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Abstract: The authors explore the innovative application of the Neutrosophic series, particularly the 

Neutrosophic Poisson Distribution Series (NPDS), to investigate various indeterminacy or 

uncertainties inherent in the classical univalent harmonic function class. The Neutrosophic Poisson 

Distribution Series is equipped with a Salangean derivative operator and convoluted with analytic 

univalent harmonic function class to derive new properties, such as inclusion relation, and 

coefficient inequalities for star-likeness. The results obtained demonstrate the effectiveness of this 

approach in capturing the inherent uncertainties and complexities associated with harmonic 

functions. There are several other areas of importance of our results that can be unlocked by 

computer engineers, scientists, and other experts. In this investigation, some of these indeterminacy 

and complexities are revealed using graphs by employing Python software tools. This novel 

integration enhances the analytical techniques available and opens a new stairway for future 

research in neutrosophic series and geometric function theory. 

Keywords: Neutrosophic; Harmonic Function; Analytical Function; Starlikeness; Univalent 

Functions; Salagean Operator. 

 
1. Introduction 

Classical harmonic analysis in geometric function theory has been a center of attraction to the 

researcher in the field of geometric function theory, and it has been extensively studied. This is likely 

to be associated with its broad areas of applications, such as signal processing (filtering, modulation, 

demodulation), vibrations and oscillation, waves, antennae image and video processing, audio 

processing, financial analysis, geophysics, and medical imaging to mention but a few. It is worth 

saying that some life situations and their concurrences are often not properly captured by classical 

modeling or analysis because not every situation or occurrence behaved as assumed by the classical 

conditions, and such may cause serious damage if overlooked or neglected. This observation gave 

rise to the concepts known as fuzzy and neutrosophic sets as new areas of study in mathematics to 

cater for indeterminacy value or situations not accommodated or captured in classical situations. The 

present investigation is designed to address both the classical and neutrosophic harmonic analysis 

using neutrosophic Poisson distribution polynomials. The investigation will assist in a long way to 

address some missing value in classical harmonic analysis. 
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The authors in [8] open a staircase for a deeper study of harmonic functions by defining a 

subclass of harmonic functions to obtain the geometric properties of class SH such as coefficient 

bounds and many more. Thereafter, authors in [2] investigated a new subclass of harmonic univalent 

functions, and the geometric properties of the defined class were extensively discussed. Also, some 

connections between various subclasses of planar harmonic mappings involving classical Poisson 

distribution series were considered in [22].  

A continuous complex-valued function f = u + iv is defined to be harmonic in a simply connected 

domain D ⊂ C if both u and v are real harmonic in D. For example,  if  , can be written as 

follows, where ω is the analytic part and φ the co-analytic part of f  

     zzzf   . 

The function  f  is defined as harmonic univalent in D if the mapping  zfz   is 

orientation preserving harmonic, and one-to-one in D (see [8]). The class of functions ghf   

that are harmonic univalent and orientation preserving is denoted by H in the open unit disk D = {z: 

|z| < 1} for which f(0) = 0 and f′(0) = 1, for Hf   , the analytic functions f and g can be 

expressed as 
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If the co-analytic part reduces to zero, then H reduces to the class of normalized analytic 

univalent functions denoted by S and it is expressed as 

                    (2) 

Denote by TH the class of function belonging to SH which is expressed as: 
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and the following equalities hold. 

TNH(β) = NH(β) ∩ TH and TRH(β) = RH(β) ∩ TH. 

 

Recently, a subclass of complex-valued harmonic univalent functions defined by a generalized 

linear operator was introduced in [1], the authors presented some interesting results such as 

coefficient bounds and compactness. In addition, authors in [9] established some results involving 

coefficient conditions, distortion bounds, extreme points using convolution, and convex 

combinations for a new class of harmonic univalent functions class in the open unit disc, associated 

with the Salagean operator. Various authors have investigated various sub-classes of harmonic 
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functions which can be found in [10, 12-14, 20, 25, 28]. Furthermore, the authors in [2, 24] defined and 

investigated the following classes: 

TH, NH(β),TNH(β),RH(β),TRH(β). 

Let  nnn DDfD   with h and g be given by (1), then Darwish et al. [9] defined and 

investigated the class S*H,n (α, β) of the function (1) that satisfies the geometrical condition 
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for β (0 ≤ β < 1) and α ≥ 0.  It is obvious that if the co-analytic part g(z) is zero, then the class SH,n 

(α,β) reduces to the class P0(α,β) of function f ∈ S satisfying. 
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for some β (0 ≤ β < 1), α ≥ 0 and z ∈ D. The classes of P0(α, β) and P0(α,0) were explored by several 

researchers, (see [15-17, 19, 22, 23,30]). 

