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Abstract: Graph characteristics are often studied through various parameters, with ongoing research 

dedicated to exploring these aspects. Among these, graph width parameters—such as treewidth—

are particularly important due to their practical applications in algorithms and real-world problems. 

A hypergraph generalizes traditional graph theory by abstracting and extending its concepts [77]. 

More recently, the concept of a SuperHyperGraph has been introduced as a further generalization of 

the hypergraph. Neutrosophic logic [133], a mathematical framework, extends classical and fuzzy 

logic by allowing the simultaneous consideration of truth, indeterminacy, and falsity within an 

interval. In this paper, we explore Superhypertree-width, Neutrosophic treewidth, and t-

Neutrosophic tree-width. 

Keywords: Neutrosophic Graph; Hypertree Width; Superhypertree Width; Tree-width; 

Neutrosophictree-width. 

 

1. Introduction 

1.1 Graph Width Parameters 

Graphs have been extensively researched in recent years [52], with particular emphasis on 

characterizing their properties. Graph characteristics are frequently analyzed using various 

parameters, and ongoing studies aim to deepen our understanding of these aspects. Analyzing graph 

parameters is essential for understanding the structural properties of graphs, which is crucial for 

solving computational problems in fields like network optimization, database theory, and machine 

learning applications (cf. [73]). 

Among these parameters, graph width parameters such as tree-width [25,27,28,91,126–128], cut-

width [85, 98], clique-width [45], modular-width [3], tree-cut-width [68, 99], boolean-width 

[4, 155], bandwidth [30, 44, 124], rank-width [93, 116, 118], and path-width [48, 94, 152] are 

particularly significant due to their practical applications in algorithms and real-world problems. This 

has fueled active research, focusing on how these parameters influence computational efficiency and 

problem-solving methods. 

For instance, tree-width measures how closely a graph resembles a tree, while path-width shows 

how similar a graph is to a path. Graph width parameters often correspond to efficient, manageable 

graph structures, which is why they have been the focus of extensive research for many years (e.g., 

[79, 85, 124, 152–154]). Given this background, research on graph width parameters is of great 

importance. 

 

1.2 Hypergraph and SuperHyperGraph 

A hypergraph is a generalization of a conventional graph, extending concepts from graph theory 

[22,77]. A hypergraph is a generalization of a graph where edges, called hyperedges, can connect any 

number of vertices, not just two. Formally, a hypergraph is defined as H = (V, E), where V is the vertex 
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set and E is the set of hyperedges. Hypergraphs are widely used in fields such as machine learning 

and network analysis [41, 69, 87, 100]. 

In many real-world applications, evaluating how closely a graph approximates a tree structure 

is essential. This has led to significant research on Hypertree-width [6, 72, 74, 103, 161] and 

Hyperpath-width [5, 105, 115], which quantify how much a hypergraph resembles a tree or a path. 

Hypertree width, in particular, plays a key role in database systems and practical applications [73, 

74]. 

Recently, the concept of a SuperHyperGraph has emerged as a further generalization of the 

hypergraph, attracting significant research interest similar to that seen with hypergraphs [66, 82–84, 

137–139, 143, 149]. It generalizes hypergraphs, allowing vertices to be individual elements or subsets 

(super-vertices), and edges to connect groups of vertices or super-vertices. This structure models 

complex relationships. Similar to hypergraphs, various applications are also being explored [61, 84]. 

 

1.3 Neutrosophic Graph and Neutrosophic HyperGraph 

In any scientific field, a classical theorem defined within a specific space is a statement that holds 

true for 100 percent of the elements in that space. However, when applied to real-world scenarios, 

various constraints often arise, leading to the need for considering uncertain concepts, such as fuzzy 

sets [162–166], Vague set [29, 86, 167], plithogenic sets [1, 67, 136, 149], Rough sets [119–122], soft sets 

[106], Hypersoft set [141, 142], and neutrosophic sets [133–135, 146, 147] To address uncertainty and 

the relationships between concepts, several graph classes have been introduced, including Fuzzy 

Graphs [109, 125], Vague Graphs [131], and Rough Graphs [49]. Among these, this paper focuses on 

Neutrosophic Graphs [89]. 

A Neutrosophic Set generalizes the concept of fuzzy sets by introducing three membership 

functions: truth, indeterminacy, and falsity, allowing for a more nuanced representation of 

uncertainty [18, 150]. In recent years, Neutrosophic Graphs [11, 34, 76, 88, 130, 133, 140, 147, 148] and 

Neutrosophic Hypergraphs [8, 12, 102, 112] have been actively studied within Neutrosophic Set 

Theory. Neutrosophic refers to a mathematical framework that generalizes classical and fuzzy logic, 

simultaneously handling degrees of truth, indeterminacy, and falsity within an interval. These 

graphs, as generalizations of Fuzzy Graphs [110, 129], have garnered attention for their potential 

applications similar to those of Fuzzy Graphs. The concept of a Neutrosophic Super- hypergraph, 

which further generalizes Neutrosophic Hypergraphs, has also been the subject of active research in 

recent years [112, 144]. Due to the significance of Neutrosophic graphs, many other graph classes 

have also been proposed, such as those in [32, 32, 47, 58, 60, 65]. 

 

1.4 Our Contributions 

Research on tree and path structures in Neutrosophic Graphs and SuperHyperGraphs is still in 

its early stages, and while several graph parameters have been proposed, there remains significant 

room for further exploration. In this context, [59] introduced the concept of SuperHyperTree-width. 

We also explore Neutrosophic Graphs and Neutrosophic Hypergraphs. By applying treewidth 

and path width to these types of graphs, we aim to accelerate research and applications related to 

graph width parameters, as well as to Neutrosophic Graphs and SuperHyperGraphs. This paper is 

structured as follows: Section 2 provides definitions and examples of general graphs, fuzzy graphs, 

and hypergraphs. Section 3 reviews Neutrosophic Graphs and SuperHy- perGraphs, and defines and 

examines properties such as Neutrosophic tree-width, Neutrosophic hypertree-width, and n-

Neutrosophic tree-width. Section 4 discusses future tasks. 

 

2. Preliminaries and Definitions 

In this section, we briefly explain the definitions and notations used in this paper. 
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2.1 Basic Graph Concepts 

A graph G is a mathematical structure consisting of nodes (vertices) connected by edges, 

representing relationships or connections. In a graph G, V (G) denotes the set of vertices, and E(G) 

denotes the set of edges. The notation G = (V, E) indicates that the graph G is defined by the pair of 

sets V (vertices) and E (edges). 

In this paper, we provide several essential graph theory definitions and simple examples 

necessary for the discussions that follow. 

Definition 2.1. A subgraph is formed by selecting specific vertices and edges from a graph. 

Definition 2.2. A graph G = (V, E) is called connected if, for every pair of vertices u, v ∈ V , there 

exists a path in G connecting u and v. In other words, a graph is connected if there is a sequence of 

edges that allows traversal between any two vertices in the graph. If no such path exists between certain 

vertices, the graph is called disconnected. 

Definition 2.3. (cf. [42]) A path is a walk with no repeated vertices, a cycle is a closed path, and 

a tree is a connected acyclic graph. 

Definition 2.4 (Tree). (cf. [158]) A tree is a connected, acyclic undirected graph. In other words, a 

tree is a graph where there is exactly one path between any two vertices, and no cycles exist. 

