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Abstract: Neutrosophic sets are a generalized form of fuzzy sets as well as intuitionistic fuzzy sets,
as they address the uncertainty factor as an independent component along with truthfulness and
falsity. However, traditional neutrosophic approaches often struggle with effectively managing and
quantifying indeterminate elements in complex algebraic structures. To address this limitation, this
paper employs an expanded version of the neutrosophic set, incorporating a subalgebra. The
proposed research is multifaceted: firstly, the new concept of N-Subalgebra (NSU) is proposed. This
is the modified setting in the family of subalgebras whose proposed name is the representation of the
author's initial name. Secondly, the hybridization is called Quantified Neutrosophic N-Subalgebra.
Q'NNSU of NSU is established with the modified version of the neutrosophic set, which is Quantified
quantified neutrosophic set Q*NS. This novel approach to hybridization is the combination of the
properties related to NSU in the Q'NS's setting. Thirdly, the operations of P-Union, R-Union, P-
Intersection, and R-Intersection are developed for the Q*NNSU and presented as Pyt Union, R«
Union, P,c-Intersection and, Rye-Intersection. Furthermore, the concepts of upper bounds, lower
bounds, including upper-level subalgebras, as well as lower-level subalgebras in the environment of
Q'NNSU are developed. The proposed study is an advancement in the field of neutrosophic set
theory-related algebraic structures.

Keywords: Algebraic Structures; Indeterminacy Management; Uncertainty Quantification; Hybrid
Set Theory; Neutrosophic Operations.

1. Introduction

To deal with uncertainty, fuzzy sets [1] allow components to have different levels of membership
in a set. Interval-valued fuzzy sets (IVES), which expand fuzzy sets' characteristics and offer intervals
for the objects, were first described by [2]. By extending the fuzzy set structure, [3] created
intuitionistic fuzzy sets (IFSs), which have two components: the degree of non-existence and the
degree of existence, with the requirement that their total fall between 0 and 1. Decisions are hazy and
unclear due in large part to vagueness, uncertainty, or ambiguity, as is the case in every circumstance
experienced in daily life. In consideration of this, Smarandache [4] devised an arrangement of
neutrosophic sets, which combines the degree of indeterminacy with earlier degrees all of which are
independent with sums between 0 and 3. Furthermore, an expanded version of the neutrosophic set
as an interval-valued neutrosophic set [5] provides a sophisticated solution for decision analysis
issues in the real world.

In the world of algebra and its extensions, the concept of BCK-algebra was first established in 1978
by Iseki et al. with its modification known as BClI-algebra which was developed in 1980 and was the
most improved enhancement in the field of algebra [6, 7]. The BCK-algebra is the major subclass of
BCl-algebra. In 1983, their advanced characteristics and features were explored by Hu et al. who also
presented the idea of BCH -algebra which is a generalized form of BCK and BCI algebras. In 2002, J.
Neggers et al. introduced a novel idea labeled as B-algebra and produced several findings. A.
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Walendziak introduced the term "BFalgebra," a generalization of B-algebra, in 2007. Senapati et al. [8]
implement cubic set to ideals, closed ideals, and B-algebra subalgebras. On B-algebra, Khalid et al.
[9] provided the MBJ-neutrosophic T-ideal. The BMB] and MBJ-neutrosophic subalgebraic structures
and their intended applications in the BCK/BCI-algebras have also been addressed in the literature
[10, 11]. [12] addressed the connections of these algebras and others including Q, BCI, BCH, BF, and
B -algebras as well as the novel idea of G -algebra, which is a generalization of QS-algebras.They
studied the associated features of the G-part, 0-commutative, and medial of G-algebra concepts.
Saeed et al. [13] present embedded algebraic structures for soft members and soft elements. Senapati
et al. [14, 15] proposed the idea of L-fuzzy G-subalgebras by implementing the FSs to G-subalgebras
and Interval-valued IF BG-subalgebras. The researchers have put a lot of effort into BG-algebras [16].
Saeed et al. [17] recently provided the concept of cubic soft ideals in the settings of B-algebra.
Moreover, the integrated development of neutrosophic soft cubic T-ideal in the environment of PS-
algebra was developed by N.A Khalid et al. in [18]. A collection of level subalgebras is known as the
G-subalgebras. G-subalgebras are fuzzy intuitivistically along with other associated features, and the
categorization of IF G-algebras is provided in [19-22]. In [23], Khalid et al. presented the idea of IF-
translation to IF-subalgebra and ideals in the environment of G-algebra. They also study a couple of
associated properties with IF-extension and introduce the IF-multiplication of IF-subalgebra of G-
algebra. By using the concept of P-union, P-intersection, R-union, and R-intersection among other
operations, Khalid et al. [24] examined the neutrosophic soft cubic G-subalgebra. Furthermore, in the
context of basic logic algebras, new kinds of neutrosophic filters are developed [25]. Also, there is a
new algebraic structure is available which is developed by [26] called pura vida neutrosophic algebra
consisting of binary operations of addition and multiplication.

1.1 Motivation

The motivation of this proposed initiative is to establish a modified algebraic framework of a
neutrosophic set named as QNS set. This modified structure has indeterminacy as a dependent
component which provides a controlled environment for indeterminate situations while dealing with
real-life problems in decision-making as well as in other fields, Further, the N-subalgebra, a new
substructure for the G-algebra is introduced which gives more precise conditions for a QNS is set to
be a Q*NSN-subalgebra.

Five sections make up this study. The introduction is in the first part, followed by fundamental
definitions in the second, and theoretical analysis of our suggested structure in the third and fourth.
The final part summarizes the findings and makes recommendations for the future.

1.2 Research Problem

In the realm of decision-making and mathematical modeling, uncertainty plays a critical role in
complex problem-solving, particularly in environments where data is incomplete or imprecise.
Existing methods, such as classical fuzzy sets and intuitionistic fuzzy sets, have made significant
strides in addressing uncertainty by incorporating degrees of truth, falsity, and indeterminacy.
However, these methods often fail to effectively manage the degree of indeterminacy, leading to
inaccurate or imprecise outcomes in various applications, particularly in multi-criteria decision-
making (MCDM) scenarios.

1.3 Importance and Necessity

The importance of handling uncertainty in decision-making cannot be overstated, especially in
fields like engineering, economics, and operations research, where precise decisions are essential for
optimizing systems and processes. In particular, industries such as healthcare, manufacturing, and
logistics are increasingly relying on robust decision-support systems that can manage uncertainty
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effectively. The ability to quantify and reduce indeterminacy while maintaining flexibility in
representing uncertainty is crucial for enhancing the reliability and accuracy of these systems.

