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Abstract: In this study, we apply k-polar generalized neutrosophic logic to the ideal of BCK-algebra 

and consequently introduce the notion of a k-polar generalized neutrosophic ideal in BCK-algebra 

with an example. We provide conditions for a k-polar generalized neutrosophic set to be a k-polar 

generalized neutrosophic ideal. We prove that every k-polar generalized neutrosophic ideal is a k-

polar generalized neutrosophic subalgebra, but the converse is not true, which can be illustrated with 

an example. Furthermore, we prove that a k-polar generalized neutrosophic set is a k-polar 

generalized neutrosophic ideal if and only if its corresponding cut sets are ideals of the BCK algebra.  

Keywords: k-polar Fuzzy Ideal; Cut Sets; k-polar Generalized Neutrosophic Set; k-polar Generalized 

Neutrosophic Subalgebra; k-polar Generalized Neutrosophic Ideal. 

 

1. Introduction 

Data with multiple dimensions, or aspects, is essential for numerous practical applications. This 

type of data frequently arises from sources consisting of two or more contents. To manage these types 

of sources, various sets, such as bipolar fuzzy sets [1], bipolar neutrosophic sets [2], m-polar fuzzy 

sets [3], k-polar generalized neutrosophic sets[4], etc are defined. 

In 1966, Imai and Iséki [5, 6] established BCK/BCI-algebras, which enlarged the theories of set-

theoretic difference and propositional calculus. The academic study of these theories has expanded 

substantially since then, with a healthy spotlight on the theory of their ideals. A variety of notions 

within these and associated algebraic structures have been explored through various research 

methods. 

The notion of fuzzy sets (FSs) was first presented by Zadeh [7]. In 1991, Xi [8] utilized these FSs 

in BCK-algebras. K. T. Atanassov's [9] intuitionistic fuzzy sets (IFSs) expand FSs by gathering both 

truth-membership and false-membership functions. F. Smarandache [10] constructed a novel 

mathematical structure called the neutrosophic set (NSS) by gathering three functions (truth, 

indeterministic, and false) to handle uncertainty and indeterminacy.  

Several modifications have been introduced into the field of NSSs to enhance our ability to better 

understand uncertainty and indeterminacy. Wang, H. extended the concept in 2005 by introducing 

interval-valued NSSs [11]. Subsequently, Jun, Y. B. et al. applied these concepts to the ideals in 

BCI/BCK algebras [12]. In 2018, Takalo, M. M. et al. proposed the MBJ-NSSs as an extension of the 

NSSs, where interval-valued fuzzy sets are used to represent indeterminacy functions [13]. 

Satyanarayana et al. introduced the idea of BS-NSS [14] and SB-NSS [15] in the context of BCI/BCK 

algebras. In BS-NSS, an interval-valued fuzzy set is utilized to represent the false membership 

function, while in SB-NSS, an interval-valued fuzzy set is utilized to represent the truth membership 

function. Following this, we apply SB-NSS to BCI/BCK algebras [16]. Smarandache, F. et al. proposed 

neutrosophic N-structures, where negative valued functions are utilized to represent the truth, 

uncertainty, and falsity membership functions [17]. Subsequently, this concept is applied to 
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commutative ideals [18] and positive implicative ideals [19] in BCK-algebras. Recently, neutrosophic 

logic has been applied to rings [20]. In Figure 1, we provided a visual representation that highlights 

the various types of modifications of neutrosophic structures. This helps readers to understand and 

follow the detailed concepts discussed. 

 
Figure 1. The various types of modifications of neutrosophic structures. 

 

In the application of NSSs to algebraic structures, the indeterministic-membership function 

contributes support to either the truth-membership function or the false-membership function. To 

split the aspect of the indeterministic-membership function, Song et al.[21], established a generalized 

NSS and gave its application in BCK/BCI-algebras. Following this development, F. Smarandache et 

al. proposed the k-polar generalized NSS and studied its application in BCI/BCK-algebras. In this 

article, we apply the ҡ-polar generalized NSS (ҡpGNS-S) to the ideal of BCK-algebra and introduce 

the k-polar generalized neutrosophic ideal (ҡpGNS-I). We studied some of their related features. 

 

2. Preliminaries 

Definition 2.1 [5, 6] Let Ҟ be a non-empty set with a binary operation “∗” and a constant “0” is called 

a BCK-algebra if it satisfies the following axioms, for all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ 

(I) ((𝔵0 ∗ 𝓎0) ∗ (𝔵0 ∗ 𝔷0)) ∗ (𝔷0 ∗ 𝓎0) = 0       

(II) (𝔵0 ∗ (𝔵0 ∗ 𝓎0)) ∗ 𝓎0 = 0 

(III) 𝔵0 ∗ 𝔵0 = 0 

(IV) 0 ∗ 𝔵0 = 0 

(V) 𝔵0 ∗ 𝓎0 = 0,𝓎0 ∗ 𝔵0 = 0 ⇒ 𝔵0 = 𝓎0. 

The following properties are held in any BCK-algebra 

(i) 𝔵0 ∗ 0 = 𝔵0           

(ii) 𝔵0 ≤ 𝓎0 ⇒ 𝔵0 ∗ 𝔷0 ≤ 𝓎0 ∗ 𝔷0, 𝔷0 ∗ 𝓎0 ≤ 𝔷0 ∗ 𝔵0 

(iii) (𝔵0 ∗ 𝓎0) ∗ 𝔷0 = (𝔵0 ∗ 𝔷0) ∗ 𝓎0 

(iv) (𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0) ≤ 𝔵0 ∗ 𝓎0 for all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ. 

Where  𝔵0 ≤ 𝓎0 if and only if 𝔵0 ∗ 𝓎0 = 0. 

Definition 2.2 [22] A sub set 𝔗(≠ ∅) of a BCK-algebra Ҟ is called a sub-algebra of Ҟ if 𝔵0 ∗ 𝓎0 ∈ 𝔗 

for all 𝔵0, 𝓎0 ∈ 𝔗.     
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Definition 2.3 [22] A sub set 𝔗(≠ ∅) of a BCK-algebra Ҟ is called an ideal of Ҟ if 0 ∈ 𝔗, 𝑎𝑛𝑑 𝓎0, 𝔵0 ∗

𝓎0 ∈ 𝔗 ⇒ 𝔵0 ∈ 𝔗, for all 𝔵0, 𝓎0 ∈ Ҟ. 