 

In 2014, Porwal [21], rigorously discussed the application of a Poisson distribution series on 

certain analytic univalent functions and obtained necessary and sufficient conditions for this series 

belonging to the classes T(λ,α) and C(λ,α), and studied the integral operator related to this series. 

Thereafter, other researchers in the field of geometric function theory engaged in poison probability 

distribution series (PPDS) for different types of analytic functions. For example, the author in [29] 

introduced and investigated some new subclasses of analytic multivalent functions S(p,µ,δ) and 

C(p,µ,δ) to determine the necessary and sufficient conditions for the generalized Poisson distribution 

series to be in the said subclasses by finding connections between various sub-classes of analytic 

univalent functions, (see also [22]). 

The Neutrosophic Poisson probability distribution series (NPPDS) is a generalization of the 

classical Poisson distribution, which incorporates neutrosophic logic to handle indeterminacy and 

uncertainty. Applications of NPPDS include reliability engineering, quality control, medical research, 

financial modeling, and data analysis. The authors in [3, 26, 27], studied the concept of neutrosophic 

theory to model disease outbreaks, and environmental phenomena and evaluate the risks in 

situations where there is uncertainty about the occurrence of events. A variable y is said to be a 

neutrosophic Poisson distribution if it takes values 0, 1, 2, ... the probability 

 respectively and mN is called distribution parameters which are equal to 

the expected values and the variance. Hence, 

                                               (4) 

That is  
𝑁𝐸(𝑦) = 𝑁𝑉(𝑦) = 𝑚𝑁                  (5) 

 



Neutrosophic Systems with Applications, Vol. 23, 2024                                                 36 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Adeniyi M. Gbolagade, Ibrahim T. Awolere, Olusola Adeyemo and Abiodun T. Oladipo, Application of the Neutrosophic 

Poisson Distribution Series on the Harmonic Subclass of Analytic Functions using the Salagean Derivative Operator 

Where N = d + I is a neutrosophic number [4]. Neutrosophic Poisson Distribution was expressed 

in [18] in the form of a power series as follows 

  ,                                    (6) 

and m ∈ [1, ∞], and by ratio test, the radius of convergence of the above series was shown to be 

infinity. In [18], the author defined certain analytic function classes and obtained the first few 

coefficients bound and the Fekete-Szego function with some practical examples for justification. 

Subsequently, Awolere and Oladipo [6] derived necessary and sufficient conditions for neutrosophic 

Poisson distribution series to be in the classes ) through coefficient inequality. Recently, authors 

in [5] introduced a class analogous to the one defined in [18] by generalizing the neutrosophic q-

Poisson distribution series to investigate a new subclass of analytic and bi-univalent functions in the 

open unit disk associated with the q-Gegenbauer polynomials, obtain estimates for the Taylor 

coefficients and Fekete-Szeg type inequalities for the defined functions class. Awolere et al. [7] 

investigated the possibility of finding a connection between harmonic analytic functions and the 

neutrosophic Poisson distribution using q-derivative and the sigmoid function. The authors derived 

necessary and sufficient conditions for the neutrosophic Poisson distribution series to be in the 

defined harmonic analytic function class. The Neutrosophic Poisson distribution series is gradually 

attracting the attention of researchers in geometric function theory, which is due to its application in 

other areas of study and its relationship to the harmonic analytic function class. Therefore, there is a 

need for further research to explore the relationship between neutrosophic Poisson distribution series 

to derive neutrosophic harmonic subclasses of analytic functions to expose the likely dangers inherent 

in classical models. Connections between neutrosophic Poisson distribution series and harmonic 

analytic functions require advanced mathematical concepts, by integrating elements from probability 

theory, neutrosophic sets, and complex analysis. The Poisson kernel used in constructing harmonic 

analytic functions class can be extended to the neutrosophic concept. In the analysis of neutrosophic 

Poisson processes, harmonic functions can be employed to study the underlying structure of the 

process to reveal deeper insights into the interplay between determinacy and indeterminacy through 

potential theory, which heavily relies on harmonic functions. 

Now for mN1, mN2 ∈ [0,∞],we defined that γ(mN1,mN2) ∈ f(z) ∈ S*H,n as  

       γ(f) = γ(mN1, mN2)f(z) = τ(mN1,z) ∗ ω(z) + τ(mN2,z) ∗ φ(z) 

= ϵ(z) + µ(z), 

where 

                    (7) 

Motivated by the works of [7] and [11] the authors wish to investigate the indeterminacy 

inherent in classical Poisson and harmonic functions by employing a neutrosophic set and 

convolution operator. 