Additionally, a tree with n vertices has n − 1 edges. 

Properties of Trees: 

 There is exactly one path between any two vertices in a tree. 

 A tree contains no cycles, and removing any edge from a tree will disconnect it. 

 Adding an edge to a tree will create exactly one cycle. 

For more basic graph notation and concepts, please refer to [19, 42, 52, 75]. 

 

2.2 Hypergraph Concepts 

A hypergraph is a generalization of a graph where edges, called hyperedges, can connect any 

number of vertices, not just two. This structure is useful for modeling complex relationships in various 

fields like computer science and biology [56, 71, 123]. The definition is provided below. 

Definition 2.5. [31] A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty set V 

(H) of vertices and a set E(H) of subsets of V (H), called the hyperedges of H. In this paper, we 

consider only finite hypergraphs. 

Example 2.6. Let H be a hypergraph with vertex set V (H) = {A, B, C, D, E} and hyperedge set 

E(H) = {e1, e2, e3}, where: 

e1 = {A, D}, e2 = {D, E}, e3 = {A, B, C}. 

Thus, H is represented by the pair H(V, E) = ({A, B, C, D, E}, {{A, D}, {D, E}, {A, B, C}}). 

Definition 2.7. [31] For a hypergraph H and a subset X ⊆ V (H), the sub hypergraph induced by 

X is defined as H[X] = (X, {e ∩ X | e ∈ E(H)}). We denote the hypergraph obtained by removing X 

from H as H \ X := H[V (H) \ X]. 

Definition 2.8. A hyperpath in a hypergraph H = (V (H), E(H)) is a sequence of alternating vertices 

and hyperedges: 

(v0, e1, v1, e2, v2, . . . , et, vt) 

Such that: 

 For each consecutive pair vi−1 and vi, there is a hyperedge ei ∈ E(H) where both vertices 

vi−1 and vi are contained in ei, i.e., vi−1, vi ∈ ei, 

 vi−1 /= vi, meaning no vertex is repeated consecutively in the path. 

A hyperpath is called a simple hyperpath if all vertices vi and all hyperedges ei are distinct. 

Definition 2.9. (cf. [6, 104]) A hypertree T is a connected hypergraph in which the removal of 

any hyperedge from T results in a disconnected hypergraph. Specifically: 
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 For any hyperedge e ∈ E(T), if e is removed, the resulting sub hypergraph is no longer 

connected. 

 A hypertree can contain cycles, as long as removing any hyperedge disconnects the 

hypergraph. 

Example 2.10. Let T be a hypergraph with vertex set V (T ) = {A, B, C, D, E} and hyperedge set 

E(T ) = {e1, e2, e3}, where: 

e1 = {A, B}, e2 = {B, C, D}, e3 = {D, E}. 

In this case, T is a hypertree because removing any hyperedge e1, e2, or e3 would disconnect the 

hypergraph. 

For more basic hypergraph notation and concepts, please refer to [31, 46]. 

 

2.3 Tree-width and Hypertree-width 

We now define Tree-width and Hypertree-width. Tree-width measures how closely a graph 

resembles a tree by representing the graph in a tree-like structure with minimal width [25– 27, 126, 

128]. Hypertree width generalizes tree width to hypergraphs, quantifying how well a hypergraph 

can be decomposed into a tree-like structure [6, 72, 74, 103, 161]. The formal definitions of Tree-width 

and Hypertree-width are provided below. For more details on Treewidth, please refer to [25, 26]. 

Definition 2.11. [128] A tree-decomposition of an undirected graph G is a pair (T, W ), where T 

is a tree, and W = (Wt | t ∈ V (T )) is a family of subsets that associates with every node t of T a subset 

Wt of vertices of G such that: 

(T1) ∪t∈V (T ) Wt = V (G), 

(T2) For each edge (u, v) ∈ E(G), there exists some node t of T such that {u, v} ⊆ Wt, and (T3) For 

all nodes r, s, t in T , if s is on the unique path from r to t then Wr ∩ Wt ⊆ Ws. 

The width of a tree decomposition (T, W ) is the maximum of |Wt| − 1 over all nodes t of T . The 

tree-width of G is the minimum width over all tree-decompositions of G. 

Example 2.12. Consider the following graph G: 

V (G) = {v1, v2, v3, v4, v5} 

E(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v4, v5)} 

We want to find a tree-decomposition for this graph G. Let T be a tree with three nodes 

t1, t2, t3. We define the bags Wt as follows: 

Wt1 = {v1, v2, v3}, Wt2 = {v2, v3, v4}, Wt3 = {v4, v5} 

 (T1): The union of all bags covers all vertices of G: 

Wt1 ∪ Wt2 ∪ Wt3 = {v1, v2, v3, v4, v5} = V (G) 

 (T2): For each edge (u, v) ∈ E(G), there exists a bag that contains both u and v: 

(v1, v2) is in Wt1 , 

(v1, v3) is in Wt1 , 

(v2, v4) is in Wt2 , 

(v3, v4) is in Wt2 , 

(v4, v5) is in Wt3 . 

 (T3): For all nodes r, s, t in T , if s lies on the unique path from r to t, then: 

Wr ∩ Wt ⊆ Ws 

This is satisfied, as Wt1 ∩ Wt3 = {v4} ⊆ Wt2 . 

The size of each bag is: 

|Wt1 | = 3, |Wt2 | = 3, |Wt3 | = 2 

The width of this tree decomposition is the maximum bag size minus 1: 

width = max(3 − 1, 3 − 1, 2 − 1) = 2 
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Definition 2.13. [6] A generalized hypertree decomposition of H is a triple (T, B, C), where (T, 

B) is a tree-decomposition of H and C = (Ct)t∈V (T ) is a family of subsets of E(H) such that for every t ∈ 

V (T ) we have Bt ⊆ ∪Ct. Here ∪ Ct denotes the union of the sets (hyperedges) in Ct, that is, the set 

{v ∈ V (H) | ∃e ∈ Ct : v ∈ e}. The sets Ct are called the guards of the decomposition. The width of 

the decomposition (T, B, C) is max{|Ct| | t ∈ V (T )}. The generalized hypertree width of H, denoted 

by ghw(H), is the minimum of the widths of the generalized hypertree decompositions of H. 

Definition 2.14. [6] A hypertree decomposition of H is a generalized hypertree decomposition (T, 

B, C) that satisfies the following special condition: (∪Ct) ∩∪u∈V (Tt) Bu ⊆ Bt for all t ∈ V (T ). 

Recall that Tt denotes the subtree of the T with root t. The hypertree width of H, denoted by hw(H), is 

the minimum of the widths of all hypertree decompositions of H. 

 

2.4 Fuzzy Graph 

A Fuzzy Graph represents relationships involving uncertainty by assigning membership degrees 

to both vertices and edges, allowing for more flexible and nuanced analysis. Due to its significance, 

Fuzzy Graphs have been the subject of extensive research [9, 10, 14–17, 23, 24, 92, 101, 107, 111, 151, 157]. 

The formal definition of a Fuzzy Graph is as follows [108, 129]. 

Definition 2.15. [129] A fuzzy graph G = (σ, µ) with V as the underlying set is defined as follows: 

 σ : V → [0, 1] is a fuzzy subset of vertices, where σ(x) represents the membership degree 

of vertex x ∈ V. 

