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Abstract: One of the most powerful tools in graph theory is the classification of graphs into distinct classes
based on shared properties or structural features. Over time, many graph classes have been introduced, each
aimed at capturing specific behaviors or characteristics of a graph. Neutrosophic Set Theory, a method for
handling uncertainty, extends fuzzy logic by incorporating degrees of truth, indeterminacy, and falsity. Building
on this framework, Neutrosophic Graphs [84, 9, 135] have emerged as significant generalizations of fuzzy graphs.
In this paper, we extend several classes of fuzzy graphs to Neutrosophic graphs and analyze their properties.
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1 Introduction

1.1 Graph Theory and Graph Classes
Graph theory, a fundamental branch of mathematics, investigates the relationships between nodes (vertices) and
edges (connections) that form networks. It emphasizes the study of their structures, paths, and properties [50].
This field has been extensively explored due to its wide-ranging applications across diverse domains, including
computer science, biology, and network analysis (ex.[107, 141, 36]).

One of the core aspects of graph theory is the classification of graphs into distinct classes based on shared
properties or structural characteristics. Such classifications enable the development of efficient algorithms,
facilitate problem-solving, and provide deeper insights into computational complexity. Moreover, these graph
classes serve as essential frameworks for studying specific graph behaviors and their applications in various
disciplines (cf.[40, 109, 23, 37]).

Notable examples of graph classes include Tree Graphs [156], Path Graphs [163], Complete Graphs [46], Circle
Graphs [39], Unit Disk Graphs [47], Edge-Transitive Graphs [100, 101], Ultrahomogeneous Graphs [90], Visibility
Graphs [89], Outerplanar Graphs [76], Petersen Graphs [75], and Total Graphs [157]. Studying these classes
allows researchers to identify common properties, create specialized and efficient algorithms, and apply these
insights to practical and theoretical problems.

1.2 Fuzzy Graph and Neutrosophic graph
Uncertainty refers to the lack of complete knowledge or predictability, influencing decision-making across disci-
plines like economics, science, and risk management. Zadeh [166] introduced fuzzy set theory in 1965 to address
uncertainty, and Rosenfeld [131, 117] extended this concept to fuzzy graph theory in 1975. A fuzzy set is widely
used to model uncertainty across various real-life domains [96, 86, 69, 172, 167, 169, 171, 168, 170]. It is defined
by a membership function, denoted as 𝑙, which maps values to the range [0, 1].
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Fuzzy graphs assign membership values to both vertices and edges, allowing for the analysis of relationships
with imprecision, and have been applied in fields such as logic, information theory, robotics, and nanotechnology
[107, 141]. Within fuzzy graph theory, various graph classes have been proposed to generalize fuzzy graphs or
adapt them for real-world applications. These include Intuitionistic Fuzzy Graphs [118], Bipolar Fuzzy Graphs
[4], Fuzzy Planar Graphs [138], Hyperfuzzy graph (Hyperfuzzy set)[56, 82, 154, 64], Superhyperfuzzy graph
(Superhyperfuzzy set) [56], Irregular Bipolar Fuzzy Graphs [137], and Complex Hesitant Fuzzy Graphs [1],
among others[57]. Studying these classes helps researchers uncover common properties, develop specialized
algorithms, and apply findings to practical problems.

In addition to fuzzy graphs, other frameworks have been developed to handle uncertainty and real-life pa-
rameters, such as weighted graphs [74], rough graph[139, 49], vague graph[129, 38], and Plithogenic Graphs
[85, 60, 146, 152, 140].

Neutrosophic Set Theory, an alternative approach to handling uncertainty, was proposed to extend fuzzy logic
by incorporating degrees of truth, indeterminacy, and falsity[142, 143, 56, 144, 161, 42]. Similar to fuzzy set
theory, Neutrosophic Sets have been widely researched for their applications across various fields [51, 165, 149].
Intuitively speaking, when Neutrosophic Set Theory is applied to graphs, it leads to the concept of Neutrosophic
Graphs. Neutrosophic Graphs [84, 53, 58, 61, 52, 9, 135] and Neutrosophic Hypergraphs [95, 11] have emerged as
significant generalizations of fuzzy graphs. These frameworks have attracted attention due to their applications
in areas closely related to fuzzy graph theory [53, 117, 55].

Numerous classes of Neutrosophic Graphs have been studied, including Bipolar Neutrosophic Graphs [11],
Neutrosophic Incidence Graphs [153], HyperNeutrosophic graph (HyperNeutrosophic set) [56], SuperhyperNeu-
trosophic graph (SuperhyperNeutrosophic set) [56], and Complex Neutrosophic Hypergraphs [95]. Investigating
these graph classes allows researchers to identify shared properties, refine algorithms, and explore new applica-
tions in various fields.

1.3 Our Contribution
Based on the above, the study of graph classes holds great significance. In this paper, we extend several classes
of fuzzy graphs to Neutrosophic graphs and analyze their properties. Specifically, we explore graph classes re-
lated to Neutrosophic Graphs, including Smart Neutrosophic Graphs, Neutrosophic Zero Divisor Graphs, Weak
Neutrosophic Graphs, Neutrosophic Semigraphs, Double/Triple Layered Neutrosophic Graphs, and Connected
Neutrosophic Chemical Graphs.

2 Preliminaries and definitions

In this section, we will briefly explain the definitions and notations used in this paper. We begin by introducing
fundamental concepts related to graphs and rings, followed by an explanation of fuzzy graphs and Neutrosophic
Graphs. Subsequently, we will present the definitions and examples of various graph classes, including Smart
Fuzzy Graphs, Fuzzy Zero Divisor Graphs, Weak Fuzzy Graphs, Fuzzy Semigraphs, Mild Balanced Intuitionistic
Fuzzy Graphs, Double/Triple Layered Fuzzy Graphs, and Connected Fuzzy Chemical Graphs.

2.1 Basic Graph Concepts
Here are a few basic graph concepts listed below. In addition to graph concepts, this paper also utilizes
fundamental concepts from set theory. Readers may refer to lecture notes or surveys on set theory as needed
[91, 73, 80].

Definition 1 (Graph). [50] A graph 𝐺 is a mathematical structure consisting of a set of vertices 𝑉 (𝐺) and a set
of edges 𝐸(𝐺) that connect pairs of vertices, representing relationships or connections between them. Formally,
a graph is defined as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set.

Graphs can be used to model a wide range of real-world concepts. Although just one example, the following
definition illustrates this capability.
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Example 2 (Social Network Graph). In social networks, individuals can be represented as vertices, and their
connections (such as friendships, interactions, or communications) can be represented as edges. This type
of graph models how people are connected to each other and allows for analysis of social dynamics, such as
identifying influencers, clusters of closely connected individuals, or finding the shortest path between people.

• Vertices: Each person in the network is represented by a vertex (node).

• Edges: A connection or relationship between two people (e.g., a ”friendship” in Facebook) is represented
by an edge between two vertices.

Definition 3 (Subgraph). [50] A subgraph of 𝐺 is a graph formed by selecting a subset of vertices and edges
from 𝐺.

Example 4. Consider the graph 𝐺 = (𝑉 , 𝐸), where:
𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5)}

A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻) is created by selecting a subset of the vertices and the edges from 𝐺.

Let the subgraph 𝐻 be defined by the following vertex and edge sets:
𝑉𝐻 = {𝑣2, 𝑣3, 𝑣4}, 𝐸𝐻 = {(𝑣2, 𝑣3), (𝑣3, 𝑣4)}

The subgraph 𝐻 includes the vertices 𝑣2, 𝑣3, 𝑣4 and the edges that connect these vertices in the original graph
𝐺, specifically the edges (𝑣2, 𝑣3) and (𝑣3, 𝑣4). It excludes the vertices 𝑣1 and 𝑣5 and their incident edges.

Definition 5 (Degree). [50] Let 𝐺 = (𝑉 , 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉 , denoted deg(𝑣), is the
number of edges incident to 𝑣. Formally, for undirected graphs:

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}|.
In the case of directed graphs, the in-degree deg−(𝑣) is the number of edges directed into 𝑣, and the out-degree
deg+(𝑣) is the number of edges directed out of 𝑣.

Definition 6 (Connectedness). A graph 𝐺 = (𝑉 , 𝐸) is said to be connected if for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 ,
there exists a path 𝑃 ⊆ 𝐺 that connects 𝑢 and 𝑣. Formally, 𝐺 is connected if:

∀𝑢, 𝑣 ∈ 𝑉 , ∃𝑃 ⊆ 𝐺 such that 𝑃 is a path from 𝑢 to 𝑣.

Example 7 (Connected and Unconnected Graphs). Consider the following two graphs:

• Connected Graph: Let 𝐺1 = (𝑉1, 𝐸1) be a graph with the vertex set 𝑉1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and edge
set 𝐸1 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4)}.

In this graph, there exists a path between any pair of vertices. For example:
𝑃𝑣1→𝑣4

= (𝑣1, 𝑣2, 𝑣3, 𝑣4)
is a path connecting 𝑣1 to 𝑣4. Thus, 𝐺1 is a connected graph.

• Unconnected Graph: Let 𝐺2 = (𝑉2, 𝐸2) be a graph with the vertex set 𝑉2 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} and
edge set 𝐸2 = {(𝑢1, 𝑢2), (𝑢3, 𝑢4)}.

In this graph, there is no path between the vertices 𝑢1 and 𝑢3 (or between 𝑢2 and 𝑢4, for example).
Hence, 𝐺2 is an unconnected graph because it contains two distinct subgraphs, one with 𝑢1, 𝑢2 and the
other with 𝑢3, 𝑢4, and there is no path connecting these subgraphs.

Definition 8 (Path). (cf.[41]) A path in a graph 𝐺 = (𝑉 , 𝐸) is a sequence of distinct vertices 𝑣1, 𝑣2, … , 𝑣𝑘 such
that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for 𝑖 = 1, 2, … , 𝑘 − 1. A path is represented as:

𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑘),
where no vertex is repeated. The length of a path is the number of edges it contains, i.e., 𝑘 − 1.
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Example 9 (Path). Consider a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} is the set of vertices and
𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5)} is the set of edges.

A path from 𝑣1 to 𝑣5 can be written as:

𝑃 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5),
where each pair of consecutive vertices (𝑣𝑖, 𝑣𝑖+1) is connected by an edge in 𝐸.

Thus, 𝑃 is a valid path in the graph 𝐺, connecting 𝑣1 and 𝑣5 through distinct vertices.

Definition 10 (Tree). A tree is a connected, acyclic graph. In other words, a tree is a graph where there is
exactly one path between any two vertices, and no cycles exist.

Example 11 (Tree). Consider the following graph 𝑇 = (𝑉 , 𝐸), where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} is the set of
vertices and 𝐸 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣3, 𝑣4), (𝑣3, 𝑣5)} is the set of edges. Thus, 𝑇 is a connected, acyclic graph,
satisfying the definition of a tree.

Definition 12 (Complete). (cf.[28]) A graph 𝐺 = (𝑉 , 𝐸) is said to be complete if for every pair of distinct
vertices 𝑢, 𝑣 ∈ 𝑉 , there exists an edge (𝑢, 𝑣) ∈ 𝐸 connecting them. In other words, every pair of vertices in 𝐺
is adjacent.

The number of edges in a complete graph with 𝑛 vertices is given by:

|𝐸| = 𝑛(𝑛 − 1)
2 ,

where 𝑛 = |𝑉 | is the number of vertices in the graph.

Example 13. Consider a complete graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. Since 𝐺 is complete, every pair
of distinct vertices must be connected by an edge. The vertex set and edge set of 𝐺 are as follows:

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}
𝐸 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣1, 𝑣4), (𝑣2, 𝑣3), (𝑣2, 𝑣4), (𝑣3, 𝑣4)}

In this case, the number of vertices is 𝑛 = 4, and the number of edges is:

|𝐸| = 𝑛(𝑛 − 1)
2 = 4(4 − 1)

2 = 12
2 = 6.

Thus, the complete graph 𝐺 with four vertices has six edges, and each pair of vertices is connected by an edge.

Graphically, the complete graph 𝐺 can be represented as a set of vertices where every vertex is connected to
every other vertex.

Definition 14 (union). The union of two graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) is a graph 𝐺 = (𝑉 , 𝐸)
where:

• The vertex set 𝑉 is the union of the vertex sets of 𝐺1 and 𝐺2:

𝑉 = 𝑉1 ∪ 𝑉2.

• The edge set 𝐸 is the union of the edge sets of 𝐺1 and 𝐺2:

𝐸 = 𝐸1 ∪ 𝐸2.

Thus, the union of 𝐺1 and 𝐺2 combines the vertices and edges of both graphs, without duplicating any elements.
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Definition 15 (Partition of a Graph). A partition of a graph 𝐺 = (𝑉 , 𝐸) is a division of the vertex set 𝑉 into
disjoint, non-empty subsets 𝑉1, 𝑉2, … , 𝑉𝑘 such that:

𝑉 = 𝑉1 ∪ 𝑉2 ∪ ⋯ ∪ 𝑉𝑘 and 𝑉𝑖 ∩ 𝑉𝑗 = ∅ for all 𝑖 ≠ 𝑗.
The subsets 𝑉1, 𝑉2, … , 𝑉𝑘 are called the parts or blocks of the partition.

Definition 16 (Bipartite Graph). (cf.[20, 103]) A graph 𝐺 = (𝑉 , 𝐸) is called a bipartite graph if the vertex set
𝑉 can be partitioned into two disjoint sets 𝑉1 and 𝑉2 such that every edge 𝑒 ∈ 𝐸 connects a vertex in 𝑉1 to a
vertex in 𝑉2. In other words, there are no edges between vertices within the same set 𝑉1 or 𝑉2. Formally, 𝐺 is
bipartite if 𝑉 = 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅, and for all 𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2.

Example 17. Consider the graph 𝐺 = (𝑉 , 𝐸) where the vertex set 𝑉 is given by
𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}

and the edge set 𝐸 is given by
𝐸 = {(𝑣1, 𝑣4), (𝑣1, 𝑣5), (𝑣2, 𝑣4), (𝑣3, 𝑣5), (𝑣3, 𝑣6)}.

We can partition the vertex set 𝑉 into two disjoint sets:
𝑉1 = {𝑣1, 𝑣2, 𝑣3}, 𝑉2 = {𝑣4, 𝑣5, 𝑣6}.

Every edge in 𝐸 connects a vertex from 𝑉1 to a vertex from 𝑉2, and there are no edges between vertices within
the same set. For example, (𝑣1, 𝑣4) connects 𝑣1 ∈ 𝑉1 to 𝑣4 ∈ 𝑉2, and similarly for all other edges.

Thus, 𝐺 is a bipartite graph.

Definition 18. In graph theory, a triangle graph, also known as the 3-cycle graph or the complete graph 𝐾3, is
a simple, undirected graph that consists of three vertices connected by three edges. Each vertex in the triangle
graph is connected to every other vertex, forming a cycle of length three.

The triangle graph can be denoted as:
𝑇 = (𝑉 , 𝐸)

where:

• 𝑉 = {𝑣1, 𝑣2, 𝑣3} is the set of three vertices, and

• 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣1)} is the set of three edges, representing the connections between all pairs
of vertices.

For more foundational graph concepts and notations, please refer to [50, 111, 68, 67, 162].

2.2 Basic Ring Concepts
A ring is an algebraic structure equipped with two operations, addition and multiplication, that satisfy the prop-
erties of associativity, distributivity, and the existence of an additive identity (cf.[79]). Since this paper focuses
on the Zero-Divisor Graph, we begin by introducing the fundamental concepts of rings. Several definitions are
outlined below.

Definition 19 (Commutative Ring). (cf.[99, 18, 97]) A commutative ring is a set 𝑅 equipped with two binary
operations, addition + and multiplication ⋅, such that:

• (𝑅, +) is an abelian group.

• (𝑅, ⋅) is a monoid with an identity element 1 ∈ 𝑅 (i.e., multiplication is associative, and there exists a
multiplicative identity 1).

• Multiplication is commutative, i.e., 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for all 𝑎, 𝑏 ∈ 𝑅.

• Multiplication is distributive over addition, i.e., 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅.
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Example 20. Let 𝑅 = ℤ6 = {0, 1, 2, 3, 4, 5}, the set of integers modulo 6. This set forms a commutative ring
under addition and multiplication modulo 6. We will verify that this is a commutative ring by performing some
calculations for addition and multiplication.

The addition table modulo 6 is as follows:
+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

This table confirms that: - (𝑅, +) forms an abelian group (commutative, with 0 as the identity and each element
having an inverse, for example, 1 + 5 = 0).

The multiplication table modulo 6 is as follows:
⋅ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

This table confirms the following: - (𝑅, ⋅) is a monoid with 1 as the multiplicative identity. - Multiplication is
commutative, for example, 2 ⋅ 3 = 0 and 3 ⋅ 2 = 0. - Multiplication is distributive over addition, for example,
2 ⋅ (3 + 4) = 2 ⋅ 1 = 2 and 2 ⋅ 3 + 2 ⋅ 4 = 0 + 2 = 2.

Thus, ℤ6 satisfies all the conditions of a commutative ring.

Definition 21 (Zero-Divisor). (cf.[3, 112]) In a commutative ring 𝑅, an element 𝑎 ∈ 𝑅 is called a zero-divisor
if there exists a non-zero element 𝑏 ∈ 𝑅 such that 𝑎 ⋅ 𝑏 = 0.

Example 22 (Zero-Divisor). Consider the commutative ring ℤ6 (the integers modulo 6). The elements of this
ring are {0, 1, 2, 3, 4, 5}, and addition and multiplication are performed modulo 6.

In this ring, the element 2 is a zero-divisor because:
2 × 3 = 6 ≡ 0 (mod 6).

Here, 2 ≠ 0 and 3 ≠ 0, yet their product is 0. Therefore, 2 is a zero-divisor in ℤ6. Similarly, 3 is also a
zero-divisor, as:

3 × 2 = 6 ≡ 0 (mod 6).

