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Abstract: In this article, we introduce the concepts of MBJ-neutrosophic BP-subalgebras and MBJ-
neutrosophic a-ideals in BP-algebra by applying MBJ-neutrosophic logic to algebraic structure BP-
algebra. We prove that the intersection of two MBJ]-neutrosophic a-ideals and the inverse image of
an MBJ-neutrosophic a-ideal are also MBJ-neutrosophic a-ideals. Furthermore, we prove an MB]J-
neutrosophic set is an MBJ-neutrosophic BP-subalgebra if and only if its level sets are BP-subalgebras.
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1. Introduction

Imai, Y. and Iséki, K. [1, 2] established two distinct categories of abstract algebraic structures:
BCK-algebras and BCl-algebras. Since all BCK-algebras are BCl-algebras, but not conversely, BCK-
algebras form a specific subclass of BCI-algebras. Hu, Q. P. and Li, X. [3, 4] introduced the vast and
diverse class of abstract algebraic structures known as BCH-algebras. Their work established that all
BCl-algebras are also BCH-algebras, but not conversely, BCI-algebras constitute a proper subclass of
BCH-algebras. Neggers, J., Ahn, S. S., and Kim, H. S. [5] developed Q-algebras as a generalization of
BCI/BCK-algebras and derived several important results. In 2002, Neggers and Kim [6, 7] developed
the concept of a B-algebra and established several important results. In 2013, Ahn and Han [8]
introduced a new type of algebra, called BP-algebra, which is related to various algebraic structures.

In 1965, Zadeh, L. A. [9] introduced the concept of the “degree of membership/truth” (t) and
used it to define fuzzy sets. In 1986, Atanassov [10] introduced the notion of intuitionistic fuzzy sets
by adding a "degree of nonmembership/falsehood" (f) to the existing idea of fuzzy sets. In 1995,
Smarandache, F., [11-13] introduced the idea of “degree of indeterminacy/neutrality" (i) as an
independent component and used it to define neutrosophic sets, which have three parts: truth,
indeterminacy, and falsehood. For further information see [14].

Neutrosophic sets serve as a comprehensive platform by expanding upon classic sets, fuzzy sets,
intuitionistic fuzzy sets, and interval-valued intuitionistic fuzzy sets. Takallo, M. M., Borzooej, R. A.,
and Jun, Y. B. [15] generalized the neutrosophic set to the MBJ-neutrosophic set. They utilized
interval-valued fuzzy sets as the indeterminate membership function in the MBJ-neutrosophic set.

In 2015, Christopher Jefferson Y and Chandramouleeswara M. [16] introduced the concept of
fuzzy BP-algebras and provided some results. They also defined fuzzy BP-Ideal [17], fuzzy T-Ideal
[18], and intuitionistic L-fuzzy ideals in BP-Algebra [19]. In 2020, Osama Rashad El-Gendy [20]
introduced the concept of fuzzy a-ideal in BP algebra.

The study of MBJ-neutrosophic structures in BCI/BCK-algebras has been significantly enriched
by contributions from several researchers, who introduced various types of ideals, including positive
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implicative [21], implicative [22], commutative [23, 24], and hyper BCK-ideals [25]. MBJ-neutrosophic
structures have been extensively applied to various algebraic systems, such as KU-algebras [26], B-
algebras [27], BE-algebras [28], 3-algebras [29], lattice implication algebras [30], and many more. In
this paper, we apply MBJ]-neutrosophic logic to BP-subalgebras and « -ideals in BP-algebras,
introduce MBJ-neutrosophic BP-subalgebras and MBJ-neutrosophic « -ideals, along with their
characterizations.

Throughout this article, we frequently utilize various symbols and their respective meanings.
These symbols are outlined in Table 1.

Table 1. Symbols.