Definition 2.4 [7] Let Ҟ be a non-empty set. A FS in Ҟ is a mapping 𝛼Τ: Ҟ → [0,1].   

Definition 2.5 [7] The complement of FS set 𝛼Τ  denoted by (𝛼Τ)
𝑐  is also a fuzzy set defined as              

(𝛼Τ)
𝑐(𝔵0) = 1 − 𝛼Τ(𝔵0) for all 𝔵0 ∈ Ҟ. Also ((𝛼Τ)

𝑐)𝑐 = 𝛼Τ. 

Definition 2.6 [8] A FS 𝛼Τ: Ҟ → [0,1]  is called fuzzy sub-algebra of Ҟ, if  

                         𝛼Τ(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{𝛼Τ(𝔵0), 𝛼Τ(𝓎0)}, for all 𝔵0, 𝓎0 ∈ Ҟ. 

Definition 2.7 [23] A FS 𝛼Τ: Ҟ → [0,1]  is called the fuzzy ideal of Ҟ, if 

                    𝛼Τ(𝔵0) ≥ 𝑚𝑖𝑛{𝛼Τ(𝔵0 ∗ 𝓎0), 𝛼Τ(𝓎0)}, for all 𝔵0, 𝓎0 ∈ Ҟ. 

Definition 2.8 [4] A ҡpGNS-S on a universe Ҟ is a structure of the form 

Υ = {
𝔵0

((ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)(𝔵0), (ω𝒿 ∘ 𝛿Ϝ)(𝔵0))
 | 𝔵0

∈ Ҟ, (ω𝒿 ∘ 𝛽IΤ)(𝔵0) + (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 1} 

for 𝒿 = 1,2, … , ҡ. where (ω𝒿 ∘ 𝛼Τ), (ω𝒿 ∘ 𝛽IΤ), (ω𝒿 ∘ 𝛾IϜ), and (ω𝒿 ∘ 𝛿Ϝ) are mappings from Ҟ 

into [0,1]𝑘.  The membership values of every element 𝔵0 ∈ Ҟ in Υ are denoted by 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) = ((ω1 ∘ 𝛼Τ)(𝔵0), (ω2 ∘ 𝛼Τ)(𝔵0), … , (ωk ∘ 𝛼Τ)(𝔵0)), 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) = ((ω1 ∘ 𝛽IΤ)(𝔵0), (ω2 ∘ 𝛽IΤ)(𝔵0), … , (ωk ∘ 𝛽IΤ)(𝔵0)), 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) = ((ω1 ∘ 𝛾IϜ)(𝔵0), (ω2 ∘ 𝛾IϜ)(𝔵0), … , (ωk ∘ 𝛾IϜ)(𝔵0)), 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) = ((ω1 ∘ 𝛿Ϝ)(𝔵0), (ω2 ∘ 𝛿Ϝ)(𝔵0), … , (ωk ∘ 𝛿Ϝ)(𝔵0)), respectively, and satisfies the 

condition (ω𝒿 ∘ 𝛽IΤ)(𝔵0) + (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 1 and  

0 ≤ (ω𝒿 ∘ 𝛼Τ)(𝔵0) + (ω𝒿 ∘ 𝛽IΤ)(𝔵0) + (ω𝒿 ∘ 𝛾IϜ)(𝔵0) + (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 3  for all 𝒿 = 1,2, … , ҡ. 

we shall use the ordered quadruple Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) for the ҡpGNS-S. 

Definition 2.9 [4] A ҡpGNS-S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) on Ҟ is called a ҡpGNS-SA of Ҟ if it satisfies, 

for all 𝔵0, 𝓎0 ∈ Ҟ, 

(

 
 

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)}

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)}

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)}

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} )

 
 

, for all 𝒿 = 1,2, … , ҡ. 

 

3. ҡ-polar Generalized Neutrosophic Ideal 

Definition 3.1 A ҡpGNS-S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) on Ҟ is called a ҡpGNS-I of Ҟ if it satisfies, for all 

𝔵0, 𝓎0 ∈ Ҟ, 

(ҡ-pGNS-I I)   (ω𝒿 ∘ 𝛼Τ)(0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0), 

           (ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0), and (ω𝒿 ∘ 𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) 

(ҡ-pGNS-I II)  (ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

(ҡ-pGNS-I III)  (ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

(ҡ-pGNS-I IV)  (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

(ҡ-pGN-I V)    (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)}, for all 𝒿 = 1,2, … , ҡ. 

Example 3.2 Consider a set Ҟ = {0,ᴂ1,ᴂ2,ᴂ3,ᴂ4} with the binary operation “∗” as shown in Table 

1. Then, Ҟ is a BCK-algebra. 

Table 1. BCK-algebra. 

∗ 0 ᴂ𝟏 ᴂ𝟐 ᴂ𝟑 ᴂ𝟒 
0 0 0 0 0 0 
ᴂ𝟏 ᴂ1 0 ᴂ1 0 0 
ᴂ𝟐 ᴂ2 ᴂ2 0 0 0 
ᴂ𝟑 ᴂ3 ᴂ3 ᴂ3 0 0 
ᴂ𝟒 ᴂ4 ᴂ3 ᴂ4 ᴂ1 0 
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Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a 5-polar generalized neutrosophic set on Ҟ in which 𝛼Τ, 𝛽IΤ, 𝛾IϜ, and 𝛿Ϝ 

are defined as follows 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) = {
(0.92,0.65,0.87,0.79,0.53),                   𝑖𝑓  𝔵0 = 0,ᴂ2,
(0.83, 0.54,0.76,0.68,0.42),        𝑖𝑓  𝔵0 = ᴂ1,ᴂ3,ᴂ4

 

