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Abstract: This paper aims to present a new concept of sets known as fuzzy neutrosophic Q**-closed
sets in fuzzy neutrosophic topology. In this study, we explore and investigate more novel properties
of these classes by some new definitions, theorems, and propositions. Therefore, a group of examples
is presented and discussed to clarify the relationships between the new study of Q**-closed sets with
other sets.
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1. Introduction

The notion of fuzziness has swept approximately all divisions of mathematics since the
definition of the theory by Zadeh [8]. The applications of fuzzy sets have appeared in many scopes
for instance the theory-concept of fuzzy topological spaces that was examined and advanced by
Chang [9]. From then on several notions in general topology have been popularized. Conversely, a
generalization of fuzzy topological spaces was evolved in several directions by the concept of
neutrosophic sets as the expression of the neutrosophic set was defined with membership, non-
membership, and indeterminacy degrees by Smarandche [10] and topological spaces of neutrosophic
sets were discovered by A.Salama and S. A. Albowi [11]. Since then a survey article on the advanced
areas of fuzzy neutrosophic topological spaces has been released by several writers (see, [1-15]).

For this reason, this paper aims to present the notion of Q"*- close sets in the case of fuzzy
neutrosophic topology and shows all the significant definitions and theorems. Moreover, it made
many detailed comparisons with many examples.

2. Preliminaries

Definition 2.1. [12]: Let Fy be a non-empty fixed set. The fuzzy neutrosophic set (FNS),Ay; is
an object having the form Ay, ={< fo,tay, () oap, (fa) Vay, fn) >: fn € Fy}  where the
functions py,,, Oay,, Vay,: Fv — I wherel =0, 1] labeled the degree of membership function
(namely p,,,(x)), the degree of indeterminacy function (namely oy, ,(f,)) and the degree of non-
membership function (namely v,, (fn) ) respectively of each element f, € Fy to the set

Awi and 0 < iy, (Ful¥0ay, (Ful¥Vay, (f) < 3, for each f, € Fy.

Remark 2.2.[1]: FNS Ay; = {< fu, tay, (), 02y, (fa), Vay, (fa) >: fn € Fy} can be identified as an
ordered triple < f;,, Uay,, Oay,s Vay, > in Iwherel =[0, 1] on Fy.

Lemma 2.3.[5]: Let Fy bea non-empty set and the FNSs AN1 and N1 be in the form:
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ANI = {< le' #Z.Nl(fn)'o-ﬂNl (fn)'vﬂ.Nl (fn) > fn € FN } and
Bn1 =A< fu gy, (fn), 0py, (f)s gy, (fa) >: fu € Fy} = on Fy.Then,
i ANI c ﬂNl iff ﬂANl(fn) < ,uﬁNl (fn)/ UANl(fn) < G,BNl (fn) and VANl(fn) 2 V,BNl (fn) for all fn €

ii. Ay1 = By1 iff Ayy S By1 and Byy S Ay,

iii. 1y — Ayy =1{< for ag, (), Ine = 0oy, (fa), ay,(f)>: fn € Fyl,

V. Ay1 U Bn1 ={< fo, Max(uay, (o) Hpy, (f)) Max(oay, (fa), gy, (fo)), Min(uay, (f2), vy, (fn)
> fu € Fyl,

V. Ay1 0 Byi={< fu, Min(uzy, (fo), #py, (Fa), Min(ay, (o), dpy, (fa)), Max(uay, (fa), gy, (fa)) >
leE FN }/

vi. Oy; =< £,,0,0,1 > and 1y, = < £,,1,1,0 >.
Definition 2.4. [9]: Fuzzy neutrosophic topology (FNT) on a non-empty set Fy is a family t of
fuzzy neutrosophic subsets in Fy satisfying the following.

i. Oy, 15€ Ty,

ii. Ay, N Ay, € Ty forany Ay,, Ay, € Ty,

iii. U Ay, € 5, V{Ay:j € J} C Ty.

The pair (Fy, ty) is called fuzzy neutrosophic topological space (FNTS). Every

elements of 7 are called fuzzy neutrosophic-open sets (FN — open set). The complement of FN —
open set in the FN-TS (Fy, ty) is called fuzzy neutrosophic -closed set (FN — closed set).

Definition 2.5. [10]: et (Fy, ty) is FNTS and Ay; ={< fo, tay,(f2) Oay, ) vay, () >: fn €
Fy}is FNS in Fy . Then the fuzzy neutrosophic -closure (FNcl) and the fuzzy neutrosophic-
interior (FNint) of AN1 are defined by:

i. FNcl(Ay1) =n{Bn1: Bniis FN-closed setin Fyand Ay; S Byi},

ii. FNint (Ay1)= U {By1: Bn1 is FN- open setin Fyand By; S Ay;.