Symbol Abbreviation
BP-A BP-algebra
BP-SA BP-subalgebra
al a-ideal
FS Fuzzy set
MBJ-NSS MBJ-neutrosophic set
MB]J-NSBPSA MB]J-neutrosophic BP-subalgebra
MB]J-NSal MB]J-neutrosophic a-ideal

2. Preliminaries

Definition 2.1 [8] A BP-A is a non-empty set M with a constant 0 and a binary operation ‘¢’
satisfying the following conditions, for all u,v,w € M
(BP-A1) udéu=0
(BP-A 2) ud¢(uov) =v
(BP-A 3) (udw)o(vow) = udv.
In M, we can define a binary relation “u < v & uév =0".
Definition 2.2 [16] A subset I(# ¢) of a BP-A M is said to be a BP-SA if u¢v €1, forall u,v €l.
Definition 2.3 [20] A subset I(# ¢) of a BP-A M is said to be an a-ideal if, for all u,v,w € M:
i 0€el
ii. uOweland ovel > vOowel
Definition 2.4 [9] Let M(# ¢) be a set. A mapping ar:M - [0,1] is called a FS on M. The
complement of a FS is denoted by a;¢(u), and is defined as a;¢(u) = 1 — ap(w).
Definition 2.5 [16] A FS at of a BP-A is called a FBP-SA of M if it satisfies
ar(uov) = min{ar(u), ar(v)}, for all u,v e M.

Definition 2.6 [20] A FS at of a BP-A is called a Fa-1 of M if it satisfies
ar(0) = ar(u) and ap(vOow) = min{ar(udw), ap(udv)}, for all u,v,w € M.
Definition 2.7 [20] Let (M, ¢,0) and (M’,¢',0") be BP-As. A mapping f:M — M’ is called a
homomorphism if f(uo¢v) = f(u) ¢’ f(v), forall u,v € M.
Definition 2.8 By an interval number we mean a closed subinterval & = [EL,EY] of [I], where
0 < &X < €Y <1 Denote by [I] The set of all interval numbers. Let us define ‘refined minimum’
(briefly, rmin), ‘refined maximum’ (briefly, rmax), ‘>’, ‘<’, and ‘=" of & =[£},€Y] and &, =
(€5, €1 in [1].

i.  rmin{€, &} = [min{el, €5}, min{e], €Y} ].

ii. rmax{&, &} = [max{&}, €5}, max{el, €Y} ].

iii. & »(x,2)E& & >(g,2)&,8! > (5,2)&).
Definition 2.9 [31] An Interval-valued fuzzy setin M is a function at:M - [I].
Definition 2.10 [15] Let M(# ¢) be a set. An MBJ-Neutrosophic Structure in M is in the form

A = {{u; ar(u), @r(w), ap(w)) [u € M},
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where a7 and ap are fuzzy sets in M, which are called a truth membership function and a false
membership function, respectively, and @7 is an interval-valued fuzzy setin M which is called an
indeterminate interval-valued membership function. For simplicity, we will use the symbol A =
(ar, a7, ap) to denote the MBJ-NSS.

3. MBJ-Neutrosophic BP-subalgebra

Definition 3.1 Let M be a BP-A. An MBJ-NSS A = (a, @7, ar) is called an MBJ-NSBPSA of M if, for
all u,v € M, the following conditions are satisfied:

ar(uov) = min{ar(w), ar(v)},

ar(uov) = rmin{ar(w), ar(v)},

ap(uov) < max{ag(u), ap(v)}.
Example 3.2 Let M = {0,G;,G,, G5} be a set with the binary operation “¢”, which is given in Table 2.
Then (M, ¢,0) is a BP-A. Let A = (ar, a7, ag) be an MBJ-NSS in M, defined by Table 3:

Table 2. BP-algebra.

o 0 G1 G2 G3
0 0 1 G2 Gs
1 G1 0 Gs G2
Gz Gz Gs 0 61
S3 Gs G2 1 0
Table 3. MBJ-Neutrosophic BP-Subalgebra.
M ar(u) ar (u) ag(u)
0 0.73 [0.65,0.91] 0.23
G1 0.32 [0.11,0.34] 0.82
G2 0.59 [0.47,0.72] 0.45
G3 0.32 [0.11,0.34] 0.82