1.4 Review and Critique of the Current State

Several advancements have been made in the field of neutrosophic sets, which offer a
generalized framework to represent uncertainty. However, current methods primarily focus on
combining truth, falsity, and indeterminacy linearly, without sufficient consideration of the algebraic
structures that can enhance their application. While extensions such as neutrosophic soft sets and
intuitionistic fuzzy soft sets have been proposed, they do not address the full potential of algebraic
operations within the neutrosophic set framework. Furthermore, there is a lack of research on
hybridizing these structures with subalgebras, leading to potential inefficiencies in decision-making
processes where indeterminacy reduction is a priority.

1.5 Identification of Research Gaps

Lack of Comprehensive Algebraic Structures: While neutrosophic sets have been widely studied,
there is limited research on integrating subalgebraic structures into neutrosophic sets to enhance their
applicability.

1.6 Indeterminacy Control

Current methods do not offer robust solutions to control the degree of indeterminacy effectively,
which is crucial for accurate decision-making in uncertain environments.

1.7 Limited Hybridization

Few studies explore the hybridization of neutrosophic sets with algebraic structures such as G-
algebra, which can provide a more structured approach to uncertainty management.

1.8 Insufficient Development of Operations

There is a gap in the development of operations such as union and intersection within the context
of Quantified Neutrosophic N-Subalgebra (QINSSU), which could further improve the model’s
flexibility and robustness.

1.9 Study’s Innovation and Contribution

This study proposes a novel hybridization of the Neutrosophic N-Subalgebra (NSU) with
Quantified Neutrosophic Sets (QNS), creating the Quantified Neutrosophic N-Subalgebra
(QINNSU). This hybrid structure allows for the precise control of indeterminacy within decision-
making models, offering a new approach to managing uncertainty. Additionally, the study
introduces new operations (P-Union, R-Union, P-Intersection, R-Intersection) within the QINNSU
framework, which significantly enhances its applicability and reliability in MCDM scenarios. The
introduction of upper and lower bounds, as well as subalgebras, further strengthens the framework,
offering a more nuanced approach to multi-criteria decision-making. The innovation lies in the
algebraic structure and operations that support effective uncertainty management, contributing to
the development of more efficient decision support systems in uncertain environments.

2. Preliminaries

Here, certain fundamental definitions are provided that are useful for the rest of the paper's
presentation.
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Definition 2.1. [6, 7] The conditions listed below must be satisfied for a (2,0) type algebra to be a
BCl-algebra for all 9,0 and 4 € A:

Al: @*0)* (P *1) < (1x6)

A2: (W+9)x0<0

A3: 9 <9

Ad: 9<fand 0<9=>9=0

A5: 9 <0=9 =0, where 9 <60 isdefined by 90 =0

If (A5) is replaced by (A6): 0 <, Then algebra is referred to as a BCK-algebra. Any BCK algebra is
also a BCI algebra, but the reverse is not known.

Definition 2.2. [12] Let a nonempty set represented by G is said to be G-algebra (G,*,0) if it contains
the constant 0 and the binary operation ' *' or equivalently by G with the following axioms:

Gl: 9, %9, =0

G2:9; * (91 *9,) =U,, forall 9,9, €G.

For the set U = {0,9;,9,,93, 94, 95,96, 9;}, G-algebra can be represented with Cayley's table which is
shown in Table 1:

Definition 2.3. Consider S; a subset of G-algebra 'G'. If
o U, %9, €S5;VI,,0, €S,
Then it is referred to as a G-subalgebra.

Definition 2.4.[1] AFSin G can be expressed as F = {{J;, ¥ (9;)) | 9; € G}, where Y (9;) isreferred
to as the existent ship value of ¥; in F and ¥r(9,) € [0,1].

Table 1. Cayley's Table of (G,*,0).

x 0 o 9, O 9 0 9 0
0 0 9, 9 O 9 O 9 O
9, 0 0 9 9, O 9 9, O
9, 9, O 0 9 9% O O O
95 P95 O, O 0 9, 9 O 0,
9, O, O 95 O 0 9, O O
9 9 0, 9, 0 O 0 9 0
9 9 O, 9, Os 9, O 0
9, 9, 0y 95 0, O O, O 0

¢ Fuzzy subalgebra is described by Ahn et al. [28] in the definition that accompanies it.

Definition 2.5. Let F = {(9;,¥r(9,)) | 9; € G} beaFSin G. If
o Yr(¥; *9,) = min{Yr(I91), Yr(9,)}VI,9, € G, Then it is said to be fuzzy G-subalgebra of G.

Definition 2.6. [3] An IFS in G is a kind of structure I = {{(y;(9;), ;(I,)) | 9, € G}, where V), is the
existent ship value function of J; and ¢, is a non-existent ship value function of ¥; w.rt I in G
and 0 < y,(9,) + 9,9, < 1.

Definition 2.7. [27] Let IF = ¥z (9,), ¢;(91) be an IFS of any algebra K. It is said to be a t-IF subset
of K represented by IF' with t belongs to the closed interval of [0,1] and is structured as
IFt = {< 91, Ype(01), @1t (91) >1 91 € K} =<pe, ot >
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where,

o Y,pe(91) = min{y;z(9,),t} and
o Ppe(91) = max{ep(91), 1 — t}VY; €K.

Definition 2.8. [27, 29] Let IF* =< ¢, ¢zt > represents t-IFS of K along with t € [0,1] then it is
to be called t-IFSU of K as it corresponds with these assumptions:

i). Yypt (D1 % 92) = min{ppe (91), Yype(9)} and

ii).  @pe(91 *9,) < max{@;pt(V1), @;pt(9,)}V9,,9, € G.

Definition 2.9. [24]In the algebra G, the sort of structure classified as a neutrosophic set is Ng =
{p (1), (1), Y(¥1)) | 91 € G}, Where ¢,p, and 1 are the existent ship value, nonexistent ship
value, and indeterminate value of 9; w.r.t Ny inGand 0 < ¢(¥,) + ¢(I9,) + Pp(I9; < 3.