NOn the FNcl(dy) is FN-closed set and FNint t(Ay)is FN — open setin Fy. And,
i. Ayq is FN- closed set in Fyiff FNcl (Ayq1) = An1,
ii. Ayq is FN- open set in Fyiff FNint (Ay1) = Ayq-

Poposition 2.6. [14]: et (Fy, ty) is FNTS and Ay;, By, are FNSs in Fy . Then the following
properties are true:
i. FNint (Ay,) € Ay1 and Ay, € FNcl (Ay),
ii. Ay1E Byvi= FNint (Ayq1) € FNint (By,) and Ay1EBy1 = FNcl (Ay1) € FNcl (Byq),
iii. FNint (FNint (Ay,)) = FNint (Ay,) and FNcl (FNcl (Ay1))= FNcl (Ayq),
iv. FNint (Ay;NBy1)= FNint (Ay1) N FNint (By1) and FNcl (Ay1UBn1) = FNcl (Ay)U FNcl (By1),
v. FNint(1y;) = 1y; and FNcl (Oy;) = Opy-

Definition 2.7.[12]: FNS Ay; in FNTS (Fy, ty) is called:

i. Fuzzy neutrosophic semi-closed set (FNS-closed set ) if FNint (FNcl (Ay1)) € Apg-

ii. Fuzzy neutrosophic Pre-closed set ( FNP-closed set ) if FNcI(FNint(dy,)) € Ays.

iii. Fuzzy neutrosophic a-closed set( FNa-closed set ) if FNcl(FNint(FNcl(Ay1)))E Ay1-

iv. Fuzzy neutrosophic a”m -closed set (FN o“m-closed set) if FNint (FNcl (AN1)) € UN,
wherever AN1 € UN and UN is FN a -open set.

v. Fuzzy neutrosophic ag-closed set (FN a’*g-closed set) if FNcl (K) € U whenever K€ U
and U is FN- o- open.

The complement of fuzzy neutrosophic semi-closed set is fuzzy neutrosophic semi-open set,
fuzzy neutrosophic pre-closed set, fuzzy neutrosophic a-closed set, fuzzy neutrosophic a”m -
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closed set and fuzzy neutrosophic a”g -closed set is fuzzy neutrosophic semi-open set, fuzzy
neutrosophic Pre-open set, fuzzy neutrosophic a-open set, fuzzy neutrosophic a”m-open setand
fuzzy neutrosophic a*g -open set respectively.

Definition 2.8. A subset K of FN-TS (FN, tN)is called FN-ag-closed set
(briefly, FN-a’g -cs)if FNcl(K) € U whenever, K€ U and Uis FN- o- open.

3. Fuzzy Neutrosophic Q**-Closed Sets

In this section, we will study anew classof sets and called it fuzzy neutrosophic Q**- closed
sets
Definition 3.1: A subset Kofa FNTS (Fy, ty) is called:

i- FN-Q"*-closed set if FN-int(K) = On where, K is FN-cs.

ii- FN-Q"*-open set if FN-cl(K) = 1y where, K is FN-os.

Example 3.2: et F = {f}, define FN-Ss and A, B in F as follows:
A= {f(0.7,06,05):f € F}, B = {f(0.8,0.9,0.4): f € F}
with the family ty ={0ON, 1N, A, B} be FNTS.
Then, the set A is a FN-Q"*-open set because, FN-CI(A) = 1n
And the set B”cis an FN-Q"*-closed set because, FN-int (B”c) = On.

Definition 3.3: et (Fy, ty) is FNTS and Ay; = <x, pAN1 (X), oAy; (X), VAN1 (X) > is FN-S in Fy.
Then, the fuzzy neutrosophic Q"*-cl (Ay;) “FN-Q"™-cl (Ay;) “ and the fuzzy neutrosophic Q"*-
interior (FN- Q"*-int) of AN1 are defined by:

L. FN- Q™-cl(AN1) =N {Bwn1: Br1is FN- Q™*- closed setin F and Ay; S Bwi},

ii. FN- Q™-int(Ay1) = U {Bn1: Bw1is FN- Q**- open setin F and Bnvi S Ay}

Theorem 3.4: Let (Fy, ty)is FNTS and Ani, Byi are FN-Ss in Fy. Then, the following properties
hold:

i.FN - Q™*- cl(On1) = Ovz and FN- Q™- cl (1n1) =1ng,

ii. Ay; € FN- QM- cl(Ayng ),

iii. If Ay, S Bwvi. Then, EN Q™- cl(Ay; ) € EN QM- cl(Bw),

iv. Ay; is FN- Q™-closed set in FN iff FN- Q**- cl (An1) = An1,

v. FN- Q™- cl(Ay1) = FN-cl(FN- Q**- cl(Anq))-
Proof: i. By, Definition 3.3 (i). We have,

i. FN- Q™cl(Onv1) =N {Bn1: Bn1 is FN- Q™-closed setin Fy and ON1 S Bni} = Onvi. And,

