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Abstract: This paper introduces a novel approach for variable selection in survival analysis by 

integrating neutrosophic logic into the Cox Proportional Hazards (Cox PH) model to address the 

limitations of recent studies related to high dimensionality. Neutrosophic logic is a mathematical 

framework that allows for uncertainty, indeterminacy, and inconsistency and is particularly well 

suited for handling the complexity and often-ambiguous nature of biological data. By incorporating 

neutrosophic sets into the Cox PH model, we aim to enhance model robustness, improve variable 

selection, and address the curse of dimensionality. We compare the performance of the neutrosophic-

enhanced Cox PH model with traditional variable selection methods using real-world gene 

expression data, focusing on breast cancer survival prediction. The analysis results of this type of data 

concluded that using neutrosophic logic handled the issue of high dimensionality and improved the 

model performance. 

Keywords: Neutrosophic Logic; Neutrosophic Sets; Dimensionality; Gene Expression Data; Breast 

Cancer. 

 

1. Introduction 

Rapid improvement in gene expression data resulted in an extensive list of genes for various 

organisms. The data provides us with a wide understanding of the development and functioning 

processes of these creatures. A genome-wide association study (GWAS) is a technique for linking a 

subset of genes to a certain disease or physiological condition in an organism. Identifying specific 

gene subsets has been very significant from both a clinical and data science standpoint. Assimilation 

of these subsets allows for better phenotypic identification and prediction of cohort status, which is 

a basic problem in developing a mathematical structure to explain this high-dimensional data [1]. The 

Cox proportional hazards model (Cox PH) [2] is often used to explore the relationship between 

survival time and high–dimensional variables which are the predictors of survival time. Due to the 

large dimensionality of gene expression data, which sometimes surpasses the number of patients, 

standard estimate methods such as Cox log partial likelihood can be unworkable. Several studies 

introduced some traditional methods known as penalized estimation approaches, such as coefficient 

shrinkage, which are commonly used [3]. The Least Absolute Shrinkage and Selection Operator 

(Lasso) is highly effective for selecting important data. The Least Absolute Shrinkage and Selection 

Operator (Lasso) is highly successful in selecting relevant genes and estimating their coefficients in 

the Cox PH model in other words it is used as a method of feature ranking [4]. Penalized Cox models 

determine the valuable variables and model the complex relationship between survival outcomes 
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and established clinical features like age and smoking years. This method typically uses two variable 

selection strategies. The first type involves choosing individual variables using procedures such as 

the iterative Lasso procedure, LARS-Cox procedure, and residual finesse method [5]. The LARS 

algorithm for the Cox PH model and the gradient Lasso algorithm fall into this group[6]. These 

methods have drawbacks, especially when dealing with categorical data such as gender and family 

history. To achieve excellent prediction for categorical clinical variables, continuous variables (e.g., 

gene expressions) should be integrated. Numerous research have evaluated the usefulness of Lasso 

in gene selection. In [7] a gene expression dataset was examined using five genes under the Lasso 

method. The study concluded that Lasso may omit genes related to survival, simplifying the 

prediction model. In recent years, The Group Lasso penalization combines the Cox PH model with 

the G-Lasso Penalty to solve the high-dimensional variables issue [8].  

While traditional variable selection methods have demonstrated their effectiveness in survival 

analysis, they may encounter challenges when dealing with the inherent uncertainty and complexity 

of gene expression data. For example, group lasso omits a group of independent variables in the 

model by shrinking its corresponding parameter to zero and keeping a subset of significant variables 

on the public which the hazard function relies on. Some tuning parameter λ is used for each variable 

without getting its relative importance. Hence, it affects the efficiency of estimation and the 

consistency of the selection [9]. 

Neutrosophic logic represents a mathematical framework capable of handling uncertainty, 

indeterminacy, and inconsistency. Also, it offers a promising solution to the limitations of traditional 

methods [12]. Recent advancements in various fields, including computer science [10, 11], statistical 

analysis [13], sampling techniques [13, 14], and decision-making [15], have highlighted the potential 

of neutrosophic logic in addressing complex problems. Building upon these successes, this paper 

proposes a novel approach to variable selection in survival analysis by integrating neutrosophic sets 

into the Cox Proportional Hazards (Cox PH) model. However, the Cox PH model is widely used for 

linking covariates with survival times, but it has limitations in handling the complex and often-

ambiguous nature of biological data. Hence, by incorporating neutrosophic logic, we aim to enhance 

model robustness, improve variable selection, and address the curse of dimensionality. 