Definition 2.10. [30] For the family of a fuzzy set F; = {(ﬁl,ﬁpi(ﬁl)) [9, € G} in G, where I, stands
for the index set andi € I,,, The definitions of join and meet represented by (V) and (A) respectively
are as follows:
Vier, Fi = (Vier, 9r,)®1) = sup{¥p, | i € I,}
and
Niery, Fi = (Aer, 95,) 1) = inf{Op, 1 i € I,,}

Definition 2.11. [31] For any cubic set k; = (w;, w;), where @; = {(191; Eg,(91), I,(91), F, (91)) 19,1 €
Ghw; = {(191; Ewi(ﬁl),lwi(ﬁl),Fwi(ﬁl)) |9, € G} for i € I, the structures of P-union, P-intersection, R-
union, and R-intersection are respectively given as follows:

e P-union -»Up k; = ( U w;, V wi),
i€l, i€ln I.EIn

e R-union —Uig, k; = (lg @, {‘E,nwl->
e P-intersection — Nygp i = N; wl,Ale, w) and
ety
e R-intersection - Nf; K; = (lgn @;, léin a)i)
Where

Uier, @; = {(191J (Uieln wiE)(ﬁl): (Uieln mil)(ﬁl): (Uieln miF)(ﬁl)) |9, € G}
Vier, Wi = (19 (Vieln wiE)(ﬁl): (Vieln wil)(791): (Vieln wiF)(ﬁl)) |V, € G}
I.Eln w; = {(19 (nlEln le)(ﬂl) (nlEIn wll)(ﬁl) (nlEIn ZD'zF)(l?l ) | 191 € G}
lEIn w; = (7-91' (Aleln lE)(ﬁl) (ALEIn 11)(191) (Azeln zF)(ﬁl)) | 191 € G}

3. Development of Quantified Neutrosophic N-subalgebras Q‘NNSU

This section defines a novel. Q'NS set structure and explains the requirements for a QNS set to
be a Quantified Neutrosophic N-subalgebra Q*NNSU in the setting of G-algebra. By taking into
consideration several additional relevant qualities, the proposed structure is investigated using a
variety of concepts, including upper bounds, lower bounds, upper-level subalgebra, lower-level
subalgebra, and fuzzy subalgebra.

Definition 3.1. A neutrosophic set N = {< 91, E(¥1),[(¥1), F(¥1) > 9; € G} =< E,I,F > is called a
QfNS set of the form Nt = (ELILFY), where Nt ={(9,E'(9,),15(9,),FE(9,)) | Y, € G} =<
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E', 15, Ft > with two independent components that are E*(9;) and F!(¥,) along one dependent
component [£(9;)V9; € G. These components are defined as:

E*(9,) = max{E(9,),t},

I*(9,) = min{I (¥,), (t + t")/2},

F*(9,) = max{F (9,),t'}
vt t',t +t'/2 € [0,1], where E' is the existent ship value function, I* is an indeterminate value
function and F*' is a non-existent ship value function with 0 < E‘(9;) + I*(¥,) + F*(¥,) < 3. From
this point forward, the symbols < and > will stand for less than and greater than, respectively, with

equality.

Definition 3.2. Let V! =< E*(9;),1°(91), F*(¥;) > be a Q'NS set. Then N is TNNSU with a binary

operation ' *', where 9;,9,,¢,t',t +t'/2,®, ¥ € [0,1] and when it meets the three conditions listed
below:

N1:min{E((9; * @) * (9, x W), t} = E((9; * @) * (9, * ¥)) < max{E(9; * ®), E (I, » ¥)},

N2: min{I((9; * @) * (9, * V), t + t'/2} = I*((¥1 * P) * (9, * ¥)) = min{I* (I, * P),I*(I, x ¥)},

N3: max{F((9; *x ®) * (9, *¥)),t'} = F (9, * @) * (9, x ¥)) < max{F(I; x ), F (9, » ¥)}.

To preserve everything simple, we substitute Q for t +t'/2".
Example 3.3. Let u = {0,9; * ®,9, * ¥} be a G-algebra represented by the following Cayley table.

Table 2. Cayley's Table of (G,*,0).
* 0 9P 9, *x¥

0 0 P 9, *x¥
9D 9, %P 0 9,*x¥
Y xW 9, x¥W 9, xD 0

A QNS set Nt = {< 9, E (9,),I'(91), F*(¥,) > 9, € G} =< EY I, F* > of G by taking t = 0.4 and
t'=1— Q= 0.6 is defined by

0 9, x D 9, * W
Et 0.3 0.1 0.4

0 Y, x P 9, x ¥
It 0.6 0.4 0.6

0 9,xd 9, x ¥
Ft 1 1 1

To verify that a set is Quantified Neutrosophic N-subalgebra ( Q*NNSU ) is standard procedure.

Proposition 3.4. Let Q¢ = {(8;, EX(9,), I(9,), F*(9,))} is a Q'NNSU of G, then V9, € G, E(0 * ®) <
Et (9, * ®), 10 * @) = I*(9; * @) and F!(0 x ®) < Ft(9; * ®). Thus, E*(0 * ®), I*(0 * ®) and F(0 =
®) are the upper and lower bounds of Ef(9; * ®),1°(9; * ®) and F'(9; * ®) respectively.

Proof. V9; € G, we have Ef((0x ®)) = min(E((0 * ®)),t) = min(E((9; * @) * (9, x P)),t) <
max{min(E((9; * ®)),t), min(E(®,; * ®),t)} = min(E®, * ®),t) = E*((9, * ) = EL((0 * D)) <
E*((91 * @)),1°(0 * ®) = min(I(0 * ®),t") = min(I((9; * ®) * (9, * )),t’) = min{min(I (I *

@), t"Ymin(I(I9; * ®),t")} = min(I (I, * ®),t") = [*(9, * ®) = [* (0« D) > [*(9; *®) and max(F(0 *
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D),Q0) = max(F((191 * @) x (9, * (D)), Q) < max{max(F (9, * @), ), max(F(9; * ®),Q)} = max(F(9; *
®),t) = FE(9, * D) = FE(0 * d) < FE(I, * D).

Theorem 3.5. Let Q" = {((¥,), E*(9,), 1*(9,), F*(91))} be a Q'NNSU of G. If there exists a sequence
{9, *®),} of G such that lim,_.E*((9; * ®),) = 0,lim, I ((9; * ®),) =1 and lim,_ . F*((9; *
®),,) = 0. Then E*(0) = 0,It(0) = 1 and F'(0) = 0.

Proof. Using Proposition, E'(0 * ®) < E*(9; * P)VI; € G, so therefore EF(0 * @) < E*((I; *
®),) for n € Z*. Consider, 0 < E*(0 * ®) < lim,_, ., E*((9; * P),) = 0. Hence, E*(0 * ®) = 0. Using
Proposition, I*(0* ®) = I*(¥9; * ®P)VY; € G, so therefore [°(0* ®) > I'((¥; * P),) for neZ*.
Consider, 1 = I*(0 * ®) > lim,_,,,I*((¥; * ®),,) = 1. Hence, 1*(0 * ®) = 1.