Definition 23 (Zero-divisor Graph). (cf.[17, 94, 19, 2]) Let 𝑅 be a commutative ring with unity, and let 𝑍(𝑅)
denote the set of zero-divisors of 𝑅. The zero-divisor graph of 𝑅, denoted by Γ(𝑅), is an undirected graph
defined as follows:

• The vertex set of Γ(𝑅) is 𝑍(𝑅)∗ = 𝑍(𝑅) ∖ {0}, i.e., the set of nonzero zero-divisors of 𝑅.

• For distinct 𝑥, 𝑦 ∈ 𝑍(𝑅)∗, there is an edge between 𝑥 and 𝑦 if and only if 𝑥𝑦 = 0 in 𝑅.

Thus, the graph Γ(𝑅) captures the relationships between the nonzero zero-divisors of 𝑅. If 𝑅 is an integral
domain, Γ(𝑅) is the empty graph.

Example 24 (Zero-divisor Graph). Consider the commutative ring ℤ6 (the integers modulo 6). The elements
of this ring are {0, 1, 2, 3, 4, 5}, and the set of zero-divisors is 𝑍(ℤ6) = {0, 2, 3, 4}.
T.Fujita and F.Smarandache, A Reconsideration of Advanced Concepts in Neutrosophic Graphs
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To construct the zero-divisor graph Γ(ℤ6), we first remove the element 0, so the vertex set of Γ(ℤ6) is {2, 3, 4}.

Next, we determine the edges:

• 2 × 3 = 6 ≡ 0 (mod 6), so there is an edge between 2 and 3.

• 2 × 4 = 8 ≡ 0 (mod 6), so there is an edge between 2 and 4.

• 3 × 4 = 12 ≡ 0 (mod 6), so there is an edge between 3 and 4.

Therefore, the zero-divisor graph Γ(ℤ6) has vertices {2, 3, 4}, and it forms a complete graph 𝐾3, where every
pair of distinct vertices is connected by an edge.

2.3 Fuzzy graph and Intuitionistic fuzzy graph
A Fuzzy Graph represents relationships under uncertainty by assigning membership degrees to both vertices
and edges, enabling more flexible and detailed analysis. Due to its importance, Fuzzy Graphs have been widely
studied in various fields [13, 8, 15, 14, 12, 160, 113, 104, 7, 83, 30, 93, 155, 108, 32]. The formal definition
of a Fuzzy Graph is given in [105, 131]. This concept extends the set-theoretic ideas of Fuzzy Sets [166] and
Intuitionistic Fuzzy Sets [27] into graph theory.

Definition 25 (Crisp Graph). A crisp graph is a mathematical structure 𝐺 = (𝑉 , 𝐸), where:

(1) 𝑉 is a non-empty finite or infinite set, referred to as the set of vertices or nodes.

(2) 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges, representing relationships between pairs of vertices.

(3) For any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, 𝑢, 𝑣 ∈ 𝑉 , and there is no uncertainty in the membership of 𝑢, 𝑣 in 𝑉 or 𝑒
in 𝐸.

Depending on the nature of the edges:

• In an undirected graph, if (𝑢, 𝑣) ∈ 𝐸, then (𝑣, 𝑢) ∈ 𝐸.

• In a directed graph, edges have a specific direction; if (𝑢, 𝑣) ∈ 𝐸, it does not necessarily imply (𝑣, 𝑢) ∈ 𝐸.

Definition 26. [131] A fuzzy graph 𝐺 = (𝜎, 𝜇) with 𝑉 as the underlying set is defined as follows:

• 𝜎 ∶ 𝑉 → [0, 1] is a fuzzy subset of vertices, where 𝜎(𝑥) represents the membership degree of vertex
𝑥 ∈ 𝑉 .

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation on 𝜎, such that 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥) ∧ 𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑉 , where ∧
denotes the minimum operation.

The underlying crisp graph of 𝐺 is denoted by 𝐺∗ = (𝜎∗, 𝜇∗), where:

• 𝜎∗ = sup 𝑝(𝜎) = {𝑥 ∈ 𝑉 ∶ 𝜎(𝑥) > 0}
• 𝜇∗ = sup 𝑝(𝜇) = {(𝑥, 𝑦) ∈ 𝑉 × 𝑉 ∶ 𝜇(𝑥, 𝑦) > 0}

A fuzzy subgraph 𝐻 = (𝜎′, 𝜇′) of 𝐺 is defined as follows:

• There exists 𝑋 ⊆ 𝑉 such that 𝜎′ ∶ 𝑋 → [0, 1] is a fuzzy subset.

• 𝜇′ ∶ 𝑋 × 𝑋 → [0, 1] is a fuzzy relation on 𝜎′, satisfying 𝜇′(𝑥, 𝑦) ≤ 𝜎′(𝑥) ∧ 𝜎′(𝑦) for all 𝑥, 𝑦 ∈ 𝑋.

Example 27. (cf.[45]) Consider a fuzzy graph 𝐺 = (𝜎, 𝜇) with four vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

The membership degrees of the vertices are as follows:
𝜎(𝑣1) = 0.1, 𝜎(𝑣2) = 0.3, 𝜎(𝑣3) = 0.2, 𝜎(𝑣4) = 0.4

The fuzzy relation on the edges is defined by the values of 𝜇, where 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥) ∧ 𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑉 . The
fuzzy membership degrees of the edges are as follows:

𝜇(𝑣1, 𝑣2) = 0.1, 𝜇(𝑣2, 𝑣3) = 0.1, 𝜇(𝑣3, 𝑣4) = 0.1
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𝜇(𝑣4, 𝑣1) = 0.1, 𝜇(𝑣2, 𝑣4) = 0.3

In this case, the fuzzy graph 𝐺 has the following properties:

• Vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 are connected by edges with varying membership degrees.

• The fuzzy relations ensure that 𝜇(𝑥, 𝑦) for any edge (𝑥, 𝑦) does not exceed the minimum membership
of the corresponding vertices.

Definition 28. [62] A fuzzy graph 𝐺 = (𝜎, 𝜇) is called complete if for all 𝑢, 𝑣 ∈ 𝑉 , the following condition
holds:

𝜇(𝑢, 𝑣) = 𝜎(𝑢) ∧ 𝜎(𝑣),
where ∧ denotes the minimum operation.

Proposition 29. A complete fuzzy graph is a special case of a fuzzy graph.

Proof : This is evident. □

The intuitionistic fuzzy graph, which generalizes the fuzzy graph, is also defined in a similar manner[5, 119, 48,
164, 118]. The definition is provided below.

Definition 30. [5] An intuitionistic fuzzy graph 𝐺 = (𝐴, 𝐵) on an underlying set 𝑉 is defined as follows:

(i) The functions 𝜇𝐴 ∶ 𝑉 → [0, 1] and 𝜈𝐴 ∶ 𝑉 → [0, 1] represent the degree of membership and non-
membership of each vertex 𝑥 ∈ 𝑉 , respectively. These functions satisfy the condition:

0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1, ∀𝑥 ∈ 𝑉 .

(ii) The functions 𝜇𝐵 ∶ 𝐸 ⊆ 𝑉 × 𝑉 → [0, 1] and 𝜈𝐵 ∶ 𝐸 ⊆ 𝑉 × 𝑉 → [0, 1] represent the degree of
membership and non-membership of each edge {𝑥, 𝑦} ∈ 𝐸, respectively. These functions satisfy the
following conditions for all {𝑥, 𝑦} ∈ 𝐸:

𝜇𝐵({𝑥, 𝑦}) ≤ min(𝜇𝐴(𝑥), 𝜇𝐴(𝑦)),

𝜈𝐵({𝑥, 𝑦}) ≥ max(𝜈𝐴(𝑥), 𝜈𝐴(𝑦)),
0 ≤ 𝜇𝐵({𝑥, 𝑦}) + 𝜈𝐵({𝑥, 𝑦}) ≤ 1.

Here:

• 𝐴 is the intuitionistic fuzzy vertex set of 𝐺, and

• 𝐵 is the intuitionistic fuzzy edge set of 𝐺, which represents a symmetric intuitionistic fuzzy relation on
𝐴.

The intuitionistic fuzzy graph 𝐺 = (𝐴, 𝐵) corresponds to the crisp graph 𝐺∗ = (𝑉 , 𝐸) if the following conditions
hold for all {𝑥, 𝑦} ∈ 𝐸:

𝜇𝐵({𝑥, 𝑦}) ≤ min(𝜇𝐴(𝑥), 𝜇𝐴(𝑦)), 𝜈𝐵({𝑥, 𝑦}) ≥ max(𝜈𝐴(𝑥), 𝜈𝐴(𝑦)).

2.4 Neutrosophic Graph and Intuitionistic Neutrosophic Graph
We introduce the concept of a neutrosophic graph [9, 135, 77, 70, 44, 150], which extends the framework of
fuzzy graphs [83].

A neutrosophic graph can also be viewed as a graphical representation of a neutrosophic set. Therefore, we
begin by providing the definition of a neutrosophic set below.
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Definition 31 (Neutrosophic Set). (cf.[145, 136, 110, 142, 151, 145, 43]) Let 𝑋 be a space of points and let
𝑥 ∈ 𝑋. A neutrosophic set 𝑆 in 𝑋 is characterized by three membership functions: a truth membership function
𝑇𝑆, an indeterminacy membership function 𝐼𝑆, and a falsity membership function 𝐹𝑆. For each point 𝑥 ∈ 𝑋,
𝑇𝑆(𝑥), 𝐼𝑆(𝑥), and 𝐹𝑆(𝑥) are real standard or non-standard subsets of the interval ]0−, 1+[, where:

𝑇𝑆, 𝐼𝑆, 𝐹𝑆 ∶ 𝑋 → [0−, 1+].

The neutrosophic set 𝑆 can be represented as:
𝑆 = {(𝑥, 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)) ∣ 𝑥 ∈ 𝑋}.

There are no restrictions on the sum of 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), and 𝐹𝑆(𝑥), so:
0 ≤ 𝑇𝑆(𝑥) + 𝐼𝑆(𝑥) + 𝐹𝑆(𝑥) ≤ 3+.

Definition 32 (Single Valued Neutrosophic Set). Let 𝑋 be a universal set, and let 𝑥 ∈ 𝑋 be an element of 𝑋.
A Single Valued Neutrosophic Set (SVNS) 𝐴 on 𝑋 is characterized by three functions:

𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],
where:

• 𝑇𝐴(𝑥) represents the truth-membership degree of 𝑥 in 𝐴,

• 𝐼𝐴(𝑥) represents the indeterminacy-membership degree of 𝑥 in 𝐴,

• 𝐹𝐴(𝑥) represents the falsity-membership degree of 𝑥 in 𝐴.

These functions satisfy:
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋.

When 𝑋 is continuous, 𝐴 can be expressed as:
𝐴 = {(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) ∣ 𝑥 ∈ 𝑋}.

When 𝑋 is discrete, 𝐴 can be expressed as:
𝐴 = {(𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖))/𝑥𝑖 ∣ 𝑥𝑖 ∈ 𝑋}.

Below are three real-world scenarios where neutrosophic sets can be applied.

Example 33. Let 𝑋 be the set of possible conditions a patient might have, and 𝑥 ∈ 𝑋 represent the condition
”diabetes.” A neutrosophic set 𝑆 is used to characterize the diagnosis:

• 𝑇𝑆(𝑥) = 0.8: The truth degree, derived from positive glucose tolerance test results and family history.

• 𝐼𝑆(𝑥) = 0.15: The indeterminacy degree, reflecting uncertainties due to borderline HbA1c levels and
inconsistent symptoms.

• 𝐹𝑆(𝑥) = 0.05: The falsity degree, representing evidence against diabetes, such as normal fasting glucose
levels.

Thus, the neutrosophic representation of the diagnosis is:
𝑆 = {(𝑥, 0.8, 0.15, 0.05) ∣ 𝑥 ∈ 𝑋}.

Example 34. Consider an environmental monitoring system where 𝑋 represents regions, and 𝑥 ∈ 𝑋 is ”Region
A.” The neutrosophic set 𝑆 evaluates the pollution status of 𝑥:

• 𝑇𝑆(𝑥) = 0.6: The truth degree that the area is polluted, based on sensor data showing moderate PM2.5
levels.

• 𝐼𝑆(𝑥) = 0.3: The indeterminacy degree due to missing data from certain sensors and conflicting readings.

• 𝐹𝑆(𝑥) = 0.1: The falsity degree, based on visual inspections showing clear skies and absence of visible
pollution.
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The neutrosophic representation of the pollution status is:
𝑆 = {(𝑥, 0.6, 0.3, 0.1) ∣ 𝑥 ∈ 𝑋}.

Example 35. Let 𝑋 represent products on an e-commerce platform, and 𝑥 ∈ 𝑋 denote a specific product,
”Smartphone A.” The neutrosophic set 𝑆 evaluates customer satisfaction:

• 𝑇𝑆(𝑥) = 0.7: The truth degree that customers are satisfied with the product, based on 70% positive
reviews.

• 𝐼𝑆(𝑥) = 0.2: The indeterminacy degree due to mixed reviews where customers were neutral about
features such as battery life.

• 𝐹𝑆(𝑥) = 0.1: The falsity degree, reflecting dissatisfaction based on complaints about delivery delays
and defective units.

The neutrosophic representation of customer satisfaction is:
𝑆 = {(𝑥, 0.7, 0.2, 0.1) ∣ 𝑥 ∈ 𝑋}.

Next, the definition of a neutrosophic graph is provided below.

Definition 36. [150] A neutrosophic graph 𝑁𝑇 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) is defined as follows:

• 𝑉 is the set of vertices.

• 𝐸 is the set of edges, where 𝐸 ⊆ 𝑉 × 𝑉 .

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) is a tuple of vertex membership functions:
𝜎𝑖 ∶ 𝑉 → [0, 1], 𝑖 = 1, 2, 3,

where:

– 𝜎1(𝑣): Truth degree of vertex 𝑣,

– 𝜎2(𝑣): Indeterminacy degree of vertex 𝑣,

– 𝜎3(𝑣): Falsity degree of vertex 𝑣.

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) is a tuple of edge membership functions:
𝜇𝑖 ∶ 𝐸 → [0, 1], 𝑖 = 1, 2, 3,

where:

– 𝜇1(𝑒): Truth degree of edge 𝑒,

– 𝜇2(𝑒): Indeterminacy degree of edge 𝑒,

– 𝜇3(𝑒): Falsity degree of edge 𝑒.

The following condition must hold for each edge 𝑒 = {𝑣𝑖, 𝑣𝑗} ∈ 𝐸:
𝜇(𝑒) ≤ 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗),

where ∧ denotes the minimum operation.

Additionally, the following terminology is used:

(1) 𝜎 is referred to as the neutrosophic vertex set.

(2) 𝜇 is referred to as the neutrosophic edge set.

(3) |𝑉 | is called the order of 𝑁𝑇 𝐺, denoted by 𝑂(𝑁𝑇 𝐺).
(4) The sum of all vertex membership values, ∑𝑣∈𝑉 𝜎(𝑣), is called the neutrosophic order of 𝑁𝑇 𝐺, denoted

by 𝑂𝑛(𝑁𝑇 𝐺).
(5) |𝐸| is called the size of 𝑁𝑇 𝐺, denoted by 𝑆(𝑁𝑇 𝐺).
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(6) The sum of all edge membership values, ∑𝑒∈𝐸 𝜇(𝑒), is called the neutrosophic size of 𝑁𝑇 𝐺, denoted by
𝑆𝑛(𝑁𝑇 𝐺).

The Examples of neutrosophic graph is following.

Example 37. (cf.[45]) Consider a neutrosophic graph 𝑁𝑇 𝐺 = (𝑉 , 𝐸, 𝜎 = (𝜎1, 𝜎2, 𝜎3), 𝜇 = (𝜇1, 𝜇2, 𝜇3)) with
four vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, as shown in the diagram.

The neutrosophic membership degrees of the vertices are as follows:

𝜎(𝑣1) = (0.5, 0.1, 0.4), 𝜎(𝑣2) = (0.6, 0.3, 0.2),
𝜎(𝑣3) = (0.2, 0.3, 0.4), 𝜎(𝑣4) = (0.4, 0.2, 0.5)

The neutrosophic membership degrees of the edges are as follows:

𝜇(𝑣1𝑣2) = (0.2, 0.3, 0.4), 𝜇(𝑣2𝑣3) = (0.3, 0.3, 0.4),
𝜇(𝑣3𝑣4) = (0.2, 0.3, 0.4), 𝜇(𝑣4𝑣1) = (0.1, 0.2, 0.5)

In this case, the neutrosophic graph 𝑁𝑇 𝐺 has the following properties:

• Vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 are connected by edges with varying neutrosophic membership degrees.

• The neutrosophic relations ensure that for every edge 𝑣𝑖𝑣𝑗 ∈ 𝐸, 𝜇(𝑣𝑖𝑣𝑗) ≤ 𝜎(𝑣𝑖)∧𝜎(𝑣𝑗), where ∧ denotes
the minimum operation.

Similarly to Fuzzy Graphs, an Intuitionistic Neutrosophic Graph has been defined as a generalization of Neu-
trosophic Graphs [6, 10, 78]. The definition is provided as follows.

Definition 38 (Intuitionistic Neutrosophic Graph). (cf.[6, 10, 78]) An intuitionistic neutrosophic graph 𝐺 =
(𝜂, 𝜌) is defined as follows:

• Let 𝑉 be the set of vertices.

• For each vertex 𝑢 ∈ 𝑉 , the intuitionistic neutrosophic membership functions 𝑇 (𝑢), 𝐼(𝑢), 𝐹 (𝑢) represent
the truth, indeterminacy, and falsity memberships, respectively, where 0 ≤ 𝑇 (𝑢) + 𝐼(𝑢) + 𝐹(𝑢) ≤ 2 and
the following conditions hold:

min{𝑇 (𝑢), 𝐼(𝑢)} ≤ 0.5, min{𝐹(𝑢), 𝐼(𝑢)} ≤ 0.5, min{𝑇 (𝑢), 𝐹(𝑢)} ≤ 0.5.

• Let 𝐸 ⊆ 𝑉 × 𝑉 be the set of edges.