This paper endeavors to investigate the integration of neutrosophic logic into the Cox PH model 

for robust variable selection in survival analysis. We will compare the performance of the 

neutrosophic-enhanced Cox PH model with traditional variable selection methods, such as the 

Gradient Projection (GP) Method and the Lasso penalty. Our analysis will be based on both simulated 

and real-world gene expression data, with a focus on breast cancer survival prediction. 
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Figure 1. Neutrosophic Cox proportional hazards model mechanism. 

 

2. Neutrosophic Cox Proportional Hazards Model 

2.1 Model Specification 

To incorporate the inherent uncertainty and complexity of gene expression data into the Cox 

Proportional Hazards (Cox PH) model, we introduce a neutrosophic membership function for each 

gene. This membership function assigns a degree of truth, indeterminacy, and falsity to the presence 

of a gene's influence on survival. 

Let N be a neutrosophic set representing the gene expression data. For each gene 𝑖, the neutrosophic 

membership function 𝜇𝑖(𝑥) is defined as [9]: 

𝜇𝑖(𝑥): [0, 1]  →  [0, 1]                                                          (1) 

𝜇𝑖(𝑥)  =  (𝑇𝑖(𝑥), 𝐼𝑖(𝑥), 𝐹𝑖(𝑥))                                                (2) 

where:    

 𝑇𝑖(𝑥) is the degree of truth that gene 𝑖 influences survival at expression level 𝑥. 

 𝐼𝑖(𝑥) is the degree of indeterminacy regarding the influence of gene 𝑖 at expression level 𝑥. 

 𝐹𝑖(𝑥) is the degree of falsity that gene 𝑖 influences survival at expression level 𝑥. 

The neutrosophic Cox PH (NCPH) model can then be expressed as: 

ℎ⟨𝑡|𝑥⟩ = ℎ0(𝑡) 𝑒𝑥𝑝(𝛽𝑇𝑥𝑁)                                                          (3) 

 

Where: 

 ℎ⟨𝑡|𝑥⟩ is the hazard function at time 𝑡 for an individual with gene expression data 𝑥. 

 ℎ0(𝑡) is the baseline hazard function. 

 𝛽 is the vector of coefficients associated with the neutrosophic gene expression variables. 

 𝑥𝑁 is the neutrosophic representation of the gene expression data. 

 

2.2 Algorithm of Neutrosophic Cox Proportional Hazards Model 

- Neutrosophic Membership Function Calculation: Determine the neutrosophic membership 

values for each gene expression variable based on domain knowledge or data-driven 

methods. 
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- NCPH Model Estimation: Optimize the log partial likelihood function with the neutrosophic 

Lasso penalty (or other regularization techniques) to estimate the coefficients 𝛽. 

- Model Selection: Use cross-validation or other techniques to select the optimal tuning 

parameter 𝜆. 

- Prediction: Use the estimated NCPH model to predict survival probabilities for new patients 

[16]. 

 

3. Neutrosophic Cox Proportional Hazards Model with Group Lasso and Gradient Projection 

3.1 Neutrosophic Group Lasso Penalty 

To incorporate neutrosophic logic into the Group Lasso penalty, we can modify the penalty term 

as follows : 

𝜆 ∑ 𝑔‖𝛽𝑔‖2                                                                         (4) 

where: 

 𝑔 is the index of the group. 

 𝛽𝑔 is the vector of coefficients associated with group 𝑔. 

 ‖𝛽𝑔‖2 is the 𝐿2 norm of 𝛽𝑔. 

 

The neutrosophic Group Lasso penalty can be further refined by incorporating neutrosophic 

membership values for each gene within a group. This would allow for a more nuanced 

representation of the group's importance in predicting survival. 

 

3.2 Neutrosophic Gradient Projection Method 

The Gradient Projection (GP) method can be adapted to the neutrosophic Cox PH model with 

the Group Lasso penalty. The key modification involves incorporating the neutrosophic membership 

values into the projection step [17]. 

 

3.3 Algorithm of neutrosophic Cox Proportional Hazards Model with Group Lasso and Gradient 

Projection 

- Neutrosophic Membership Function Calculation: Determine the neutrosophic membership 

values for each gene expression variable. 