2. Preliminaries and Lemmas 

If ),( yxu is harmonic then the NPDS representation ),( yxu converges to ),( yxu uniformly on 

compact subsets. The statement is established using the mean-value property of harmonic functions 

and the definition of NPDS. Furthermore, we also know that the NPDS representation of ),( yxu  

converges to ),( yxu  as n , this is possible by employing the uniform convergence of NPDS 

and the continuity of ),( yxu . In addition, the harmonic function attains its maximum value at the 

boundary. Therefore, the authors wish to employ NPDS to investigate harmonic because any 

harmonic function can be represented as an NPDS, and also because of the flexibility, accuracy, and 

efficiency of NPDS. 

For our results, the following lemmas shall be employed 
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Lemma 1 [9]. Consider f = ω+v, where ω and v are given by (1), and suppose that α ≥ 0,0 ≤ β < 1 and 
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Lemma2 [3]: Consider vf   where   and v are given by (2) and 0 ≤ δ < 1, then f ∈ TNH(δ) if 

and only if 

 
when f ∈ TNH(δ), then 

2                (10) 

1                                  (11) 

Lemma 3 [1]: Consider vf   where ω and v are given by (2) and 0 ≤ δ < 1, then f ∈ TRH(δ) if and 

only if 

 
when f ∈ TRH(δ), then 

2                                          (12) 

1                                                     

(13) 

Lemma 4 [8]: If 
*

HSvf   where ω and v are given by (1) with b1 = 0, then 

 

            (14) 

Lemma 5 [2]: If f = ω +v ∈ KH, where ω and v are given by (1) with b1 = 0, then 

                  (15) 

For convergence throughout, except otherwise stated we use the following notations 

 

3. Main Result 

Theorem 1: Let mN1, mN2 ∈ [0, ∞],0 ≤ β < 1 and α ≥ 0. If 2α[m4N1+m4N2] +[21α+2] [m3N1+m3N2] 

+[54α−2β+15]m2N1+[42α+2β+9]m2N2 +[30α − 9β + 24]mN1 +[19α + 7]mN2 ≤ 6(1 − β),        (16) 

Then, 

  ),(*
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Proof: Let 
*

HSf      so, ω and φ are given by (1) with d1 = 0. We need to prove that

),()()()( *

0,  HSzzf    where ϵ and µ are analytic functions in D defined by (7) with d1= 

0. As a result of Lemma 1, we need to establish that 

W0(mN1, mN2, α,0) ≤ 1 − β 

where 
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Applying relation (14) of lemma 4, we have 
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Setting 

k = (k − 1) + 1                                            (19) 

K2 = (k − 1)(k − 2) + 3(k − 1) + 1                   (20) 

k3 = (k − i)(k − 2)(k − 3) + 6(k − 1)(k − 2) + 7(k − 1) + 1               (21) 

k4 = (k − 1)(k − 2)(k − 3)(k − 4) + 10(k − 1)(k − 2)(k − 3) + 25(k − 1)(k − 2) + 15(k − 1) + 1       (22) 

In (18), we write 

 

         
        

         
         





















































 













2

2

21

1

11

1

,2,10

!11719219242

32122143212

!11249302115254

32122143212

6

1
)(

k

k

mNk

N

mNk

N

NN

K

em

kkk

kkkkkkk

K

em

kkk

kkkkkkk

mmW











 

 
 

 
 

 
 

 

 
 

 
 

 
 

  



















































  

  









































4 3 35

4 3 25

!2
719

!3
9242

!4
221

!5
2

6

1

!2
24930

!3
15254

!4
221

!5
2

6

1

1

21
1

21
1

21
1

21

1

11
1

11
1

11
1

11

k k k

mmm

k

m

k k k

mmm

k

m

k

e

k

e

k

e

k

e

k

e

k

e

k

e

k

e

k

NmN
k

NmN
k

NmN
k

NmN

k

NmN
k

NmN
k

NmN
k

NmN





 



Neutrosophic Systems with Applications, Vol. 23, 2024                                                 39 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Adeniyi M. Gbolagade, Ibrahim T. Awolere, Olusola Adeyemo and Abiodun T. Oladipo, Application of the Neutrosophic 

Poisson Distribution Series on the Harmonic Subclass of Analytic Functions using the Salagean Derivative Operator 

      

      2

2

2

3

2

4

2

1

2

1

3

1

4

1

24930152542212
6

1

24930152542212
6

1

NNNN

NNNN

mmmm

mmmm









. 

The last expression is bounded above by 1 − β if the condition (16) holds. 