• For each edge (𝑢, 𝑣) ∈ 𝐸, the intuitionistic neutrosophic membership functions 𝑇 (𝑢, 𝑣), 𝐼(𝑢, 𝑣), 𝐹 (𝑢, 𝑣)
represent the truth, indeterminacy, and falsity memberships of the edge, subject to the following condi-
tions:

𝑇 (𝑢, 𝑣) ≤ 𝑇 (𝑢) ∧ 𝑇 (𝑣), 𝐼(𝑢, 𝑣) ≤ 𝐼(𝑢) ∧ 𝐼(𝑣), 𝐹 (𝑢, 𝑣) ≤ 𝐹(𝑢) ∨ 𝐹(𝑣),
where ∧ denotes the minimum operation and ∨ denotes the maximum operation.

• Additionally, the following conditions must be satisfied for all edges (𝑢, 𝑣) ∈ 𝐸:
𝑇 (𝑢, 𝑣) ∧ 𝐼(𝑢, 𝑣) ≤ 0.5, 𝑇 (𝑢, 𝑣) ∧ 𝐹(𝑢, 𝑣) ≤ 0.5, 𝐼(𝑢, 𝑣) ∧ 𝐹(𝑢, 𝑣) ≤ 0.5,

and
0 ≤ 𝑇 (𝑢, 𝑣) + 𝐼(𝑢, 𝑣) + 𝐹(𝑢, 𝑣) ≤ 2.

This definition describes a graph structure where both the vertices and edges are characterized by their intu-
itionistic neutrosophic truth, indeterminacy, and falsity memberships, ensuring balanced contributions of these
components to the overall uncertainty in the graph.
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Example 39. (cf.[6, 10, 78]) Consider a graph 𝐺 = (𝑉 , 𝐸, 𝜂, 𝜌) where the vertex set 𝑉 = {𝑉1, 𝑉2, 𝑉3} and edge
set 𝐸 = {(𝑉1, 𝑉2), (𝑉2, 𝑉3)}.

• For each vertex 𝑉𝑖 ∈ 𝑉 , the intuitionistic neutrosophic membership functions for truth 𝑇 (𝑢), indeter-
minacy 𝐼(𝑢), and falsity 𝐹(𝑢) are as follows:

𝑇 (𝑉1) = 0.2, 𝐼(𝑉1) = 0.2, 𝐹(𝑉1) = 0.3,
𝑇 (𝑉2) = 0.3, 𝐼(𝑉2) = 0.3, 𝐹(𝑉2) = 0.4,
𝑇 (𝑉3) = 0.5, 𝐼(𝑉3) = 0.4, 𝐹(𝑉3) = 0.5.

• For the edges (𝑉𝑖, 𝑉𝑗) ∈ 𝐸, the intuitionistic neutrosophic membership functions 𝑇 (𝑢, 𝑣), 𝐼(𝑢, 𝑣), 𝐹 (𝑢, 𝑣)
represent the truth, indeterminacy, and falsity memberships of the edge:

𝑇 (𝑉1, 𝑉2) = 0.2, 𝐼(𝑉1, 𝑉2) = 0.2, 𝐹(𝑉1, 𝑉2) = 0.4,
𝑇 (𝑉2, 𝑉3) = 0.3, 𝐼(𝑉2, 𝑉3) = 0.3, 𝐹(𝑉2, 𝑉3) = 0.5.

The conditions outlined in the definition of an intuitionistic neutrosophic graph are satisfied for all vertices and
edges. Specifically:

• For each vertex 𝑉𝑖, we ensure that 𝑇 (𝑉𝑖) + 𝐼(𝑉𝑖) + 𝐹(𝑉𝑖) ≤ 2.

• For each edge (𝑉𝑖, 𝑉𝑗) ∈ 𝐸, the relationships between the intuitionistic neutrosophic membership func-
tions of vertices and edges hold, as described by the following conditions:

𝑇 (𝑉𝑖, 𝑉𝑗) ≤ 𝑇 (𝑉𝑖) ∧ 𝑇 (𝑉𝑗), 𝐼(𝑉𝑖, 𝑉𝑗) ≤ 𝐼(𝑉𝑖) ∧ 𝐼(𝑉𝑗), 𝐹 (𝑉𝑖, 𝑉𝑗) ≤ 𝐹(𝑉𝑖) ∨ 𝐹(𝑉𝑗),
where ∧ denotes the minimum operation and ∨ denotes the maximum operation.

This graph structure provides an example of how the intuitionistic neutrosophic framework balances truth,
indeterminacy, and falsity at both the vertex and edge levels, following the rules set out in the definition.

Theorem 40. An intuitionistic neutrosophic graph generalizes a neutrosophic graph.

Proof : To prove that an intuitionistic neutrosophic graph generalizes a neutrosophic graph, we establish the
following relationship between their definitions.

A neutrosophic graph 𝑁𝑇 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) is defined such that:

• For each vertex 𝑢 ∈ 𝑉 , the membership functions 𝜎 = (𝜎1, 𝜎2, 𝜎3) represent the truth (𝜎1), indeterminacy
(𝜎2), and falsity (𝜎3) memberships, satisfying:

0 ≤ 𝜎1(𝑢) + 𝜎2(𝑢) + 𝜎3(𝑢) ≤ 1.

• For each edge (𝑢, 𝑣) ∈ 𝐸, the edge memberships 𝜇 = (𝜇1, 𝜇2, 𝜇3) satisfy:
𝜇𝑖(𝑢, 𝑣) ≤ 𝜎𝑖(𝑢) ∧ 𝜎𝑖(𝑣), ∀𝑖 = 1, 2, 3.

An intuitionistic neutrosophic graph 𝐼𝑁𝐺 = (𝜂, 𝜌) is defined such that:

• For each vertex 𝑢 ∈ 𝑉 , the membership functions 𝜂 = (𝑇 , 𝐼, 𝐹 ) represent truth (𝑇 ), indeterminacy (𝐼),
and falsity (𝐹 ), satisfying:

0 ≤ 𝑇 (𝑢) + 𝐼(𝑢) + 𝐹(𝑢) ≤ 2.

• Additional conditions ensure pairwise contributions to uncertainty:
min{𝑇 (𝑢), 𝐼(𝑢)} ≤ 0.5, min{𝐼(𝑢), 𝐹 (𝑢)} ≤ 0.5, min{𝑇 (𝑢), 𝐹(𝑢)} ≤ 0.5.

• For each edge (𝑢, 𝑣) ∈ 𝐸, the edge memberships 𝜌 = (𝑇 , 𝐼, 𝐹 ) satisfy:
𝑇 (𝑢, 𝑣) ≤ 𝑇 (𝑢) ∧ 𝑇 (𝑣), 𝐼(𝑢, 𝑣) ≤ 𝐼(𝑢) ∧ 𝐼(𝑣), 𝐹 (𝑢, 𝑣) ≤ 𝐹(𝑢) ∨ 𝐹(𝑣),

and:
0 ≤ 𝑇 (𝑢, 𝑣) + 𝐼(𝑢, 𝑣) + 𝐹(𝑢, 𝑣) ≤ 2.
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If we constrain the intuitionistic neutrosophic graph 𝐼𝑁𝐺 by setting:
𝑇 (𝑢) + 𝐼(𝑢) + 𝐹(𝑢) ≤ 1, and 𝑇 (𝑢, 𝑣) + 𝐼(𝑢, 𝑣) + 𝐹(𝑢, 𝑣) ≤ 1,

then 𝐼𝑁𝐺 reduces to a neutrosophic graph 𝑁𝑇 𝐺. This is because:

• The sum of the memberships in 𝑁𝑇 𝐺 is bounded by 1, which is a stricter condition than the bound of
2 in 𝐼𝑁𝐺.

• The relationships 𝜇𝑖(𝑢, 𝑣) ≤ 𝜎𝑖(𝑢) ∧ 𝜎𝑖(𝑣) in 𝑁𝑇 𝐺 are equivalent to the edge conditions in 𝐼𝑁𝐺 when
the sum of memberships is constrained to 1.

Thus, every neutrosophic graph is a special case of an intuitionistic neutrosophic graph, where the total member-
ships are further restricted. Therefore, an intuitionistic neutrosophic graph generalizes a neutrosophic graph. □

Theorem 41. An intuitionistic neutrosophic graph generalizes an intuitionistic fuzzy graph.

Proof : To obtain an intuitionistic fuzzy graph from an intuitionistic neutrosophic graph 𝐺 = (𝜂, 𝜌), set:
𝑇 (𝑢) = 𝜇𝐴(𝑢), 𝐹 (𝑢) = 𝜈𝐴(𝑢), 𝐼(𝑢) = 0 ∀𝑢 ∈ 𝑉 ,

and:
𝑇 (𝑢, 𝑣) = 𝜇𝐵(𝑢, 𝑣), 𝐹 (𝑢, 𝑣) = 𝜈𝐵(𝑢, 𝑣), 𝐼(𝑢, 𝑣) = 0 ∀(𝑢, 𝑣) ∈ 𝐸.

Under this reduction:

• For vertices:
0 ≤ 𝑇 (𝑢) + 𝐼(𝑢) + 𝐹(𝑢) = 𝜇𝐴(𝑢) + 𝜈𝐴(𝑢) ≤ 1.

• For edges:
𝑇 (𝑢, 𝑣) = 𝜇𝐵(𝑢, 𝑣) ≤ min(𝑇 (𝑢), 𝑇 (𝑣)) = min(𝜇𝐴(𝑢), 𝜇𝐴(𝑣)),
𝐹 (𝑢, 𝑣) = 𝜈𝐵(𝑢, 𝑣) ≥ max(𝐹(𝑢), 𝐹 (𝑣)) = max(𝜈𝐴(𝑢), 𝜈𝐴(𝑣)).

• Indeterminacy (𝐼(𝑢) and 𝐼(𝑢, 𝑣)) is set to zero, as it is not considered in the intuitionistic fuzzy graph.

An intuitionistic fuzzy graph can be obtained as a special case of an intuitionistic neutrosophic graph by setting
the indeterminacy memberships to zero (𝐼(𝑢) = 𝐼(𝑢, 𝑣) = 0). Therefore, the intuitionistic neutrosophic graph
is a generalization of the intuitionistic fuzzy graph. □

An example of operations in a Neutrosophic Graph is provided below. Since it is difficult to list all operations,
please refer to the relevant references as needed.

Definition 42 (Complement of a Neutrosophic Graph). Let 𝐺 = (𝑉 , 𝐸, 𝜎 = (𝜎1, 𝜎2, 𝜎3), 𝜇 = (𝜇1, 𝜇2, 𝜇3)) be a
Neutrosophic graph, where 𝜎 represents the neutrosophic membership functions of the vertices, and 𝜇 represents
the neutrosophic membership functions of the edges. The complement of 𝐺, denoted as 𝐺 = (𝑉 , 𝐸′, 𝜎, 𝜇′), is a
neutrosophic graph defined as follows:

• The vertex set remains the same: 𝑉 (𝐺) = 𝑉 (𝐺).
• The edge set 𝐸′ is the complement of the original edge set 𝐸, meaning 𝐸′ = {(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∉ 𝐸}.

• The neutrosophic membership functions for edges in the complement graph 𝜇′ are defined as:
𝜇′

1(𝑢, 𝑣) = 𝜎1(𝑢) ∧ 𝜎1(𝑣) − 𝜇1(𝑢, 𝑣),
𝜇′

2(𝑢, 𝑣) = |𝜎2(𝑢) ∨ 𝜎2(𝑣) − 𝜇2(𝑢, 𝑣)| ,
𝜇′

3(𝑢, 𝑣) = |𝜎3(𝑢) ∨ 𝜎3(𝑣) − 𝜇3(𝑢, 𝑣)| ,
for all 𝑢, 𝑣 ∈ 𝑉 , where ∧ denotes the minimum operation, ∨ denotes the maximum operation, and
the absolute value ensures non-negative membership values. The functions 𝜇1(𝑢, 𝑣), 𝜇2(𝑢, 𝑣), 𝜇3(𝑢, 𝑣)
represent the truth, indeterminacy, and falsity memberships of the edge in the original graph.

Thus, the complement graph 𝐺 adjusts the truth, indeterminacy, and falsity memberships based on the com-
plement of the original edge relations.
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Definition 43 (𝜇-Complement of a Neutrosophic Graph). Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a Neutrosophic graph.
The 𝜇-complement of 𝐺, denoted by 𝐺𝜇 = (𝑉 , 𝐸, 𝜎, 𝜇𝜇), is a neutrosophic graph where the neutrosophic edge
membership functions 𝜇𝜇 are defined as follows:

• If 𝜇1(𝑢, 𝑣) = 0, then:
𝜇𝜇

1 (𝑢, 𝑣) = 0,
meaning there is no truth membership for non-edges.

• If 𝜇1(𝑢, 𝑣) > 0, then:
𝜇𝜇

1 (𝑢, 𝑣) = 𝜎1(𝑢) ∧ 𝜎1(𝑣) − 𝜇1(𝑢, 𝑣),
where 𝜇𝜇

1 (𝑢, 𝑣) is the complement of the truth membership for edges that exist in the original graph.

• The indeterminacy and falsity memberships for the 𝜇-complement are defined as:
𝜇𝜇

2 (𝑢, 𝑣) = |𝜎2(𝑢) ∨ 𝜎2(𝑣) − 𝜇2(𝑢, 𝑣)| , 𝜇𝜇
3 (𝑢, 𝑣) = |𝜎3(𝑢) ∨ 𝜎3(𝑣) − 𝜇3(𝑢, 𝑣)| ,

meaning the complement operation adjusts the indeterminacy and falsity memberships of the edges
based on the maximum operation, with absolute values ensuring non-negative results.

This definition adjusts the truth, indeterminacy, and falsity memberships based on the complement of the
original edge weights.

Theorem 44. The complement of a Neutrosophic Graph 𝐺 is itself a Neutrosophic Graph.

Proof : Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a Neutrosophic Graph, and let 𝐺 = (𝑉 , 𝐸′, 𝜎, 𝜇′) be its complement as defined
above. To show that 𝐺 is a Neutrosophic Graph, we verify the properties of neutrosophic membership functions:

1. Vertex membership functions: The vertex membership functions 𝜎1, 𝜎2, 𝜎3 remain unchanged, satisfying:
0 ≤ 𝜎1(𝑢) + 𝜎2(𝑢) + 𝜎3(𝑢) ≤ 3 for all 𝑢 ∈ 𝑉 .

2. Edge membership functions: For 𝜇′
1, 𝜇′

2, 𝜇′
3, we verify that:

0 ≤ 𝜇′
1(𝑢, 𝑣) + 𝜇′

2(𝑢, 𝑣) + 𝜇′
3(𝑢, 𝑣) ≤ 3,

since:
𝜇′

1(𝑢, 𝑣) = 𝜎1(𝑢) ∧ 𝜎1(𝑣) − 𝜇1(𝑢, 𝑣),
𝜇′

2(𝑢, 𝑣) = |𝜎2(𝑢) ∨ 𝜎2(𝑣) − 𝜇2(𝑢, 𝑣)| ,
𝜇′

3(𝑢, 𝑣) = |𝜎3(𝑢) ∨ 𝜎3(𝑣) − 𝜇3(𝑢, 𝑣)| .

Each component 𝜇′
𝑖(𝑢, 𝑣) satisfies the required bounds because 𝜇1, 𝜇2, 𝜇3 ∈ [0, 1], and the operations ∧, ∨,

subtraction, and absolute value do not violate the constraints.

Hence, 𝐺 is a valid Neutrosophic Graph. □

2.5 Smart Fuzzy Graph
A Smart Fuzzy Graph models real-world systems with uncertain relationships, utilizing fuzzy sets, and is widely
applied in IoT and connectivity problems [25, 26] 1. Related graph classes include the Regular Smart Fuzzy
Graph and the Totally Regular Smart Fuzzy Graph [25, 26]. The definitions and examples are presented as
follows.

Definition 45. [25, 26] A Smart Fuzzy Graph 𝐺 = (𝜎, 𝜇) with 𝑉 as the underlying set is defined as follows:

• 𝜎 ∶ 𝑉 → [0, 1] is a fuzzy subset of vertices, where 𝜎(𝑥) represents the membership degree of vertex
𝑥 ∈ 𝑉 .

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a symmetric fuzzy relation on 𝜎, such that 𝜇(𝑢, 𝑣) ≤ 𝜎(𝑢) ∧ 𝜎(𝑣) for all 𝑢, 𝑣 ∈ 𝑉 ,
where ∧ denotes the minimum operation.

1The Internet of Things (IoT) connects devices, sensors, and systems, enabling data exchange and automation for enhanced
efficiency and decision-making(cf.[102]).
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The Smart Fuzzy Graph must satisfy the following conditions:

• If 𝑢 ≠ 𝑣, then:
∑

𝑢,𝑣∈𝑉
𝜇(𝑢, 𝑣) ≤ ∑

𝑢,𝑣∈𝑉
𝜎(𝑢) ∧ 𝜎(𝑣) ≤ 1.

• If 𝑢 = 𝑣, then:
∑
𝑢∈𝑉

𝜇(𝑢, 𝑢) = ∑
𝑢∈𝑉

𝜎(𝑢) ∧ 𝜎(𝑢) = 0.

Example 46. [25, 26] Consider a Smart Fuzzy Graph with 5 vertices 𝑉 = {𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5}, where the
membership degrees of the vertices are as follows:

𝜎(𝑉1) = 0.8, 𝜎(𝑉2) = 0.6, 𝜎(𝑉3) = 0.5, 𝜎(𝑉4) = 0.9, 𝜎(𝑉5) = 0.5

The edges are defined with the following membership values:

𝑉1(0.8) 𝑉2(0.6) 𝑉3(0.5) 𝑉4(0.9) 𝑉5(0.5)
𝑉1(0.8) 0 0.09 0.11 0.07 0.13
𝑉2(0.6) 0.09 0 0.2 0 0.1
𝑉3(0.5) 0.11 0.2 0 0.1 0
𝑉4(0.9) 0.07 0 0.1 0 0.1
𝑉5(0.5) 0.13 0.1 0 0.1 0

For this Smart Fuzzy Graph, the condition 𝜇(𝑢, 𝑣) ≤ 𝜎(𝑢)∧𝜎(𝑣) must hold for all pairs of vertices. For example:

• For 𝑉1(0.8) and 𝑉5(0.5), we have 𝜇(𝑉1, 𝑉5) = 0.13 and 𝜎(𝑉1) ∧ 𝜎(𝑉5) = 0.5, so the condition 0.13 ≤ 0.5
is satisfied.