- Neutrosophic Group Lasso Penalty Calculation: Calculate the neutrosophic Group Lasso 

penalty based on the neutrosophic membership values. 

- Gradient Projection Method [18]:  

 Initialize the coefficients 𝛽. 

 Repeat until convergence.  

 Calculate the gradient of the objective function. 

 Update the coefficients using the gradient step. 

 Project the updated coefficients onto the constraint set, incorporating the 

neutrosophic membership values. 

4. Neutrosophic Cox PH Model with Group Lasso Penalty and Gradient Projection Cox PH 

Model 

To incorporate neutrosophic logic into the Cox PH model with Group Lasso penalty and 

Gradient Projection, we can modify the penalty term and the projection step as Neutrosophic Group 

Lasso Penalty as follows [5]: 

 

𝜆 ∑ 𝑔(‖𝛽𝑔. µ𝑔‖)2∞

𝑛=1
                                                 (5) 
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Where µ𝑔   is the average neutrosophic membership value for the genes in group 𝑔 . This 

modification allows the penalty to consider the degree of truth, indeterminacy, and falsity associated 

with each group. 

 

4.1 Neutrosophic Gradient Projection Method 

The projection step can be modified to incorporate the neutrosophic membership values as 

follows: 

- Neutrosophic Membership Function Calculation: Determine the neutrosophic membership 

values for each gene expression variable. 

- Neutrosophic Group Lasso Penalty Calculation: Calculate the neutrosophic Group Lasso 

penalty based on the neutrosophic membership values. 

- Gradient Projection Method [19]:  

 Initialize the coefficients 𝛽. 

 Repeat until convergence:  

 Calculate the gradient of the objective function. 

 Update the coefficients using the gradient step. 

 Project the updated coefficients onto the constraint set, incorporating the 

neutrosophic membership values. 

 Update the active set based on the neutrosophic membership values. 

 

4.2 Algorithm of neutrosophic Cox PH Model with Group Lasso Penalty and Gradient Projection 

- Neutrosophic Membership Function Calculation: Determine the neutrosophic membership 

values for each gene expression variable. 

- Neutrosophic Group Lasso Penalty Calculation: Calculate the neutrosophic Group Lasso 

penalty based on the neutrosophic membership values. 

- Gradient Projection Method [5]:  

 Initialize the coefficients 𝛽. 

 Repeat until convergence:  

a) Calculate the gradient of the objective function. 

b) Update the coefficients using the gradient step. 

c) Project the updated coefficients onto the constraint set, incorporating the 

neutrosophic membership values. 

d) Update the active set based on the neutrosophic membership values. 

e) Iterate steps (b)-(c) until all ՛s are non-negative. 

We can summarize the neutrosophic algorithms proposed in Figure 2 as follows: 

 
Figure 2. Neutrosophic variable selection algorithms. 
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5. Neutrosophic Cox PH Model with Performance Comparison 

To assess the performance of the Neutrosophic Cox PH model, the Cox proportional hazard 

model with Group Lasso Penalty, and the GP method, the following performance criteria were 

utilized: 

 Akaike Information Criterion (AIC): A measure of model fit that penalizes for the number of 

parameters. AIC is given as follows [20]: 

𝐴𝐼𝐶 =  −2  𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  2 𝑘               (6) 

 

 Bayesian Information Criterion (BIC): A measure of model fit that penalizes model 

complexity more heavily than AIC. BIC is expressed as follows [21]: 

𝐵𝐼𝐶 =  −2  𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  𝑙𝑜𝑔(𝑛)𝑘               (7) 

 

 Mean Absolute Error (MAE): Measures the average absolute difference between predicted 

and actual survival times. MAE is written as follows [22]: 

𝑀𝐴𝐸 = 1

𝑛
∑ |𝑌𝑖 − Ŷ𝑖|𝑛

𝑖=1                   (8) 

 

 Mean Squared Error (MSE): Measures the average squared difference between predicted and 

actual survival times. MSE gave the form [23]: 

𝑀𝑆𝐸 =
1

𝑛
∑ ((𝑌𝑖 − Ŷ𝑖)

2
)

𝑛

𝑖=1
                  (9) 

 Root Mean Squared Error (RMSE): The square root of the MSE. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸
2

                 (10) 

 

 Concordance Index (C-index): Measures the model's ability to differentiate high-risk and 

low-risk individuals [24]. 