It is common to check that A = (ar, @7, ap) is an MBJ-NSBPSA of M.
Theorem 3.3 The intersection of any two MBJ-NSBPSAs of M is again an MBJ-NSBPSA.
Proof: Let A; and A, be two MBJ-NSBPSAs of M. A; N A, = (aTl N ar,, @7, N a7, ag, N aFZ).
(az, N ar,)(OV) = min{ar, (UOV), ar,(uov)}
> min{min{aTl(u), aTl(v)}, min{ar, (), ar,(V)}}
= min{min{aTl(u), ar, (u)}, min{ar, (v), ar,(V)}}
= min{(ar, N ar,) ), (az, N ar,)(V)},
(a7, nar,)(uov) = rmin{azy, (uov), ar,(uov)}
> rmin(rmin(@y, (), @, (v)}, rmin{@, (w), @7, ()}
= min{rmin{@y, (W), @7, (W}, rmin{ay, (v), @7,(v)}}
= rmin{(@7, N a7,)(W), (@, N @r,) ()},
(ar, N ag,)(OV) = max{ag, (UOV), ap,(UOV)}
< max{mazx{ag, (1), ar, (v)}, max{ag, (W), @z, (v)}}
= max(max{az, (W), ag, (W)}, max{ag, (v), as, ()}
= max{(az, N ag,) (), (ar, N az,)(V)}.
Therefore, A; N A, is an MBJ-NSBPSA of M.
For a given MBJ-NSS A = (ar, @7, ap) in a BP-A M, we consider the following sets [15] :
Uy(ap,m) = {u €M | ar(u) =m},
Uy (@1, [by, b2]) = {u € M | @1(u) > [by, by]},
Lag,j) ={u€Mlap(u) <},
where m,j € [0,1] and [by, b,] € [I].
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Lemma 3.4 Let A = (aq, @7, az) be an MBJ-NSBPSA of a BP-A M. Then
i. Ui(ar,m), U,(a7, [by, b,]) and L(ag,j) are either empty or BP-SAs of M.
ii. ar(0) = ar(u), @7(0) = @7(u), and ap(0) < ap(u), for all u € M.
where m,j € [0,1] and [by, b,] € [I].
Proof. Suppose that A = (a, a7, ar) is an MBJ-NSBPSA of M. Let m,j € [0,1] and [by, b,] € [0,1]
be such that U, (ar,m), U,(a7, [by, b,]), and L(ag,j) are non-empty. For any uy, vy, Uy, vy, Us, V3 €M,
if uy, vy € Uy(ar,m), Uy, v, € Uy(@7, [by, b2]), and us, v5 € L(ag, j), then
ar(u, 9vy) = minfar(uy), ar(vq)} = min{m,m} =m,
a7 (uy 0vy) = rmin{ay (uy), @y (vy)} = rmin{[by, by], [by, b1} = [by, b,],
ap(u30vs) < max{ap(uz), ap(v3)} < max{j,j} =j
and so u;90v, € U,(ar,m), u,9v, € U,(@7, [by, b;]), and u;0vs; € L(ag, j).
Therefore, U;(ar, m), U,(az,[by, b;]), and L(ag,j) are BP-SAs of M.
ii. ar(0) = ar(uéu) = min{ar(v), ar(W)} = ar(uw),
a;(0) = ar(uou) > rmin{ay (), ar (W} = az(w),
az(0) = ap(uou) < max{az(u), ap(W} = ap(u).
Therefore, a;(0) = ar(u), a7(0) > a;(u) and az(0) < ag(u), forall u e M.