Again, using Proposition, F*(0 * ®) < Ft(9, * ®)VVI; € G, so therefore F'(0 * @) < F{((9; * P),,) for
n € Z*. Consider, 0 < F*(0 * @) < lim,_,,, F*((J; * ®),) = 0. Hence, F!(0 x ®) = 0.

Proposition 3.6. If a Q'NS set &' = (EY IS FY) of G is a Q'NNSU, then V9, € G, E*(0* ¥,) <
Et(9; * ®) and I*(0 ;) > I*(9; * ®) and F'(0 =9;) < Ft(9; * ®).

Proof. v9; € G,E*(0 *9;) = min(E (0 = 9,), t) < max{min(E(0),t), min(E(9; * ®),t)} =
max{min(E (9, * 9,),t), min(E (I, * @), t)} = max{min{min(E (9, * ®), t), min(E (I, *
@), )}, min(E (9; * ®),t)} = max(E (9, * ®),t) = E*(¥; *®) and [°(0*9;) = min(I(0 *9,),t") =
min{min(/(0),t"), min(/ (9, * ®),t")} = min{min(/ (I, * 9;),t"), min(I (I, * ®),t")} =
min{min{min(I(9; * ®),t"), min(I/(9, * ®),t" )}, min(I (9, * ®),t")} = min(I(I; * ®),t') = 1t (9, * D)
and F'(0*9;) = max(F(0 *9,),0) < max{max(F(0), ), max(F (9, * ®),Q)} = max{max(F (9, *
Y1), Q), max(F (9, * @), )} = max{max{max(F (9, * ®),2), max(F(J; * &),Q)}, max(F(9; * ®),Q)} =
max(F (9, * ®),Q) = Ft(9, * D)y

Lemma 3.7.Ifa QNS set Q¢ = (E%, I, FY) of G isa Q'NNSU, then Q¢((9; * @) = (9, x¥)) = Q¢ (191 *
(0 (0+9,))) V0,9, €6.

Proof. Let G be a G-algebra and 9,9, € G. Then, by lemma, we know that 9, = 0 * (0 * 9,).
Hence, Ef((9y * ®) * (9, x¥)) = E* (191 « (0% (0= 192))) and [*((9; * ®) * (9, xW)) =1I* (191 * (0
(0 = 192))) and FE((9; * @) x (9, *x¥)) = F* (191 « (0% (0= 192))). Therefore, Q¢((9; * @) * (9, * ¥)) =
04 (9, % (0% (0 %,)))

Proposition 3.8.If Q¢NS set Qf = (E%,I,F") of G isa Q'NNSU, then V9,9, € G, Ef(9; » (0 *9,)) <
max{E¢(9; * ®),EL (¥, *¥)} and (9, * (0% 9,)) = min{It (I, * ®), (¥, *¥)} and F(9; = (0 *
9,)) = max{Ft(9; » @), F{(9; * ¥)}.

Proof. Let ¥;,9,€G . Then we have Ef(9;*(0%9,))=min(E(9; *(0*9,)),t)=
max{min(E (9, * ®),t), min(E (0 * 9,), t)} < max{min(E(9; * ®),t), min(E(; * ¥),t)} = max{E*(¥9, *
®),E8 (9, * W)} and I(9; * (0 % 9,)) = min(I(9; * (0 % 9,)),t") = min{min(I (9, * P),t"), min(I(0 *
9,),t)} = min{min(I (¥, * ®),t"), min(I(9; * ¥), ")} = min{I* (9, * ®),I*(%; * W)} and F(I; * (0
192)) = max(F(191 * (0 * 192)), Q) < max{max(F (9; * @), Q), max(F (0 *9,), )} < max{max(F (9, *

@), t), max(F (9, * ¥),Q)} = max{F' (9, * ®), F*(9, * ¥)} by definition and proposition.

Proposition 3.9. If Q'NS set Q' = (E%, I, F*) of G meets all the conditions mentioned here., then Q°
refers to a Q'NNSU of G.
(1) EE(0 % 9,) < EX(9, * ®) and I¢(0 +9,) > I*(9, * @) and FE(0 *9,) < Ft(9, * D)V 9, € G.
(2) E*(9; * (0% 9,)) < max{E*(¥; * @), E* (9, » ¥)} and I°(9; * (0 *9,)) = min{I*(¥; x ), I°(9; *
W)} and F(9, * (0 x9,)) < max{F'(9; » ®), FL(I; x ¥)}VvY,,9, € G and t € [0,1].

Proof. Let Q'NS set Qt = (E%, I, F*) of G meets the statements listed above (1 and 2). then using
Lemma, we have E*((9; * ®) * (9, * ¥)) = {min(E((9, * @) * (¥, x¥)), t)} = {min(E (9, * (0 (0 =
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9,))).t)} < max{min(E (9, @), ), min(E(0 * 9,), £)} = max{min(E (D,  ®), t), min(EQ «  9,),)} =
max{E‘(9; * @), E' (9, * ¥)} and [*((¥; * @) * (9, * ¥)) = {min(I((¥; * ®) * (9, * ¥)), ')} =
{min (1 (9, % (0 (0+6,))),t')} = min{min(I (9, * ®), £), min(I(0 * 8,), ¢")} = min{min(/(8, *

®),t), min(I(0 * 9,),t")} = min{I* (9, * @), I*(; *¥)} and F((I; * ) * (I, * ¥)) = {max(F((9, *
D) * (I, * ‘P)),Q)} = {max (F (191 * (0 * (0 * 192))),9)} < max{max(F (9, * ®),t), max(F (0 *39,), )}

< max{max(F (9, * ®), ), max(F(0 *9,), )} = max{Ft (¥, * ®), FE(9; * ¥)}VVY,,9, € G. Hence, Q' is
Q'NNSU of G.

Theorem 3.10. The Q!NS set Q' = (EL, I FY) of G is a QINNSU of G & E' and I* and F! are
fuzzy N-subalgebras of G.

Proof. Let E',I* and J* are fuzzy N-subalgebra of G and 9,9, € G and ¢,t',Q € [0,1]. Then
Et((191 * @) * (9, * ‘P)) = {min(E((ﬁ1 * @) * (9, * ‘P)), t)} < max{min(E (9, * @), t), min(E (9, *
P), )} = min{E¢(9; * @), E* (9, * ¥)} and 10 * @) * (9, *¥)) = {min(1( (9, * ) * (I, *
¥)), ")} = min{min(I (9, * ®),t"), min(I (%, * ¥),t')} = min{I* (¥ * @), I*(9, * ¥)} and F((I; x P)
(9, * ‘P)) = {max(F((191 * @) * (9, * LI’)),Q)} < max{max(F (9; * ®),Q), max(F (9, *¥),Q)} =
max{Ft(9; * @), F* (I, * ¥)}.