 µ : V × V → [0, 1] is a fuzzy relation on σ, such that µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ 

V , where ∧ denotes the minimum operation. 

The underlying crisp graph of G is denoted by G∗ = (σ∗, µ∗), where: 

 σ∗ = sup p(σ) = {x ∈ V : σ(x) > 0} 

 µ∗ = sup p(µ) = {(x, y) ∈ V × V : µ(x, y) > 0} 

Definition 2.16. A fuzzy subgraph H = (σi, µi) of G is defined as follows: 

 There exists X ⊆ V such that σi : X → [0, 1] is a fuzzy subset. 

 µi : X × X → [0, 1] is a fuzzy relation on σi, satisfying µi(x, y) ≤ σi(x) ∧ σi(y) for all x, y 

∈ X. 

Example 2.17. (cf. [35]) Consider a fuzzy graph G = (σ, µ) with four vertices V = {v1, v2, v3, v4}, as 

depicted in the diagram. 

The membership degrees of the vertices are as follows: 

σ(v1) = 0.1, σ(v2) = 0.3, σ(v3) = 0.2, σ(v4) = 0.4 

The fuzzy relation on the edges is defined by the values of µ, where µ(x, y) ≤ σ(x) ∧ σ(y) 

for all x, y ∈ V . The fuzzy membership degrees of the edges are as follows: 

µ(v1, v2) = 0.1, µ(v2, v3) = 0.1, µ(v3, v4) = 0.1 

µ(v4, v1) = 0.1, µ(v2, v4) = 0.3 

In this case, the fuzzy graph G has the following properties: 

 Vertices v1, v2, v3, v4 are connected by edges with varying membership degrees. 

 The fuzzy relations ensure that µ(x, y) for any edge (x, y) does not exceed the minimum 

membership of the corresponding vertices. 

In [62], Fuzzy Tree-width was defined as an extension of Tree-width for Fuzzy Graphs, serving 

as a graph width parameter. The definition is provided below. 

Definition 2.18. [62] Let G = (σ, µ) be a fuzzy graph, where σ : V → [0, 1] is a fuzzy subset 

representing vertex membership, and µ : V × V → [0, 1] is a fuzzy relation on σ. A fuzzy tree-

decomposition of G is a pair (T, {Bt}t∈T ), where: 

 T = (I, F ) is a tree with nodes I and edges F . 

 {Bt}t∈T is a collection of fuzzy subsets of V (called bags) associated with the nodes of 
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T such that: 

i). For each vertex v ∈ V , the set {t ∈ I : v ∈ Bt} is connected in the tree T . 

ii). For each edge (u, v) ∈ V × V with membership degree µ(u, v) ≤ σ(u) ∧ σ(v), there exists 

some node t ∈ I such that both u and v are in Bt, and the membership degree of u and 

v in Bt is at least µ(u, v). 

 

The width of a fuzzy tree-decomposition (T, {Bt}t∈T ) is defined as max
𝑡∈𝐼 

( max
𝑣 ∈ 𝐵𝑡 

 µ(𝑣, 𝐵𝑡)  −  1), 

Where µ(v, Bt) represents the maximum membership degree of vertex v in the fuzzy set Bt. The 

fuzzy treewidth of the fuzzy graph G is the minimum width among all possible fuzzy tree-

decompositions of G. 

Example 2.19. Definition of Fuzzy Graph: Consider the following Fuzzy Graph G = (σ, µ), which 

has vertices and edges defined as follows: 

V = {v1, v2, v3, v4} 

 

σ(v1) = 0.1, σ(v2) = 0.3, σ(v3) = 0.2, σ(v4) = 0.4 

 

µ(v1, v2) = 0.1, µ(v2, v3) = 0.1, µ(v3, v4) = 0.1 

µ(v4, v1) = 0.1, µ(v2, v4) = 0.3 

Given this Fuzzy Graph G, we aim to construct a Fuzzy Tree-Decomposition (T, {Bt}t∈T ). We will 

set the following bags {Bt}t∈T and the tree T : 

Bags: 

B1 = {v1, v2}, B2 = {v2, v3, v4}, B3 = {v4, v1} 

 B1 and B2 share the vertex v2 and are connected. 

 B2 and B3 share the vertex v4 and are connected. 

Verification of the Connectivity Condition: 

 Vertex v1: Appears in B1 and B3, and these bags are connected in T . 

 Vertex v2: Appears in B1 and B2, and these bags are connected. 

 Vertex v3: Appears only in B2. 

 Vertex v4: Appears in B2 and B3, and these bags are connected. 

Thus, the connectivity condition is satisfied for all vertices. 

Next, we verify the edge condition for each edge: 

 For (v1, v2), v1 and v2 appear in B1, and µ(v1, v2) = 0.1 ≤ σ(v1) ∧ σ(v2) = 0.1. 

 For (v2, v3), v2 and v3 appear in B2, and µ(v2, v3) = 0.1 ≤ σ(v2) ∧ σ(v3) = 0.1. 

 For (v3, v4), v3 and v4 appear in B2, and µ(v3, v4) = 0.1 ≤ σ(v3) ∧ σ(v4) = 0.2. 

 For (v4, v1), v4 and v1 appear in B3, and µ(v4, v1) = 0.1 ≤ σ(v4) ∧ σ(v1) = 0.1. 

 For (v2, v4), v2 and v4 appear in B2, and µ(v2, v4) = 0.3 ≤ σ(v2) ∧ σ(v4) = 0.3. 

Thus, the edge condition is satisfied for all edges. 

The width of the Fuzzy Tree-Decomposition (T, {Bt}) is defined as: max
𝑡∈𝑇 

( max
𝑣 ∈ 𝐵𝑡 

 µ(𝑣, 𝐵𝑡)  −  1) 

 For Bag B1 = {v1, v2}: 

µ(v1, v2) = 0.1, sup
𝑣∈𝐵1 

 µ(v, B1) = 0.1 

Width = 0.1 − 1 = −0.9 

 For Bag B2 = {v2, v3, v4}: 

max(µ(v2, v3), µ(v3, v4), µ(v2, v4)) = max(0.1, 0.1, 0.3) = 0.3 

Width = 0.3 − 1 = −0.7 

 For Bag B3 = {v4, v1}: 

µ(v4, v1) = 0.1, sup
𝑣∈𝐵3 

µ(v, B3) = 0.1 

Width = 0.1 − 1 = −0.9 

max(−0.9, −0.7, −0.9) = −0.7 
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The width of this Fuzzy Tree-Decomposition is −0.7. 

 

2.5 Graph Parameter Hierarchy 

The Graph Parameter Hierarchy is frequently studied in research on graph parameters and 

algorithms. It describes the relationships between graph parameters based on their ability to upper or 

lower bound one another [63, 78, 132, 156]. 

Definition 2.20. A graph parameter is a function f : G → R, where G represents the set of all 

undirected finite graphs, and the function returns a real number. We say that Parameter A upper 

bounds Parameter B if there exists a non-decreasing function fA,B such that 

fA,B(A(G)) ≥ B(G) 

for all graphs G. Conversely, if Parameter A does not upper bound Parameter B, we say that 

Parameter B is unbounded to Parameter A. 

Lemma 2.21. [132] If a upper bounds b, and b upper bounds c, then a also upper bounds c. Proof. 