Lemma 3.5 An MBJ-NSS A = (ar, @7, ar) ina BP-A M is an MBJ-NSBPSA of M if and only if for all
m,j € [0,1] and [by, b,] € [0,1], the non-empty sets U, (ar,m), U,(a7, b1, b;]), and L(ag,j) are BP-
SAs of M.
Proof. The proof of the sufficient part follows from Lemma 3.4 (1).
Conversely, assume that U, (ar,m), U,(a7, [by, b,]), and L(ag,j) are BP-SAs of M. If
ar(uy 0vy) <minfar(uy), ar(vy)},
ar(uy0vy) < rmin{ar(uy), ar(va)},
ar (uz0v3) > max{ar(us), ar(Vs3)},
for some Uy, Vy, Uy, Vy, Uz, V3 € M. Then uy, vy € Uy (ar, my), Uy, vy € Uy(@7, [bo1, boz]), and ug,vs €
L(ag,jo), but u;0vy & Uy(ag,mg), U0V, € Up(ay, [bo1, bozl), and u30vs € L(ag,jo) , for mg =
min{ar(uy), ar(vy)}, [bo1, boz] = min{@r(uy), @1 (v2)}, and j, = max{az(uz), ar(v3)}.
This is a contradiction with the fact that U, (at,m), U, (@7, [by, b,]), and L(ag,j) are BP-SAsof M for
all m,j €0,1] and [b4, b,] € [I]. Thus,
ar(uov) = min{ar(u), ar(v)},
ar(uov) > rmin{az(u), ar(v)},
ap(uov) < max{ap(u), ag(v)}, for all u,v € M. Consequently, A = (a, @7, ar) is an MBJ-NSBPSA
of M.
Theorem 3.6 Any BP-SA of a BP-A M can be realized as a level subalgebra of some MBJ-NSBPSA of
M.
Proof: Let I be a BP-SA of M, and A = (ag, a7, ar) be an MB]-NSSin M defined by
m,if u€l, ~ [by, b,], if u€E j, if uel,
ar(w) = {0, O{herwise, 7w = {[0,0], ot];zerwise, and a; () = {1, o{herwise,
where m, by, b, € [0,1] with b, < b, and j € [0,1]. Let u,v € M.
If u,v el then ué¢v el
ar(uov) = m = min{m, m} = min{ar(0), ar(v)},
ai(uov) = [by, b,] = rmin{[by, b,], [by, b,]} = rmin{a; (u), a7 (v)},
ap(u0v) = j = max{j,j} = max{ar (), az(V)}.
If both u,v € I, then
ar(uov) = 0 = min{0,0} = min{ar(u), ar(v)},
ar;(uov) = [0,0] = rmin{[0,0], [0,0]} = rmin{a;(w), @1 (V)},
ap(UOV) < 1 =max{1,1} = max{az(v), ar(v)}.
If uel and v ¢ I, then
ar(uov) = 0 = min{m, 0} = min{ar(v), ar(v)},
a;(uov) > [0,0] = rmin{[b, b,], [0,0]} = rmin{a; (w), az (v)},
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ap(UOV) < 1 =max{j, 1} = max{az(0), ar(v)}.
If u¢l and v €1, then
ar(uov) = 0 = min{0, m} = min{ar(v), ar(v)},
a1 (uov) > [0,0] = rminf[0,0], [by, b,]} = rmin{a; (w), @1 (v)},
ap(UOV) < 1 =max{l,j} = max{az(0), ar(v)}.
This shows that [ is a level subalgebra of M corresponding to the MBJ-NSBPSA of M.