Conversely, assume that Q' is a Q'NNSU of G. For any 9,9, € G,E*((9; x @) * (9, *¥)) =

{min(M((191 * @) x (9, * ‘P)), t)} < max{min(E (9, * ®), t), min(E (I, * P),t)} = max{E* (9, *
@),E'@®; * W)} and  [I((9; % D) * (9, W), I((91 * D) * (9, + W) = I*((8; * @) * (9, x P)) =
{min(1((®; * @) * (¥, *¥)),t')} = min{min(I (I9; * ®), t"), min(I (I, * W), t)} = min{[min(I (9, *

®),t"), min(I(I9; * ®),t"), min(I(9; * ¥),t"), min(J(I; * ¥),t")]} = [min{min(I (9, * &), t"), min(I (I, *
P), t")}, min{min(I (9, * ®),t"), min(I(9; *¥), t")}] = [min{I*(I; * ), I*(I9; * ¥)}, min{I*(9; * (I; *

), ID), I8(9; * ¥)}]. Thus, I'((¥;* @) * (9, *¥)) = min{I* (9, * @), I*(F; * W)}, I*((¥ * P) * (I, *
¥)) = min{l (9, * @), I°(%; *¥)} and Fi((O; *x P) * (9, * ¥)) = {max(F((¥; * @) » (9, *¥)), )} <
max{max(F (9; * @), Q), max(F(9; * ¥),Q)} = max{F (9, * ®), F* (9, * ¥)}. Hence E* and I* and F*
are fuzzy N-subalgebra of G.

Theorem 3.11. Let Q' = (E%, 15, F") be a Q'NNSU of G. Then the sets I, It and I,¢ which are
defined as It ={9; € G| E'(¥; x®) = E*(0)}, Lt ={9, €G | I'(¥;, *®) =1°(0)} and It ={9; €
G | Ft(9, * ®) = Ft(0)} are 9 NNSU of G.

Proof. Let 91,9, € I;t. Then EY(9; * ®) = E*(0) = EX(9; * ¥) and so, Ef((9; * @) * (9, * ¥)) =
{min(E((191 * @) * (9, * ‘P)), t)} < max{(min(E(wS1 * @), t)), (min(E(wS1 * ), t))} =E'(0) . By using
Proposition, as we know that E t((191 * @) * (9, * ‘P)) = E*(0) or equivalently (9, * ®) * (9, *¥) €
Igt.

Now we let 93,9, € I;c. Then I*(9; x @) =1(0) = I*(9; * ¥) and so, I*((9; x ) * (9, W)=
{min(l((ﬁl * @) * (9, * ‘P)), t')} = min{(min(l(ﬁl * ©), t’)), (min(1(191 * YY), t’))}min{lt(ﬁ1 *

@), I(9, * W)} = I'(0). By using Proposition, as we know that I*((9; * ®) * (9, * ¥)) = I¢(0) or
equivalently(d; * ®) * (9, * V) € I¢.

Again we let 9;,9, € Ic. Then Ft(9; x ®) = F{(0) = Ft(9, *¥) and so, F{((¥; * @) x (9, *¥)) =
{max(F((9; * @) = (9, * ¥)), t)} < max{(max(F(¥; * ®),t)), (max(F (9, * ¥),t))} = F*(0) . Again by
using Proposition, as we know that F t((191 * @) * (9, * ‘P)) = F'(0) or equivalently (9; * @) *
(9, * W) € It. Hence the sets Igcl;t and It are subalgebra of G.

Definition 3.12. Let 9° = (E4, 1%, F") be a T neutrosophic set of G. For s; € [0,1] and 9,9, € [0,1],
theset U(E' | 9,) = {9, € G | E*(9; * ®) = I, is called upper 9;-level of Q* and theset U(I* | (s;) =
{51 € G | I'(9, * @) = s, is called upper s,-level of Q* and L(F¢ | (t;))

={9, € G| Ft(9, x ®) < ¥, is called lower (9,)-level of Q*.
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Theorem 3.13. If Q¢ = (E*, 1%, F") is Q'NNSU of G, then the upper 9;-level, upper s,-level and lower
Y;-level of Q' are N-subalgebra of G.

Proof. Let 9;,9, € U(E*|9,). Then E'(¥; *®)>=9; and E'(9; *¥) =9, . It follows that
EY (91 * @) * (9, *¥)) = {min(E (9, * @) * (9, *¥)),t)} < max{min(E(®; * ®), EW¥; * ¥), )} =
max{min(E(9; * ®),t), min(E(9; * ¥),t)} = max{E: (9, * ®),EL(9; *¥P)} < 9; = (9, * D) * (9, *¥) €
U(E' | ¥,). Hence U(E® | ¥,) is a N-subalgebra of G. Let 93,9, € U(I* | s;. Then [*(9; * ®) > 5; and
Py *¥) =s; . It follows that I°((9;* @) x (9, *W)) = {min(I((&9; * @) x (9, x W), t)} =
min{min(I (9, * ®), (¥, * ¥),t")} = min{min(/ (9, * ®), t"), min(I (I, * ¥),t")} = min{I* (I, *
D), I* (W *P)} =51 = (91 * D) x (9, x¥) € U(I* | s;). Hence, U(I* | s; is a N — subalgebra of G. Let
91,9, € L(Ft 1 9;). Then F'(9; »®) <9, and F'(9; *¥) <9;. It follows that FE((9; * ®) x (I, *
‘P)) = {max(F((191 * @) * (9, * ‘P)), Q)} < max{max(F (9, * ®), F(9; * ¥), Q)} = max{max(F (9, *
®),t), max(F(9; * ¥),t)} = max{Ft (9, * ®),Ft (9, xP)} 2 9, = (91 * ) * (9, * W) € L(F* | 9;)
Hence, L(F' | 9,) is a N -subalgebra of G.

Theorem 3.14. Any G-subalgebra may be interpreted as the upper ¥, upper s;, and lower 9; levels
of some Q!NNSU.
Proof. Let X be a Q'NNSU of G, and Qf be a QNS set on G represented by

£t — [v] ifv, ext
1, otherwise

. [u] if9;, EXR’
0 otherwise

Ft — [v] ifd,; eN’
0, otherwise
vv,u,v € [0,1].
We discuss the following cases.