            (ω𝒿 ∘ 𝛽IΤ)(𝔵0) = {
(0.41,0.83,0.65,0.77,0.54),                    𝑖𝑓  𝔵0 = 0,ᴂ2
(0.32,0.74,0.51,0.68,0.45),         𝑖𝑓  𝔵0 = ᴂ1,ᴂ3,ᴂ4

 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) = {
(0.43,0.09,0.35,0.15,0.26),                     𝑖𝑓  𝔵0 = 0,ᴂ2
(0.54,0.26,0.48,0.26,0.37),          𝑖𝑓  𝔵0 = ᴂ1, ᴂ3, ᴂ4

 

            (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) = {
(0.45,0.34,0.57,0.12,0.23),                        𝑖𝑓  𝔵0 = 0,ᴂ2 
(0.56,0.45,0.88,0.92,0.77),            𝑖𝑓  𝔵0 = ᴂ1,ᴂ3,ᴂ4

 

It is routine to verify that Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a 5-polar generalized neutrosophic ideal of Ҟ. 

 

Theorem 3.3 Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a ҡpGNS-I of Ҟ. If  𝔵0 ≤ 𝓎0 in Ҟ, then 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝓎0),  (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝓎0), and 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝓎0), for all 𝔵0, 𝓎0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Proof: Let 𝔵0, 𝓎0 ∈ Ҟ be such that 𝔵0 ≤ 𝓎0 ⇒ 𝔵0 ∗ 𝓎0 = 0. By utilizing Definition 3.1, we obtain 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

         ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} = (ω𝒿 ∘ 𝛼Τ)(𝓎0), 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

         ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} = (ω𝒿 ∘ 𝛽IΤ)(𝓎0), 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

         ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} = (ω𝒿 ∘ 𝛾IϜ)(𝓎0), 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

         ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} = (ω𝒿 ∘ 𝛿Ϝ)(𝓎0), for all 𝒿 = 1,2, … , ҡ. 

Hence, the proof is completed. 

 

Theorem 3.4 A ҡpGNS-I Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) of Ҟ must be a ҡpGNS-SA of Ҟ. 

Proof: Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a ҡpGNS-I of Ҟ. In BCK-algebra Ҟ, we have, 𝔵0 ∗ 𝓎0 ≤ 𝓎0 for all 

𝔵0, 𝓎0 ∈ Ҟ. It follows from Theorem 3.3 that (ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) ≥

(ω𝒿 ∘ 𝛽IΤ)(𝔵0),  (ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0), and (ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0). 

By using Definition 3.1, we obtain  

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

                             ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)}, 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

                             ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)}, 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

                             ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)}, 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

                             ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)}, for all 𝒿 = 1,2, … , ҡ. 

Therefore, Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a ҡpGNS-SA of Ҟ. 

The converse of the Theorem 3.4 may not be true, which can be shown in the following Example 3.5. 

Example 3.5 Consider a set Ҟ = {0,ᴂ1,ᴂ2,ᴂ3} with the binary operation “∗” as shown in Table 2. 

Then, Ҟ is a BCK-algebra. 

Table 2. BCK-algebra. 

∗ 0 ᴂ𝟏 ᴂ𝟐 ᴂ𝟑 

0 0 0 0 0 

ᴂ𝟏 ᴂ1 0 0 ᴂ1 

ᴂ𝟐 ᴂ2 ᴂ1 0 ᴂ2 

ᴂ𝟑 ᴂ3 ᴂ3 ᴂ3 0 
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Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a 5-polar generalized neutrosophic set on Ҟ in which 𝛼Τ, 𝛽IΤ, 𝛾IϜ, and 𝛿Ϝ 

are defined as follows: 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) = {
(0.85,0.51,0.79,0.95,0.64),          𝑖𝑓  𝔵0 = 0,ᴂ1, ᴂ3,
(0.66,0.32,0.51,0.73,0.46),                       𝑖𝑓  𝔵0 = ᴂ2,

 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) = {
(0.64,0.51,0.73,0.44,0.65), 𝑖𝑓  𝔵0 = 0,ᴂ1,ᴂ3,
(0.21,0.18,0.39,0.11,0.22),                      𝑖𝑓  𝔵0 = ᴂ2,

 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) = {
(0.25,0.01,0.13,0.42,0.31),             𝑖𝑓  𝔵0 = 0,ᴂ1,ᴂ3,
(0.77,0.82,0.47,0.65,0.53),                         𝑖𝑓  𝔵0 = ᴂ2,

 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) = {
(0.47,0.33,0.57,0.73,0.25),            𝑖𝑓  𝔵0 = 0,ᴂ1, ᴂ3,
(0.79,0.84,0.99,0.95,0.67),                         𝑖𝑓  𝔵0 = ᴂ2,

 

It is easy to verify that Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a 5-polar generalized neutrosophic subalgebra of Ҟ. But 

it is not a 5-polar generalized neutrosophic ideal of Ҟ, because  

(ω𝒿 ∘ 𝛼Τ)(2) = (0.66,0.32,0.51,0.73,0.46) < (0.85,0.51,0.79,0.95,0.64) 

                                    = (ω𝒿 ∘ 𝛼Τ)(1) = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(2 ∗ 1), (ω𝒿 ∘ 𝛼Τ)(1)}, 

(ω𝒿 ∘ 𝛽IΤ)(2) = (0.21,0.18,0.39,0.11,0.22) < (0.64,0.51,0.73,0.44,0.65) 

                                    = (ω𝒿 ∘ 𝛽IΤ)(1) = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(2 ∗ 1), (ω𝒿 ∘ 𝛽IΤ)(1)}, 

(ω𝒿 ∘ 𝛾IϜ)(2) = (0.77,0.82,0.47,0.65,0.53) > (0.25,0.01,0.13,0.42,0.31) 

                                    = (ω𝒿 ∘ 𝛾IϜ)(1) = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛾IϜ)(2 ∗ 1), (ω𝒿 ∘ 𝛾IϜ)(1)}, 

(ω𝒿 ∘ 𝛿Ϝ)(2) = (0.79,0.84,0.99,0.95,0.67) > (0.47,0.33,0.57,0.73,0.25) 

                                   = (ω𝒿 ∘ 𝛿Ϝ)(1) = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛿Ϝ)(2 ∗ 1), (ω𝒿 ∘ 𝛿Ϝ)(1)}. 