FN- Q™-cl(Inv1) =n{Pn1: Bn1 is FN- Q™-closed setin Fy and 1nv1 S Bn1 }=1n1.

ii. Ay;y €N {Bn1: Brn1 is FN- Q™-closed setin Fy and Ay, S Bnvi }=FN- Q™cl (Ayq ).

iii. Suppose that Ay; € Bnv1. Then,

N{PBn1: Pv1 is FN- Q™*-closed setin Fyand Ay; S Bn }
€ n {nnemne is FN-QM*-closed set in Fyand Bnvi © nN1}.Therefore, FN-Q*cl(Ay; ) € FN-

Q"*cl(Bw1 ).

iv. If, Ay is FN- Q**-closed set. Then,

FN- Q™cl (An1) =n{PBn1: Bvz is FN- Q™-closed setin Fy and Ay, S Bav }.

And, by (ii). We get, Ay; S FN- Q™*cl (Ayy) but, Ay; is necessarily to be the smallest set.
Thus, Ax; = N{Bnx1: Bv1 is FN- Q™- closed set in Fy and Ay, S Bwi }.Therefore, Ay; = FN- Q™*cl
(An1)-
Conversely; assume that v = FN-Q"*cl (Ay;) by using the definition. We get, Ay; is FN-Q"*- closed
sets.

v. By, (iv). We get, Ay; = FN- Q™cl (Ay1). Then, FN- Q"*cl (Ay1) = FN- Q™*cl(FN- Q™*cl(Anq)).

Hajar Y. Mohammed, Fatimah M. Mohammed and Ghada Al-mahbashi, On Q"*-closed Sets in Fuzzy Neutrosophic
Topology: Principles, Proofs, and Examples



Neutrosophic Systems with Applications, Vol. 20, 2024 70

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

Theorem 3.5: Let (Fy, ty) is FNTS and Ayy, Bwv1 are FN-Ss in Fy . Then, the following
Properties hold:

i. FN - QM- int(On1) = Onviand FN - QM-int (1n1) =1ny,

ii. FN - Q™- int(AN1) € Ay,

iii. If, Ay; € Bwni. Then, FN- Q™*- int(Ay;) S EN- Q- int(Bn1),

iv. Ay; is EN- Q™-open iff Ay; =FN- Q™-int (Ayy),

v. EN- QM- int(Ay;) = FN- QM- int(FN- QM- int(Ay1)).
Proof: i. By, Definition 3.3 (ii). We have,

FN - Q™int(On1) =U{ Bn1: Bn1is FN- Q™-open setin Fy and Bnvi € Owni} = Oni.
and,

FN - Q™ int(1N1)=U{Bn1: Bn1is FN- Q**-open setin Fy and fni & 11} =1n1.

ii. Follows from Definition.

iii. FN- Q™ int(Ay1) =U { Bv1: Brviis FN- Q™ -open setin Fy and Bwvi € Ayql).

Since, Ay; € Bwi. Then, U { Bri: Br1is EN- QM-opensetin Fy and Bwvi € Ayq}
CU{nnu Mniis FN - QM- open set in Fy and nni € Bwi}
Therefore, FN - Q™ int(dy,) € FN - Q™ int(Bn1).

Suppose that Ay, is FN-openset in Fy Then,

A€ FN - QM int(Ayq) --.... ).
By using (ii). We get, FN- Q™ int(Ay1) S Aygeeeenen. 2).
From (1) and (2) we have, Ay; = FN - Q™ int (Ay,).

Conversely; assume that Ay; = FN - Q™ int (Ay,) by using the definition. We get, Ay, is FN -
QM*-open setin Fy .
v. By, (iv). We get, Ay; = FN - Q™ int(Ay1). Then, FN -Q™ int(Ady,) = FN- Q™ int(FN- Q™
int(Ay1))-

Remark 3.6: Every FN-Q"*-closed set is FN-closed set but the converse is not true.The following the
example show this case.