• For 𝑉2(0.6) and 𝑉3(0.5), we have 𝜇(𝑉2, 𝑉3) = 0.2 and 𝜎(𝑉2) ∧ 𝜎(𝑉3) = 0.5, so the condition 0.2 ≤ 0.5 is
satisfied.

Thus, the graph satisfies the conditions of a Smart Fuzzy Graph, where the strength of the fuzzy relations
between vertices is constrained by their membership degrees.

2.6 Fuzzy zero divisor graph
A fuzzy zero divisor graph is a fuzzy graph where vertices represent nonzero zero-divisors of a ring, and edges
exist if their product equals zero[88, 87]. The definitions and examples are presented as follows.

Notation 47. (cf.[87]) Let 𝑅 be a commutative ring with identity, and let 𝑍(𝑅) denote the set of zero-divisors
in 𝑅. The zero-divisor graph of 𝑅, denoted by Γ(𝑅), is defined as follows:

• The vertex set of Γ(𝑅) is 𝑍(𝑅)∗ = 𝑍(𝑅) ∖ {0}, the set of all nonzero zero-divisors of 𝑅.

• Two distinct vertices 𝑥, 𝑦 ∈ 𝑍(𝑅)∗ are connected by an edge if and only if their product in 𝑅 is zero,
i.e., 𝑥𝑦 = 0.

In this way, Γ(𝑅) encodes the relationships between the nonzero zero-divisors of 𝑅. If 𝑅 is an integral domain
(i.e., 𝑅 has no nonzero zero-divisors), the graph Γ(𝑅) is empty, as 𝑍(𝑅)∗ = ∅.

Definition 48. [87] A fuzzy zero divisor graph Γfuzzy = (𝑉 , 𝜎, 𝜇) is defined as follows:

• 𝑉 is a non-empty set of vertices, representing the elements of a commutative ring 𝑅 with 1.

• 𝜎 ∶ 𝑉 → (0, 1] is a fuzzy membership function that assigns a membership degree 𝜎(𝑣) to each vertex
𝑣 ∈ 𝑉 , where 𝜎(𝑣) reflects the relevance or strength of the zero divisor element 𝑣.
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• 𝜇 ∶ 𝑉 × 𝑉 → (0, 1] is a fuzzy relation on 𝜎, defined as:

𝜇(𝑣𝑖, 𝑣𝑗) = 𝜎(𝑣𝑖) ⋅ 𝜎(𝑣𝑗)
𝜎(𝑣𝑖) + 𝜎(𝑣𝑗)

, ∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 .

The relation 𝜇(𝑣𝑖, 𝑣𝑗) represents the degree of adjacency between two vertices 𝑣𝑖 and 𝑣𝑗, which is influ-
enced by their fuzzy membership degrees.

The fuzzy zero divisor graph represents the relationships between the zero-divisor elements of a commutative
ring 𝑅. Each vertex corresponds to a nonzero zero divisor of 𝑅, and two distinct vertices 𝑣𝑖 and 𝑣𝑗 are adjacent
if their product is zero, i.e., 𝑣𝑖𝑣𝑗 = 0.

Theorem 49. A Fuzzy Zero Divisor Graph generalizes both a Zero-Divisor Graph and a Fuzzy Graph.

Proof : Let Γfuzzy = (𝑉 , 𝜎, 𝜇) be a fuzzy zero divisor graph of a commutative ring 𝑅.

If we ignore the fuzzy membership function 𝜎 and the fuzzy relation 𝜇, the vertex set 𝑉 corresponds to 𝑍(𝑅)∗ =
𝑍(𝑅) ∖ {0}, the set of nonzero zero-divisors of 𝑅. An edge exists between two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 if and only if
𝑣𝑖𝑣𝑗 = 0, matching the definition of a zero-divisor graph Γ(𝑅). Thus, Γfuzzy reduces to Γ(𝑅), the zero-divisor
graph, by removing fuzzy characteristics.

A fuzzy graph 𝐺 = (𝑉 , 𝜎, 𝜇) has:

• A vertex set 𝑉 with fuzzy membership 𝜎 ∶ 𝑉 → (0, 1],
• A fuzzy relation 𝜇 ∶ 𝑉 × 𝑉 → (0, 1].

For Γfuzzy = (𝑉 , 𝜎, 𝜇), the membership function 𝜎 assigns a fuzzy degree to each vertex 𝑣 ∈ 𝑉 , and the adjacency
relation 𝜇(𝑣𝑖, 𝑣𝑗) is defined as:

𝜇(𝑣𝑖, 𝑣𝑗) = 𝜎(𝑣𝑖) ⋅ 𝜎(𝑣𝑗)
𝜎(𝑣𝑖) + 𝜎(𝑣𝑗)

.

This satisfies the requirements of a fuzzy graph structure. Thus, Γfuzzy reduces to a fuzzy graph by considering
the fuzzy memberships and adjacency relations without enforcing the ring-theoretic zero-divisor constraints.

A Fuzzy Zero Divisor Graph Γfuzzy generalizes the Zero-Divisor Graph by incorporating fuzzy memberships for
vertices and edges, and it generalizes a Fuzzy Graph by embedding the algebraic properties of zero-divisors
within the fuzzy structure. □

2.7 Fuzzy semigraph
A fuzzy semigraph is a fuzzy graph that generalizes semigraphs, combining fuzzy vertices and fuzzy edges, often
applied in network systems like roads or telecommunications[24, 127, 106, 115]. The definitions are presented
as follows.

Definition 50. [126] A fuzzy semigraph 𝐺 = (𝑉 , 𝑋, 𝜎, 𝜇, 𝜂) is defined as follows:

• 𝑉 is a non-empty set of vertices.

• 𝑋 is a set of edges, where each edge is an 𝑛-tuple of distinct vertices from 𝑉 , i.e., 𝑒 = (𝑣1, 𝑣2, … , 𝑣𝑛),
with 𝑛 ≥ 2.

• 𝜎 ∶ 𝑉 → [0, 1] is a fuzzy subset of vertices, where 𝜎(𝑣) represents the membership degree of vertex 𝑣 ∈ 𝑉 .

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation on the vertices, where 𝜇(𝑢, 𝑣) ≤ 𝜎(𝑢) ∧ 𝜎(𝑣) for all 𝑢, 𝑣 ∈ 𝑉 .

• 𝜂 ∶ 𝑋 → [0, 1] is a fuzzy subset of edges, where 𝜂(𝑒) is the membership degree of the edge 𝑒 =
(𝑣1, 𝑣2, … , 𝑣𝑛) and satisfies:

𝜂(𝑒) ≤ 𝜇(𝑣1, 𝑣2) ∧ 𝜇(𝑣2, 𝑣3) ∧ ⋯ ∧ 𝜇(𝑣𝑛−1, 𝑣𝑛) ∧ 𝜎(𝑣1) ∧ 𝜎(𝑣𝑛).
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In this fuzzy semigraph, the vertices 𝑣1 and 𝑣𝑛 are called the end vertices, while the vertices 𝑣2, 𝑣3, … , 𝑣𝑛−1 are
called the middle vertices. If a middle vertex is also an end vertex of another edge, it is called a middle-end
vertex.

Definition 51. [126] A fuzzy subsemigraph 𝐻 = (𝛾, 𝜌, 𝛿) of a fuzzy semigraph 𝐺 = (𝜎, 𝜇, 𝜂) is defined as follows:

• All edges of 𝐻 are subedges of 𝐺.

• For every vertex 𝑢 ∈ 𝑉 , the membership degree of 𝑢 in 𝐻 is less than or equal to its membership degree
in 𝐺, i.e., 𝛾(𝑢) ≤ 𝜎(𝑢).

• For every pair of vertices (𝑢, 𝑣) ∈ 𝑉 × 𝑉 , the fuzzy relation 𝜌(𝑢, 𝑣) in 𝐻 is less than or equal to the
fuzzy relation 𝜇(𝑢, 𝑣) in 𝐺, i.e., 𝜌(𝑢, 𝑣) ≤ 𝜇(𝑢, 𝑣).

• For every edge 𝑒 ∈ 𝑋, the fuzzy membership degree 𝛿(𝑒) in 𝐻 is less than or equal to the fuzzy
membership degree 𝜂(𝑒) in 𝐺, i.e., 𝛿(𝑒) ≤ 𝜂(𝑒).

Definition 52. [126] Let 𝐺 = (𝜎, 𝜇, 𝜂) be a fuzzy semigraph on the vertex set 𝑉 and edge set 𝑋. The End
Vertex Fuzzy Graph (e-Fuzzy Graph), denoted as 𝐺𝑒 = (𝜎𝑒, 𝜂𝑒), is defined as follows:

• The vertex set is 𝑉 , where 𝜎𝑒(𝑢) = 𝜎(𝑢) for all 𝑢 ∈ 𝑉 .

• Two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent in 𝐺𝑒 if and only if they are end vertices of an edge in 𝐺, with
𝜂𝑒(𝑢𝑣) = 𝜂(𝑢𝑣) for every pair of end vertices 𝑢 and 𝑣.

Definition 53. [126] Let 𝐺 = (𝜎, 𝜇, 𝜂) be a fuzzy semigraph. The Adjacency Fuzzy Graph (a-Fuzzy Graph),
denoted as 𝐺𝑎 = (𝜎𝑎, 𝜂𝑎), is defined as follows:

• The vertex set is 𝑉 , where 𝜎𝑎(𝑢) = 𝜎(𝑢) for all 𝑢 ∈ 𝑉 .

• Two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent in 𝐺𝑎 if they are adjacent in 𝐺. The adjacency membership function
is given by:

𝜂𝑎(𝑢𝑣) = 𝜇(𝑢𝑣1) ∧ 𝜇(𝑣1𝑣2) ∧ … ∧ 𝜇(𝑣𝑘−1𝑣𝑘),
for every pair of adjacent vertices 𝑢, 𝑣 where (𝑢, 𝑣1, … , 𝑣𝑘) is an edge or partial edge of 𝐺.

Definition 54. [126] Let 𝐺 = (𝜎, 𝜇, 𝜂) be a fuzzy semigraph. The Consecutive Adjacency Fuzzy Graph (ca-Fuzzy
Graph), denoted as 𝐺𝑐𝑎 = (𝜎𝑐𝑎, 𝜇𝑐𝑎), is defined as follows:

• The vertex set is 𝑉 , where 𝜎𝑐𝑎(𝑢) = 𝜎(𝑢) for all 𝑢 ∈ 𝑉 .

• Two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent in 𝐺𝑐𝑎 if and only if they are consecutively adjacent in 𝐺. The
adjacency membership function is given by 𝜇𝑐𝑎(𝑢𝑣) = 𝜇(𝑢𝑣) for every pair of consecutively adjacent
vertices 𝑢 and 𝑣.

2.8 Double Layered Fuzzy Graph and Triple Layered Fuzzy Graph
A Layered Fuzzy Graph is an extension of fuzzy graphs with multiple layers, where each layer represents
distinct fuzzy relations or membership degrees between vertices and edges. The Double Layered Fuzzy Graph
[123, 133, 124] and Triple Layered Fuzzy Graph [98, 63, 134] are defined accordingly. Related graph classes
include the Intuitionistic Double Layered Fuzzy Graph [132], Balanced Double Layered Bipolar Fuzzy Graph
[122, 128], and Complete Double Layered Fuzzy Graph [16]. Additionally, generalized forms such as the K-
Partitioned Fuzzy Graph [121, 120] and the Quadruple Layered Fuzzy Graph [81] have also been introduced.

Definition 55. [123, 133, 124] A Double Layered Fuzzy Graph (DLFG) is a fuzzy graph 𝐺 = (𝜎, 𝜇) with an
underlying crisp graph 𝐺∗ = (𝜎∗, 𝜇∗). The Double Layered Fuzzy Graph is denoted as 𝐷𝐿(𝐺) = (𝜎𝐷𝐿, 𝜇𝐷𝐿),
and it is defined as follows:

The node set of 𝐷𝐿(𝐺) is the union 𝜎∗ ∪ 𝜇∗, where 𝜎∗ is the set of vertices and 𝜇∗ is the set of edges from the
original fuzzy graph.
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The fuzzy subset 𝜎𝐷𝐿 is defined as:

𝜎𝐷𝐿(𝑢) = {𝜎(𝑢) if 𝑢 ∈ 𝜎∗,
𝜇(𝑢𝑣) if 𝑢𝑣 ∈ 𝜇∗.

This definition assigns the membership degree for both vertices and edges within the fuzzy subset.

The fuzzy relation 𝜇𝐷𝐿 on 𝜎∗ ∪ 𝜇∗ is defined as:

𝜇𝐷𝐿(𝑢, 𝑣) =

⎧{{
⎨{{⎩

𝜎(𝑢) ∧ 𝜎(𝑣) if 𝑢, 𝑣 ∈ 𝜎∗,
𝜇(𝑒𝑖) ∧ 𝜇(𝑒𝑗) if 𝑒𝑖, 𝑒𝑗 ∈ 𝜇∗, and they share a common vertex,
𝜎(𝑢) ∧ 𝜇(𝑒) if 𝑢 ∈ 𝜎∗, 𝑒 ∈ 𝜇∗, and 𝑢 is incident to 𝑒,
0 otherwise.

Here, 𝜇𝐷𝐿 is a fuzzy relation that defines the interaction between nodes and edges based on their membership
degrees. For any 𝑢, 𝑣 ∈ 𝜎∗ ∪ 𝜇∗, the relation satisfies:

𝜇𝐷𝐿(𝑢, 𝑣) ≤ 𝜎𝐷𝐿(𝑢) ∧ 𝜎𝐷𝐿(𝑣).

Thus, the pair 𝐷𝐿(𝐺) = (𝜎𝐷𝐿, 𝜇𝐷𝐿) is referred to as the Double Layered Fuzzy Graph.

Theorem 56. A Double Layered Fuzzy Graph (DLFG) generalizes a Fuzzy Graph.

Proof : If we constrain 𝜎𝐷𝐿(𝑢) to only represent vertex memberships and ignore edge memberships, the def-
initions of 𝜎𝐷𝐿 and 𝜇𝐷𝐿 reduce to the fuzzy subset 𝜎 and fuzzy relation 𝜇 of a Fuzzy Graph. Under this
condition:

𝜎(𝑢) = 𝜎𝐷𝐿(𝑢), 𝜇(𝑢, 𝑣) = 𝜇𝐷𝐿(𝑢, 𝑣) ∀𝑢, 𝑣 ∈ 𝜎∗.

Thus, DLFG generalizes a Fuzzy Graph by incorporating edge memberships as part of the fuzzy subset. □

Definition 57. [98, 63, 134] A Triple Layered Fuzzy Graph (TLFG) is a fuzzy graph 𝐺 = (𝜎, 𝜇) defined with
the following properties. Let 𝐺∗ = (𝜎∗, 𝜇∗) represent the underlying crisp graph of 𝐺.

The node set of the Triple Layered Fuzzy Graph 𝑇 𝐿(𝐺) is the union of the sets 𝜎∗ ∪ 𝜇∗, where 𝜎∗ denotes the
fuzzy subset of nodes and 𝜇∗ denotes the fuzzy subset of edges.

The fuzzy subset 𝜎𝑇 𝐿 is defined as:

𝜎𝑇 𝐿(𝑢) = {𝜎(𝑢) if 𝑢 ∈ 𝜎∗,
2𝜇(𝑢𝑣) if 𝑢𝑣 ∈ 𝜇∗.

This represents the membership of vertices and edges in the fuzzy subset.

The fuzzy relation 𝜇𝑇 𝐿 on 𝜎∗ ∪ 𝜇∗ is defined as follows:

𝜇𝑇 𝐿(𝑢, 𝑣) =

⎧{{
⎨{{⎩

𝜎(𝑢) ∧ 𝜎(𝑣) if 𝑢, 𝑣 ∈ 𝜎∗,
𝜇(𝑒𝑖) ∧ 𝜇(𝑒𝑗) if 𝑒𝑖, 𝑒𝑗 ∈ 𝜇∗, and they share a common node,
𝜎(𝑢) ∧ 𝜇(𝑒) if 𝑢 ∈ 𝜎∗, 𝑒 ∈ 𝜇∗, and 𝑢 is incident to 𝑒,
0 otherwise.

Here, 𝜎𝑇 𝐿 is a fuzzy subset of nodes and edges, and 𝜇𝑇 𝐿 is a fuzzy relation that satisfies:

𝜇𝑇 𝐿(𝑢, 𝑣) ≤ 𝜎𝑇 𝐿(𝑢) ∧ 𝜎𝑇 𝐿(𝑣) for all 𝑢, 𝑣 ∈ 𝜎∗ ∪ 𝜇∗.

Thus, the pair 𝑇 𝐿(𝐺) = (𝜎𝑇 𝐿, 𝜇𝑇 𝐿) is defined as the Triple Layered Fuzzy Graph.

Theorem 58. A Triple Layered Fuzzy Graph (TLFG) generalizes a Double Layered Fuzzy Graph (DLFG).
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Proof : If we constrain 𝜎𝑇 𝐿 such that 𝜎𝑇 𝐿(𝑢𝑣) = 𝜇(𝑢𝑣) instead of 2𝜇(𝑢𝑣), the definitions of 𝜎𝑇 𝐿 and 𝜇𝑇 𝐿 align
with 𝜎𝐷𝐿 and 𝜇𝐷𝐿, respectively. Under this constraint:

𝜎𝐷𝐿(𝑢) = 𝜎𝑇 𝐿(𝑢), 𝜇𝐷𝐿(𝑢, 𝑣) = 𝜇𝑇 𝐿(𝑢, 𝑣) ∀𝑢, 𝑣 ∈ 𝜎∗ ∪ 𝜇∗.