 

Theorem 3.6 A ҡpGNS-S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) on Ҟ is a ҡpGNS-I of Ҟ if and only if for 𝔵0, 𝓎0, 𝔷0 ∈

Ҟ, 

𝔵0 ∗ 𝓎0 ≤ 𝔷0 ⇒

(

 
 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝔷0)}

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0)}

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0)}

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0)} )

 
 

        (1) 

for 𝒿 = 1,2, … , ҡ. 

Proof: Assume that Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. Let 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ such that 𝔵0 ∗ 𝓎0 ≤

𝔷0 ⇒ (𝔵0 ∗ 𝓎0) ∗ 𝔷0 = 0. Then, we have   

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

             ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), (ω𝒿 ∘ 𝛼Τ)(𝔷0)}, (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

        ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(0), (ω𝒿 ∘ 𝛼Τ)(𝔷0)}, (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

        = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝔷0)}, 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

         ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0)}, (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

         ≥ 𝑚𝑖𝑛{𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0)}, (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

         = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0)}, 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

         ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0)}, (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

         ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0)}, (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

         = 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0)}, 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

        ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0)}, (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

        ≤ 𝑚𝑎𝑥{𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0)}, (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

        = 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0)}, 

for all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ and for 𝒿 = 1,2, … , ҡ. Hence, condition (1) is valid. 

Conversely, let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-S on Ҟ that satisfies Condition (1). Since 0 ∗

𝔵0 ≤ 𝔵0 , for all 𝔵0 ∈ Ҟ , we have (ω𝒿 ∘ 𝛼Τ)(0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0),  (ω𝒿 ∘ 𝛽IΤ)(0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0),     
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(ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0),  and (ω𝒿 ∘ 𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) , for 𝒿 = 1,2, … , ҡ . Also, since      

𝔵0 ∗ (𝔵0 ∗ 𝓎0) ≤ 𝓎0, for all 𝔵0, 𝓎0 ∈ Ҟ, we have  

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)}, for all 𝒿 = 1,2, … , ҡ. 

Therefore, Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. 

 

Theorem 3.7 Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a ҡpGNS-S on Ҟ. Then Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of 

Ҟ if and only if the ҡ-polar fuzzy sets (ω𝒿 ∘ 𝛼Τ), (ω𝒿 ∘ 𝛽IΤ), (ω𝒿 ∘ 𝛾IϜ)
𝐶

 and  (ω𝒿 ∘ 𝛿Ϝ)
𝐶

 are ҡ-polar 

fuzzy ideals of Ҟ, for 𝒿 = 1,2, … , ҡ. Where (ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0) = 1 − (ω𝒿 ∘ 𝛾IϜ)(𝔵0) and (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0) =

1 − (ω𝒿 ∘ 𝛿Ϝ)(𝔵0), for all 𝔵0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Proof: Assume that Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. Then, we have  

(ω𝒿 ∘ 𝛼Τ)(0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0), and 

(ω𝒿 ∘ 𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)}, for all 𝔵0, 𝓎0 ∈ Ҟ and for 𝒿 = 1,2, … , ҡ. 

It is clear that (ω𝒿 ∘ 𝛼Τ) and (ω𝒿 ∘ 𝛽IΤ) are ҡ-polar fuzzy ideals of Ҟ. Now, 

      (ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0)

⇒ 1 − (ω𝒿 ∘ 𝛾IϜ)(0) ≥ 1 − (ω𝒿 ∘ 𝛾IϜ)(𝔵0)

⇒ (ω𝒿 ∘ 𝛾IϜ)
𝐶
(0) ≥ (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝔵0),

       

      (ω𝒿 ∘ 𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0)

⇒ 1 − (ω𝒿 ∘ 𝛿Ϝ)(0) ≥ 1 − (ω𝒿 ∘ 𝛿Ϝ)(𝔵0)

⇒ (ω𝒿 ∘ 𝛿Ϝ)
𝐶
(0) ≥ (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0)

    

 (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

                ⇒ −(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≥ −𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

              ⇒ 1 − (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≥ 1 − 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

                 ⇒ (ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0) ≥ 𝑚𝑖𝑛{1 − (ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), 1 − (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} 

                                  = 𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝓎0)}, and 

               (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

           ⇒ −(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≥ −𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

         ⇒ 1 − (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≥ 1 −𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

            ⇒ (ω𝒿 ∘ 𝛿Ϝ)
𝐶
(𝔵0) ≥ 𝑚𝑖𝑛{1 − (ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), 1 − (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} 

                        = 𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛿Ϝ)
𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝓎0)}, for all 𝒿 = 1,2, … , ҡ. 

Hence, (ω𝒿 ∘ 𝛾IϜ)
𝐶

 and (ω𝒿 ∘ 𝛿Ϝ)
𝐶

 are ҡ-polar fuzzy ideals of Ҟ. 

Conversely, suppose that the ҡ -polar fuzzy sets (ω𝒿 ∘ 𝛼Τ) , (ω𝒿 ∘ 𝛽IΤ) ,  (ω𝒿 ∘ 𝛾IϜ)
𝐶

, and 

(ω𝒿 ∘ 𝛿Ϝ)
𝐶

 are ҡ-polar fuzzy ideals of Ҟ for 𝒿 = 1,2, … , ҡ. Let 𝔵0, 𝓎0 ∈ Ҟ.  

Then,(ω𝒿 ∘ 𝛼Τ)(0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0),       (ω𝒿 ∘ 𝛽IΤ)(0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)
𝐶
(0) ≥ (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝔵0), 

and (ω𝒿 ∘ 𝛿Ϝ)
𝐶
(0) ≥ (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0). 