Refer to [132] for details as necessary. 

 

3. Result of this Paper 

In this section, we present the results of this paper. We focus on the study of Tree-width in the 

context of SuperHypergraphs and Neutrosophic graphs. 

 

3.1 SuperHyperTree-width 

A SuperHyperGraph is an advanced structure that extends hypergraphs by allowing both 

vertices and edges to be sets [64, 137, 138]. First, we will explain the definition of a SuperHy- perGraph. 

The definition is provided below. 

Definition 3.1 (SuperHyperGraph (SHG)). [137, 138] A SuperHyperGraph (SHG) is an ordered 

pair SHG = (G, E), where: 

(1) G ⊆ P (V ) is the set of vertices, and E ⊆ P (V ) is the set of edges, with V = {V1, V2, . . . , 

Vm}, where m ≥ 0. 

(2) P (V ) denotes the power set of V, i.e., all subsets of V . Each element in G is referred to as an 

SHG-vertex, which can take the following forms: 

 A single vertex (as in classical graphs). 

 A super-vertex, representing a subset of vertices (e.g., a group or organization). 

 An indeterminate-vertex, representing an unclear or unknown entity. 

 A null-vertex, represented by ∅, signifying a vertex without elements. 

(3) E = {E1, E2, . . . , Ek}, with k ≥ 1, represents the family of SHG-edges. Each Ej ∈ P (V ) is a 

subset of V, and SHG-edges can include: 

 A single edge (classical edge), connecting two single vertices. 

 A super-edge, connecting super-vertices. 

 A hyper-super-edge, connecting three or more groups or organizations. 

 A multi-edge connects multiple vertices or super-vertices simultaneously. 

 An indeterminate edge represents unclear or unknown relationships. 

 A null edge ∅represents no connection between the given vertices. 

Definition 3.2 (Elements of a SuperHyperGraph). [137, 138] A SuperHyperGraph (SHG) 

consists of the following elements: 

 Single Vertices Vi: Individual vertices as in classical graphs, e.g., V1, V2. 

 SuperVertices (SubsetVertices) SVi,j: Subsets of vertices, such as SV1,3 = {V1, V3}. 

SuperVertices can represent groups or organizations. For example: 

– SV1,23 = {V1, V23}, combining single vertices V1 and V23. 

– SV1,2,3 = {V1, V2, V3}, combining three single vertices. 
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 NullVertex ∅V : A vertex with no elements. 

 Single Edges Ei,j: Edges connecting two single vertices, e.g., E1,5 = {V1, V5}, E2,3 = {V2, V3}. 

 HyperEdges HEi,j,k: Edges connecting three or more single vertices, e.g., HE1,4,6 = {V1, 

V4, V6}. 

 SuperEdges (SubsetEdges) SE(i,j),(k,l): Edges connecting super-vertices, e.g., 

SE(1,3),(4,5) = {SV1,3, SV4,5}. 

 HyperSuperEdges (or HyperSubsetEdges) HSEi,j,k: Edges connecting three or more 

vertices, with at least one being a super-vertex. For example: 

HSE1,45,23 = {V1, SV45, SV23}. 

 IndeterminateEdges IEx,y: Edges with unknown or unclear connections between 

vertices. 

 NullEdges ∅E: Edges representing no connection between vertices. 

We consider the relationship between a Hypergraph and a SuperHypergraph. The following 

holds. 

 

Theorem 3.3. Any SuperHypergraph can be reduced to a Hypergraph. 

Proof. To map any SuperHypergraph to a Hypergraph, we need to handle both SuperVertices 

and SuperEdges from the SHG. 

Each super-vertex in the SuperHypergraph corresponds to a set of vertices in a classical graph. 

Specifically, a super-vertex SVi,j ∈ G (e.g., {Vi, Vj}) can be represented by multiple individual 

vertices in the corresponding hypergraph. The vertex mapping is therefore straightforward: each 

element of the super-vertex (which is a set) will be treated as an individual vertex in the hypergraph. 

Formally: 

 For each super-vertex SVi,j = {Vi, Vj} ∈ VSHG, create individual vertices Vi, Vj ∈ VH. 

SuperEdges or HyperSuperEdges in SHG, which may connect multiple super-vertices 

or sets, need to be flattened into simple hyperedges in the hypergraph. For each super-

edge or hyper-super-edge SE(i,j),(k,l) connecting super-vertices SVi,j and SVk,l, create a 

hyperedge in the hypergraph that connects all the corresponding individual vertices. 

Formally: 

 For each super-edge SE(i,j),(k,l) ∈ ESHG, create a hyperedge eH ∈ EH, where eH = {Vi, 

Vj, Vk, Vl}. 

The general rule is that any SuperEdge connecting multiple super-vertices in the SHG 

corresponds to a single hyperedge connecting the individual vertices (elements) of those super-vertices 

in the hypergraph. 

Example 3.4. Consider the following SuperHypergraph SHG: 

 Vertices: VSHG = {{V1, V2}, {V3}} 

 Edges: ESHG = {{V1, V2}, {V1, V2, V3}} 

To convert this into a Hypergraph: 

(1) The super-vertices {V1, V2} and {V3} are flattened into individual vertices V1, V2, V3. 

(2) The super-edge {V1, V2} becomes a hyperedge {V1, V2} in the hypergraph. 

(3) The super-edge {V1, V2, V3} becomes a hyperedge {V1, V2, V3} in the hypergraph. 

Thus, the resulting Hypergraph H is: 

 Vertices: V (H) = {V1, V2, V3} 

 Hyperedges: E(H) = {{V1, V2}, {V1, V2, V3}} 

Next, we consider the SuperHyperTree. The following will be written as definitions. 

Definition 3.5 (SuperHyperTree (SHT)). A SuperHyperTree (SHT) is a specific type of Su- 

perHyperGraph SHT = (V, E) that satisfies the following conditions: 

(1) Host Graph Condition: There exists a host graph T = (V, ET ), which is a tree, such that: 

 T shares the same vertex set V as SHT. 
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 The edges in T represent the connections between vertices in V . 

(2) SuperHyperTree Condition: Every hyperedge Ei ∈ E of the SuperHyperGraph 

corresponds to a connected subtree of the host tree T . Specifically: 

 If Ei is a single edge, it connects two vertices directly within T . 

 If Ei is a super-edge (connecting subsets of vertices), the vertices in each subset must 

form a connected subtree in T . 

 If Ei is a hyper-edge (connecting more than two vertices), all vertices in Ei must form a 

connected subtree in T . 

 If Ei is an indeterminate edge, any realization of Ei must satisfy the condition that the 

vertices involved form a connected subtree in T . 

(3) Acyclic Condition: The host graph T must be acyclic, which is a fundamental property of 

trees. Consequently, SHT inherits this acyclic nature through its hyperedges. 

Key Properties of a SuperHyperTree: 

 Connectedness: A SuperHyperTree is connected, meaning there exists a path be- tween any 

two vertices via a sequence of hyperedges. 

 No Cycles: Since the host graph T is a tree, SHT does not contain any cycles, including those 

involving super-vertices or super-edges. 

 Generalization of Trees: A SuperHyperTree extends the concept of a tree by al- lowing 

super-vertices and super-edges while maintaining the acyclic and connected properties of a 

tree. 