4. MBJ-neutrosophic a-Ideal in BP-algebra

Definition 4.1 Let M be a BP-A. An MBJ-NSS in M is called an MBJ-NSal of M if it satisfies the
following conditions

(MBJ-NSa-11) ar(0) = ar(u), a1(0) > az(u), and ar(0) = ar(w)

(MBJ-NSa-12) ap(vow) = min{ar(uow), ar(udv)}

(MBJ-NSa-1 3) a7 (vow) = rmin{a7(uéw), a7 (uov)}

(MBJ-NSa-14) ap(vow) < max{ag(uow), ap(udv)}, forall u,v,w € M.
Example 4.2 Consider a BP-A M = {0, G;,G,, G5} in which the “¢” operation is given in Table 4.

Table 4. BP-algebra.

¢ 0 gl gZ g3

0 0 61 Gz Ga
61 G1 Ga G2 G1
G2 Gz Ga 0 61
Gs Ga G1 0 Gz

Let A = (ar, @7, ap) be an MBJ-NSS in M defined by Table 5.

Table 5. MBJ-neutrosophic a-ideal.

M ar(u) a;(u) ap(u)
0 0.85 [0.75, 0.93] 0.22
S1 0.69 [0.57, 0.89] 0.51
G2 0.31 [0.27, 0.46] 0.97
Gs 0.01 [0.27, 0.46] 0.97

Straightforward computations reveal that A = (ar, @7, ar) is an MBJ-neutrosophic a-ideal of M.
Theorem 4.3 Let A = (ar,@7,az) be an MBJ-NSal of a BP-A M. If u<v holds in M, then
ar(vow) = ar(udw), a7 (vow) = a7(udw), and ap(vOow) < agp(udw), forall u,v,w € M.
Proof: Suppose that A = (ar, @7, ar) is an MBJ-NSal of M and u < v holds. Then, u¢v = 0. Now,
utilizing (MBJ-NSal 1) we obtain

ar(vow) = minf{ar(uow), ar(Udv)} = min{ar(UdW), ar(0)} = ar(udw),

ai(vow) = rmin{a;(uow), a7 (uov)} = rmin{a;(Udw), a7 (0)} = a7 (uow),

ap(vOw) < max{ar(UOW), ap(UOV)} = max{ap(UOw), ar(0)} = ap(Udw).
Theorem 4.4 Let A = (ar, @7, az) be an MBJ-NSal of a BP-A M. If u <vou holds in M, then
ar(u) = ap(uov), a7;(u) = a;(uov) and ap(u) = ap(udv), forall u,v e M.
Proof. Suppose that A = (ar, @7, az) is an MBJ-NSal of M and u < vou holds in M. Then,
u¢(vou) = 0. Now, replacing w by vou in (MBJ-NSa-I 2,3,4) and utilizing (MBJ-NSa-I 1), (BP-A 2)
we obtain

ar(vo(vou)) = minf{a;(uo(vow)), ap(udv)} = min{as(0), ar(uov)} = ar(udv)

= ar(u) = ap(uov),

@i (vo(vow)) = rmin{a;(uo (vow)), @ (uov)} = rmin{a (0), @y (uov)} = @;(udv)