     (ω𝒿 ∘ 𝛾IϜ)
𝐶
(0) ≥ (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝔵0)

⇒ 1 − (ω𝒿 ∘ 𝛾IϜ)(0) ≥ 1 − (ω𝒿 ∘ 𝛾IϜ)(𝔵0)

⇒ (ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0)

   



Neutrosophic Systems with Applications, Vol. 22, 2024                                                 37 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Bavanari Satyanarayana and Shake Baji, A Study on the Polarity of Generalized Neutrosophic Ideals in BCK-Algebra 

       (ω𝒿 ∘ 𝛿Ϝ)
𝐶
(0) ≥ (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0)

⇒ 1 − (ω𝒿 ∘ 𝛿Ϝ)(0) ≥ 1 − (ω𝒿 ∘ 𝛿Ϝ)(𝔵0)

 ⇒ (ω𝒿 ∘ 𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0)

    

(ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0) ≥ 𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝓎0)} 

⇒ −(ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0) ≤ −𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝓎0)} 

⇒ 1 − (ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0) ≤ 1 − 𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝓎0)} 

⇒ (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥 {1 − (ω𝒿 ∘ 𝛾IϜ)
𝐶
(𝔵0 ∗ 𝓎0), 1 − (ω𝒿 ∘ 𝛾IϜ)

𝐶
(𝓎0)} 

⇒ (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)}, and 

(ω𝒿 ∘ 𝛿Ϝ)
𝐶
(𝔵0) ≥ 𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝓎0)} 

⇒ −(ω𝒿 ∘ 𝛿Ϝ)
𝐶
(𝔵0) ≤ −𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝓎0)} 

⇒ 1 − (ω𝒿 ∘ 𝛿Ϝ)
𝐶
(𝔵0) ≤ 1 − 𝑚𝑖𝑛 {(ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝓎0)} 

⇒ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥 {1 − (ω𝒿 ∘ 𝛿Ϝ)
𝐶
(𝔵0 ∗ 𝓎0), 1 − (ω𝒿 ∘ 𝛿Ϝ)

𝐶
(𝓎0)} 

⇒ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)}, for all 𝔵0, 𝓎0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Hence, Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. 

 

Theorem 3.8 If a ҡpGNS − S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) on Ҟ is a ҡpGNS-I of Ҟ, then so are 

(i) (⨁1Υ) = (𝛼Τ, 𝛽IΤ, 𝛽IΤ
𝐶 , 𝛼Τ

𝐶). 

(ii) (⨁2Υ) = (𝛽IΤ, 𝛼Τ, 𝛼Τ
𝐶 , 𝛽IΤ

𝐶). 

(iii) (⨁3Υ) = (𝛿Ϝ
𝐶 , 𝛾IϜ

𝐶 , 𝛾IϜ, 𝛿Ϝ). 

(iv) (⨁4Υ) = (𝛾IϜ
𝐶 , 𝛿Ϝ

𝐶 , 𝛿Ϝ, 𝛾IϜ). 

Note: (⨁1Υ), (⨁2Υ), (⨁3Υ), and (⨁4Υ) are ҡpGNS-Ss. 

 

Theorem 3.9 For any ҡpGNS-I Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) of  Ҟ, the following are equivalent 

 

i) For all 𝔵0, 𝓎0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ   

(

 
 

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) ≥ (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0)

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) ≥ (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0)

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) ≤ (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0)

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) ≤ (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0) )

 
 

            (2) 

 

ii) For all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ   

(

 
 

(ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) ≥ (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0)

(ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) ≥ (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0)

(ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) ≤ (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0)

(ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) ≤ (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0) )

 
 

          (3) 

Proof: (i) ⇒ (ii) 

For all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ, we have (𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0 = (𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0) ≤ (𝔵0 ∗ 𝓎0) 

⇒ ((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0 ≤ (𝔵0 ∗ 𝓎0) ∗ 𝔷0. It follows from Theorem 3.3 that 

(

 
 
 
 
 

(ω𝒿 ∘ 𝛼Τ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) ≥ (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0)

(ω𝒿 ∘ 𝛽IΤ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) ≥ (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0)

(ω𝒿 ∘ 𝛾IϜ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) ≤ (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0)

(ω𝒿 ∘ 𝛿Ϝ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) ≤ (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0) )

 
 
 
 
 

        (4) 

Now utilizing property (iii), conditions (2) and (4), we obtain 
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(ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) = (ω𝒿 ∘ 𝛼Τ) ((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) 

                         ≥ (ω𝒿 ∘ 𝛼Τ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) 

                         ≥ (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), 

(ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) = (ω𝒿 ∘ 𝛽IΤ) ((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) 

                         ≥ (ω𝒿 ∘ 𝛽IΤ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) 

                         ≥ (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), 

(ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) = (ω𝒿 ∘ 𝛾IϜ) ((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) 

                         ≤ (ω𝒿 ∘ 𝛾IϜ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) 

                         ≤ (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), 

(ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝔷0) ∗ (𝓎0 ∗ 𝔷0)) = (ω𝒿 ∘ 𝛿Ϝ) ((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) 

                         ≤ (ω𝒿 ∘ 𝛿Ϝ) (((𝔵0 ∗ (𝓎0 ∗ 𝔷0)) ∗ 𝔷0) ∗ 𝔷0) 

                         ≤ (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 𝔷0), for all 𝒿 = 1,2, … , ҡ. 

Thus (ii) holds in Ҟ. 

(𝑖𝑖) ⇒ (𝑖) 

It follows from property (i), (III), property (iv), and condition (3) that 

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) = (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 0) = (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ (𝓎0 ∗ 𝓎0)) 

                                       ≤ (ω𝒿 ∘ 𝛼Τ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0), 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) = (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 0) = (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ (𝓎0 ∗ 𝓎0)) 

                                        ≤ (ω𝒿 ∘ 𝛽IΤ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0), 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) = (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 0) = (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ (𝓎0 ∗ 𝓎0)) 

                                        ≥ (ω𝒿 ∘ 𝛾IϜ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0), 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) = (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 0) = (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ (𝓎0 ∗ 𝓎0)) 

                                       ≥ (ω𝒿 ∘ 𝛿Ϝ)((𝔵0 ∗ 𝓎0) ∗ 𝓎0), for all 𝒿 = 1,2, … , ҡ. 

which proves (i). 