Case 1. If V9,9, €Dt then E'W;*®)=v,1;*®)=uF @, *P)=v and EW, *V¥) =
v, 1P, * W) = 1, F' (@, * W) =v . Thus EY((8; * ®) *x (9, * ¥)) = v = min{v, v} = min{E*(I; *
), EL (9, * W)} and I¢((9; * @) x (9, * W) = u = ming = min{I*(9; * ), 1°(¥; x¥)} and F((I; *
@) * (9, *¥)) = v = max{v,v} = max{Ft (9, » ), FE(I; x ¥)}.

Case 2. If 9; €' and 9, ¢ ¥¢, then E'(I; *®) = v, 159, *P) =y, F*(9; * ®) =v and E'(I, *
W) =0, *¥) = 0,F(9; x¥) = 1. Thus E*((9; * ®) * (9, *¥)) < 0 = max{v,0} = max{E*(9, *
), EL(9; * W)}, IH((9 * @) * (9, * ¥)) = 0 = min{y, 0} = min{I (9, * ), I*(I; * ¥)}

and FE((9; * @) x (9, *x ¥)) = 1 = max{v, 1} = max{F!(¥; * ®), F (9, » ¥)}.

Case 3. If 9, ¢ ¥* and 9, € ¥, then E'(9; *®) =0,1*(9; x®) = 0,F! (9, *®) =1 and E'(I, *
W) =, 150, * W) = 1, F* (9, * ¥) = v. Thus E*((9; * @) * (9, *¥)) < 0 = max{0,v} = max{E*(9;
D), EL(9; * W)}, IH((9 * @) * (9, *¥)) = 0 = min{0, u} = min{I* (¥, * ®),I*(¥; *¥)} and F{((O, *
) x (9, *¥)) = 1 = max{l,v} = max{Ft(9; x ®), F{ (9, * ¥)}.

Case 4. If 9, ¢ W and 9, & W¢, then Ef(9, * ®) = 0,1t(9, * d) = 0,Ft(9, *®) =1 and EL(I, *
Y) =018, *¥) = 0,Ft (¥, * W) = 1. Thus E*((¥; * @) * (9, *¥)) = 1 = max{0,0} = max{E*(¥I;
@), EL(9; * W)}, I*((9; * @) * (9, * ¥)) = [0,0] = min{[0,0]} = min{I*(I; x @), I'W; *¥)} and
FE((9y * @) * (9, *¥)) = 1 =max1,1 = max{F(9; x ®), F(9; * ¥)}. Therefore, Q° is a Q'NNSU of
G.
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Theorem 3.15. Let Q' be a Q'NS set on G that is presented in the proof of the aforementioned
theorem and Q' be a subset of G.Q" is a QNS cubic one of G if Q' is regarded as both the lower
and upper-level subalgebra of some Q‘NNSU of G.

Proof. Let Q' be a Q'NNSU of G, and 9;,9, € Q°. Then E‘(9; * ®) = Et(9, *WP) =y, I'(9; *
@) =19, *¥) =a and F'(9; * ®) = F(9, *¥) = B. Thus E((9; * ®) x (9, *¥)) = {min(E((®; *
) * (9, *¥)), t)} < max{min(E(9; * ®), t), min(E (9, * ¥),t)} = max{E* (9, *®), EE(9; x¥),} =
max{y,y} =y, = (0; * ®) * (9, * ¥) € Q4 I((¥; * ®) * (¥, * ¥)) = {min(I((®; * ®) * (¥, * ¥)),t")} =
min{min(I (9, * ®), (¥, * ¥),t")} = min{min(I (9; *®),t"), min(I (I, * ¥),t")} = min{I* (I, * ®), (Y, *
YY)} = mina,a = «a and Ft((191 * @) * (9, * ¥)) = {max(F((ﬁ1 * @) * (9, * ‘P)), Q)} <
max{max(F(9; * ®),Q), max(F(9; *¥),Q)} = max{F'; x ®),Ft(9; * ¥),} = max{B, B} = B,=> (I; *
@) * (9, * ¥) € Q°. Hence, the proof is completed.

4. Modified Concept of Union and Intersection for Q'NS Se

For the suggested notion of Q'NS N-subalgebra, the concepts of P-union, P-intersection, R-
union, and R-intersection are modified in this section to Py-Union, Py--intersection, Ry- Union,
and Ry-intersection.

Definition 4.1. For any Q'NS set Qf = {< Uy, Ef (9,), I} (9,), Ff (9;) >| 9, € G} =< EL I, Ff > for i €
I,, the structures of Py--Union, Py--Intersection, Ry-Union, and Ry- Intersection are respectively
defined as follows:

e Py-union —Up, Of = {(9:; (Vieln E)(®,), (UiEIn 1)(®,), (ViEIn F)(®)) 19, € G},

i€ly

* Ry-union ~Ugy Qf = {(191i (Aieln E)(l%): (Uieln 1)(191)' (/\ieln F)(191)> 19, € G},

i€l

e Py-intersection —»np, QF = {(93; (Aier, E) (1), (Nier, 1) 1), (Aer, F)(91)) 1 95 € G},
* Ry-intersection —Ng, Q = {(191; (Vieln E)(l?l), (ﬂieln 1)(191), (ViE,n F)(191)> |9, € G}.
i€l
Example 4.2. Suppose there are three Q'NS sets Qf = {< V;, Ef(91), [{(91), Ff (91) >I9; € G} =<
Elt' Ilt' Flt >, Qé ={< ¥, Ezt(ﬁ1),1£(191):F2t(191) >|9; € G} =< Ezt: Izt ’ th > and Q_g, ={<
01, E5(91), I5(91), F5(91) >1 9, € G} =< E3, 1§, F§ > as:

Table 3. QNS sets Qf;i =1,2,3.
E*(9,) I*(9;) F*(¥,)

0t 0.5 03 0.1
o5 0.9 02 1
o5 0.6 04 0.7

Then the Py-Union, Ry-Union, Py-intersection, and Ry-intersection of the above three sets is
represented by the following Table 4:

Table 4. Tabular representation of Py-Union, Ry-Union, Py-intersection, and Ry-intersection.

E'(W) ')  F'(@®)

Py-union 0.9 0.4 1

Ry-union 0.5 0.4 0.1
Py-intersection 0.5 0.2 0.1
Ry-intersection 0.9 0.2 1

Now, we examine that the Py-Union, Py-intersection, Ry-Union, and Ry-intersection of Q! are
Q" NNSUs of G with the development of following theorems.
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Theorem 4.3. Let Qf = {(9y, (Ef), (I' ), (F)) | 9; € G} where i € k, is a family of sets of Q*NNSU of
G If  inf{min{(EH)®, * @), (EN(®; * ¥)}} = min{inf(E}) (9, * ®), inf(EF) (9, * )}  and
inf{max{(F{) (¥, * ®), (F/)(®; * ¥)}} = max{inf(F}) (9, * ®), inf(F/)(¥; * ¥)} and sup{min{(J® )(I; *
@), (I' ) (¥ * ¥)}} = min{sup(I® ) (¥, * @), sup(I* ) (¥, * ¥)}VY; € G, and t € [0,1] then Ry-union of
Qf isalsoa Q'NNSU of G.