Theorem 3.6. A SuperHyperTree (SHT) is a generalization of a hypertree. Specifically, every hypertree can 

be represented as a SuperHyperTree, but not every SuperHyperTree is a hypertree. 

Proof. Let SHT = (V, E) be a SuperHyperTree and HT = (V, Ei) be a hypertree. 

1. SuperHyperTree as a Generalization of Hypertree. A hypertree is a connected hypergraph 

where removing any hyperedge disconnects the hypergraph. For a hypertree HT : 

 Each hyperedge e ∈ Ei(HT ) connects a set of vertices that maintains the connectedness of 

the hypergraph. 

 Removing any hyperedge e results in a disconnected hypergraph. 

In a SuperHyperTree SHT, the following conditions are satisfied: 

 Host Graph Condition: SHT is embedded within a host tree T = (V, ET ), ensuring an 

acyclic structure. 

 SuperHyperTree Condition: Each hyperedge in E corresponds to a connected subtree of 

T . 

 Acyclicity: SHT inherits the acyclic property from the host tree T . 

 

Since hypertrees are connected and acyclic, any hypertree HT can be embedded as a SuperHy- 

perTree SHT by constructing a host tree T such that each hyperedge e ∈ Ei(HT ) corresponds to a 

connected subtree of T . 

2. Differences Between SuperHyperTrees and Hypertrees. While hypertrees can contain cycles 

within hyperedges, SuperHyperTrees explicitly disallow cycles due to the acyclic nature of 

their host tree T . Furthermore, SuperHyperTrees allow for more complex structures such as 

super-edges (which connect subsets of vertices) and indeterminate edges, which are not 

defined in hypertrees. 

3. Examples. 

 Hypertree as a Special Case of SuperHyperTree: Consider a hypertree HT = (V, Ei). By 

embedding HT within a host tree T , where each hyperedge e ∈ Ei(HT ) corresponds to a 

connected subtree of T , HT satisfies all the conditions of a SuperHyperTree SHT. 
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 SuperHyperTree That Is Not a Hypertree: Consider a SuperHyperTree with a super-edge 

that connects subsets of vertices. This structure does not satisfy the conditions of a 

hypertree because hypertrees do not allow for super-edges or indeterminate edges. 

Thus, SuperHyperTrees generalize the concept of hypertrees by introducing super-edges, 

indeterminate edges, and the requirement of a host tree, while hypertrees are a specific subclass of 

SuperHyperTrees.  

 

Corollary 3.7. The hypertree-width of a hypertree HT is equal to its treewidth, whereas the 

SuperHyperTree-width of a SuperHyperTree SHT may exceed its treewidth due to the inclusion of 

super-edges and indeterminate edges. 

Proof. For Hypertrees: Since hypertrees can be decomposed into a tree structure where each 

hyperedge corresponds to a single bag in the tree decomposition, their hypertree-width coincides 

with their tree-width. 

For SuperHyperTrees: In a SuperHyperTree SHT, the inclusion of super-edges and 

indeterminate edges increases the complexity of its decomposition. The SuperHyperTree-width 

accounts for these additional structures, leading to a possible increase in width compared to the tree-

width. 

 

Next, we define superhypertree-width by extending the concept of hypertree-width and tree-

width(cf. [61]). Following that, we will briefly explore the Graph Parameter Hierarchy. 

 

Definition 3.8 (SuperHyperTree Decomposition). (cf. [61]) Let SHT = (V, E) be a SuperHy- 

perGraph, where V is the set of vertices and E is the set of SuperEdges. A SuperHyperTree 

Decomposition of SHT is defined as a tuple (T, B, C), where: 

 T = (VT , ET ) is a tree. 

 B = {Bt | t ∈ VT } is a family of subsets of V (called bags) associated with the nodes of T , 

satisfying: 

(1) Coverage Condition for SuperEdges: For each SuperEdge e ∈ E, there exists a node t 

∈ VT such that the entire SuperEdge e is contained in the corresponding bag Bt, i.e., e ⊆ 

Bt. 

(2) Vertex Connectivity Condition: For each vertex v ∈ V , the set of nodes {t ∈ VT | v ∈ 

Bt} forms a connected subtree of T . 

 C = {Ct | t ∈ VT } is a family of subsets of E (called guards) associated with the nodes of 

T , satisfying: 

(1) Guard Condition for SuperEdges: For each t ∈ VT , Bt ⊆ ∪ Ct, where ∪ Ct denotes 

the union of all vertices in the SuperEdges of Ct, i.e., ∪ Ct = {v ∈ V |∃e ∈ Ct : v ∈ e}. 

(2) SuperHyperTree Condition: For each t ∈ VT , 

(∪Ct) ∩ ∪
𝑢∈V (Tt) 

 Bu ⊆ Bt, 

where Tt is the subtree of T rooted at t. 

Width of a SuperHyperTree Decomposition: The width of a SuperHyperTree De- 

composition (T, B, C) is defined as: 

width(T, B, C) = max
𝑡∈ Vt 

 |Ct|, 

where |Ct| is the cardinality of the guard Ct. 

SuperHyperTree-width: The SuperHyperTree-width of the SuperHyperGraph SHT, denoted 

by SHT-width(SHT), is the minimum width over all possible SuperHyperTree Decom- positions: 

SHT-width(SHT) = min
(𝑇,𝐵,𝐶) 

 width(T, B, C). 

 The SuperHyperTree-width measures how closely a SuperHyperGraph resembles a Su- 

perHyperTree. 
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 For classical graphs, the SuperHyperTree-width coincides with the traditional treewidth. 

SuperHyperPath Decomposition: A SuperHyperPath Decomposition is a path-based variant of 

the SuperHyperTree Decomposition, where the host structure T is a path instead of a tree. 

Lemma 3.9. Let SH be a SuperHypergraph. The following inequalities hold: 

shw(SH) ≤ hw(SH) ≤ tw(Gp(SH)) + 1. 

Where: 

 shw(SH) denotes the SuperHyperTree-width of SH. 

 hw(SH) denotes the hypertree-width of SH. 

 tw(Gp(SH)) denotes the treewidth of the primal graph Gp(SH) of SH. 

Proof. Since every SuperHyperTree decomposition is a special case of a hypertree 

decomposition: 

shw(SH) ≤ hw(SH) 

Proof of hw(SH) ≤ tw(Gp(SH)) + 1: 

From [74]: 

hw(H) ≤ tw(Gp(H)) + 1 

Applying this to SH: 

hw(SH) ≤ tw(Gp(SH)) + 1 shw(SH) 

Conclusion: 

hw(SH) ≤ hw(SH) ≤ tw(Gp(SH)) + 1 

 

3.2 NeutrosophicTree-width 

In this subsection, we consider the concept of neutrosophic tree-width. 

First, we introduce the concept of a neutrosophic graph [11, 34, 76, 88, 130, 145]. A neutrosophic 

graph generalizes traditional graph theory by incorporating degrees of truth, indeterminacy, and 

falsity in its edges and vertices, enabling more complex and nuanced relationships. It extends the 

concept of a fuzzy graph [92]. Neutrosophic graph theory is particularly useful in uncertain 

environments, contributing to fields like human networks and decision-making [7,43]. Fuzzy graph 

theories have numerous applications in modern science and technology, especially in operations 

research, neural networks [2, 101], artificial intelligence [2, 101], and decision-making [92]. The 

definition is as follows. 