Thus, TLFG generalizes DLFG by allowing flexibility in the membership degree assignments for edges. □

2.9 Weak fuzzy graph
A Weak Fuzzy Graph is defined as a fuzzy graph where the membership degree of each edge is strictly less than
the minimum of the membership degrees of its connected vertices [72, 114, 125]. A related fuzzy graph class is
the General Fuzzy Graph, which is also well-known [113]. The definition is provided as follows[125].

Definition 59. [125] A weak fuzzy graph 𝐹 = (𝜎, 𝜇) is defined as follows:

• Let 𝑉 be the set of vertices.

• 𝜎 ∶ 𝑉 → [0, 1] represents the membership degree of each vertex 𝑣 ∈ 𝑉 .

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is the fuzzy relation on 𝜎, which represents the strength of the relationship between
vertices.

The fuzzy graph 𝐹 is called a weak fuzzy graph if for all pairs of vertices (𝑎, 𝑏) ∈ 𝑉 × 𝑉 , the fuzzy relation
satisfies the condition:

𝜇(𝑎, 𝑏) < 𝜎(𝑎) ∧ 𝜎(𝑏),
where ∧ denotes the minimum operation.

In a weak fuzzy graph, the strength of the connection (or ”flow”) between any two vertices is always strictly
less than the minimum membership degree of those two vertices. This ensures that the edges in the graph have
weaker relationships than the vertices they connect.

Example 60. Let 𝐹 = (𝜎, 𝜇) be a weak fuzzy graph with the following properties (We call Weak fuzzy Triangle
graph):

• Vertices: 𝑉 = {𝑣1, 𝑣2, 𝑣3}
• Vertex Membership Degrees:

𝜎(𝑣1) = 0.7,
𝜎(𝑣2) = 0.8,
𝜎(𝑣3) = 0.9

• Edge Membership Degrees (Fuzzy relations between vertices):

𝜇(𝑣1, 𝑣2) = 0.6,
𝜇(𝑣1, 𝑣3) = 0.3,
𝜇(𝑣2, 𝑣3) = 0.7

For each edge in the graph, we check whether the fuzzy relation 𝜇(𝑣𝑖, 𝑣𝑗) is less than the minimum of the
membership degrees of the two vertices:

• For edge (𝑣1, 𝑣2):
𝜎(𝑣1) = 0.7, 𝜎(𝑣2) = 0.8

𝜎(𝑣1) ∧ 𝜎(𝑣2) = min(0.7, 0.8) = 0.7
𝜇(𝑣1, 𝑣2) = 0.6 < 0.7 (Condition satisfied)
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• For edge (𝑣1, 𝑣3):
𝜎(𝑣1) = 0.7, 𝜎(𝑣3) = 0.9

𝜎(𝑣1) ∧ 𝜎(𝑣3) = min(0.7, 0.9) = 0.7
𝜇(𝑣1, 𝑣3) = 0.3 < 0.7 (Condition satisfied)

• For edge (𝑣2, 𝑣3):
𝜎(𝑣2) = 0.8, 𝜎(𝑣3) = 0.9

𝜎(𝑣2) ∧ 𝜎(𝑣3) = min(0.8, 0.9) = 0.8
𝜇(𝑣2, 𝑣3) = 0.7 < 0.8 (Condition satisfied)

In this example, all edges in the weak fuzzy graph satisfy the condition 𝜇(𝑣𝑖, 𝑣𝑗) < 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗), making this a
valid weak fuzzy graph.

2.10 Mild balanced intuitionistic fuzzy graph
A Mild Balanced Intuitionistic Fuzzy Graph (IFG) is defined as an Intuitionistic Fuzzy Graph in which all con-
nected subgraphs are intense. This implies that the membership and non-membership degrees of any connected
subgraph are less than or equal to those of the original graph [116]. The formal definition is provided below.

Definition 61 (Intense Subgraph). [116] Let 𝐺 = (𝑉 , 𝐸, 𝜇, 𝜈) be an intuitionistic fuzzy graph, where 𝜇
and 𝜈 denote the membership and non-membership functions, respectively. A connected subgraph 𝐻 =
(𝑉 (𝐻), 𝐸(𝐻), 𝜇𝐻 , 𝜈𝐻) of 𝐺 is called an intense subgraph if the following conditions hold:

(1) 𝑉 (𝐻) ⊆ 𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺),
(2) The degree of membership and non-membership in 𝐻 satisfy:

𝐷𝜇(𝐻) ≥ 𝐷𝜇(𝐺) and 𝐷𝜈(𝐻) ≤ 𝐷𝜈(𝐺),
where 𝐷𝜇(𝐺) and 𝐷𝜈(𝐺) are the degree functions of 𝐺 defined as:

𝐷𝜇(𝐺) = ∑
𝑣∈𝑉 (𝐺)

𝜇(𝑣) + ∑
𝑒∈𝐸(𝐺)

𝜇(𝑒),

𝐷𝜈(𝐺) = ∑
𝑣∈𝑉 (𝐺)

𝜈(𝑣) + ∑
𝑒∈𝐸(𝐺)

𝜈(𝑒),

and similarly for 𝐻.

Definition 62 (Feeble Subgraph). [116] Let 𝐺 = (𝑉 , 𝐸, 𝜇, 𝜈) be an intuitionistic fuzzy graph, where 𝜇
and 𝜈 denote the membership and non-membership functions, respectively. A connected subgraph 𝐻 =
(𝑉 (𝐻), 𝐸(𝐻), 𝜇𝐻 , 𝜈𝐻) of 𝐺 is called a feeble subgraph if the following conditions hold:

(1) 𝑉 (𝐻) ⊆ 𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺),
(2) The degree of membership and non-membership in 𝐻 satisfy:

𝐷𝜇(𝐻) < 𝐷𝜇(𝐺) and 𝐷𝜈(𝐻) > 𝐷𝜈(𝐺),
where 𝐷𝜇(𝐺) and 𝐷𝜈(𝐺) are the degree functions of 𝐺, defined as:

𝐷𝜇(𝐺) = ∑
𝑣∈𝑉 (𝐺)

𝜇(𝑣) + ∑
𝑒∈𝐸(𝐺)

𝜇(𝑒),

𝐷𝜈(𝐺) = ∑
𝑣∈𝑉 (𝐺)

𝜈(𝑣) + ∑
𝑒∈𝐸(𝐺)

𝜈(𝑒),

and similarly for 𝐻.

Definition 63 (Mild Balanced Intuitionistic Fuzzy Graph). [116] An intuitionistic fuzzy graph 𝐺 = (𝑉 , 𝐸) is
called a mild balanced intuitionistic fuzzy graph if all connected subgraphs of 𝐺 are intense subgraphs.

Question 64. Is it possible to define a Mild Balanced Neutrosophic Graph?
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2.11 Connected Fuzzy Chemical Graph
The definition of a Chemical Graph is provided below. This is a graph widely used in the field of chemistry
[158, 159, 35].

Definition 65. (cf.[158, 159, 35]) A chemical graph 𝐺𝐶 = (𝐴, 𝐵) is a simple graph representing the molecular
structure of a chemical compound, where:

• 𝐴 is the set of vertices representing atoms in the molecule,

• 𝐵 is the set of edges representing chemical bonds between the atoms in the molecule.

Each edge (𝑎, 𝑏) ∈ 𝐵 connects two distinct atoms 𝑎, 𝑏 ∈ 𝐴, indicating the existence of a bond between these
atoms. In this representation, the degree of a vertex corresponds to the valency of the atom, i.e., the number
of bonds that an atom forms with other atoms.

The definitions of a Connected Fuzzy Chemical Graph and a Neighborly Irregular Fuzzy Chemical Graph
are provided below. These definitions extend the fundamental concepts of graph theory used to represent
molecular structures to ”fuzzy graphs” and ”neighborly irregular chemical graphs,” mathematically capturing
the uncertainty present in molecular structures [31, 21, 22].

Definition 66. [22] A fuzzy chemical graph is a fuzzy graph 𝐺 = (𝑉 , 𝜎, 𝜇), where:

• 𝑉 is the set of vertices representing atoms in a molecule,

• 𝜎 ∶ 𝑉 → [0, 1] is a membership function representing the degree of membership of each atom in the
graph,

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation representing the degree of membership of bonds (edges) between
atoms, and 𝜇(𝑢, 𝑣) ≤ min(𝜎(𝑢), 𝜎(𝑣)) for all 𝑢, 𝑣 ∈ 𝑉 .

A fuzzy chemical graph 𝐺 is said to be connected if for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 , there exists a sequence
of vertices 𝑢 = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑣 such that 𝜇(𝑣𝑖, 𝑣𝑖+1) > 0 for all 0 ≤ 𝑖 < 𝑘. This ensures that all atoms in the
molecular structure are connected by chemical bonds.

Example 67 (Methane Molecule). Consider the chemical graph for methane (CH4):

• The vertex set 𝐴 = {𝐶, 𝐻1, 𝐻2, 𝐻3, 𝐻4}, where 𝐶 represents the carbon atom and 𝐻1, 𝐻2, 𝐻3, 𝐻4
represent the four hydrogen atoms.

• The edge set 𝐵 = {(𝐶, 𝐻1), (𝐶, 𝐻2), (𝐶, 𝐻3), (𝐶, 𝐻4)}, representing the chemical bonds between the
carbon atom and each hydrogen atom.

The corresponding fuzzy chemical graph can be defined with:

• 𝜎(𝐶) = 1 and 𝜎(𝐻𝑖) = 1 for 𝑖 = 1, 2, 3, 4,

• 𝜇(𝐶, 𝐻𝑖) = 1 for 𝑖 = 1, 2, 3, 4, and 𝜇(𝑢, 𝑣) = 0 otherwise.

This representation can be extended by assigning fuzzy membership values 𝜎 and 𝜇 to account for uncertainty
in the molecular structure.

Theorem 68. Fuzzy chemical graphs generalize chemical graphs.

Proof : Let 𝐺𝐶 = (𝐴, 𝐵) be a chemical graph. We construct a fuzzy chemical graph 𝐺𝐹 = (𝑉 , 𝜎, 𝜇) correspond-
ing to 𝐺𝐶 as follows:

• Let 𝑉 = 𝐴, the set of atoms in the chemical graph.

• Define 𝜎(𝑣) = 1 for all 𝑣 ∈ 𝑉 , indicating that all vertices fully belong to the fuzzy graph.

• Define 𝜇(𝑢, 𝑣) = 1 if (𝑢, 𝑣) ∈ 𝐵, and 𝜇(𝑢, 𝑣) = 0 otherwise, indicating crisp edges between atoms.
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Clearly, 𝐺𝐹 satisfies the conditions for a fuzzy chemical graph:

(1) For all 𝑢, 𝑣 ∈ 𝑉 ,
𝜇(𝑢, 𝑣) ≤ min(𝜎(𝑢), 𝜎(𝑣)) = 1.

(2) If 𝐺𝐶 is connected, any pair of vertices 𝑢, 𝑣 ∈ 𝑉 is connected by a sequence of edges in 𝐺𝐶 . Since
𝜇(𝑢, 𝑣) = 1 for edges in 𝐵, this connectivity is preserved in 𝐺𝐹 .

Thus, 𝐺𝐹 is a valid fuzzy chemical graph. Furthermore, by assigning membership values 𝜎(𝑣) and 𝜇(𝑢, 𝑣) in the
interval [0, 1], fuzzy chemical graphs allow for the representation of uncertainty or partial relationships between
atoms and bonds, generalizing the crisp structure of 𝐺𝐶 . □

Definition 69. [22] A neighborly irregular chemical graph 𝐺𝑁𝐼𝐶 = (𝐴, 𝐵) is a graph where:

• 𝐴 is the set of vertices representing atoms in the molecular structure,

• 𝐵 is the set of edges representing chemical bonds between atoms,

• For every edge (𝑎, 𝑏) ∈ 𝐵, the degrees of the adjacent atoms 𝑎 and 𝑏 are distinct. That is, deg(𝑎) ≠ deg(𝑏)
for all (𝑎, 𝑏) ∈ 𝐵.

In the context of molecular structures, a neighborly irregular chemical graph typically models molecules in
which atoms have varying valency in their adjacent atoms.

Definition 70. [22] A neighborly irregular fuzzy chemical graph 𝐺𝑁𝐼𝐹𝐶 = (𝑉 , 𝜎, 𝜇) is a fuzzy chemical graph
where:

• 𝑉 is the set of vertices representing atoms in the molecular structure,

• 𝜎 ∶ 𝑉 → [0, 1] is a membership function representing the degree of membership of each atom,

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is a fuzzy relation representing the degree of membership of bonds between atoms,

• Any two adjacent vertices 𝑢, 𝑣 ∈ 𝑉 have distinct degrees, i.e., deg(𝑢) ≠ deg(𝑣), with their corresponding
membership values.

Theorem 71. A Neighborly irregular fuzzy chemical graphs is a Fuzzy chemical graphs.

Proof : This is evident. □

Theorem 72. A Neighborly Irregular Fuzzy Chemical Graph generalizes a Neighborly Irregular Chemical Graph.

Proof : To prove this theorem, we demonstrate that the definition of a Neighborly Irregular Chemical Graph is
a special case of the definition of a Neighborly Irregular Fuzzy Chemical Graph when the membership functions
are binary.

(1) Definition Comparison:

• In a Neighborly Irregular Chemical Graph 𝐺𝑁𝐼𝐶 = (𝐴, 𝐵):
– 𝐴 is the set of vertices (atoms),

– 𝐵 is the set of edges (chemical bonds),

– For every edge (𝑎, 𝑏) ∈ 𝐵, deg(𝑎) ≠ deg(𝑏), where deg(𝑎) and deg(𝑏) are the degrees of
vertices 𝑎 and 𝑏 in the graph.

• In a Neighborly Irregular Fuzzy Chemical Graph 𝐺𝑁𝐼𝐹𝐶 = (𝑉 , 𝜎, 𝜇):
– 𝑉 is the set of vertices (atoms),

– 𝜎 ∶ 𝑉 → [0, 1] is the membership function of the vertices,

– 𝜇 ∶ 𝑉 × 𝑉 → [0, 1] is the fuzzy relation of the edges,
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– For every edge (𝑢, 𝑣) with 𝜇(𝑢, 𝑣) > 0, deg(𝑢) ≠ deg(𝑣), where deg(𝑢) and deg(𝑣) are the
fuzzy degrees of vertices 𝑢 and 𝑣.

(2) Special Case:

• In a Neighborly Irregular Chemical Graph, all membership functions are binary:
𝜎(𝑎) = 1 for all 𝑎 ∈ 𝐴,

𝜇(𝑎, 𝑏) = 1 for all (𝑎, 𝑏) ∈ 𝐵.

• The condition deg(𝑎) ≠ deg(𝑏) remains the same in both definitions since the degrees are defined
in terms of the adjacent vertices.

(3) Generalization:

• A Neighborly Irregular Fuzzy Chemical Graph allows the membership values 𝜎(𝑢) and 𝜇(𝑢, 𝑣) to
take any value in the interval [0, 1], introducing a measure of uncertainty or partial membership.

• The Neighborly Irregular Chemical Graph is a special case of the Neighborly Irregular Fuzzy
Chemical Graph when all membership values are crisp (binary).

Thus, the Neighborly Irregular Fuzzy Chemical Graph 𝐺𝑁𝐼𝐹𝐶 generalizes the Neighborly Irregular Chemi-
cal Graph 𝐺𝑁𝐼𝐶 by incorporating fuzzy memberships for vertices and edges while preserving the irregularity
condition for adjacent vertices. □

3 Result in this paper

We will outline the results presented in this paper. The fuzzy graph is extended to a Neutrosophic Graph, and
its properties are analyzed and explored as necessary. Specifically, as mentioned in the introduction, we extend
several classes of fuzzy graphs to Neutrosophic graphs and examine their characteristics. In this section, we
focus on graph classes related to Neutrosophic Graphs, including Smart Neutrosophic Graphs, Neutrosophic Zero
Divisor Graphs, Weak Neutrosophic Graphs, Neutrosophic Semigraphs, Double/Triple Layered Neutrosophic
Graphs, and Connected Neutrosophic Chemical Graphs.

First, we will provide a proof of the relationship between fuzzy graphs and neutrosophic graphs.

Theorem 73. A Neutrosophic Graph can be transformed into a Fuzzy Graph.

Proof : To prove that a Neutrosophic Graph can be transformed into a Fuzzy Graph, we will show that the
vertices and edges of the Neutrosophic Graph 𝑁𝑇 𝐺 can be represented using the truth membership component
of the neutrosophic functions.

Each vertex 𝑣 ∈ 𝑉 in the Neutrosophic Graph is assigned a neutrosophic membership function:
𝜎(𝑣) = (𝜎1(𝑣), 𝜎2(𝑣), 𝜎3(𝑣)),

where 𝜎1(𝑣), 𝜎2(𝑣), and 𝜎3(𝑣) represent the truth, indeterminacy, and falsity memberships, respectively.

In a Fuzzy Graph, each vertex is assigned a single membership value 𝜎𝑓(𝑣) ∈ [0, 1], representing the degree of
belonging of the vertex. We define this fuzzy membership as:

𝜎𝑓(𝑣) = 𝜎1(𝑣),
where 𝜎1(𝑣) is the truth component of the neutrosophic membership function. This step preserves the most
certain (truth) aspect of the neutrosophic representation while discarding indeterminacy and falsity for the
fuzzy graph.

Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 in the Neutrosophic Graph is assigned a neutrosophic membership function:
𝜇(𝑒) = (𝜇1(𝑒), 𝜇2(𝑒), 𝜇3(𝑒)),

where 𝜇1(𝑒), 𝜇2(𝑒), and 𝜇3(𝑒) represent the truth, indeterminacy, and falsity memberships of the edge.
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In a Fuzzy Graph, each edge is assigned a single membership value 𝜇𝑓(𝑒) ∈ [0, 1], representing the degree of
connection between vertices. We define this fuzzy membership as:

𝜇𝑓(𝑒) = 𝜇1(𝑒),
where 𝜇1(𝑒) is the truth component of the neutrosophic membership function.