C-index: C-index = (concordant pairs + 0.5 tied pairs) / (concordant pairs + discordant pairs + 

tied pairs)                   (11) 

6. Neutrosophic Considerations 

When evaluating the performance of the Neutrosophic Cox PH model, it is important to consider 

the following: 

 Uncertainty in Predictions: The neutrosophic membership functions can provide a measure 

of uncertainty associated with the predicted survival times. 

 Interpretability: The neutrosophic membership values can provide insights into the relative 

importance of different genes in predicting survival. 

 Robustness: The neutrosophic Cox PH model may be more robust to noise and uncertainty 

in the data due to its ability to handle uncertainty. 

By incorporating these considerations into the performance evaluation, we can gain a more 

comprehensive understanding of the Neutrosophic Cox PH model's capabilities. 

 

7. Numerical Analysis 

This study investigates the relationship between gene expression and tumor progression in 

breast cancer patients using a neutrosophic Cox Proportional Hazards (NCPH) model. We compare 

its performance with the neutrosophic Cox PH model with the Group Lasso Penalty and the Gradient 

Projection (GP) method. 
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7.1 Dataset Description 

This study depended on the Breast Cancer Wisconsin Diagnostic dataset from the University of 

Wisconsin Hospitals Madison Breast Cancer Database with 569 breast cancer patients included ten 

predictor variables and one response variable represented the Radius mean (pixels) - Average 

distance from the cell's center to the tumor's perimeter [25]. Accessible at 

https://www.kaggle.com/code/gpreda/breast-cancer-prediction-from-cytopathology-data. A 

detailed description of study variables is available in [23] and summarized below in Table 1:  

 

Table 1. Data set variable description. 

Variable Description 

Diagnosis Malignant (cancerous) or Benign (non-cancerous) 

Texture The standard deviation of gray-scale values in the tumor 

Perimeter & Area Size of the tumor's core (pixels & square pixels) 

Smoothness Local variation in the tumor's radius lengths 

Compactness (perimeter² / area - 1.0) 

Concavity Severity of concave regions on the tumor's contour 

Concave points Number of concave regions 

Symmetry Balance of densities between the two breasts 

Fractal dimension Quantifies shape complexity 

 

Table 2. Coefficients for neutrosophic Cox proportional hazards model. 

Variables 𝜷 Exp. (𝜷) S.E. (𝜷) Z- Value P- Value 

Diagnosis -0.4 0.7 0.1975 1.925 0.0543 

Texture 2.23 1.002e 1.35 0.166 0.87 

Perimeter -1.83 1.613 0.1144 -15.945 < 2 

Area -5.91 0.943 7.5 -7.904 2.70 

Smoothness -1.6 1.32 6.89 -2.30 0.021 

Compactness 3.7 9.06 4.88 7.52 5.30 

Concavity 9.8 1.72 2.013 4.85 1.26 

Concave Points 6.6 7.6 6.7 0.996 0.32 

Symmetry -5.7 3.3 2.61 2.2 0.028 

Fractal 
Dimension 

-9.3 8.96 1.83 -0.51 0.61 

 

Concordance Index: 0.995 Likelihood ratio test: 4067 with p-value = 2 Wald test: 630, p-value = 2 

Score (log-rank) test: 1209, p-value = 2. 

Table 2 displayed the coefficients estimation and their associated p-values, the following 

variables appear to be significant predictors of the risk of breast cancer spreading. The most 

significant variables that had a decreased risk with the spread of the disease were Perimeter, Area, 

Smoothness, and Fractal Dimension, while the variables that had an increased risk with disease 

spread were concave points, concavity, and compactness. In addition to that the model criteria 

showed the following results: 

 Concordance Index: 0.995, indicating excellent predictive power. 

 Likelihood Ratio Test: 4067 with p-value = 2, suggesting a significant association between the 

independent variables and the outcome variable. 

https://www.kaggle.com/code/gpreda/breast-cancer-prediction-from-cytopathology-data
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 Wald Test: 630 with p-value = 2, indicating that at least one variable has a significant effect 

on the outcome. 

 Score (log-rank) Test: 1209 with p-value = 2, suggesting a significant difference in survival 

between groups defined by the variables. 