Definition 3.10. (cf. [148]) A neutrosophic graph NTG = (V, E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) 

is defined as a graph where σi : V → [0, 1], µi : E → [0, 1], and for every vivj ∈ E, the following 

condition holds: µ(vivj) ≤ σ(vi) ∧ σ(vj). 

(1) σ is called the neutrosophic vertex set. 

(2) µ is called the neutrosophic edge set. 

(3) |V | is called the order of NTG, and it is denoted by O(NTG). 

(4) 
∑ v∈V σ(v) is called the neutrosophic order of NTG, and it is denoted by On(NTG). 

(5) |E| is called the size of NTG, and it is denoted by S(NTG). 

(6) 
∑ e∈E µ(e) is called the neutrosophic size of NTG, and it is denoted by Sn(NTG). 

 

Definition 3.11.  

i). A sequence of vertices P : x0, x1, · · · , xn is called a path where 

xixi+1 ∈ E, i = 0, 1, · · · , n − 1. 

ii). The strength of the path P : x0, x1, · · · , xn is /\i=0,··· ,n−1 µ(xixi+1). 

iii). The connectedness between vertices x0 and xn is defined as: 

µ∞(x, y) =   /\          /\        µ(xixi+1). 

        P :x0,x1,··· ,xn  i=0,··· ,n−1 

The Examples of the neutrosophic graph are the following. 
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Example 3.12. (cf. [35]) Consider a neutrosophic graph NTG = (V, E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, 

µ3)) with four vertices V = {v1, v2, v3, v4}, as shown in the diagram. 

The neutrosophic membership degrees of the vertices are as follows: 

 

σ(v1) = (0.5, 0.1, 0.4), σ(v2) = (0.6, 0.3, 0.2), 

σ(v3) = (0.2, 0.3, 0.4), σ(v4) = (0.4, 0.2, 0.5) 

The neutrosophic membership degrees of the edges are as follows: 

 

µ(v1v2) = (0.2, 0.3, 0.4), µ(v2v3) = (0.3, 0.3, 0.4), 

µ(v3v4) = (0.2, 0.3, 0.4), µ(v4v1) = (0.1, 0.2, 0.5) 

In this case, the neutrosophic graph NTG has the following properties: 

 Vertices v1, v2, v3, v4 are connected by edges with varying neutrosophic membership 

degrees. 

 The neutrosophic relations ensure that for every edge vivj ∈ E, µ(vivj) ≤ σ(vi) ∧ σ(vj), 

where ∧ denotes the minimum operation. 

Theorem 3.13. A Neutrosophic Graph can be transformed into a Fuzzy Graph by mapping the 

neutrosophic truth-membership values of vertices and edges directly to the fuzzy membership 

values, effectively disregarding the indeterminacy and falsity components. 

Proof. Let NTG = (V, E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) be a neutrosophic graph. We aim to 

transform NTG into a fuzzy graph G = (V, σi, µi). 

In a neutrosophic graph, the vertex membership σ(v) = (σ1(v), σ2(v), σ3(v)) includes truth, 

indeterminacy, and falsity components. To transform this into a fuzzy graph, we only retain the truth-

membership component σ1(v). The transformed fuzzy vertex membership is thus: 

σi(v) = σ1(v) 

where σ1(v) ∈ [0, 1] represents the fuzzy membership degree of vertex v. 

 

Similarly, for the edge set, the neutrosophic edge membership µ(e) = (µ1(e), µ2(e), µ3(e)) includes 

truth, indeterminacy, and falsity components. We retain only the truth-membership component 

µ1(e). The transformed fuzzy edge membership is thus: 

µi(e) = µ1(e) 

where µ1(e) ∈ [0, 1] represents the fuzzy membership degree of edge e. 

To ensure that the transformed graph satisfies the properties of a fuzzy graph, we check the 

following conditions: 

(1) Vertex Membership Condition: In the fuzzy graph G, the fuzzy vertex membership function 

σi(v) must satisfy σi(v) ∈ [0, 1]. Since σ1(v) ∈ [0, 1] in the neutrosophic graph, this condition 

holds automatically. 

(2) Edge Membership Condition: In the fuzzy graph G, the fuzzy edge membership function 

µi(e) must satisfy µi(e) ≤ σi(vi) ∧ σi(vj) for all edges e = (vi, vj). In the neutrosophic graph, the 

truth-membership component of an edge µ1(e) satisfies the condition µ1(e) ≤ σ1(vi) ∧ σ1(vj), 

which is equivalent to the fuzzy graph condition. 

This proof is completed.   

Next, we consider a neutrosophic tree. The definition is similar to that of a general tree and a 

fuzzy tree. A neutrosophic tree is defined as follows: 

Definition 3.14. (cf. [13, 70, 80]) A Neutrosophic Tree NT = (V, E, σ, µ) is a connected acyclic 

neutrosophic graph satisfying: 

(1) Connectedness: For every pair of distinct vertices u, v ∈ V , there exists a unique path P from 

u to v such that for each edge e in P , µ(e) > 0. 

(2) Acyclicity: The neutrosophic tree contains no cycles. 

(3) Neutrosophic Degree Condition: For each vertex v ∈ V , the neutrosophic degree σ(v) 

satisfies: 
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Where N (v) is the set of neighbors of v. 

Based on the above definitions, we define the Neutrosophic Tree-width. 

Definition 3.15. A Neutrosophic Tree-Decomposition of a neutrosophic graph NG = (V, 

E, σ, µ) is a pair (T, B) where: 

 T = (VT , ET ) is a tree. 

 B = {Bt | t ∈ VT } is a family of subsets of V (called bags), each associated with a node t 

of T . 

This decomposition satisfies: 

(1) Coverage Condition: For every edge e = (vi, vj) ∈ E, there exists a node t ∈ VT such that {vi, 

vj} ⊆ Bt. 

(2) Connectivity Condition: For each vertex v ∈ V , the set {t ∈ VT | v ∈ Bt} forms a connected 

subtree of T . 

The width of a Neutrosophic Tree-Decomposition (T, B) is defined as: 

 
where Ixl denotes the ceiling function. 

The Neutrosophic Tree-Width of the neutrosophic graph NG, denoted NTW(NG), is the 

minimum width over all possible Neutrosophic Tree-Decompositions of NG: 

NTW(NG) = min width(T, B). 

   (T,B) 

Example 3.16. Consider a neutrosophic graph NTG = (V, E, σ, µ) where the vertex set 

V = {v1, v2, v3, v4} and the edge set E = {(v1, v2), (v2, v3), (v3, v4)}. The neutrosophic vertex 

membership functions σ = (σ1, σ2, σ3) and the neutrosophic edge membership functions µ = (µ1, µ2, 

µ3) are defined as follows: 

 σ(v1) = (0.9, 0.1, 0.0), σ(v2) = (0.8, 0.2, 0.0) 

 σ(v3) = (0.7, 0.3, 0.0), σ(v4) = (0.6, 0.4, 0.0) 

 µ(v1v2) = (0.8, 0.1, 0.1), µ(v2v3) = (0.7, 0.2, 0.1), µ(v3v4) = (0.6, 0.3, 0.1) 

We create a tree T = (VT , ET ) where VT = {t1, t2, t3} and associate the following bags 

B = {Bt1 , Bt2 , Bt3 }: 

 Bt1 = {v1, v2} 

 Bt2 = {v2, v3} 

 Bt3 = {v3, v4} 

 Coverage Condition: For each edge in E, there exists a corresponding bag: 

– (v1, v2) ∈ Bt1 

– (v2, v3) ∈ Bt2 

– (v3, v4) ∈ Bt3 

For all edges (vi, vj), the condition µ(vivj) ≤ min(σ(vi), σ(vj)) is satisfied. 