Example 3.7: Let FN ={f} define FN -Ss Ain, A2n, Asn, and Asn in F as follows:

Av=1{f, (0.3,0.7,0.5): f €F},

Asn=1{f, (0.5,0.3,0.3): f €F},

Asn={f, (0.3,0.3,0.5): f €F},

A4N= {f, (0.5, 0.7, 0.3): f S F}and the family N = {ON, 1N, A1N, A2N, A3N , A4N } be FN-TS.
Then, Int (A v ¢ ) ={f, (0.5,0.3,0.3)} # 0. Then A i “\cis closed set but not Q"*-cs.

Proposition 3.8: For any FN-TS, the following statements satisfy:
i. Every FN-Q"* -closed set is FN-a-closed set.
ii. Every FN-Q"* -closed set is FN-pre-closed set.
iii. Every FN-Q"* -closed set is FN-semi-closed set.
iv. Every FN-Q"* -closed set is FN-f-closed set.
v. Every FN-Q"* -closed setis FN-a”g-closed set.

Remark 3.9: The conversion of proposition 3.8 is not true. The following example shows that.
Example 3.10: Let F = {a, b}, define FNSs and A, B, C, D inF as follows:
A ={f (0.3,0.5,0.4), (0.6,0.2,0.5);f € F},
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B ={f (0.2,0.6,0.7), (0.50.3,0.1); f € F},

C={f (0.3,0.6,0.4),(0.6,0.3,0.1);f € F},

D={f (0.2,05,0.7),(0.5,0.2,0.5);f € F},

And the family ty ={On, 1n, A, B, C, D} be FN-TS.Then,

FN-int(D”c) = <f (0.2, 0.5, 0.7), (0.5, 0.2, 0.5)> # 0. So, D”c is not FN-Q"* -closed set. And,
FN -int(FN -cl(f (0.7,0.5,0.2), (0.5, 0.8, 0.5)>) = EN-int(f (0.7,0.5,0.2), (0.5, 0.8, 0.5)>) =
<f (0.2,0.5,0.7), (0.5, 0.2, 0.5)>, where, < f (0.2, 0.5, 0.7), (0.5, 0.2, 0.5)> < D"c

Then, D”c is FN- semi-closed set.

And, FN-cI(FN -int(FN-cl(f <(0.7,0.5,0.2), (0.5, 0.8, 0.5)>))) = D"c

Then, D”cis FN- a — closed set.

And, EN-int (D”¢) = (<f (0.2, 0.5, 0.7), (0.5, 0.2, 0.5)>)

So, EN-cl(FN-int(<f (0.2, 0.5, 0.7), (0.5, 0.2, 0.5)>)) = D¢

Then, D*cis FN- pre — closed set.

And,

FN-int(FN-cl(FN-int(f (0.7, 0.5, 0.2), (0.5, 0.8, 0.5)>))) = (<f (0.2, 0.5, 0.7), (0.5, 0.2, 0.5)>) € D"c.
So, D"cis FN-f - closed set.

Proposition 3.11: Let (Fy, ty) be a FNTS. Kis FN - Q™- open set in FN iff for each Uisa FN -
QM-closed set such that U € K and U € FN-int(K).

Proof: Let K is a FN - Q**-open, then 1n_Kis FN- Q**-closed so, 1n_K € U, then FNcl(1N_K) € U.
Put IN_K=U and 1IN _FN -int(K) € U, for each U € K and
U € FN-int(K). Then 1N _U € FN-int(K).
< To prove 1IN _Kis a FN- Q**-closed set. We take K to be FN - Q"*-open.
So, for each K, is FN - Q"*-closed set.
Then, 1IN _FN -int(K) € 1IN _U therefore FN -cl(K) € 1N _U for each
KcU, so IN_Kis FN - Q™-closed.

Definition 3.12: Let (Fy, ty)is FN-TS. Fuzzy neutrosophic set Kis called:

i. Fuzzy neutrosophic generalized-Q"*-closed set (FN-G-Q"*-closed set) if FN-cl (K) € UN
wherever UN is FN- Q"*-open setin F. Kis said to be fuzzy neutrosophic Generalized-Q"*-
open set (FN-G-Q™-open set) in (Fy, Ty) if the complement IN-K is FN-G- Q"*-closed
set.

ii. Fuzzy neutrosophic - Q"*-generalized- closed set (FN- Q"* -G-cs) if FN-Q"*-cl (K) wherever,
Kis FN-open set. Kis said to be Fuzzy neutrosophic- Q"*-generalized-open set (FN-Q"*-
G-os) if the complement 1N-K is FN- Q" -G-cs.

Theorem 3.13: Let (Fy, 7y) be a FNTS. A fuzzy neutrosophic set K is FN- Q"*-G-os iff Uy S K and
Unis an FN- Q**-open set, so 1y is an FN- Q**-G-closed set in F.