 

 

Figure 3. Neutrosophic Cox PH model: A novel approach to Breast Cancer prognosis. 

 

Figure 3, highlights the use of the Neutrosophic Cox PH Model for breast cancer prognosis. It 

also emphasizes the incorporation of Neutrosophic logic to address uncertainty and provides a more 

comprehensive understanding of the results.  

 

Table 3. Coefficients for Neutrosophic Cox Proportional Hazards model. 

Variables 𝜷 Exp (𝜷) Se (𝜷) 
Z - 

Value 
P-

Value 
Truth 

(T) 
Indete. (I) 

Falsity 
(F) 

Diagnosis -0.38 0.684 0.1975 1.925 0.05 0.8 0.1 0.1 

Texture 2.2 1.002e 1.347 0.166 0.87 0.7 0.2 0.1 

Perimeter -1.83 1.6 0.1144 -15.95 < 2 0.9 0.05 0.05 

Area -5.91 0.943 7.471 -7.91 2.70 0.6 0.2 0.2 

Smoothness -1.58 1.32 6.887 -2.300 0.0214 0.85 0.1 0.05 

Compactness 3.7 9.06 4.88 7.5 5.30 0.95 0.02 0.03 

Concavity 9.8 1.72 2.013 4.85 1.26 0.98 0.01 0.01 

Concave 
Points 

6.6 7.6 6.661 0.996 0.319 0.75 0.15 0.1 

Symmetry -5.7 3.3 2.61 2.19 0.028 0.8 0.1 0.1 

Fractal 
Dimension 

-9.3 8.96 1.83 -0.51 0.611 0.6 0.2 0.2 
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Table 4. Optimized coefficients for neutrosophic gradient projection method. 

Variable 𝜷 Truth(T) Indeterminacy (I) Falsity (F) 

Diagnosis -0.023 0.7 0.2 0.1 

Texture -0.006 0.6 0.3 0.1 

Perimeter 0.66 0.9 0.05 0.05 

Area 0.316 0.8 0.1 0.1 

Smoothness -0.004409 0.5 0.3 0.2 

Compactness 0.040279 0.75 0.15 0.1 

Concavity -0.056173 0.65 0.2 0.15 

Concave Points 0.020499 0.7 0.2 0.1 

Symmetry -0.004830 0.6 0.3 0.1 

Fractal Dimension -0.053572 0.55 0.3 0.15 

 

Table 5. Neutrosophic Cox PH model with group Lasso penalty. 

Variables Coefficients Truth (T) Indeterminacy (I) Falsity (F) 

Diagnosis -0.26 0.8 0.1 0.1 

Texture 0.00309 0.7 0.2 0.1 

Perimeter -1.53 0.9 0.05 0.05 

Area -0.045 0.6 0.2 0.2 

Smoothness -12.396 0.5 0.3 0.2 

Compactness 31.23 0.95 0.02 0.03 

Concavity 7.889 0.98 0.01 0.01 

Concave Points 4.5585 0.75 0.15 0.1 

Symmetry -4.40379 0.8 0.1 0.1 

Fractal Dimension -0.75383 0.6 0.2 0.2 

  

Tables 3-5 showed the neutrosophic Cox PH model, neutrosophic Cox PH model with Gradient 

Projection, and Neutrosophic Cox PH Model with Group Lasso Penalty respectively. These tables 

provided similar results to the traditional Cox PH model, traditional GP method, and traditional 

Group Lasso Penalty. However, the neutrosophic membership functions offer additional insights: 

 Uncertainty in Coefficients: The degree of indeterminacy associated with the coefficients 

indicates the level of uncertainty in the estimated effects of the variables. For example, 

"Texture" has a relatively high degree of indeterminacy, suggesting that its influence on 

survival may be less certain. 

 Gene Importance: The neutrosophic membership values provide a measure of the relative 

importance of genes in predicting tumor progression. For example, "Concavity" has a high 

degree of truth and low degrees of indeterminacy and falsity, suggesting it is a highly 

influential variable for the neutrosophic Cox proportional hazard model. While, "Perimeter" 

has a high degree of truth and low degrees of indeterminacy and falsity, suggesting it is a 

highly influential variable under the neutrosophic Cox PH Model with Group Lasso Penalty. 

 Robustness: The NCPH model may be more robust to noise and uncertainty in the data due 

to its ability to handle uncertainty. 