 Vertex Connectivity Condition: Each vertex forms a connected subtree of T : 

– v1 appears only in Bt1. 

– v2 appears in both Bt1 and Bt2 , and these bags are connected in T . 

– v3 appears in both Bt2 and Bt3 , and these bags are connected in T . 

– v4 appears only in Bt3. 

For each bag Bt, we calculate the neutrosophic width: 
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The maximum width is 0.7. Therefore, the Neutrosophic Tree-width of the graph is 0.7. 

 

Theorem 3.17. The Neutrosophic Tree-Width NTW(NG) of a neutrosophic graph NG satisfies: 

 If NG is a single vertex with σ(v) = 1, then NTW(NG) = 0. 

 If NG consists of isolated vertices with σ(v) = 1 for all v ∈ V , then NTW(NG) = 0. 

Proof. For a single vertex v with σ(v) = 1, construct a tree T with a single node t and set 

Bt = {v}. The width is: 

width(T, B) = Iσ(vi)l − 1 = 1 − 1 = 0. 

For multiple isolated vertices {v1, v2, . . . , vn} with σ(vi) = 1, create singleton bags Bt = {vi} in T. 

For each bag: 

width(T, B) = Iσ(vi)l − 1 = 1 − 1 = 0. 

Thus, NTW(NG) = 0 

Theorem 3.18. The Neutrosophic Tree-width (NT-width) of an empty graph is −1.  

Proof. In an empty graph (no vertices), there are no bags. By convention, we define: 

NTW(NG) = −1. 

 

Theorem 3.19. For any neutrosophic graph NG = (V, E, σ, µ), the Neutrosophic Tree-Width 

NTW(NG) satisfies: 

NTW(NG) ≤ tw(G), 

where tw(G) is the tree-width of the underlying simple graph G = (V, E).  

Proof. Since σ(v) ∈ [0, 1], we have: 

 
Theorem 3.20. If all vertices in NG have σ(v) = 1 and all edges have µ(e) = 1, then: 

NTW(NG) = tw(G). 

 
 

Therefore, NTW(NG) = tw(G).  

Additionally, in the field of Neutrosophic Graphs, several classes such as Single Valued 

Neutrosophic Graphs [11, 53, 81, 113], Fermatean neutrosophic graphs [33], Single valued 



Neutrosophic Systems with Applications, Vol. 25, 2025                                                 67 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Takaaki Fujita and Florentin Smarandache, Some Graph Parameters for Superhypertree-width and Neutrosophictree-width 

penpartitioned neutrosophic graphs [47], Interval Valued Neutrosophic Graphs [34,36,37,95,160] 

have been proposed. We plan to explore and characterize these classes in more detail in the future. 

 

3.3 Neutrosophic HyperTree-width 

Next, we introduce the concept of a Neutrosophic Hypergraph. Similar to Neutrosophic Graphs 

and Hypergraphs, Neutrosophic Hypergraphs have been the subject of extensive re- research [8, 51, 

102]. The definition is provided below. 

Definition 3.21. (cf. [8, 51, 102]) A Neutrosophic Hypergraph NHG = (V, E, σ, µ) consists of: 

 A finite set V of vertices. 

 A set E ⊆ P(V ) \ {∅} of hyperedges. 

 A neutrosophic vertex membership function σ : V → [0, 1]3, where for each v ∈ V : 

σ(v) = (σT (v), σI(v), σF (v)), 

Representing the truth-membership, indeterminacy-membership, and falsity-membership degrees 

of v. 

A neutrosophic hyperedge membership function µ : E → [0, 1]3, where for each e ∈ E: 

µ(e) = (µT (e), µI(e), µF (e)), 

representing the truth-membership, indeterminacy-membership, and falsity-membership degrees 

of e. 

These functions satisfy the following condition for every hyperedge e ∈ E: 

 
Next, a Neutrosophic Hypertree is defined as follows. 

 

Definition 3.22. A Neutrosophic Hypertree NHT = (V, E, σ, µ) is a connected, acyclic neutrosophic 

hypergraph satisfying: 

(1) Acyclicity: The hypergraph contains no cycles. The incidence graph associated with 

NHT is acyclic. 

(2) Connectedness: For every pair of distinct vertices u, v ∈ V , there exists a sequence of 

hyperedges e1, e2, . . . , ek ∈ E such that: 

 u ∈ e1 and v ∈ ek. 

 ei ∩ ei+1 /= ∅ for i = 1, . . . , k − 1. 

 µT (ei) > 0 for all i. 

(3) Neutrosophic Degree Condition: For each v ∈ V : 

 

where Ev = {e ∈ E | v ∈ e}. 

Based on the above, we define Neutrosophic HyperTree-decomposition as follows. 

 

Definition 3.23. A Neutrosophic HyperTree-Decomposition of a neutrosophic hyper-graph 

NHG = (V, E, σ, µ) is a triple (T, B, C) where: 

 T = (VT , ET ) is a tree. 

 B = {Bt ⊆ V | t ∈ VT } is a family of bags. 

 C = {Ct ⊆ E | t ∈ VT } is a family of guards. 

This decomposition satisfies: 

(1) Coverage Condition: For every hyperedge e ∈ E, there exists t ∈ VT such that e ⊆ Bt and µT 

(e) ≤ minv∈e σT (v). 

(2) Vertex Connectivity Condition: For each v ∈ V , the set {t ∈ VT | v ∈ Bt} forms a connected 

subtree of T . 
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(3) Guard Condition: For each  

 

The width of a Neutrosophic HyperTree-Decomposition (T, B, C) is defined as: 

 
The Neutrosophic HyperTree-Width of NHG, denoted NHTW(NHG), is: 

 
Theorem 3.24. For any neutrosophic hypergraph NHG: 

NHTW(NHG) ≤ HTW(NHG), 

where HTW(NHG) is the standard hypertree-width. 

Proof. Since µT (e) ≤ 1, we have: 

 
 

Thus, 

widthNHT(T, B, C) ≤ widthHT(T, B, C). 

Taking the minimum over all decompositions: 

NHTW(NHG) ≤ HTW(NHG). 

  

Theorem 3.25. If σT (v) = 1 for all v ∈ V and µT (e) = 1 for all e ∈ E, then: 

NHTW(NHG) = HTW(NHG). 

Proof. Under these conditions, the width becomes: 

width(T, B, C) = max |Ct|. 

                                        t∈VT 

Therefore: 

NHTW(NHG) = HTW(NHG). 

 

Theorem 3.26. For any neutrosophic hypergraph NHG: 

NHTW(NHG) ≤ NTW(G), 

where NTW(G) is the Neutrosophic Tree-Width of the incidence graph G of NHG. 

Proof. By constructing a corresponding Neutrosophic Tree-Decomposition of G, we establish:  

NHTW(NHG) ≤ NTW(G). 

 

Theorem 3.27. For any neutrosophic hypergraph NHG: 

NHTW(NHG) ≤ tw(G) + 1, 

where tw(G) is the tree-width of the primal graph G of NHG. 