Proof: Let Kbe FN-Q"-G-open setin FN and let UN be any FN- Q"*-closed setin FN such that
Un € K and Unis an FN- Q™-open set, so 1 —K is an FN- Q**-G-closed setin FN.
Therefore, for all FN-opensets v tosay v = 1 — Uy,
1—K S 1— Uy, thencl(ly) S 1- Uy.

So, 1_(1_UN)=Un € 1-c(1 — K)=int(K).
< Let Uy be an FN- Q™*-closed set.
So, for each Uy € TN, such that Uy € K, Uy is an FN-open set.
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Now, Uy € int(K). If Kis a FN- Q**-G-open set, this implies 1y is an FN- Q"*-G-closed set,
takev € Ty such that 1y € v, since v € 1y, then 1, is an FN-Q**-closed set and 1, € K, so by
hypothesis 1, € int(K).

Therefore, 1_int(K)=cl(K)S 1_(1_v)=v
So, by Definition we get that 1y is an FN - Q- G -closed set.

Definition 3.14: Let (Fy, ty) is FN-TS and Ay, = <X, pyy, (%), Oay, (X), Vay, (x) > is FN-S in Fy.
T hen, the fuzzy neutrosophic Q"* generalized-cl( Ay, ) “FN-Q™-G-cl ( Ay; ) “ and the
fuzzy neutrosophic Q"* generalized — interior (FN - Q"*-G-int) of Ay, are defined by:

i. FN- QM-G-cl(Ay1) =N {BN1: BN1is FN - Q"*-G-closed set in F and AN1 S BN1},

ii. FN- Q™-G-int(Ay,) =U {EN1: BN1is FN- Q"*-G-open set in F and fN1 S AN1}.

Theorem 3.15: Let (Fy, 7y) be a EN-TF, for each Ay, € Fy, For each AN1 , the operator FN -
Q™-G- cl satisfies the following statement:

i. FN -Q™-G-cl(On1) = Oni , FN- QM-G- cl(Ini) = 1Iny,

ii. Ay; € FEN- Q™-G- cl(Ay4),

iii. FN - Q™-G- cl(dy;) UFN- Q™-G- cl(u) € FN- Q™-G- cl(Ay; U p),

iv. FN - Q™-G- cl(FN- Q™-G- cl(Ay1)) = EN- Q™-G- cl(Ay1),

V. If Ay, isan FN - Q™-G-closed set, then FN - Q"-G- cl(Ay1)= A1,

Vi. FN -Q™-G- cl (Ay1) € FN - Q™-cl(Ay1) S cl(Ayy).
Proof: Directly by the definition.

Theorem 3.16: Let (Fy, ty) be a FN-TF, for each Ay, € I*X, For each Ay, the operator FN- Q"*-G-
int, satisfies the following statement:

(i) FN - Q™-G-int(On1) = Oni, FN- Q*-G- int(1n1) = 1ny,

(i) FN- Q™-G- int(Ay1) € An1,

(iit) FN- Q™*-G- int(Ay; N )= FN - Q"*-G- int(dy;) N FN - Q™-G- int(u),

(iv) FN- Q™*-G- int(dy1) = FN- Q™-G- int(FN - Q™-G- int(Ayq)).
Proof: Directly by the definition.

Remark 3.17: Every FN -Q"*-cs is FN- a*g -cs but the converge is not true.
Example 3.18: Let F = {f}, define FN -Ss and A, B in F as follows:
A={f (0.1,0.2,0.8): f€ Fland B ={f (0.7,0.5,0.2): f € F} with the family,
Ty = {On, In, A, B} be FNTS. Then, the set B/ c is a FT- a”g -cs because, FN -cl(B~c) € UN,
where BAc € Uy and Uy ={f (0.7,0.5,0.2): f€ F}, {f (0.2,0.5,0.7): f€ F} € {f(0.7,0.5,0.2): f€ F},
And, B”cis not FN-Q"*-closed set because, FN-int(B”c) = {f (0.1,0.2,0.8): f € F} # On.

Remark 3.19: The relationship between different sets in EN-TS (Fy, ty) can be shown in the next
Figure 1.

FN-Q"*-closed set — Closed set

¢—~—

\ FN-a"g -closed set /

Figure 1.
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4. Conclusions

In this paper, a recent notion concerning the theory of fuzzy neutrosophic sets has been defined,
which is said to be fuzzy neutrosophic Q"*- closed set. The work has suggested some characteristics
of the newly established concept. Some relations among the defined model with other sets have been
explained by fuzzy neutrosophic topology.
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