= a7 () = a;(uov),
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aF(VO(vOu)) < max{aF(uO(vOu)), ap(uov)} = max{ap(0), ar(UOV)} = ap(UOV)
= ap(W) < ap(UoOV).
Theorem 4.5 The intersection of any two MBJ-NSals in a BP-A M is also an MBJ-NSal of M.
Proof: Let A, = (aTl,t’ifl,aFl) and A, = (aTZ,Effz,aFZ) be any two MBJ-NSals of M. Then,
A NA, = (aTl N ar,, ar, Nag,, ap; N “Fz)'
(aT1 n aTZ)(O) = min{ar, (0), ar,(0)} = min{ocT1 (W), ar, W} = (aTl n aTZ)(u),
(arT1 n aTZ)(VOw) = min{aTl(va), ar, (vow)}
> min{min{ar, (WOW), ar, WOV)}, min{ar,(uow), ar,(uov)}}
= min{min{ar, (WOW), ar, (WOW)}, min{ar, (UOV), ar,(UoV)}}
= min{(ar, N ar,)(vow), (ar, N ar,)(Vow)},
(@1, n@1,)(0) = rmin{ar, (0), @7,(0)} > rmin{ar, (W), a7,(W} = (@7, N @1,) (W),
(a7, na@,)(vow) = rmin{ar, (vow), @7, (vOow)}
> rmin{rmin{ay, (uow), @7, (WO}, rmin{ay, (uow), a7, (uov)}}
= rmin{rmin{@y, (uOw), a7, (UowW)}, rmin{ay, (UoVv), a7, (uoV)}}
= rmin{(@;, N a1,)(vow), (@7, na;,)(vow)},
(aF1 n aFZ)(O) = max{aFl(O), aFZ(O)} < max{aFl(u), aFZ(u)} = (apl n apz)(u),
(ap, N ag,)(Vow) = max{ag, (VOW), ap, (vOw)}
< max{max{az, (uoW), ag, (uOV)}, max{ar, (o), az,(UOV)}}
= max{max{ag, (UOW), ag,(WOW)}, max{as, (UOV), ap,(UOV)}}
= max{(ag, N az,)(VoW), (ar, Nag,)VOW)}.
Therefore, A; N A, is an MBJ-NSal of M.
Theorem 4.6 Let A = (ar, @7, ag) be an MBJ-NSal of a BP-A M. Then, for every m,j € [0,1] and
[by, by] € [1], Ui(ay, m), U,(a7, [by, by]), and L(ag,j) are a-ideals of BP-A M.
Proof: Assume that A = (ar, @7, ar) is an MBJ-NSal of M. For any uy, vy, w; € M, if u; € U;(ar, m),
v, € U,(a7, [by, by]), and w, € L(ag,j), then we obtain
ar(0) = ar(u)) =2m =0 € U, (ar,m)
a7(0) = a1 (vy) # [by, b,] = 0 € Up(@7, [by, b2])
az(0) < ap(wy) <j = 0 € L(ag, j).
For any uy,uy, us, vy, Vy, V3, Wy, Wy, W3 € M,
if uy0us,uy0u, € Uy(ar, m); v,0vs,v,0v, € U,(@7, [by, b;]); and w, Owg, w, 0w, € L(ag, j), then
ap(uQuz) =m, ap(u0uy) =2m, @1(vi0vs) = [by, by], @1(vyi0vy) = [by, by], ap(wiOws) <j and
ag(w; Ow,) < J.
Now, by utilizing (MBJ-NSa-I 2), (MBJ-NSa-I 3), and (MBJ-NSa-I 4), we obtain
ar(uy0ug) = min{ar(u, Ous), ar(u,0uy)} = min{m, m} = m = u,%uz € U, (ar, m),
a7 (v, 0v3) = rmin{ay (v, 0v3), @7 (v, 0v,)} = rmin{[by, b,], [by, b1} = [by, b,]
= v, 0v;3 € U,(@y, [by, b2]),
ap (W, 0w3) < max{ag(w; Ows), ap(w; 0w,)} < max{j,j} = j = w,0w; € L(ag, j).
Therefore, U, (ar,m), U,(a7,[by,b,]), and L(ag,j) are a-ideals of BP-A M, for any m,j € [0,1] and
[b1, b,] € [1].
Theorem 4.7 Let A = (ar, @7, ap) be an MBJ-NSS of a BP-algebra M. If ap,a;t, a;¥ and az¢ are
fuzzy a-ideals of M, then A = (ar, @7, ar) is an MBJ-NSal of M.
Theorem 4.8 Let A = (ar, @7, ar) be an MBJ-NSS of a BP-algebra M.If ar, ar’, a;Y and az¢ are BP-
SAs of M, then A = (ar, @7, ap) is an MBJ-NSBPSA of M.
Definition 4.9 Let (M, ¢,0) and (M, ¢',0") be BP-As, and let f be a mapping from the set M to the
set M'. If A, = (aTl,&"fl,aFl) and A, = (aTZ,Effz,an) are MBJ-NSSs of M and M’ respectively,
then

sup ar, (), iff7(V) #0,
f(“Tl)(V) = ar, (V) = Juef~tm) 1
0, otherwise.
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rsup @y, (w), iffTV) =0,
f(@,) W) = a7,(v) = {uef‘l(V) &

[0,0] otherwise.

inf g, (W), iff7IV)#0,
f(as,)(V) = az,(v) = {uef‘m o1

) otherwise.
is called the image of A, = (aTl,Zifl,aFl) under f, forall veY.