 

Theorem 3.10 If a ҡ pGNS-S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ)  on Ҟ  is a ҡ pGNS-I of Ҟ , then for all 

𝔵0, 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ Ҟ, (… ((𝔵0 ∗ 𝑎1) ∗ 𝑎2) ∗ … ) ∗ 𝑎𝑛 = 0 ⇒ 

(

 
 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝑎1), (ω𝒿 ∘ 𝛼Τ)(𝑎2), … , (ω𝒿 ∘ 𝛼Τ)(𝑎𝑛)}

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝑎1), (ω𝒿 ∘ 𝛽IΤ)(𝑎2), … , (ω𝒿 ∘ 𝛽IΤ)(𝑎𝑛)}

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝑎1), (ω𝒿 ∘ 𝛾IϜ)(𝑎2), … , (ω𝒿 ∘ 𝛾IϜ)(𝑎𝑛)}

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝑎1), (ω𝒿 ∘ 𝛿Ϝ)(𝑎2), … , (ω𝒿 ∘ 𝛿Ϝ)(𝑎𝑛)} )

 
 

      (5) 

for 𝒿 = 1,2, … , ҡ. 

Proof: The proof is by induction on n. Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) be a ҡpGNS-I of Ҟ. Theorem 3.3 and 

Theorem 3.6 show that condition (5) is valid for n = 1,2. We assume that condition (5) is satisfied for 

n = 𝓀, that is for all 𝔵0, 𝑎1, 𝑎2, … , 𝑎𝓀 ∈ Ҟ, (… ((𝔵0 ∗ 𝑎1) ∗ 𝑎2) ∗ … ) ∗ 𝑎𝓀 = 0 ⇒ 

(

 
 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝑎1), (ω𝒿 ∘ 𝛼Τ)(𝑎2), … , (ω𝒿 ∘ 𝛼Τ)(𝑎𝓀)}

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝑎1), (ω𝒿 ∘ 𝛽IΤ)(𝑎2), … , (ω𝒿 ∘ 𝛽IΤ)(𝑎𝓀)}

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝑎1), (ω𝒿 ∘ 𝛾IϜ)(𝑎2), … , (ω𝒿 ∘ 𝛾IϜ)(𝑎𝓀)}

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝑎1), (ω𝒿 ∘ 𝛿Ϝ)(𝑎2), … , (ω𝒿 ∘ 𝛿Ϝ)(𝑎𝓀)} )

 
 

      (6) 

for 𝒿 = 1,2, … , ҡ. Let 𝔵0, 𝑎1, 𝑎2, … , 𝑎𝓀+1 ∈ Ҟ such that (… ((𝔵0 ∗ 𝑎1) ∗ 𝑎2) ∗ … ) ∗ 𝑎𝓀+1 = 0 ⇒ 

 

(

 
 

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝑎1) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝑎2), (ω𝒿 ∘ 𝛼Τ)(𝑎3), … , (ω𝒿 ∘ 𝛼Τ)(𝑎𝓀+1)}

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝑎1) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝑎2), (ω𝒿 ∘ 𝛽IΤ)(𝑎3), … , (ω𝒿 ∘ 𝛽IΤ)(𝑎𝓀+1)}

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝑎1) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝑎2), (ω𝒿 ∘ 𝛾IϜ)(𝑎3), … , (ω𝒿 ∘ 𝛾IϜ)(𝑎𝓀+1)}

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝑎1) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝑎2), (ω𝒿 ∘ 𝛿Ϝ)(𝑎3), … , (ω𝒿 ∘ 𝛿Ϝ)(𝑎𝓀+1)} )

 
 

 

for 𝒿 = 1,2, … , ҡ. Since Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ.  
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(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝑎1), (ω𝒿 ∘ 𝛼Τ)(𝑎1)} 

         ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝑎1), (ω𝒿 ∘ 𝛼Τ)(𝑎2), … , (ω𝒿 ∘ 𝛼Τ)(𝑎𝓀+1)}, 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝑎1), (ω𝒿 ∘ 𝛽IΤ)(𝑎1)} 

         ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝑎1), (ω𝒿 ∘ 𝛽IΤ)(𝑎2), … , (ω𝒿 ∘ 𝛽IΤ)(𝑎𝓀+1)}, 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝑎1), (ω𝒿 ∘ 𝛾IϜ)(𝑎1)} 

         ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝑎1), (ω𝒿 ∘ 𝛾IϜ)(𝑎2), … , (ω𝒿 ∘ 𝛾IϜ)(𝑎𝓀+1)}, 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝑎1), (ω𝒿 ∘ 𝛿Ϝ)(𝑎1)} 

        ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝑎1), (ω𝒿 ∘ 𝛿Ϝ)(𝑎2), … , (ω𝒿 ∘ 𝛿Ϝ)(𝑎𝓀+1)}, for 𝒿 = 1,2, … , ҡ. 

Hence the proof is completed.  

 

Theorem 3.11 Let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ)  be a ҡpGNS-S on Ҟ  satisfying condition (5). Then Υ =

(𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. 

Proof: Suppose condition (5) is valid in Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) . Put 𝔵0 = 0 , 𝑎1 = 𝔵0 , 𝑎2 = 𝔵0 , 𝑎3 =

𝔵0,…,𝑎𝑛 = 𝔵0, then (… ((0 ∗ 𝔵0) ∗ 𝔵0) ∗ … ) ∗ 𝔵0 = 0 ⇒ 

(

 
 

(ω𝒿 ∘ 𝛼Τ)(0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛼Τ)(𝔵0), … , (ω𝒿 ∘ 𝛼Τ)(𝔵0)}

(ω𝒿 ∘ 𝛽IΤ)(0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(𝔵0), … , (ω𝒿 ∘ 𝛽IΤ)(𝔵0)}

(ω𝒿 ∘ 𝛾IϜ)(0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)(𝔵0), … , (ω𝒿 ∘ 𝛾IϜ)(𝔵0)}

(ω𝒿 ∘ 𝛿Ϝ)(0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0), (ω𝒿 ∘ 𝛿Ϝ)(𝔵0), … , (ω𝒿 ∘ 𝛿Ϝ)(𝔵0)} )

 
 

 

⇒ (ω𝒿 ∘ 𝛼Τ)(0) ≥ (ω𝒿 ∘ 𝛼Τ)(𝔵0), (ω𝒿 ∘ 𝛽IΤ)(0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0), (ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0), and 

(ω𝒿 ∘ 𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0), for all 𝔵0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Again take 𝔵0 = 𝔵0, 𝑎1 = 𝓎0, 𝑎2 = 𝔷0, 𝑎3 = 0,…,𝑎𝑛 = 0 in condition (5). Then, 

(… ((𝔵0 ∗ 𝓎0) ∗ 𝔷0) ∗ … ) ∗ 0 = 0 ⇒ 

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝔷0), … , (ω𝒿 ∘ 𝛼Τ)(0)} 

         = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝔷0)}, 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0), … , (ω𝒿 ∘ 𝛽IΤ)(0)} 

         = 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0)}, 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0), … , (ω𝒿 ∘ 𝛾IϜ)(0)} 

         = 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0)}, 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0), … , (ω𝒿 ∘ 𝛿Ϝ)(0)} 

        = 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0)}, for 𝒿 = 1,2, … , ҡ. 