After applying the transformation to both the vertices and edges, the Neutrosophic Graph 𝑁𝑇 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇)
is transformed into a Fuzzy Graph 𝐹𝐺 = (𝑉 , 𝜎𝑓 , 𝜇𝑓), where:

𝜎𝑓(𝑣) = 𝜎1(𝑣) for all 𝑣 ∈ 𝑉 ,
𝜇𝑓(𝑒) = 𝜇1(𝑒) for all 𝑒 ∈ 𝐸.

The transformation retains the structure of the graph while simplifying the neutrosophic membership functions
to a single fuzzy membership. Hence, we have shown that any Neutrosophic Graph can be transformed into a
Fuzzy Graph by using the truth membership values of the vertices and edges. Thus, the theorem is proved. □

3.1 Smart Neutrosophic Graph
The definition of a Smart Neutrosophic Graph is provided below.

Definition 74. A Smart Neutrosophic Graph is a generalization of the neutrosophic graph, incorporating
smart structures and connectivity properties used in Internet of Things (IoT) applications. Formally, a Smart
Neutrosophic Graph 𝑆𝑁𝐺 = (𝑉 , 𝐸, 𝜎 = (𝜎1, 𝜎2, 𝜎3), 𝜇 = (𝜇1, 𝜇2, 𝜇3)) is defined as follows:

• 𝑉 is a non-empty set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges connecting the vertices.

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) is a neutrosophic vertex set, where:
𝜎𝑖 ∶ 𝑉 → [0, 1], for 𝑖 = 1, 2, 3,

where 𝜎1(𝑥), 𝜎2(𝑥), and 𝜎3(𝑥) represent the degrees of truth, indeterminacy, and falsity of vertex 𝑥 ∈ 𝑉 ,
respectively.

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) is a neutrosophic edge set, where:
𝜇𝑖 ∶ 𝐸 → [0, 1], for 𝑖 = 1, 2, 3,

and 𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦) represent the degrees of truth, indeterminacy, and falsity of the edge
(𝑥, 𝑦) ∈ 𝐸.

• For every (𝑥, 𝑦) ∈ 𝐸, the following conditions hold:
𝜇1(𝑥, 𝑦) ≤ min(𝜎1(𝑥), 𝜎1(𝑦)),
𝜇2(𝑥, 𝑦) ≥ max(𝜎2(𝑥), 𝜎2(𝑦)),
𝜇3(𝑥, 𝑦) ≥ max(𝜎3(𝑥), 𝜎3(𝑦)).

Additional conditions for smart connectivity is following.

• The sum of the neutrosophic membership values of all edges must satisfy:

∑
(𝑥,𝑦)∈𝐸

𝜇1(𝑥, 𝑦) + 𝜇2(𝑥, 𝑦) + 𝜇3(𝑥, 𝑦) ≤ 3.

• The vertices must satisfy smart connectivity rules, ensuring efficient communication in the graph struc-
ture, particularly in IoT applications.

Theorem 75. A Smart Neutrosophic Graph (SNG) generalizes both Smart Fuzzy Graphs and Neutrosophic
Graphs.
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Proof : We will show that a Smart Neutrosophic Graph (SNG) can reduce to both a Smart Fuzzy Graph and a
Neutrosophic Graph under specific conditions.

Consider a Smart Neutrosophic Graph 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) with 𝜎 = (𝜎1, 𝜎2, 𝜎3) and 𝜇 = (𝜇1, 𝜇2, 𝜇3). Define the
following transformations:

𝜎fuzzy(𝑥) = 𝜎1(𝑥), 𝜇fuzzy(𝑥, 𝑦) = 𝜇1(𝑥, 𝑦).
This transformation ignores the indeterminacy (𝜎2, 𝜇2) and falsity (𝜎3, 𝜇3) components, leaving only the truth
degrees. Under these mappings:

𝜇fuzzy(𝑥, 𝑦) ≤ min(𝜎fuzzy(𝑥), 𝜎fuzzy(𝑦)),
which satisfies the conditions for a Smart Fuzzy Graph. Additionally, the connectivity and membership sum
conditions are inherited from 𝐺.

Consider the same Smart Neutrosophic Graph 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇). By dropping the smart connectivity constraints
and IoT-specific rules, we retain only the neutrosophic structure:

𝜎(𝑥) = (𝜎1(𝑥), 𝜎2(𝑥), 𝜎3(𝑥)), 𝜇(𝑥, 𝑦) = (𝜇1(𝑥, 𝑦), 𝜇2(𝑥, 𝑦), 𝜇3(𝑥, 𝑦)).
This structure satisfies the conditions of a Neutrosophic Graph:

𝜇1(𝑥, 𝑦) ≤ min(𝜎1(𝑥), 𝜎1(𝑦)), 𝜇2(𝑥, 𝑦) ≥ max(𝜎2(𝑥), 𝜎2(𝑦)), 𝜇3(𝑥, 𝑦) ≥ max(𝜎3(𝑥), 𝜎3(𝑦)).
Thus, 𝐺 reduces to a Neutrosophic Graph when IoT-specific constraints are removed.

By the above transformations, a Smart Neutrosophic Graph generalizes both Smart Fuzzy Graphs and Neutro-
sophic Graphs. □

3.2 Neutrosophic Zero Divisor Graph
The definition of the Neutrosophic Zero Divisor Graph is provided as follows.

Definition 76. Let 𝑅 be a commutative ring with identity, and let 𝑍(𝑅) denote the set of zero-divisors in 𝑅.
A Neutrosophic Zero Divisor Graph Γ𝑁 = (𝑉 , 𝜎 = (𝜎1, 𝜎2, 𝜎3), 𝜇 = (𝜇1, 𝜇2, 𝜇3)) is defined as follows:

• 𝑉 = 𝑍(𝑅)∗ = 𝑍(𝑅)∖{0} represents the set of nonzero zero-divisors of 𝑅. Each element in 𝑉 corresponds
to a zero-divisor in the ring.

• 𝜎 ∶ 𝑉 → [0, 1]3 is a neutrosophic membership function that assigns three values to each vertex 𝑣 ∈ 𝑉 ,
i.e., 𝜎(𝑣) = (𝜎1(𝑣), 𝜎2(𝑣), 𝜎3(𝑣)), where:

– 𝜎1(𝑣) represents the truth degree of the membership of 𝑣,

– 𝜎2(𝑣) represents the indeterminacy degree of the membership of 𝑣,

– 𝜎3(𝑣) represents the falsity degree of the membership of 𝑣.

• 𝜇 ∶ 𝑉 × 𝑉 → [0, 1]3 is a neutrosophic relation function that defines the adjacency between two vertices
𝑣𝑖, 𝑣𝑗 ∈ 𝑉 . The adjacency relation 𝜇(𝑣𝑖, 𝑣𝑗) = (𝜇1(𝑣𝑖𝑣𝑗), 𝜇2(𝑣𝑖𝑣𝑗), 𝜇3(𝑣𝑖𝑣𝑗)) is described by the following
conditions:

– The truth degree of adjacency 𝜇1(𝑣𝑖𝑣𝑗) satisfies:

𝜇1(𝑣𝑖𝑣𝑗) ≤ min(𝜎1(𝑣𝑖), 𝜎1(𝑣𝑗)),
meaning that the truth degree of the adjacency between 𝑣𝑖 and 𝑣𝑗 is bounded by the minimum
truth membership of the two vertices.

– The indeterminacy degree of adjacency 𝜇2(𝑣𝑖𝑣𝑗) satisfies:

𝜇2(𝑣𝑖𝑣𝑗) ≥ max(𝜎2(𝑣𝑖), 𝜎2(𝑣𝑗)),
meaning that the indeterminacy degree of the adjacency between 𝑣𝑖 and 𝑣𝑗 is at least the maximum
indeterminacy membership of the two vertices.
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– The falsity degree of adjacency 𝜇3(𝑣𝑖𝑣𝑗) satisfies:
𝜇3(𝑣𝑖𝑣𝑗) ≥ max(𝜎3(𝑣𝑖), 𝜎3(𝑣𝑗)),

meaning that the falsity degree of the adjacency between 𝑣𝑖 and 𝑣𝑗 is at least the maximum falsity
membership of the two vertices.

Additionally, for every pair 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , the sum of the truth, indeterminacy, and falsity degrees of
adjacency satisfies:

𝜇1(𝑣𝑖𝑣𝑗) + 𝜇2(𝑣𝑖𝑣𝑗) + 𝜇3(𝑣𝑖𝑣𝑗) ≤ 3.

In this graph, two vertices 𝑣𝑖 and 𝑣𝑗 are adjacent (i.e., there is an edge between them) if and only if their product
in the ring 𝑅 is zero, that is, 𝑣𝑖 ⋅ 𝑣𝑗 = 0. This graph structure represents the relationships between zero-divisors
in a neutrosophic context, capturing degrees of truth, indeterminacy, and falsity.

Theorem 77. A Non-zero Divisor Neutrosophic Graph can be transformed into a Non-zero Divisor Fuzzy
Graph.

Proof : Obviously holds. □

Theorem 78. A Neutrosophic Zero Divisor Graph Γ𝑁 = (𝑉 , 𝜎, 𝜇) reduces to a Neutrosophic Graph when the
Zero Divisor condition 𝑣𝑖 ⋅ 𝑣𝑗 = 0 is ignored.

Proof : By ignoring the zero-divisor condition 𝑣𝑖 ⋅ 𝑣𝑗 = 0:

(1) The vertex set 𝑉 remains the same, and the neutrosophic membership function 𝜎(𝑣) = (𝜎1(𝑣), 𝜎2(𝑣), 𝜎3(𝑣))
continues to satisfy:

𝜎1(𝑣) + 𝜎2(𝑣) + 𝜎3(𝑣) ≤ 3, ∀𝑣 ∈ 𝑉 .

(2) The adjacency relation between 𝑣𝑖 and 𝑣𝑗 is now determined solely by the neutrosophic relation
𝜇(𝑣𝑖, 𝑣𝑗) = (𝜇1(𝑣𝑖𝑣𝑗), 𝜇2(𝑣𝑖𝑣𝑗), 𝜇3(𝑣𝑖𝑣𝑗)), satisfying:

𝜇1(𝑣𝑖𝑣𝑗) ≤ min(𝜎1(𝑣𝑖), 𝜎1(𝑣𝑗)),
𝜇2(𝑣𝑖𝑣𝑗) ≥ max(𝜎2(𝑣𝑖), 𝜎2(𝑣𝑗)),
𝜇3(𝑣𝑖𝑣𝑗) ≥ max(𝜎3(𝑣𝑖), 𝜎3(𝑣𝑗)).

(3) The sum of the neutrosophic degrees of adjacency satisfies:
𝜇1(𝑣𝑖𝑣𝑗) + 𝜇2(𝑣𝑖𝑣𝑗) + 𝜇3(𝑣𝑖𝑣𝑗) ≤ 3.

This structure corresponds exactly to the definition of a Neutrosophic Graph, as it retains all the neutrosophic
membership and adjacency properties while disregarding the algebraic constraints of zero-divisors.

Hence, a Neutrosophic Zero Divisor Graph reduces to a Neutrosophic Graph when the zero-divisor condition
𝑣𝑖 ⋅ 𝑣𝑗 = 0 is ignored. □

Theorem 79. If 𝑛 = 𝑝2, where 𝑝 is a prime number and 𝑝 > 2, then the non-zero Neutrosophic zero divisor
graph is a 2-partite graph.

Proof : Let 𝑅 = ℤ𝑝2 , where 𝑝 is a prime number greater than 2. The elements of ℤ𝑝2 are {0, 1, 2, … , 𝑝2 − 1}.
The set of zero divisors 𝑍(𝑅) in ℤ𝑝2 consists of the multiples of 𝑝, because for any 𝑎 ∈ ℤ𝑝2 , 𝑎 ⋅ 𝑝 ≡ 0 (mod 𝑝2).
Therefore, the set of non-zero zero divisors 𝑍(𝑅)∗ is:

𝑍(𝑅)∗ = {𝑝, 2𝑝, 3𝑝, … , (𝑝 − 1)𝑝}.
Each element in this set is a multiple of 𝑝, and the product of any two such elements is zero in ℤ𝑝2 . Thus, these
are the vertices of the non-zero Neutrosophic zero divisor graph Γ𝑁(𝑅).
We assign to each vertex 𝑣 ∈ 𝑉 = 𝑍(𝑅)∗ a neutrosophic membership function 𝜎(𝑣) = (𝜎1(𝑣), 𝜎2(𝑣), 𝜎3(𝑣)),
where:
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• 𝜎1(𝑣) represents the truth membership degree,

• 𝜎2(𝑣) represents the indeterminacy membership degree,

• 𝜎3(𝑣) represents the falsity membership degree.

For any two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , the neutrosophic adjacency relation 𝜇(𝑣𝑖, 𝑣𝑗) = (𝜇1(𝑣𝑖𝑣𝑗), 𝜇2(𝑣𝑖𝑣𝑗), 𝜇3(𝑣𝑖𝑣𝑗)) is
defined as:

𝜇1(𝑣𝑖𝑣𝑗) ≤ min(𝜎1(𝑣𝑖), 𝜎1(𝑣𝑗)),
𝜇2(𝑣𝑖𝑣𝑗) ≥ max(𝜎2(𝑣𝑖), 𝜎2(𝑣𝑗)),
𝜇3(𝑣𝑖𝑣𝑗) ≥ max(𝜎3(𝑣𝑖), 𝜎3(𝑣𝑗)),

with the condition that 𝜇1(𝑣𝑖𝑣𝑗) + 𝜇2(𝑣𝑖𝑣𝑗) + 𝜇3(𝑣𝑖𝑣𝑗) ≤ 3.

We now partition the vertex set 𝑉 = {𝑝, 2𝑝, 3𝑝, … , (𝑝 − 1)𝑝} into two disjoint subsets based on whether the
multiple of 𝑝 is odd or even. Specifically, define:

𝑉1 = {𝑝, 3𝑝, 5𝑝, … , (𝑝 − 2)𝑝} (odd multiples of 𝑝),
𝑉2 = {2𝑝, 4𝑝, 6𝑝, … , (𝑝 − 1)𝑝} (even multiples of 𝑝).

Note that:

• 𝑉1 contains all odd multiples of 𝑝,

• 𝑉2 contains all even multiples of 𝑝.

To show that the non-zero Neutrosophic zero divisor graph is 2-partite, we need to verify that:

(1) No two vertices in 𝑉1 are adjacent,

(2) No two vertices in 𝑉2 are adjacent,

(3) Any vertex in 𝑉1 is adjacent to any vertex in 𝑉2.

Consider any two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉1. Since both 𝑣𝑖 and 𝑣𝑗 are odd multiples of 𝑝, their product is not zero
modulo 𝑝2. Thus, no edges exist between vertices in 𝑉1.

Similarly, for any two vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉2, their product is not zero modulo 𝑝2, as they are both even multiples
of 𝑝. Hence, no edges exist between vertices in 𝑉2.

For any 𝑣𝑖 ∈ 𝑉1 and 𝑣𝑗 ∈ 𝑉2, their product 𝑣𝑖 ⋅ 𝑣𝑗 = 0 (mod 𝑝2), because one is an odd multiple and the other
is an even multiple of 𝑝. Therefore, an edge exists between any vertex in 𝑉1 and any vertex in 𝑉2.

Since the vertex set 𝑉 can be partitioned into two disjoint sets 𝑉1 and 𝑉2 such that:

• No edges exist within 𝑉1,

• No edges exist within 𝑉2,

• Edges exist between vertices in 𝑉1 and 𝑉2,

we conclude that the non-zero Neutrosophic zero divisor graph Γ𝑁(𝑅) is a 2-partite graph.

This completes the proof. □

3.3 Weak Neutrosophic Graph
The definition of the Weak Neutrosophic Graph is provided as follows.

Definition 80 (Weak Neutrosophic Graph). A Weak Neutrosophic Graph 𝐺 = (𝑉 , 𝐸, 𝜂, 𝜌) is a graph charac-
terized by the following components:

• 𝑉 is the set of vertices.
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• 𝜂 ∶ 𝑉 → [0, 1] × [0, 1] × [0, 1] is the neutrosophic vertex membership function. For each vertex 𝑣 ∈ 𝑉 ,
𝜂(𝑣) = (𝜂1(𝑣), 𝜂2(𝑣), 𝜂3(𝑣)),

where:

– 𝜂1(𝑣): Truth membership of vertex 𝑣,

– 𝜂2(𝑣): Indeterminacy membership of vertex 𝑣,

– 𝜂3(𝑣): Falsity membership of vertex 𝑣.

• 𝜌 ∶ 𝐸 → [0, 1] × [0, 1] × [0, 1] is the neutrosophic edge membership function. For each edge (𝑢, 𝑣) ∈ 𝐸,
𝜌(𝑢, 𝑣) = (𝜌1(𝑢, 𝑣), 𝜌2(𝑢, 𝑣), 𝜌3(𝑢, 𝑣)),

where:

– 𝜌1(𝑢, 𝑣): Truth membership of edge (𝑢, 𝑣),
– 𝜌2(𝑢, 𝑣): Indeterminacy membership of edge (𝑢, 𝑣),
– 𝜌3(𝑢, 𝑣): Falsity membership of edge (𝑢, 𝑣).

The graph 𝐺 is called a Weak Neutrosophic Graph if the following conditions hold for all edges (𝑢, 𝑣) ∈ 𝐸:

(1) Truth Membership Condition:
𝜌1(𝑢, 𝑣) < min(𝜂1(𝑢), 𝜂1(𝑣)),

where min(⋅, ⋅) denotes the minimum operation between the truth memberships of the connected vertices.

(2) Indeterminacy Membership Condition:
𝜌2(𝑢, 𝑣) > max(𝜂2(𝑢), 𝜂2(𝑣)),

where max(⋅, ⋅) denotes the maximum operation between the indeterminacy memberships of the con-
nected vertices.

(3) Falsity Membership Condition:
𝜌3(𝑢, 𝑣) > max(𝜂3(𝑢), 𝜂3(𝑣)),

where max(⋅, ⋅) denotes the maximum operation between the falsity memberships of the connected
vertices.

Theorem 81. A Weak Neutrosophic Graph generalizes a Weak Fuzzy Graph.