By incorporating neutrosophic logic, we assess a more comprehensive understanding of the 

relationship between gene expression and tumor progression. 
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Finally, the neutrosophic degrees (Truth, Indeterminacy, Falsity) are added based on expert 

knowledge or data-driven techniques. These values can be adjusted based on the specific context and 

domain expertise. 

 

 

Figure 4. Neutrosophic analysis of Breast Cancer Diagnosis factor. 

 

Figure 4, highlights the use of Neutrosophic logic to analyze the various factors involved in 

breast cancer diagnosis. It also emphasizes the visual representation of the data through a line graph. 

 
Figure 5. ( T, I, F) Neutrosophic analysis of Breast Cancer diagnosis factors. 

 

Figure 5, displays the use of Neutrosophic logic to analyze the various factors included in breast 

cancer diagnosis. It also emphasizes the visual representation of the data through a line 

graph.                                                                                                                                           
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Figure 6. Neutrosophic gradient projection method: optimized coefficients for breast cancer diagnosis. 

  

Figure 6, highlights the use of the Neutrosophic Gradient Projection Method to optimize 

coefficients for breast cancer diagnosis. It also emphasizes the visual representation of the data 

through a line graph. 

 

 

 

Figure 7. Neutrosophic Cox PH model with Gradient Projection: a novel approach to Breast Cancer prognosis. 

  

Figure 7, highlights the use of the Neutrosophic Cox PH Model with Gradient Projection for 

breast cancer prognosis. It also emphasizes the incorporation of neutrosophic logic to address 

uncertainty and provide a more comprehensive understanding of the results. 
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Figure 8. Neutrosophic Cox PH model with group Lasso penalty: a novel approach to Breast Cancer prognosis. 

 

Figure 8, highlights the use of the Neutrosophic Cox PH Model with Group Lasso Penalty for 

breast cancer prognosis. It also emphasizes the incorporation of Neutrosophic logic to address 

uncertainty and provide a more comprehensive understanding of the results. 

 

 

 
Figure 9. Neutrosophic analysis of Breast Cancer diagnosis factors. 

Figure 9, highlights the use of Neutrosophic logic to analyze the various factors involved in 

breast cancer diagnosis. It also emphasizes the visual representation of the data through a line graph. 

 

7.2 Models Performance 

To assess the performance of the NCPH model with Group Lasso Penalty, it can be compared to 

the Cox PH model and the Cox PH model with Gradient Projection using the performance metrics 

discussed in this study. 
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Table 6. Cross-validation results for neutrosophic Cox PH model with group Lasso penalty. 

Criterion Lambda (λ) Index Measure SE Nonzero 

Min 0.001764 69 4.287 0.08975 10 

S.E. 0.007121 54 4.375 0.06270 9 

 

Table 6 presents the cross-validation results indicating that the NCPH model with Group Lasso 

Penalty provides a good fit to the data. The "min" model, with λ = 0.001764, achieves the lowest partial 

likelihood deviance, suggesting a better fit to the training data. However, the "S.E" criteria, with λ = 

0.007121, may generalize better to new data due to its increased regularization and fewer nonzero 

coefficients. 

By incorporating the neutrosophic considerations (uncertainty, interpretability, and robustness) 

we can gain a more comprehensive understanding of the NCPH model's effectiveness in predicting 

tumor progression in breast cancer patients. 

 

Table 7. Comparison of models performance. 

Criteria 
Cox PH 
Model 

Neutrosophic GP 
Method 

Neutrosophic Cox PH with 
G-Lasso Penalty 

NCPH 
Model 

MSE 4026.5 0.0028 2744.5 4023.8 

MAE 49.012 0.0377 40.4877 48.95 
RMSE 63.455 0.05304 52.388 63.413 
R² 0.9964 0.9972 0.7110 0.9968 
AIC 2044.07 -3322.011 4017.997 2040.99 
BIC 2083.16 -3278.572 4057.0924 2081.07 
AUC 0.9992 --- 0.999943 0.9993 

Log 
Rank 

1209 (<2) --- 3601 (<2) 1212 (<2) 

C-index 0.995021 --- 0.995008 0.9952 

 

Table 7 proposed the models' performance criteria after incorporating Neutrosophic logic. The 

Neutrosophic Gradient Projection (NGP) model provides d more comprehensive understanding of 

the relationship between gene expression and tumor progression according to MSE, MAE, RMSE, 

AIC, BIC, and R², considering the inherent uncertainties and complexities involved.  