Hence, by using Theorem 3.6, we conclude that Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. 

 

Theorem 3.12 If Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ, then  

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛼Τ)(𝔷0 ∗ 𝓎0)} 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0 ∗ 𝓎0)} 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0 ∗ 𝓎0)} 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0 ∗ 𝓎0)}, for all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Proof: Suppose that Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. In BCK-algebra, we have   (𝔵0 ∗ 𝓎0) ∗

(𝔵0 ∗ 𝔷0) ≤ (𝔷0 ∗ 𝓎0). By applying Theorem 3.6, we obtain 

(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛼Τ)(𝔷0 ∗ 𝓎0)} 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛽IΤ)(𝔷0 ∗ 𝓎0)} 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛾IϜ)(𝔷0 ∗ 𝓎0)} 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝔷0), (ω𝒿 ∘ 𝛿Ϝ)(𝔷0 ∗ 𝓎0)},  

for all 𝔵0, 𝓎0, 𝔷0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. Hence, the proof is completed. 

 

Definition 3.13 [4] Given a ҡpGNS − S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) over a universe Ҟ. Consider the following 

cut sets  

𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ) = {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝓉𝛼Τ
𝒿
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒿 = 1,2, … , ҡ },  
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𝒰2 ((ω𝒿 ∘ 𝛽IΤ), 𝓉𝛽IΤ) = {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝓉𝛽IΤ
𝒿
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒿 = 1,2, … , ҡ}, 

ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ  ) = {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝓉𝛾IϜ
𝒿
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒿 = 1,2, … , ҡ}, 

ℒ2 ((ω𝒿 ∘ 𝛿Ϝ), 𝓉𝛿Ϝ) = {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝓉𝛿Ϝ
𝒿
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒿 = 1,2, … , ҡ}, 

where 𝓉𝛼Τ = (𝓉𝛼Τ
1 , 𝓉𝛼Τ

2 , … , 𝓉𝛼Τ
k ) ,  𝓉𝛽IΤ = (𝓉𝛽IΤ

1 , 𝓉𝛽IΤ
2 , … , 𝓉𝛽IΤ

k ) , 𝓉𝛾IϜ = (𝓉𝛾IϜ
1 , 𝓉𝛾IϜ

2 , … , 𝓉𝛾IϜ
k ) , and 𝓉𝛿Ϝ =

(𝓉𝛿Ϝ
1 , 𝓉𝛿Ϝ

2 , … , 𝓉𝛿Ϝ
k ). It is clear that 𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ) = ⋂ 𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ)

𝒿
𝑘
𝒿=1 , 𝒰2 ((ω𝒿 ∘ 𝛽IΤ), 𝓉𝛽IΤ) =

⋂ 𝒰2 ((ω𝒿 ∘ 𝛽IΤ), 𝓉𝛽IΤ)
𝒿

𝑘
𝒿=1 , ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ) = ⋂ ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ)

𝒿
𝑘
𝒿=1 , and  ℒ2 ((ω𝒿 ∘ 𝛿Ϝ), 𝓉𝛿Ϝ) =

⋂ ℒ2 ((ω𝒿 ∘ 𝛿Ϝ), 𝓉𝛿Ϝ)
𝒿

𝑘
𝒿=1 , where 

𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ)
𝒿

= {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝓉𝛼Τ
𝒿
 }, 

𝒰2 ((ω𝒿 ∘ 𝛽IΤ), 𝓉𝛽IΤ)
𝒿

= {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝓉𝛽IΤ
𝒿
 }, 

ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ)
𝒿

= {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝓉𝛾IϜ
𝒿
 }, 

ℒ2 ((ω𝒿 ∘ 𝛿Ϝ), 𝓉𝛿Ϝ)
𝒿

= {𝔵0 ∈ Ҟ |(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝓉𝛿Ϝ
𝒿
 } for 𝒿 = 1,2, … , ҡ. 

 

Theorem 3.14 Let  Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-S on Ҟ. Then Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I 

of Ҟ if and only if the cut sets 𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ) , 𝒰2 ((ω𝒿 ∘ 𝛽IΤ), 𝓉𝛽IΤ) , ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ  ), and 

ℒ2 ((ω𝒿 ∘ 𝛿Ϝ), 𝓉𝛿Ϝ) are ideals of Ҟ, for all 𝓉𝛼Τ , 𝓉𝛽IΤ , 𝓉𝛾IϜ , 𝓉𝛿Ϝ ∈ [0,1]
𝑘. 

Proof: Assume that a ҡpGNS − S Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) on Ҟ is a ҡpGNS-I of Ҟ. For any 𝔵0 ∈ Ҟ, if  

𝔵0 ∈ 𝒰1⋂𝒰2⋂ℒ1⋂ℒ2 , then  (ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝓉𝛼Τ ,  (ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝓉𝛽IΤ ,  (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝓉𝛾IϜ , and 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝓉𝛿Ϝ . Since Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ)  is a ҡpGNS-I of Ҟ , we get  (ω𝒿 ∘ 𝛼Τ)(0) ≥ (ω𝒿 ∘

𝛼Τ)(𝔵0) ≥ 𝓉𝛼Τ ,  (ω𝒿 ∘ 𝛽IΤ)(0) ≥ (ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝓉𝛽IΤ ,  (ω𝒿 ∘ 𝛾IϜ)(0) ≤ (ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝓉𝛾IϜ  and (ω𝒿 ∘

𝛿Ϝ)(0) ≤ (ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝓉𝛿Ϝ, for all 𝔵0 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. Therefore, 0 ∈ 𝒰1⋂𝒰2⋂ℒ1⋂ℒ2.   