Similarly, for an MBJ-NSS A, = (aTZ,Ez‘fz,aFZ) in M" an MBJ-NSS A, = A, o f in M is defined as
ar,(fW) = ag, (W), @, (fW) = @, @), and  ag,(f@W) = ap, (W),
for all u € M and is called the preimage of A, in M.
Theorem 4.10 A monomorphic pre-image of an MBJ-NSal of BP-A is also an MBJ-NSal.
Proof. Let f:M — M’ be a monomorphism of BP-As. Assume that A, = (aTz, &‘fz,apz) is an MB]J-
NSalin M' and A, = (aTl,Effl,aFl) is the preimage of A, under f. Then
ar,(f(W) = ar, (W), a7,(f(W) = a7, (), ar,(f(W) = ag,(w), forall u € M. Now,
ar, (0) = aTz(f(O)) = aTz(f(u)) = ar, (),
1, (0) = @7, (f(0) > a1, (f (W) = @, (W),
ag, (0) = an(f(O)) < an(f(u)) = ag, (v)
Now let u,v,z € M. Then
ar, (vow) = ar, (f(vow)) = ar,(F(V)0'f(w))
2 min {az, (£ () O'f @) ), ar, (f (W9 F (V) )}
= min{ar,(f (Wow)), ar, (f (uov))}
= min{ar, (WOW), az,(UOV)},
@7, (vow) = @, (F(vow)) = @7, (f ()0 F(w))
> rmin (@7, (£ ()0 F(0)), @7, (f(W) 0 F (1))}
= rmin{a@y, (f (Wow)), @r, (f (uov))}
= rmin{@y, (UowW), @7, (UOV)},
e, (VOW) = ap, (F(vom)) = ap, (£ (v)0'F())
< max{ag,(F(W)0'fW)), ar,(F) 0 f(V))}
= max{ag, (f (uow)), ag, (f(uOV))}
= max{ag, (UOW), ap, (UOV)}.
Hence, the preimage of an MBJ-NSal of a B-algebra is also an MBJ-NSal.
Theorem 4.11 Let f:M — M’ be a monomorphism of BP-algebras. If A, = (aTZ, ar,, an) is an MBJ-
NSBPSA of M/, then its preimage A; = (aTl, ary, aFl) is also an MBJ-NSBPSA of M.
Proof. Suppose that A, = (aTz,fx‘f z,apz) is an MBJ-NSBPSA of M'.
Now, let u,v € M, then

ar, (00V) = a, (F(10V)) = ar, (F(WO'F(¥)) 2 minfar,(F (W), ar,(F (1))
= min{az, (W), ar, ()},

@7, (u0v) = a7, (£ (u0v)) = @7, (F(WO'F(v)) > rmin(r, (f (W), &, (f (1))}
= rmin{@, (w), @, (V)),

e, (00V) = g, (£ (10V)) = e, (F(WO'F (V) < max{ar, (f(W), @z, (F()}

= max{aFl(u)f aFl(v)}'
Hence, A, = (aTl,&‘fl,aFl) is an MBJ-NSBPSA of M.

5. Conclusion

In this study, we applied MBJ-neutrosophic structures to the algebraic structure BP-A and introduced
the concepts of MBJ-NSBPSAs and MBJ-NSals with examples. We proved that the intersection of two
MBJ-NSBPSAs is also an MBJ-NSBPSA, and similarly, the intersection of two MBJ-NSals is also an
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MBJ-NSal. Furthermore, we showed that under a homomorphism, the preimage of an MBJ-NSBPSA
is an MBJ-NSBPSA, and the preimage of an MBJ-NSal is an MBJ-NSal.
These findings significantly advance our theoretical understanding of MBJ-neutrosophic structures
in the field of BP-As. The methodology used in this article is also applicable to many other algebraic
structures. To further expand on these results, future studies may focus on

¢  MBJ-neutrosophic T-ideals in BP-algebra.

e  MB]J-neutrosophic BP-ideals in BP-algebra.

e  MB]J-neutrosophic translations in BP-algebra.
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