Proof : Let 𝐺𝑁 = (𝑉 , 𝐸, 𝜂, 𝜌) be a Weak Neutrosophic Graph, where:
𝜂(𝑣) = (𝜂1(𝑣), 𝜂2(𝑣), 𝜂3(𝑣)) for all 𝑣 ∈ 𝑉 ,

𝜌(𝑢, 𝑣) = (𝜌1(𝑢, 𝑣), 𝜌2(𝑢, 𝑣), 𝜌3(𝑢, 𝑣)) for all (𝑢, 𝑣) ∈ 𝐸.

To show that 𝐺𝑁 generalizes a Weak Fuzzy Graph, consider the special case where:
𝜂2(𝑣) = 0, 𝜂3(𝑣) = 0, 𝜌2(𝑢, 𝑣) = 0, 𝜌3(𝑢, 𝑣) = 0 for all 𝑣 ∈ 𝑉 and (𝑢, 𝑣) ∈ 𝐸.

In this case:
𝜂(𝑣) = (𝜂1(𝑣), 0, 0), 𝜌(𝑢, 𝑣) = (𝜌1(𝑢, 𝑣), 0, 0),

and the conditions of a Weak Neutrosophic Graph reduce to:
𝜌1(𝑢, 𝑣) < min(𝜂1(𝑢), 𝜂1(𝑣)).

This matches the definition of a Weak Fuzzy Graph 𝐺𝐹 = (𝑉 , 𝜎, 𝜇), where:
𝜎(𝑣) = 𝜂1(𝑣), 𝜇(𝑢, 𝑣) = 𝜌1(𝑢, 𝑣).

Thus, a Weak Neutrosophic Graph includes Weak Fuzzy Graphs as a special case and therefore generalizes
them. □
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Theorem 82. A Weak Neutrosophic Graph reduces to a Neutrosophic Graph under specific conditions.

Proof : Let 𝐺𝑁 = (𝑉 , 𝐸, 𝜂, 𝜌) be a Weak Neutrosophic Graph. To show that 𝐺𝑁 can reduce to a Neutrosophic
Graph 𝐺′ = (𝑉 , 𝐸, 𝜎, 𝜇), assume the following conditions hold:

• 𝜌1(𝑢, 𝑣) = min(𝜂1(𝑢), 𝜂1(𝑣)),
• 𝜌2(𝑢, 𝑣) = max(𝜂2(𝑢), 𝜂2(𝑣)),
• 𝜌3(𝑢, 𝑣) = max(𝜂3(𝑢), 𝜂3(𝑣)),

for all (𝑢, 𝑣) ∈ 𝐸.

Under these conditions, the edge membership functions of 𝐺𝑁 match the edge membership functions of a
Neutrosophic Graph, and the conditions for a Weak Neutrosophic Graph:

𝜌1(𝑢, 𝑣) < min(𝜂1(𝑢), 𝜂1(𝑣)),
𝜌2(𝑢, 𝑣) > max(𝜂2(𝑢), 𝜂2(𝑣)),
𝜌3(𝑢, 𝑣) > max(𝜂3(𝑢), 𝜂3(𝑣)),

become equalities, matching the adjacency relations in a Neutrosophic Graph.

Therefore, the Weak Neutrosophic Graph reduces to a Neutrosophic Graph when these specific conditions are
satisfied. □

Theorem 83. The union of two weak Neutrosophic graphs is a weak Neutrosophic graph.

Proof : Let 𝐺1 = (𝑉1, 𝐸1, 𝜂1, 𝜌1) and 𝐺2 = (𝑉2, 𝐸2, 𝜂2, 𝜌2) be two weak Neutrosophic graphs, where 𝜂1(𝑣) =
(𝜂1,1(𝑣), 𝜂1,2(𝑣), 𝜂1,3(𝑣)) and 𝜂2(𝑣) = (𝜂2,1(𝑣), 𝜂2,2(𝑣), 𝜂2,3(𝑣)) are the Neutrosophic vertex membership func-
tions, and 𝜌1(𝑢, 𝑣) = (𝜌1,1(𝑢, 𝑣), 𝜌1,2(𝑢, 𝑣), 𝜌1,3(𝑢, 𝑣)) and 𝜌2(𝑢, 𝑣) = (𝜌2,1(𝑢, 𝑣), 𝜌2,2(𝑢, 𝑣), 𝜌2,3(𝑢, 𝑣)) are the
Neutrosophic edge membership functions.

The union of 𝐺1 and 𝐺2, denoted by 𝐺 = 𝐺1 ∪ 𝐺2 = (𝑉 , 𝐸, 𝜂, 𝜌), is defined as follows:

• 𝑉 = 𝑉1 ∪ 𝑉2,

• 𝐸 = 𝐸1 ∪ 𝐸2,

• 𝜂(𝑣) = max(𝜂1(𝑣), 𝜂2(𝑣)) for 𝑣 ∈ 𝑉1 ∩ 𝑉2,

• 𝜂(𝑣) = 𝜂1(𝑣) if 𝑣 ∈ 𝑉1 ∖ 𝑉2,

• 𝜂(𝑣) = 𝜂2(𝑣) if 𝑣 ∈ 𝑉2 ∖ 𝑉1,

• 𝜌(𝑢, 𝑣) = max(𝜌1(𝑢, 𝑣), 𝜌2(𝑢, 𝑣)) for (𝑢, 𝑣) ∈ 𝐸1 ∩ 𝐸2,

• 𝜌(𝑢, 𝑣) = 𝜌1(𝑢, 𝑣) if (𝑢, 𝑣) ∈ 𝐸1 ∖ 𝐸2,

• 𝜌(𝑢, 𝑣) = 𝜌2(𝑢, 𝑣) if (𝑢, 𝑣) ∈ 𝐸2 ∖ 𝐸1.

We must show that the union graph 𝐺 satisfies the conditions of a weak Neutrosophic graph. That is, for all
(𝑢, 𝑣) ∈ 𝐸, the following inequalities hold:

(1) 𝜌1(𝑢, 𝑣) < 𝜂1(𝑢) ∧ 𝜂1(𝑣),
(2) 𝜌2(𝑢, 𝑣) > 𝜂2(𝑢) ∨ 𝜂2(𝑣),
(3) 𝜌3(𝑢, 𝑣) > 𝜂3(𝑢) ∨ 𝜂3(𝑣).

When (𝑢, 𝑣) ∈ 𝐸1 ∖ 𝐸2, 𝜌(𝑢, 𝑣) = 𝜌1(𝑢, 𝑣). Since 𝐺1 is a weak Neutrosophic graph, we have:
𝜌1(𝑢, 𝑣) < 𝜂1(𝑢) ∧ 𝜂1(𝑣),
𝜌2(𝑢, 𝑣) > 𝜂2(𝑢) ∨ 𝜂2(𝑣),
𝜌3(𝑢, 𝑣) > 𝜂3(𝑢) ∨ 𝜂3(𝑣),

which satisfies the weak Neutrosophic graph conditions for the union graph.
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When (𝑢, 𝑣) ∈ 𝐸2 ∖ 𝐸1, 𝜌(𝑢, 𝑣) = 𝜌2(𝑢, 𝑣). Since 𝐺2 is a weak Neutrosophic graph, we have:
𝜌1(𝑢, 𝑣) < 𝜂1(𝑢) ∧ 𝜂1(𝑣),
𝜌2(𝑢, 𝑣) > 𝜂2(𝑢) ∨ 𝜂2(𝑣),
𝜌3(𝑢, 𝑣) > 𝜂3(𝑢) ∨ 𝜂3(𝑣),

which also satisfies the weak Neutrosophic graph conditions.

When (𝑢, 𝑣) ∈ 𝐸1 ∩ 𝐸2, 𝜌(𝑢, 𝑣) = max(𝜌1(𝑢, 𝑣), 𝜌2(𝑢, 𝑣)) and 𝜂(𝑣) = max(𝜂1(𝑣), 𝜂2(𝑣)). We now show that the
weak Neutrosophic graph conditions hold:

• For the truth membership:
𝜌1(𝑢, 𝑣) = max(𝜌1,1(𝑢, 𝑣), 𝜌2,1(𝑢, 𝑣)) < max(𝜂1(𝑢), 𝜂2(𝑢)) ∧ max(𝜂1(𝑣), 𝜂2(𝑣)).

Since both 𝐺1 and 𝐺2 satisfy the weak Neutrosophic conditions, this inequality holds.

• For the indeterminacy membership:
𝜌2(𝑢, 𝑣) = max(𝜌1,2(𝑢, 𝑣), 𝜌2,2(𝑢, 𝑣)) > 𝜂2(𝑢) ∨ 𝜂2(𝑣).

• For the falsity membership:
𝜌3(𝑢, 𝑣) = max(𝜌1,3(𝑢, 𝑣), 𝜌2,3(𝑢, 𝑣)) > 𝜂3(𝑢) ∨ 𝜂3(𝑣).

Thus, in all cases, the union graph 𝐺 = 𝐺1 ∪ 𝐺2 satisfies the weak Neutrosophic graph conditions, completing
the proof. □

3.4 Neutrosophic Semigraph
The definition of the Neutrosophic Semigraph is provided as follows.

Definition 84 (Neutrosophic Semigraph). A neutrosophic semigraph 𝐺 = (𝑉 , 𝑋, 𝜂, 𝜌) is defined as follows:

• 𝑉 is a non-empty set of vertices.

• 𝑋 is a set of edges, where each edge is an 𝑛-tuple of distinct vertices from 𝑉 , i.e., 𝑒 = (𝑣1, 𝑣2, … , 𝑣𝑛),
with 𝑛 ≥ 2.

• 𝜂 ∶ 𝑉 → [0, 1] × [0, 1] × [0, 1] is a neutrosophic membership function that assigns each vertex 𝑣 ∈ 𝑉 a
triple (𝜂1(𝑣), 𝜂2(𝑣), 𝜂3(𝑣)), representing the truth, indeterminacy, and falsity memberships, respectively.

• 𝜌 ∶ 𝑉 × 𝑉 → [0, 1] × [0, 1] × [0, 1] is a neutrosophic relation on vertices, where
𝜌(𝑢, 𝑣) = (𝜌1(𝑢, 𝑣), 𝜌2(𝑢, 𝑣), 𝜌3(𝑢, 𝑣))

represents the neutrosophic truth, indeterminacy, and falsity memberships of the relationship between
vertices 𝑢 and 𝑣.

• For each edge 𝑒 = (𝑣1, 𝑣2, … , 𝑣𝑛), the neutrosophic edge membership function 𝜌(𝑒) = (𝜌1(𝑒), 𝜌2(𝑒), 𝜌3(𝑒))
satisfies:

𝜌1(𝑒) ≤ 𝜌1(𝑣1, 𝑣2) ∧ 𝜌1(𝑣2, 𝑣3) ∧ ⋯ ∧ 𝜌1(𝑣𝑛−1, 𝑣𝑛) ∧ 𝜂1(𝑣1) ∧ 𝜂1(𝑣𝑛),
𝜌2(𝑒) ≥ 𝜌2(𝑣1, 𝑣2) ∨ 𝜌2(𝑣2, 𝑣3) ∨ ⋯ ∨ 𝜌2(𝑣𝑛−1, 𝑣𝑛) ∨ 𝜂2(𝑣1) ∨ 𝜂2(𝑣𝑛),
𝜌3(𝑒) ≥ 𝜌3(𝑣1, 𝑣2) ∨ 𝜌3(𝑣2, 𝑣3) ∨ ⋯ ∨ 𝜌3(𝑣𝑛−1, 𝑣𝑛) ∨ 𝜂3(𝑣1) ∨ 𝜂3(𝑣𝑛),

where ∧ denotes the minimum operation and ∨ denotes the maximum operation.

In this neutrosophic semigraph, the vertices 𝑣1 and 𝑣𝑛 are referred to as the end vertices, and the vertices
𝑣2, 𝑣3, … , 𝑣𝑛−1 are called the middle vertices. A middle vertex that is also an end vertex of another edge is
termed a middle-end vertex.

Theorem 85. A Neutrosophic Semigraph can be transformed into both a Fuzzy Semigraph and a Neutrosophic
Graph.

Proof : Let 𝐺 = (𝑉 , 𝑋, 𝜂, 𝜌) be a Neutrosophic Semigraph where:
T.Fujita and F.Smarandache, A Reconsideration of Advanced Concepts in Neutrosophic Graphs



Neutrosophic Systems with Applications, Vol. 25, No. 2, 2025

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

69

• 𝑉 is the set of vertices.

• 𝑋 is the set of edges, where each edge is an 𝑛-tuple of distinct vertices.

• 𝜂 ∶ 𝑉 → [0, 1]3 assigns a neutrosophic membership (𝜂1(𝑣), 𝜂2(𝑣), 𝜂3(𝑣)) to each vertex.

• 𝜌 ∶ 𝑉 × 𝑉 → [0, 1]3 assigns a neutrosophic membership (𝜌1(𝑢, 𝑣), 𝜌2(𝑢, 𝑣), 𝜌3(𝑢, 𝑣)) to the relationship
between two vertices 𝑢 and 𝑣.

• For each edge 𝑒 ∈ 𝑋, the neutrosophic membership 𝜌(𝑒) = (𝜌1(𝑒), 𝜌2(𝑒), 𝜌3(𝑒)) satisfies conditions
defined in the Neutrosophic Semigraph.

To transform 𝐺 into a Fuzzy Semigraph 𝐺′ = (𝑉 , 𝑋, 𝜎, 𝜇, 𝜂′), define:
𝜎(𝑣) = 𝜂1(𝑣), 𝜇(𝑢, 𝑣) = 𝜌1(𝑢, 𝑣), 𝜂′(𝑒) = 𝜌1(𝑒),

for all 𝑣 ∈ 𝑉 , 𝑢, 𝑣 ∈ 𝑉 , and 𝑒 ∈ 𝑋, where 𝜂1(𝑣) and 𝜌1(𝑢, 𝑣) are the truth memberships from the neutrosophic
graph.

The conditions for a Fuzzy Semigraph hold because the neutrosophic truth memberships satisfy the membership
constraints of a Fuzzy Semigraph:

𝜂′(𝑒) ≤ 𝜇(𝑣1, 𝑣2) ∧ 𝜇(𝑣2, 𝑣3) ∧ ⋯ ∧ 𝜇(𝑣𝑛−1, 𝑣𝑛) ∧ 𝜎(𝑣1) ∧ 𝜎(𝑣𝑛).
Thus, 𝐺 reduces to a Fuzzy Semigraph under this transformation.

To transform 𝐺 into a Neutrosophic Graph 𝐺′ = (𝑉 , 𝐸, 𝜂, 𝜌′), where 𝐸 is the edge set of unordered vertex pairs,
redefine:

𝜌′(𝑢, 𝑣) = 𝜌(𝑢, 𝑣),
for all 𝑢, 𝑣 ∈ 𝑉 . The conditions of the Neutrosophic Graph are naturally satisfied because the neutrosophic
memberships for vertices and edges are preserved.

Edges in the semigraph 𝑋, which are tuples, become unordered pairs in 𝐸. Therefore, 𝐺 is transformed into a
Neutrosophic Graph. □

3.5 Double/Triple Layered Neutrosophic Graph
Double/Triple Layered Neutrosophic Graph are provided as follows.

Definition 86 (Double Layered Neutrosophic Graph (DLNG)). A Double Layered Neutrosophic Graph is an
extension of the standard neutrosophic graph where both vertices and edges are characterized by neutrosophic
memberships. Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a neutrosophic graph with vertex set 𝑉 , edge set 𝐸, neutrosophic vertex
membership functions 𝜎 = (𝜎1, 𝜎2, 𝜎3), and neutrosophic edge membership functions 𝜇 = (𝜇1, 𝜇2, 𝜇3).
Define the Double Layered Neutrosophic Graph 𝐷𝐿𝑁𝐺(𝐺) = (𝑉 ∗, 𝐸∗, 𝜎𝐷𝐿, 𝜇𝐷𝐿) as follows:

• The node set 𝑉 ∗ is the union of vertices and edges from the original graph: 𝑉 ∗ = 𝑉 ∪ 𝐸.

• The neutrosophic vertex membership function 𝜎𝐷𝐿 is defined by:

𝜎𝐷𝐿(𝑥) = {𝜎(𝑥) if 𝑥 ∈ 𝑉 ,
𝜇(𝑒) if 𝑒 ∈ 𝐸.

where 𝜎(𝑥) = (𝜎1(𝑥), 𝜎2(𝑥), 𝜎3(𝑥)) for vertices and 𝜇(𝑒) = (𝜇1(𝑒), 𝜇2(𝑒), 𝜇3(𝑒)) for edges.

• The neutrosophic edge membership function 𝜇𝐷𝐿 on 𝑉 ∗ × 𝑉 ∗ is defined as:

𝜇𝐷𝐿(𝑥, 𝑦) =

⎧{{
⎨{{⎩

𝜎(𝑥) ∧ 𝜎(𝑦) if 𝑥, 𝑦 ∈ 𝑉 ,
𝜇(𝑒𝑖) ∧ 𝜇(𝑒𝑗) if 𝑒𝑖, 𝑒𝑗 ∈ 𝐸, and they share a common vertex,
𝜎(𝑥) ∧ 𝜇(𝑒) if 𝑥 ∈ 𝑉 , 𝑒 ∈ 𝐸, and 𝑥 is incident to 𝑒,
0 otherwise.

Thus, the pair 𝐷𝐿𝑁𝐺(𝐺) = (𝜎𝐷𝐿, 𝜇𝐷𝐿) represents the Double Layered Neutrosophic Graph.
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Theorem 87. Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a neutrosophic graph. The order of the Double Layered Neutrosophic
Graph (DLNG) is given by:

𝑂(𝐷𝐿𝑁𝐺) = 𝑂(𝐺) + 𝑆(𝐺),
where 𝑂(𝐺) is the order of 𝐺, and 𝑆(𝐺) is the size of 𝐺.

Proof : Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a neutrosophic graph with the following components:

• 𝑉 is the set of vertices,

• 𝐸 is the set of edges,

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) is the neutrosophic membership function for vertices,

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) is the neutrosophic membership function for edges.

The order of the neutrosophic graph 𝐺, denoted 𝑂(𝐺), is the number of vertices in 𝐺, and the size of the graph,
denoted 𝑆(𝐺), is the number of edges in 𝐺.