Let for any 𝔵0, 𝓎0 ∈ Ҟ and 𝔵0 ∗ 𝓎0, 𝓎0 ∈ 𝒰1⋂𝒰2⋂ℒ1⋂ℒ2. Then  

(ω𝒿 ∘ 𝛼Τ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛼Τ)(𝓎0)} ≥ 𝑚𝑖𝑛{𝓉𝛼Τ , 𝓉𝛼Τ} = 𝓉𝛼Τ, 

(ω𝒿 ∘ 𝛽IΤ)(𝔵0) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛽IΤ)(𝓎0)} ≥ 𝑚𝑖𝑛{𝓉𝛽IΤ , 𝓉𝛽IΤ} = 𝓉𝛽IΤ , 

(ω𝒿 ∘ 𝛾IϜ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛾IϜ)(𝓎0)} ≤ 𝑚𝑎𝑥{𝓉𝛾IϜ , 𝓉𝛾IϜ} = 𝓉𝛾IϜ , 

(ω𝒿 ∘ 𝛿Ϝ)(𝔵0) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝔵0 ∗ 𝓎0), (ω𝒿 ∘ 𝛿Ϝ)(𝓎0)} ≤ 𝑚𝑎𝑥{𝓉𝛿Ϝ , 𝓉𝛿Ϝ} = 𝓉𝛿Ϝ , for 𝒿 = 1,2, … , ҡ. 

Hence, the cut sets 𝒰1, 𝒰2, ℒ1, 𝑎𝑛𝑑 ℒ2 are ideals of Ҟ, for all 𝓉𝛼Τ , 𝓉𝛽IΤ , 𝓉𝛾IϜ , 𝓉𝛿Ϝ ∈ [0,1]
𝑘. 

Conversely, let Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a  ҡpGNS-S on Ҟ and the cut sets 𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ), 

𝒰2 ((ω𝒿 ∘ 𝛽IΤ), 𝓉𝛽IΤ) , ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ  ) , and ℒ2 ((ω𝒿 ∘ 𝛿Ϝ), 𝓉𝛿Ϝ)  are ideals of Ҟ , for all 

𝓉𝛼Τ , 𝓉𝛽IΤ , 𝓉𝛾IϜ , 𝓉𝛿Ϝ ∈ [0,1]
𝑘.    

Suppose that (ω𝒿 ∘ 𝛼Τ)(𝓆1) < 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛼Τ)(𝓆2)} for 𝒿 = 1,2, … , ҡ. and for some 

𝓆1, 𝓆2 ∈ Ҟ . Then, 𝓆1 ∗ 𝓆2 , 𝓆2 ∈  𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ)  and  𝓆1 ∉ 𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ) , where 𝓉𝛼Τ =

𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛼Τ)(𝓆2)} for 𝒿 = 1,2, … , ҡ. This is a contradiction to 𝒰1 ((ω𝒿 ∘ 𝛼Τ), 𝓉𝛼Τ) 

is an ideal of  Ҟ, and so 

(ω𝒿 ∘ 𝛼Τ)(𝓆1) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛼Τ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛼Τ)(𝓆2)}, for all 𝓆1, 𝓆2 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Similarly, we can check that  

(ω𝒿 ∘ 𝛽IΤ)(𝓆1) ≥ 𝑚𝑖𝑛{(ω𝒿 ∘ 𝛽IΤ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛽IΤ)(𝓆2)}, for all 𝓆1, 𝓆2 ∈ Ҟ and 𝒿 = 1,2,… , ҡ. 

If there exists 𝓆1, 𝓆2 ∈ Ҟ such that (ω𝒿 ∘ 𝛾IϜ)(𝓆1) > 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛾IϜ)(𝓆2)} for 𝒿 =

1,2, … , ҡ , then 𝓆1 ∗ 𝓆2 , 𝓆2 ∈  ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ  )  and  𝓆1 ∉ ℒ1 ((ω𝒿 ∘ 𝛾IϜ), 𝓉𝛾IϜ  ) , where 𝓉𝛼Τ =

𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛾IϜ)(𝓆2)}  for 𝒿 = 1,2, … , ҡ.  This is a contradiction to ℒ1 ((ω𝒿 ∘

𝛾IϜ), 𝓉𝛾IϜ  ) is an ideal of  Ҟ, and so 

(ω𝒿 ∘ 𝛾IϜ)(𝓆1) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛾IϜ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛾IϜ)(𝓆2)}, for all 𝓆1, 𝓆2 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

By a similar way, we know that  
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(ω𝒿 ∘ 𝛿Ϝ)(𝓆1) ≤ 𝑚𝑎𝑥{(ω𝒿 ∘ 𝛿Ϝ)(𝓆1 ∗ 𝓆2), (ω𝒿 ∘ 𝛿Ϝ)(𝓆2)}, for all 𝓆1, 𝓆2 ∈ Ҟ and 𝒿 = 1,2, … , ҡ. 

Therefore, Υ = (𝛼Τ, 𝛽IΤ, 𝛾IϜ, 𝛿Ϝ) is a ҡpGNS-I of Ҟ. 

 

4. Conclusions 

In this research, we applied the k-polar generalized neutrosophic set to an ideal of a BCK-algebra 

and introduced a novel concept k-polar generalized neutrosophic ideal of a BCK-algebra, with an 

example. This notion established a new framework for studying algebraic structures with 

indeterminacy. We investigate key properties of these ideals. The relationship between k-polar 

generalized neutrosophic ideals and their corresponding cut sets is a valuable approach of studying 

these algebraic structures. In a future study, we aim to apply the same methodology to develop the 

ideals in algebraic structures such as 

 k-polar generalized neutrosophic dot-subalgebras of B-algebra. 

 K-polar generalized neutrosophic Q-ideals of Q-algebra. 

 K-polar generalized neutrosophic extended ideals in MV-Algebras, and so on. 
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