝜀)(𝑥1 ⋅ 𝑥2), 𝜇𝜉(𝜀)(𝑥2)} for all 𝑥1, 𝑥2 ∈ 𝑈. Now, (6) implies that there exists 𝑡𝑜 ∈ (0,1) such that 

𝑣𝜉(𝜀)(𝑎) ≥ 𝑡𝑜 > max{𝑣𝜉(𝜀)(𝑐 ⋅ 𝑑), 𝑣𝜉(𝜀)(𝑑)}. Hence 𝑐 ⋅ 𝑑, 𝑑 ∈ 𝑣𝜉(𝜀)(𝑡𝑜) but 𝑎 ∉ 𝑣𝜉(𝜀)(𝑥1). Given that 

this is contradictory, 𝑣𝜉(𝜀)(𝑥1) ≤ max{𝑣𝜉(𝜀)(𝑥1 ⋅ 𝑥2), 𝑣𝜉(𝜀)(𝑥2)}  for all 𝑥1, 𝑥2 ∈ 𝑈 . Therefore, we 

conclude that over 𝑈(𝜉, 𝐴) is an 𝜖-CSI. 

 

4. Conclusions and Future Work 
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In this paper, CSA, CSo-SA, and CSIs are introduced in B-algebra. Their characterizations are 

explained in the reference of B-algebra. Further, some conditions are given for CSSA to be a closed 

CSI. Relations between closed cubic soft ideals and cubic soft o-subalgebras are discussed. For future 

work, we observed that this work may be defined in some other algebraic structure such as G-

algebra/ku-algebra/ps-algebra, etc and it may be the further extension in neutrosophic set theory. 
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