The Double Layered Neutrosophic Graph (DLNG) extends the graph 𝐺 by including the edges as additional
vertices. Hence, the node set 𝑉 ∗ of the DLNG is defined as 𝑉 ∗ = 𝑉 ∪ 𝐸.

The order of the DLNG, denoted 𝑂(𝐷𝐿𝑁𝐺), is the total number of elements in 𝑉 ∗, i.e., the sum of the number
of vertices and edges in 𝐺. Therefore,

𝑂(𝐷𝐿𝑁𝐺) = |𝑉 ∗| = |𝑉 | + |𝐸|.
Thus, we can express the order of the DLNG as:

𝑂(𝐷𝐿𝑁𝐺) = 𝑂(𝐺) + 𝑆(𝐺).

Additionally, the neutrosophic membership function for the DLNG, denoted 𝜎𝐷𝐿, is defined as follows:

• For 𝑣 ∈ 𝑉 , 𝜎𝐷𝐿(𝑣) = 𝜎(𝑣),
• For 𝑒 ∈ 𝐸, 𝜎𝐷𝐿(𝑒) = 𝜇(𝑒).

Thus, the neutrosophic order of DLNG, denoted 𝑂𝑛(𝐷𝐿𝑁𝐺), is given by the sum of the neutrosophic member-
ships of all vertices and edges in 𝑉 ∗, i.e.,

𝑂𝑛(𝐷𝐿𝑁𝐺) = ∑
𝑣∈𝑉

𝜎(𝑣) + ∑
𝑒∈𝐸

3
∑
𝑖=1

𝜇𝑖(𝑒).

This can be rewritten as:
𝑂𝑛(𝐷𝐿𝑁𝐺) = 𝑂𝑛(𝐺) + 𝑆𝑛(𝐺),

where 𝑂𝑛(𝐺) is the neutrosophic order of 𝐺, and 𝑆𝑛(𝐺) is the neutrosophic size of 𝐺.

Thus, we have shown that the order of the Double Layered Neutrosophic Graph is the sum of the order and
size of the original neutrosophic graph. □

Theorem 88. A Double Layered Neutrosophic Graph (DLNG) can be transformed into a Double Layered Fuzzy
Graph (DLFG).

Proof : Let 𝐷𝐿𝑁𝐺(𝐺) = (𝑉 ∗, 𝐸∗, 𝜎𝐷𝐿, 𝜇𝐷𝐿). By ignoring the neutrosophic components 𝜎2(𝑥), 𝜎3(𝑥), 𝜇2(𝑒), 𝜇3(𝑒),
the vertex and edge membership functions reduce to:

𝜎𝐷𝐿𝐹𝐺(𝑥) = 𝜎1(𝑥), 𝜇𝐷𝐿𝐹𝐺(𝑥, 𝑦) = 𝜇1(𝑥, 𝑦),
where 𝜎1 and 𝜇1 are the truth membership functions in 𝜎𝐷𝐿 and 𝜇𝐷𝐿, respectively. The resulting graph satisfies
the definitions of a Double Layered Fuzzy Graph:

𝐷𝐿𝐹𝐺(𝐺) = (𝜎𝐷𝐿𝐹𝐺, 𝜇𝐷𝐿𝐹𝐺),
proving that 𝐷𝐿𝑁𝐺(𝐺) generalizes 𝐷𝐿𝐹𝐺(𝐺). □
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Definition 89 (Triple Layered Neutrosophic Graph (TLNG)). A Triple Layered Neutrosophic Graph is a further
extension of the Double Layered Neutrosophic Graph, incorporating an additional layer. Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇)
be a neutrosophic graph. The Triple Layered Neutrosophic Graph 𝑇 𝐿𝑁𝐺(𝐺) = (𝑉 ∗, 𝐸∗, 𝜎𝑇 𝐿, 𝜇𝑇 𝐿) is defined
as follows:

• The node set 𝑉 ∗ is the union of vertices and edges from the original graph: 𝑉 ∗ = 𝑉 ∪ 𝐸.

• The neutrosophic vertex membership function 𝜎𝑇 𝐿 is defined by:

𝜎𝑇 𝐿(𝑥) = {𝜎(𝑥) if 𝑥 ∈ 𝑉 ,
2 ⋅ 𝜇(𝑒) if 𝑒 ∈ 𝐸.

where the factor of 2 represents the additional layer’s increased influence on the neutrosophic member-
ships.

• The neutrosophic edge membership function 𝜇𝑇 𝐿 on 𝑉 ∗ × 𝑉 ∗ is defined as:

𝜇𝑇 𝐿(𝑥, 𝑦) =

⎧{{
⎨{{⎩

𝜎(𝑥) ∧ 𝜎(𝑦) if 𝑥, 𝑦 ∈ 𝑉 ,
𝜇(𝑒𝑖) ∧ 𝜇(𝑒𝑗) if 𝑒𝑖, 𝑒𝑗 ∈ 𝐸, and they share a common vertex,
𝜎(𝑥) ∧ 𝜇(𝑒) if 𝑥 ∈ 𝑉 , 𝑒 ∈ 𝐸, and 𝑥 is incident to 𝑒,
0 otherwise.

Thus, the pair 𝑇 𝐿𝑁𝐺(𝐺) = (𝜎𝑇 𝐿, 𝜇𝑇 𝐿) represents the Triple Layered Neutrosophic Graph.

Theorem 90. The order of a Triple Layered Neutrosophic Graph (TLNG) is given by:
𝑂(𝑇 𝐿𝑁𝐺) = 𝑂(𝐺) + 2 ⋅ 𝑆(𝐺),

where 𝑂(𝐺) is the order of the neutrosophic graph 𝐺, and 𝑆(𝐺) is the size of 𝐺.

Proof : Let 𝐺 = (𝑉 , 𝐸, 𝜎, 𝜇) be a neutrosophic graph, where:

• 𝑉 is the set of vertices,

• 𝐸 is the set of edges,

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) is the neutrosophic vertex membership function,

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) is the neutrosophic edge membership function.

The order of the neutrosophic graph 𝐺, denoted 𝑂(𝐺), is the number of vertices in 𝐺, and the size of the graph,
denoted 𝑆(𝐺), is the number of edges in 𝐺.

In a Triple Layered Neutrosophic Graph (TLNG), both the vertices and edges of the original graph 𝐺 contribute
to the node set. However, in TLNG, each edge is counted twice because of the additional layer. Specifically:

𝑉 ∗ = 𝑉 ∪ 𝐸,
where 𝐸 appears with double the influence.

Thus, the neutrosophic vertex membership function for the TLNG, denoted 𝜎𝑇 𝐿, is defined as:

𝜎𝑇 𝐿(𝑥) = {𝜎(𝑥) if 𝑥 ∈ 𝑉 ,
2 ⋅ 𝜇(𝑒) if 𝑒 ∈ 𝐸.

This means that the membership for the vertices in 𝐸 is doubled, reflecting the ”triple layer” nature.

The order of the Triple Layered Neutrosophic Graph, 𝑂(𝑇 𝐿𝑁𝐺), is the sum of the vertices and twice the number
of edges:

𝑂(𝑇 𝐿𝑁𝐺) = |𝑉 ∗| = |𝑉 | + 2 ⋅ |𝐸|.
Thus, we have:

𝑂(𝑇 𝐿𝑁𝐺) = 𝑂(𝐺) + 2 ⋅ 𝑆(𝐺).
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Additionally, the neutrosophic order of TLNG, denoted 𝑂𝑛(𝑇 𝐿𝑁𝐺), is the sum of the neutrosophic membership
values for all vertices and edges:

𝑂𝑛(𝑇 𝐿𝑁𝐺) = ∑
𝑣∈𝑉

𝜎(𝑣) + 2 ⋅ ∑
𝑒∈𝐸

𝜇(𝑒),

which can be rewritten as:
𝑂𝑛(𝑇 𝐿𝑁𝐺) = 𝑂𝑛(𝐺) + 2 ⋅ 𝑆𝑛(𝐺),

where 𝑂𝑛(𝐺) is the neutrosophic order of the graph 𝐺 and 𝑆𝑛(𝐺) is the neutrosophic size of the graph.

Thus, the order of the Triple Layered Neutrosophic Graph is indeed 𝑂(𝐺) + 2 ⋅ 𝑆(𝐺), as required. □

Theorem 91. A Triple Layered Neutrosophic Graph (TLNG) can be transformed into a Triple Layered Fuzzy
Graph (TLFG) or a Double Layered Neutrosophic Graph (DLNG).

Proof : Let 𝑇 𝐿𝑁𝐺(𝐺) = (𝑉 ∗, 𝐸∗, 𝜎𝑇 𝐿, 𝜇𝑇 𝐿) represent a Triple Layered Neutrosophic Graph. To show the
transformations:

By constraining the neutrosophic vertex and edge membership functions 𝜎𝑇 𝐿 and 𝜇𝑇 𝐿 such that:

𝜎𝑇 𝐿(𝑥) = {𝜎(𝑥) if 𝑥 ∈ 𝑉 ,
𝜇(𝑒) if 𝑒 ∈ 𝐸,

and replacing 𝜎𝑇 𝐿 with the fuzzy membership function 𝜎𝑇 𝐿𝐹𝐺, we obtain a Triple Layered Fuzzy Graph. The
neutrosophic parameters 𝜎2(𝑥), 𝜎3(𝑥), 𝜇2(𝑒), 𝜇3(𝑒) are ignored, reducing the representation to:

𝑇 𝐿𝐹𝐺(𝐺) = (𝜎𝑇 𝐿𝐹𝐺, 𝜇𝑇 𝐿𝐹𝐺).

By removing the additional layer factor (e.g., 2𝜇(𝑒)) in 𝜎𝑇 𝐿 and ensuring that 𝑉 ∗ = 𝑉 ∪ 𝐸, the Triple Layered
Neutrosophic Graph reduces to a Double Layered Neutrosophic Graph:

𝜎𝐷𝐿(𝑥) = {𝜎(𝑥) if 𝑥 ∈ 𝑉 ,
𝜇(𝑒) if 𝑒 ∈ 𝐸.

The edge membership 𝜇𝑇 𝐿 reduces to 𝜇𝐷𝐿, completing the transformation.

Thus, 𝑇 𝐿𝑁𝐺(𝐺) generalizes both 𝑇 𝐿𝐹𝐺(𝐺) and 𝐷𝐿𝑁𝐺(𝐺). □

3.6 Connected Neutrosophic Chemical Graph
We define a Connected Neutrosophic Chemical Graph as follows. This graph concept combines the principles
of a Connected Fuzzy Chemical Graph and a Neutrosophic Graph.

Definition 92 (Connected Neutrosophic Chemical Graph). A Connected Neutrosophic Chemical Graph 𝐺 =
(𝑉 , 𝐸, 𝜎, 𝜇) is a neutrosophic graph where:

• 𝑉 is the set of vertices representing atoms in a molecule.

• 𝐸 is the set of edges representing chemical bonds between atoms.

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) ∶ 𝑉 → [0, 1]3 is the neutrosophic membership function for each atom, where:

– 𝜎1(𝑣) represents the truth membership degree of atom 𝑣,

– 𝜎2(𝑣) represents the indeterminacy membership degree of atom 𝑣,

– 𝜎3(𝑣) represents the falsity membership degree of atom 𝑣.

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) ∶ 𝐸 → [0, 1]3 is the neutrosophic relation representing the degree of chemical bond
membership, where:

– 𝜇1(𝑒) represents the truth membership of bond 𝑒,

– 𝜇2(𝑒) represents the indeterminacy membership of bond 𝑒,
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– 𝜇3(𝑒) represents the falsity membership of bond 𝑒.

• The membership degrees for the edges must satisfy the condition 𝜇𝑖(𝑢, 𝑣) ≤ 𝜎𝑖(𝑢) ∧ 𝜎𝑖(𝑣), where ∧
denotes the minimum operation, for all 𝑢, 𝑣 ∈ 𝑉 and 𝑖 ∈ {1, 2, 3}.

The graph is said to be connected if for every pair of vertices 𝑢, 𝑣 ∈ 𝑉 , there exists a path of vertices 𝑢 =
𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑣 such that 𝜇(𝑣𝑖, 𝑣𝑖+1) > 0 for all 0 ≤ 𝑖 < 𝑘, ensuring that all atoms in the molecule are
connected by chemical bonds.

Theorem 93. A Connected Neutrosophic Chemical Graph (CNCG) can be transformed into both a Connected
Fuzzy Chemical Graph (CFCG) and a Neutrosophic Graph.

Proof : Let 𝐺𝐶 = (𝑉 , 𝐸, 𝜎, 𝜇) be a Connected Neutrosophic Chemical Graph where:

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) ∶ 𝑉 → [0, 1]3 represents the neutrosophic vertex memberships.

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) ∶ 𝐸 → [0, 1]3 represents the neutrosophic edge memberships.

To transform 𝐺𝐶 into a Connected Fuzzy Chemical Graph 𝐺𝐹 = (𝑉 , 𝐸, 𝜎′, 𝜇′), we define:
𝜎′(𝑣) = 𝜎1(𝑣), 𝜇′(𝑢, 𝑣) = 𝜇1(𝑢, 𝑣), ∀𝑣 ∈ 𝑉 , ∀(𝑢, 𝑣) ∈ 𝐸,

where 𝜎1(𝑣) and 𝜇1(𝑢, 𝑣) are the truth memberships from the neutrosophic graph.

The connectivity condition is preserved because the truth memberships govern the connectedness of 𝐺𝐶 . Thus,
𝐺𝐶 reduces to a CFCG.

To transform 𝐺𝐶 into a Neutrosophic Graph 𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇), no changes are needed as 𝐺𝐶 already satisfies
the definition of a Neutrosophic Graph. Therefore, 𝐺𝐶 is inherently a Neutrosophic Graph. □

Definition 94 (Neighborly Irregular Neutrosophic Chemical Graph). A Neighborly Irregular Neutrosophic
Chemical Graph 𝐺𝑁𝐼𝐶 = (𝑉 , 𝐸, 𝜎, 𝜇) is a neutrosophic chemical graph where:

• 𝑉 is the set of vertices representing atoms in the molecular structure,

• 𝐸 is the set of edges representing chemical bonds between atoms,

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) ∶ 𝑉 → [0, 1]3 is the neutrosophic membership function representing the truth, indeter-
minacy, and falsity memberships of each atom,

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) ∶ 𝐸 → [0, 1]3 is the neutrosophic relation representing the degrees of membership of the
bonds, with the same conditions on membership as above.

• For any two adjacent vertices 𝑢, 𝑣 ∈ 𝑉 , their neutrosophic degrees are distinct. Specifically, deg(𝑢) ≠
deg(𝑣) holds with respect to the neutrosophic membership values of the atoms, ensuring that adjacent
atoms have different connection strengths or roles in the molecule. The degree deg(𝑣) of a vertex is
calculated based on its neutrosophic memberships in the edges connected to it.

Theorem 95. A Neighborly Irregular Neutrosophic Chemical Graph (NICG) can be transformed into both a
Neighborly Irregular Fuzzy Chemical Graph (NIFCG) and a Neutrosophic Graph.

Proof : Let 𝐺𝑁𝐼𝐶 = (𝑉 , 𝐸, 𝜎, 𝜇) be a Neighborly Irregular Neutrosophic Chemical Graph where:

• 𝜎 = (𝜎1, 𝜎2, 𝜎3) ∶ 𝑉 → [0, 1]3 represents the neutrosophic vertex memberships.

• 𝜇 = (𝜇1, 𝜇2, 𝜇3) ∶ 𝐸 → [0, 1]3 represents the neutrosophic edge memberships.

To transform 𝐺𝑁𝐼𝐶 into a Neighborly Irregular Fuzzy Chemical Graph 𝐺𝑁𝐼𝐹𝐶 = (𝑉 , 𝐸, 𝜎′, 𝜇′), we define:
𝜎′(𝑣) = 𝜎1(𝑣), 𝜇′(𝑢, 𝑣) = 𝜇1(𝑢, 𝑣), ∀𝑣 ∈ 𝑉 , ∀(𝑢, 𝑣) ∈ 𝐸,

where 𝜎1(𝑣) and 𝜇1(𝑢, 𝑣) are the truth memberships from the neutrosophic graph.

The degree distinctness property in 𝐺𝑁𝐼𝐶 , deg(𝑢) ≠ deg(𝑣), is preserved under this transformation because the
truth memberships uniquely determine the vertex and edge roles in 𝐺𝑁𝐼𝐹𝐶 . Thus, 𝐺𝑁𝐼𝐶 reduces to a NIFCG.
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To transform 𝐺𝑁𝐼𝐶 into a Neutrosophic Graph 𝐺𝑁 = (𝑉 , 𝐸, 𝜎, 𝜇), no structural changes are necessary as 𝐺𝑁𝐼𝐶
is already a neutrosophic graph by definition. The graph retains its neutrosophic membership functions for
vertices and edges. Therefore, 𝐺𝑁𝐼𝐶 is inherently a Neutrosophic Graph. □

4 Conclusion and Future Work

This paper has explored various graph classes associated with Neutrosophic Graphs, including Smart Neu-
trosophic Graphs, Neutrosophic Zero Divisor Graphs, Weak Neutrosophic Graphs, Neutrosophic Semigraphs,
Double and Triple Layered Neutrosophic Graphs, and Connected Neutrosophic Chemical Graphs.

In terms of future research directions, our primary objective is to investigate the potential for defining more
refined or generalized classes of graphs. This will involve both theoretical analysis and computational experi-
ments based on the graph classes discussed in this work. By applying these definitions to real-world scenarios,
we aim to evaluate their practicality and identify opportunities for the introduction of novel graph definitions.

Additionally, we plan to extend this study to hypergraphs [66, 29, 65, 92] and superhypergraphs [148, 71, 147,
54, 59], as well as investigate their applicability to directed graphs.

Furthermore, we intend to explore width parameters for these graph classes [33, 130, 34], which will allow us to
examine graph-related problems and develop algorithms tailored to these advanced structures. This research
aims to deepen our understanding of Neutrosophic Graphs and their applications across different domains.
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