Proof. Let Qf = {(9y, (ED), (" ), (F))) 1 9, € G} where i € k, and t € [0,1] is a family of sets of
Q'NNSU of G such that inf{min{(Ef)(9, * ®), (E})(¥; * ¥)}} = min{inf(E})(¥; x ®),inf(EF) (9, * ¥)}
and inf{max{(F{) (9, * ®), (F))(¥; * ¥)}} = max{inf(F!) (9, *®), inf(F)(¥; * ¥)} and
sup{min{(I¢ ) (¥; * @), (I* ) (¥, * ¥)}} = min{sup(® ) (¥, * P)sup(I* ) (¥, *¥)}V9;, €EG, and tE€
[0,1]. Then for 9,,9, € G and t € [0,1].

(A ED) (@ + @) * (9 ¥)) = (A (min(E;, (9, * @) * (8 * W)

= inf{(min(Ei, t)((191 * @) * (9, * ‘P)))}
< inf{max{min(Ei, )9 * ®), min(E;, t) (9, * ‘I’)}}
max{inf(min(Ei, t) (I, * dJ)), inf(min(El-, t) (I, * ‘P))}
max{inf((E}) (9, * ®)), inf((EH) (¥, * ¥))}
max{A (Eit)(ﬁl * @),A (Elt)(ﬁ1 * W)}
A (ED((9; * @) * (9, * V) < max{A (E)) (0, * P),A (E))(®; * ¥)}
and
(VU D)@ * @) * (9, * W) = (U (min(L;, t))((F; * ) * (I, * P))
= sup{min(li, t’)((191 * @) * (9, * ‘P))}
= sup{min{min(li, t")(; * @), min(l;, t") (I, * ‘I’)}}
= min{sup(min([i, t")(9, * dD)), sup(min(li, t") (09, * ‘I’))}
= min{sup(()) (¥ * ®)), sup(() (B, = ¥))}
= min{U (I))(8, * ®),U IO, * ¥}
U () (@, * ) * (9, * ¥)) = min{u (I (W, * ®),u (), * ¥)}
and
(A FD) (@1 * @) * (9, x V) = (A (max(Fy, 2))((9; * @) * (39, * V)
= inf{max(Fi,Q)((ﬁ1 * @) * (9, * LP))}
< inf{max{max(Fi, Q) (I, * ), max(F;, Q) (I, * LP)}}
= max{inf(max(Fi, Q)(9, * Cb)), inf(max(]l-, Q)9 * ‘P))}
= max{inf((F$) (9, * ®)), inf((FH) (9, * ¥))}
= max{A (F))(8, * ®),A (F(9, * ¥)}
A (FH((9; * @) * (9, * ¥)) < max{A (FF)(®; * ®)A (F(®, * ¥)}
which show that Ry-union of Qf isa Q*NNSU of G.

Theorem 4.4. The Ry-intersection of any set of Q*'NNSU of G isalsoa Q*NNSU of G.
Proof. Let Qf = {(I9,, Ef, I'i,F}) | 9, € G} where i € k, be a set of Q® NNSU of G and 9,,9, € G
and t,®,¥ € [0,1]. Then

vV DDy * @) * (8 + W) =V (min(E;, £)((9 * @) + (9,  ¥)))
= sup (min(Ei, t)((ﬁ1 * @) * (9, * ‘P)))
< sup {max{(min(Ei, t) (9, * Cb)), (min(Ei, t) (I, * ‘P))}}
= max{sup(min(Ei, t) (I, * CD)), sup(min(Ei, (9, * ‘P))}
= max{sup(E;) (9, * @), sup(E)) (9, * ¥)}
= max{V (E{)(®; * @),V (E{)(¥; * ¥)}

=V (ED((@; * @) * (9, * V) < max{V (E) (@, * ®),V (E))(9; * ¥}

Neha Andaleeb Khalid and Muhammad Saeed, An Approach for Hybridizing N-Subalgebra with Quantified Neutrosophic
Set using G-Algebra



Neutrosophic Systems with Applications, Vol. 25, 2025 25

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

and
(N U9 * @) * (9, + W) =n (minly, £)((8; * @) * (I, *¥)))
= inf (min(li, t’)((191 * @) * (9, * ‘{J)))

inf{min{(min(li, t") (09, * CD)), (min(li, t") (9, * ‘P))}}
= min{inf(min(]i, t") (I, * <D)), inf(min([i, t") (I, * ‘P))}
min{inf(I}) (9, * @), inf(I}) (¥, * ¥)}
min{n ()@, * ®),n ()@, * ¥)}
=20 IH)(@1 * @) * (9, * ¥)) = min{n ()@ * ®),n (), * ¥)}
and
vV (FO((W0 % @) + (9 + W) =V (max(f;, ) (9 * @) * (9, * ¥)))
= sup (max(Fl-, Q)((191 * @) * (9, * ‘P)))
< sup {max{(max(Fl-, Q)9 * dJ)), (max(Fl-, Q)(9, * ‘I’))}}
= max{sup(max(F;, Q) (9, * ®)), sup(max(F;, Q) (¥; * ¥))}
max{sup (F{)(®; * @), sup(F)(®; * ¥)}
max{V (F/) (@, * ®),v (F{)(®, * ¥)}
=2V (FH((9; * ®) * (9, * ¥)) < max{Vv (F/)(®; * D),V (F/) (¥, * ¥)}
Which show that Ry-intersection of Qf isa Q‘NNSU of G.

v

Theorem 4.5. Let Qf = {(9, (ED), (It ), (F)) 1 9; € G} is a set of Q' NNSU of G, where i € k and
t € [0,1]. If inf {min{(E))(®; * ®), (E) (¥, * ®)}} = min{inf(Ef) (9, * @), inf(E) (9, * )}

and inf{max{(F})(®; * ®), (F)) (¥, * ®)}} = max{inf(F{) (9, * @), inf(F) (9, * ®)}VY; € G, then Py -
intersection of Q¢ isalsoa Q*NNSU of G.