Proof. Using the inequality HTW(NHG) ≤ tw(G) + 1 and Theorem 1: 

NHTW(NHG) ≤ HTW(NHG) ≤ tw(G) + 1. 

We intend to further examine the validity of the above definitions. 

 

3.4 Definition of t-NeutrosophicTree-width 

The t-neutrosophic approach links different values of the parameter ”t” to various layers of the 

graph, allowing for multi-level analysis. This method enables a detailed exploration of the 

relationships within the graph, incorporating varying degrees of confidence. As a result, it provides 

a more nuanced understanding of the underlying structure [96, 97]. 
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Definition 3.28. [96, 97] Let G be a Neutrosophic Set (NS) over a universal set U with t ∈ [0, 

1]. The t-Neutrosophic Graph NSGt of U , also known as a t-Neutrosophic Set (t-NS), is defined for 

each u1 ∈ U as follows: 

TGt (u1) = min{TG(u1), t}, IGt (u1) = max{IG(u1), 1 − t}, FGt (u1) = max{FG(u1), 1 − t}, 

where TG, IG, and FG represent the truth-membership, indeterminacy-membership, and falsity-

membership functions, respectively. The t-Neutrosophic Set can then be represented as: 

Gt = {u1, TG(u1), IG(u1), FG(u1) | u1 ∈ U } . 

Furthermore, the membership functions satisfy the following conditions: 

0 ≤ TG(u1) + IG(u1) + FG(u1) ≤ 1. 

Definition 3.29. [96, 97] Let G = (V, E) be a simple graph where V is the set of vertices and E ⊆ 

V × V is the set of edges. A t-Neutrosophic Graph Gt is represented as: 

Gt = (At, Bt), 

where At is a t-Neutrosophic Set on the vertices V and Bt is a t-Neutrosophic Set on the edges 

E. 

 At = {(ui, TG(ui), IG(ui), FG(ui)) | ui ∈ V } represents the t-Neutrosophic Set on the vertex 

set V . 

 Bt = {((ui, uj), TG(ui, uj), IG(ui, uj), FG(ui, uj)) | (ui, uj) ∈ E} represents the t-Neutrosophic 

Set on the edge set E ⊆ V × V . 

For each edge (ui, uj) ∈ E, the following conditions hold: 

TBt (ui, uj) ≤ min{TAt (ui), TAt (uj)}, IBt (ui, uj) ≤ max{IAt (ui), IAt (uj)}, FBt (ui, uj) ≤ max{FAt 

(ui), FAt (uj)}. 

The t-Neutrosophic Graph also satisfies the following conditions for both vertices and edges: 

0 ≤ TAt (ui) + IAt (ui) + FAt (ui) ≤ 1, for all ui ∈ V, 

0 ≤ TBt (ui, uj) + IBt (ui, uj) + FBt (ui, uj) ≤ 1, for all (ui, uj) ∈ E. 

The t-Neutrosophic Tree and t-Neutrosophic Tree-width extend classical tree and tree-width 

concepts to account for uncertainty, truth, indeterminacy, and falseness. The threshold parameter t 

allows for varying levels of confidence in the analysis of graph structures. The definition of a t-

Neutrosophic Tree is as follows. 

 

Definition 3.30. A t-Neutrosophic Tree (t-NTT) is a connected, acyclic t-Neutrosophic graph 

Gt = (V, E) that satisfies: 

 Acyclicity: The graph contains no cycles, meaning for every pair of distinct vertices u, v 

∈ V , there is exactly one path connecting them with no repeated vertices. 

 Connectedness: For every pair of distinct vertices u, v ∈ V , there exists a path P ⊆ Gt 

connecting u and v. 

 

Additionally, the neutrosophic membership conditions hold for all vertices and edges as defined 

in the t-Neutrosophic Graph framework. 

The t-Neutrosophic tree width measures how closely the graph resembles a tree in the 

neutrosophic framework. 

 

Definition 3.31. A t-Neutrosophic Tree-decomposition of a t-Neutrosophic graph Gt = (V, E) 

is a pair (T, B), where: 

 T = (VT , ET ) is a tree. 

 B = {Bt | t ∈ VT } is a collection of subsets (called bags) of vertices from Gt, satisfying: 

(1) For every edge (u, v) ∈ E, there exists a bag Bt ∈ B such that {u, v} ⊆ Bt. 

(2) For each vertex u ∈ V , the set {t ∈ VT | u ∈ Bt} forms a connected subtree of T . 

Definition 3.32. The width of a t-Neutrosophic Tree-decomposition is defined as: 
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Where σ(v) is the neutrosophic degree of vertex v. The t-Neutrosophic Tree-width of a t- 

Neutrosophic graph Gt, denoted by tNT-width(Gt), is the minimum width over all possible t-

Neutrosophic Tree-decompositions of Gt: 

 
The following theorem holds. 

 

Theorem 3.33. Let t-NTT = (Vt, Et) be a t-Neutrosophic Tree, where t ∈ [0, 1]. The t- Neutrosophic 

Tree-width of t-NTT is less than or equal to the Neutrosophic Tree-width of t-NTT, that is, 

t-NTT-width(t-NTT) ≤ NTT-width(t-NTT). 

Proof. We prove this theorem by considering the role of the parameter t. 

Case 1: t = 1 

When t = 1, the t-Neutrosophic Tree is identical to a standard Neutrosophic Tree, and their 

widths are equal: 

t-NTT-width(t-NTT) = NTT-width(t-NTT). 

Case 2: t < 1 

When t < 1, the t-Neutrosophic Tree incorporates the threshold t, imposing constraints on the 

relationships between vertices and edges. This results in fewer edges being considered in the 

decomposition. 

Let Bt be the bag in a t-Neutrosophic Tree decomposition, and B∗ the corresponding bag in a 

Neutrosophic Tree decomposition (without the threshold t). The difference between Bt and Bt∗ arises 

because t restricts certain vertices and edges based on neutrosophic membership values. 

We have: 

|Bt| ≤ | Bt
 ∗| ∀t ∈ VT , 

Where Bt∗ includes all vertices and edges without the threshold restriction. Therefore, the t- 

neutrosophic tree decomposition bags are equal to or smaller than those in the Neutrosophic Tree 

decomposition. 

Thus, the width of the t-Neutrosophic Tree decomposition is less than or equal to the 

Neutrosophic Tree decomposition, leading to: 

t-NTT-width(t-NTT) ≤ NTT-width(t-NTT). 

 

This proof is completed. 

4. Conclusion and Future Research Goals 

We intend to explore the relationship between SuperHyperTree decomposition, Neutrosophic 

HyperTree decomposition, and Neutrosophic Tree decomposition with other graph width parameters. 

In classical graph theory, various width parameters such as boolean width [4, 21, 38–40], modular 

width [3], clique-width [55,90], and rank width [57,99,116–118] have been extensively explored. Our 

research aims to investigate whether any new characteristics arise when these concepts are extended 

to Neutrosophic graphs and SuperHypergraphs. 

Additionally, we are interested in extending fundamental concepts like tree depth [50, 114, 159], 

tree length [20, 54], and tree breadth to fuzzy hypergraphs and fuzzy directed graphs, to uncover any 

unique properties or emerging behaviors. 
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