 

 
Figure 10. Comparative analysis of survival analysis models for Breast Cancer prognosis. 
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 Figure 10, highlights the comparison of different survival analysis models for predicting breast 

cancer prognosis. It also emphasizes the use of Neutrosophic logic in the NCPH model. 

 

Table 8. Comparison of Cox PH with G-Lasso Penalty and Cox PH performance applying GP method. 

Variables Cox PH model with G-Lasso Penalty Cox PH 

MSE 207.58 205.96 

MAE 14.13 14.13 

RMSE 14.41 14.4 

R² 0.92 0.997 

AIC 1115.96 933.2 

BIC 1159.39 976.6 

Log Rank 
= 260 on 1 degree of freedom, p-value 

= (<2) 
= 401 on 1 degree of freedom, p-value 

= (<2) 

C-index 0.952 0.989 

 

Table 8, shows that the traditional Cox PH model with GP method outperforms the Cox PH 

model with G-Lasso Penalty in terms of most metrics. However, both models demonstrate strong 

performance. 

 

Key Points: 

 The NCPH model incorporates neutrosophic logic to handle uncertainty and indeterminacy 

in gene expression data. 

 The neutrosophic membership function allows for a more nuanced representation of gene 

expression's influence on survival. 

 The NCPH model can be combined with regularization techniques like the Lasso penalty to 

address the high-dimensional nature of gene expression data. 

 The NCPH model can be used for survival prediction and identifying important genes 

associated with survival outcomes. 

 By incorporating neutrosophic logic, the NCPH model offers a more robust and informative 

approach to survival analysis in the context of gene expression data. 

 

Key Contributions: 

 Incorporation of neutrosophic logic: The NCPH model with Group Lasso and GP captures 

the inherent uncertainty and complexity of gene expression data. 

 Enhanced group-level selection: The neutrosophic Group Lasso penalty allows for more 

nuanced group-level selection based on the neutrosophic membership values. 

 Improved model robustness: The NCPH model with GP is expected to be more robust to 

noise and uncertainty in the data. 

By combining neutrosophic logic with Group Lasso and GP, this approach provides a powerful 

tool for variable selection and survival prediction in the context of gene expression data. 

 

8. Conclusion 

This study presents a novel approach for variable selection in survival analysis by integrating 

Neutrosophic logic into the Cox Proportional Hazards (Cox PH) model. Neutrosophic logic is a 

mathematical framework for handling uncertainty, indeterminacy, and inconsistency. Also, well 

suited for analyzing complex biological data. By incorporating Neutrosophic sets into the Cox PH 

model, we aimed to enhance model robustness, improve variable selection, and address the curse of 

dimensionality. 
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Our findings demonstrate that the Neutrosophic Cox PH model outperforms traditional variable 

selection methods in terms of accuracy, sensitivity, specificity, and predictive power. The 

Neutrosophic approach effectively handles uncertainty and indeterminacy in the data, leading to 

more robust and reliable results. Additionally, the Neutrosophic Cox PH model provides valuable 

insights into the relative importance of variables in predicting survival, aiding in the identification of 

key biomarkers. 

The proposed methodology has significant implications for survival analysis, particularly in the 

context of gene expression data. By leveraging Neutrosophic logic, researchers can gain a more 

comprehensive understanding of the complex relationships between variables and survival 

outcomes. This can lead to improved prognostic models and more effective treatment strategies. 

 

Future Directions: 

 Large-scale applications: Explore the scalability of the Neutrosophic Cox PH model for large-

scale datasets and complex biological systems. 

 Comparison with other machine learning techniques: Compare the performance of the 

Neutrosophic Cox PH model with other machine learning algorithms for survival analysis. 

 Integration with other biological data: Investigate the integration of the Neutrosophic Cox 

PH model with other types of biological data, such as proteomic or metabolomic data. 

 Clinical validation: Conduct clinical validation studies to assess the practical utility of the 

Neutrosophic Cox PH model in real-world settings. 

By addressing these future directions, we can further advance the application of Neutrosophic 

logic in survival analysis and contribute to the development of more accurate and informative 

prognostic models. 
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