Proof. Suppose that Qf = {(9y, (Ef), (I* ), (F))) 1 9, € G} where i € k, is a family of sets of
Q'NNSU of G such that inf{min{(Ef)(9; * @), (E})(¥; * ®)}} = min{inf(E))(9; * @), inf(Ef)(9, * P)}
and inf{max{(F{)(®, * ®), (F/)(®; * ®)}} = max{inf(F}) (9, * ®),inf(F)(®; * ®)}v9;,9, €G and t €
[0,1]. Then

(A ED) (W * @) % (8 + W) =A (min(E;, £)((9, * @) * (I, + ¥)))
= inf(min(Ei, t)((ﬁ1 * @) * (9, * ‘P)))

< inf{max{(min(Ei, t) (9, * Cb)), (min(El-, t) (9, * ‘P))}}
= max{inf(min(Ei, t) (I, * d))), inf(min(El-, t) (I, * ‘P))}
= max{inf(E}) (¥, * ®),inf(E}) (9, * ¥)}
= max{A (ED) (8 * D) (D@, * ¥))

A (ED(@; * @) * (9, * V) < max{A (E) (@, * ®)A (E)) (9, * ¥)}

and

(N U)W * @) * (8 + W) =n (min(l;, £) ([0 * @) + (@, + ¥)))

= inf (min(li, t’)((191 * @) * (9, * LP)))

= inf{min{(min([i, t") (09, * Cb)), (min([l-, t") (9, * ‘P))}}
min{inf(min(li, (9, * CD)), inf(min(li, (0, * ‘P))}
min{inf(1}) (9, * ®), inf(I}) (¥; * ¥)}
min{n (I{) (& * ®),n (I{) (I, * ¥)}

=0 IH)(®; * @) * (9, * ¥)) = min{n ()@ * ®),n (), * ¥)}
and
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(A FO) (0, * @) * (8 * W) =A (max(F, Q) (8 * @) * (I, < ¥)))
= inf (max(Fl-, Q)((191 * @) * (9, * ‘P)))

< inf{max{(max(Fi, Q)9 * CD)), (max(Fl-, Q)(9, * ‘P))}}
= max{inf(max(Fi,Q) (9, * <D)), inf(max(FL-, Q)9 * ‘P))}

= max{inf(F}) (9, * @), inf(F))(¥; * ¥)}
= max{A (F) (&, * ®),A (F)(®, * ¥)}
A (FH(@01 * @) * (9, +¥)) < max{A (F)(@; * ®)A (F (O, * )}
which show that Py-intersection of Q¢ isa Q9 NNSU of G.

Theorem 4.6. Let Q° ; = {(9, (E}), (I*;), (F!)) | 9, € G} where i € k, is a family of sets of Q*NNSU of

G.If
sup{min{(E{) (9; * ®), (E) (¥, * ¥)}} = min{sup(Ef) (I, * @), inf(E) (9, *¥
sup{min{(I* ) (¥; * ), (I* ))(¥; * ¥)}} = min{sup(I* })(¥; * ®), sup(I* ) (¥, * ¥)}

and sup{max{(F})(9, * @), (F)(¥; * ¥)}} = max{sup(F})(¥; * @), sup(F))(¥; * ¥)}v9,,9, € G, then

Py-union of Qf isalsoa Q'NNSU of G.

Proof. Let Qf = {(9,, (Ef), ")), (F})) | 9, € G} where i € k, is a family of sets of Q*NNSU of G

such that
sup{min{(E{) (¥, * ), (E))(®¥; * ¥)}} = min{sup(E}) (9, * ®), sup(E))(9; *¥)} ,

sup{min{(1¢ ) (¥; * @), (I* )(¥; * ¥)}} = min{sup(I* ) (I, * ®),sup(I* ) (¥, * ¥)}

and

SUP{maX{(Fit)(i% * D), (Fit)(ﬁl * 1p)}} = maX{sup(Fit)(ﬁl * D), SUP(Fit) (¥, * V)}IVI,, 0, €

Then for 9;,9, € G, and t € [0,1].
vV (B * @) * (9, + W) =V (min(E;, ©)((9; * @) * (I, « ¥)))
= sup (min(Ei, t)((191 * @) * (9, * ‘P)))

< sup {max{(min(El-, t) (9, * Cb)), (min(El-, t) (9, * ‘P))}}

= max{sup(min(Ei, t) (I, * d))), sup(min(Ei, )9, * ‘P))}

= max{sup(E{) (9, * @), sup(E{) (9, * ¥)}
= max{V (E{)(¥; * @),V (E}) (9, * ¥)}
=V (ED (9 * @) * (9, x W) < max{V (E)) (9, * @),V (ED(®; *x ¥)}
and
(U U (W * D) * (9, * ¥)) =u (min(li, £)((0, % @) * (9, + ¥)))

= sup (min(l;, ")((; * @) * (9 * ¥)) )

> sup {min{(min(li, (0, * dD)), (min(li, (9, * ‘P))}}
= min{sup(min(li, t") (9, * Cb)), sup(min(ll-, t") (09, * ‘P))}

= min{sup(I}) (9, * ®), sup(If)(¥; * ¥)}
= rmin{U (I") (¥; * ®),U (IH) (9, * ¥)}
=U (ID(®; * @) * (9, * W) = minfu ()9, * ®),U (IH) (¥, * ¥)}
and
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vV (FO((W0 * @) + (9, + ¥)) =v (max(F;, @) (9 * @) * (9, + ¥)))
= sup (max(Fl-, Q)((191 * @) * (9, * ‘P)))
< sup {max{(max(Fl-, Q)9 * CD)), (max(Fl-, Q)(9, * ‘P))}}
= max{sup(max(Fi,Q) (9, * <D)), sup(max(Fi,Q) (9, * ‘P))}
max{sup (F{) (¥, * @), sup(F)(®¥; * ¥)}
= max{V (F))(®; * ®),v (F)) (¥, * ¥)}
=V (F)(@; * @) * (9, +¥)) < max{v (FH(@; * @),V (FH (B, * ¥)}
Which show that Py-union of Qf isa QY NNSU of G.

5. Conclusion

This research article introduces a modified algebraic structure for neutrosophic sets, specifically
the Q'NS N-subalgebra structure within the context of G-algebra. The proposed structure, along with
its modified operations and concepts, expands the theoretical framework and offers promising
avenues for applications in decision-making, computer science, and mathematics. Future research
directions include exploring multi-attribute decision-making, real-world applications, efficient
algorithms, integration with machine learning, formalization of mathematical properties, and
comparative studies. These advancements will deepen our understanding and enhance the
practicality of the Q*NS N-subalgebra framework, driving innovation and progress in various fields.
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