 

Corollary 1.1: Let mN1, mN2 ∈ [0, ∞],0 ≤ β < 1andα = 0. If 

2[m3N1 +m3N2] +[15−2β]m2N1 +[9+2β]m2N2 +[24−9β] mN1 +7mN2 ≤ 6(1−β), 

 then 

 
 

Corollary 1.2: Let mN1, mN2 ∈ [0,∞],β = 0 and α ≥ 0. If 

2α[m4N1+m4N2] +[21α+2][m3N1+mN3 2]+[54α+15]mN21+[42α+9]m2N2+[30α+24]mN1+[19α+7]mN2 ≤ 6, 

then 

γ(SH∗ ) ⊂ SH,α∗ (0). 

 

Theorem 2: Let mN1, mN2 ∈ [1,∞], α ≥ 0, 0 ≤ β < 1. If 

α(m3N1+m3N2) +(6α+1)(m2N1+m2N2)+(6α+β+2)mN2+2(1−β)(1−e−mN1) ≤ 2(1−β),                  (23) 

then 

Y (KH) ⊂ SH,∗ 0(α, β). 

Proof. Let f = ω +φ ∈ KH, so that ω and φ are given by (1) with d1 = 0. We need to prove that  
*)()()( HSzzf    0(α, β) where ϵ and µ are analytic functions in D defined by (7) with d1 = 0. 

As a result of lemma 1, we need to establish that ∆n(mN1, mN2,α) ≤ 1 − β, 
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The last expression is bounded above by 1 − β if the condition (10) holds. 

Theorem 3: Let mN1, mN2 ∈ [1,∞], α ≥ 0, 0 ≤ β < 1. If 

(1−δ)[α(m2N1+m2N2)+(2α+1)(m2N1+(4α+1)mN2+(1−α−β)(1−e−mN1)+(2α+β+1)(1−e−mN2)] 

≤ 1 − β − |d1|,                                                     (24) 

then 
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. 

Proof. Let f = ω + φ¯ ∈ TNH(δ) so that u and v are given by (2) with d1 = 0. From Lemma 1, We need to 

establish that Ωn(mN1,mN2,α) ≤ 1 − β and moreover when n = 1 in Lemma 1, we have 
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Application of the inequalities (10) and (11) of Lemma 2, it follows that. 
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By the given assertion, which completes the proof of Theorem 3. 

 

Theorem 4: Let mN1,mN2 ∈ [1,∞], α ≥ 0, δ, β ∈ [0,1). If 
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Then   

Y (TRH(δ)) ⊂ SH,∗ 1(β,α). 
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By the given assertion. 

Theorem 5: Let mN1, mN2 ∈ [1,∞], α ≥ 0, δ, β ∈ [0,1). If 
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Then, 

 

Proof: Using the inequalities (8) and (9) of Lemma 1, we inferred that 

   
   

  
   






































 

121

111

!1!1
1,,

1

1

1

1

1

2 2

1

2

1

1

211

2

2

22

dee

dee

d
k

em

k

em
mm

N

N

NN

mmN

mmN

K K

mk

N

mk

N

NN

 

By the given relation (27). 

4. Graphical Representation of Some of the Results 

By employing the use of Python software, and with various choices of α and β describing 𝑀𝑁2as 

a function of 𝑀𝑁1
, the output from Python gave the listed graphs from Figures 1-7. These graphs 

revealed various inherent indeterminacy nature of harmonic structure. 

 

 
Figure 1. Plot of 𝑀𝑛2 as a function of 𝑀𝑛1. 
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Figure 2. 𝑀𝑛2 as a function of 𝑀𝑛1 (for the first two inequality). 

 

 
Figure 3. 𝑀𝑛2 as a function of 𝑀𝑛1 (Corollary). 

 

 
Figure 4. 𝑀𝑛2 as a function of 𝑀𝑛1. 
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Figure 5. 𝑀𝑛2 as a function of 𝑀𝑛1. 

 

 
Figure 6. 𝑀𝑛2 as a function of 𝑀𝑛1. 

 

 
Figure 7. Graph of the first and last inequality. 
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5. Conclusion 

The authors employed a neutrosophic Poisson distribution series to understudy classical 

harmonic analytic functions to expose some of the inherent indeterminacy values in classical Poisson 

and harmonic models, which are represented in the form of graphs presented in Figures 1- 7 or an 

improvement on the classical value. From the graphs, Figures 1- 7, it is observed that in between the 

various stop-points, many inherent indeterminate situations can be discovered, some of these 

indeterminacy values may likely produce invalidation and some consequences as an improvement. 

Therefore, the authors wish that signal processing, computer engineers or scientists, and medical 

imagers should explore our model further and do a comparative study with their results and with 

some of the existing results. 
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