
V O L U M E  9   
2 0 2 3

NEUTROSOPHIC 
SYSTEMS WITH APPLICATIONS

E d i t o r s - i n - C h i e f
F l o r e n t i n  S m a r a n d a c h e   
M o h a m e d  A b d e l - B a s s e t    
S a i d  B r o u m i

I S S N  ( O N L I N E ) : 2 9 9 3 - 7 1 5 9
I S S N  ( P R I N T ) :  2 9 9 3 - 7 1 4 0   

A N  I N T E R N A T I O N A L  J O U R N A L  O N  I N F O R M A T I C S ,  D E C I S I O N  S C I E N C E ,  I N T E L L I G E N T  S Y S T E M S  A P P L I C A T I O N S



                  
Neutrosophic Systems with Applications

 

  
  

 
   

 

 

                                                                     Copyright © Neutrosophic Systems with Applications, 2023 

Neutrosophic Systems with Applications  

An International Journal on Informatics, Decision Science, Intelligent Systems Applications  

 
Copyright Notice 

Copyright @ Neutrosophic Systems with Applications 
 

All rights reserved. The authors of the articles do hereby grant Neutrosophic Systems with Applications non-exclusive, 
worldwide, royalty-free license to publish and distribute the articles in accordance with the Budapest Open Initiative: 
this means that electronic copying, distribution, and printing of both full-size version of the journal and the individual 
papers published therein for non-commercial, academic, or individual use can be made by any user without permission 
or charge. The authors of the articles published in Neutrosophic Systems with Applications retain their rights to use 
this journal as a whole or any part of it in any other publications and in any way, they see fit. Any part of Neutrosophic 
Systems with Applications, however, used in other publications must include an appropriate citation of this journal. 
 

Information for Authors and Subscribers 
“Neutrosophic Systems with Applications” has been created for publications on advanced studies in neutrosophy, 
neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their 
applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. 
The submitted papers should be professional, in good English, containing a brief review of a problem and obtained 
results. 
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 
This theory considers every notion or idea <A> together with its opposite or negation <antiA> and with their 
spectrum of neutralities <neutA> in between them (i.e., notions or ideas supporting neither <A> nor <antiA>). The 
<neutA> and <antiA> ideas together are referred to as <nonA>. 
Neutrosophy is a generalization of Hegel's dialectics (the last one is based on <A> and <antiA> only). According to 
this theory every idea <A> tends to be neutralized and balanced by <antiA> and <nonA> ideas - as a state of 
equilibrium. 
In a classical way <A>, <neutA>, <antiA> are disjointed two by two. But, since in many cases the borders between 
notions are vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> (and <nonA> of course) have 
common parts two by two, or even all three of them as well. 
Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic 
(especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic). In neutrosophic logic a proposition has 
a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity (F), where T, I, F are standard or non-
standard subsets of ]-0, 1+[. 
Neutrosophic Probability is a generalization of the classical probability and imprecise probability. 
Neutrosophic Statistics is a generalization of classical statistics. 
What distinguishes neutrosophic from other fields is the <neutA>, which means neither <A> nor <antiA>. 
<neutA>, which of course depends on <A>, can be indeterminacy, neutrality, tie game, unknown, contradiction, 
ignorance, imprecision, etc. 
All submissions should be designed in MS Word format using our template file on the journal website.  
A variety of scientific books in many languages can be downloaded freely from the Digital Library of Science: 
http://fs.unm.edu/ScienceLibrary.htm. 
To submit a paper, mail the file to the Editor-in-Chief. To order printed issues, contact the Editor-in-Chief.  
This journal is a non-commercial, academic edition. It is printed from private donations. 
Information about the neutrosophic you get from the UNM website: 
http://fs.unm.edu/neutrosophy.htm.  
The home page of the journal is accessed on 
https://nswajournal.org/  

 
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

An International Journal on Informatics, Decision Science, Intelligent Systems Applications

https://nswajournal.org/


Prof. Emeritus Florentin Smarandache, PhD, Postdoc, Mathematics, Physical and Natural Sciences Division, 

University of New Mexico, Gallup Campus, NM 87301, USA, Email: smarand@unm.edu. 

Dr. Mohamed Abdel-Baset, Head of Department of Computer Science, Faculty of Computers and 

Informatics, Zagazig University, Egypt, Email: mohamedbasset@ieee.org. 

Dr. Said Broumi, Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan 

II,  Casablanca, Morocco, Email: s.broumi@flbenmsik.ma. 

Associate Editors 

Assoc. Prof. Alok Dhital, Mathematics, Physical and Natural Sciences Division, University of New Mexico, 

Gallup Campus, NM 87301, USA, Email: adhital@unm.edu. 

Dr. S. A. Edalatpanah, Department of Applied Mathematics, Ayandegan Institute of Higher Education, 

Tonekabon, Iran, Email: saedalatpanah@gmail.com. 

Charles Ashbacker, Charles Ashbacher Technologies, Box 294, 118 Chaffee Drive, Hiawatha, IA 52233, 

United States, Email: cashbacher@prodigy.net. 

Prof. Dr. Xiaohong Zhang, Department of Mathematics, Shaanxi University of Science &Technology, Xian 

710021, China, Email: zhangxh@shmtu.edu.cn. 

Prof. Dr. W. B. Vasantha Kandasamy, School of Computer Science and Engineering, VIT, Vellore 632014, 

India, Email: vasantha.wb@vit.ac.in.  

Editors
 

Yanhui Guo, University of Illinois at Springfield, 

One University Plaza, Springfield, IL 62703, United 

States,Email: yguo56@uis.edu. 

Giorgio Nordo, MIFT - Department of 

Mathematical and Computer Science, Physical 

Sciences and Earth Sciences, Messina University, 

Italy,Email: giorgio.nordo@unime.it. 

Mohamed Elhoseny, American University in the 

Emirates,Dubai,UAE, 

Email: mohamed.elhoseny@aue.ae. 

Le Hoang Son, VNU Univ. of Science, Vietnam 

National Univ. Hanoi, Vietnam, 

Email: sonlh@vnu.edu.vn. 

Huda E. Khalid, Head of Scientific Affairs and 

Cultural Relations Department, Nineveh Province, 

Telafer University, Iraq, Email: dr.huda-

ismael@uotelafer.edu.iq. 

A. A. Salama, Dean of the Higher Institute of 

Business and Computer Sciences, Arish, Egypt, 

Email: ahmed_salama_2000@sci.psu.edu.eg. 

Young Bae Jun, Gyeongsang National University, 

South Korea, Email: skywine@gmail.com. 

Yo-Ping Huang, Department of Computer Science 

and Information, Engineering National Taipei 

University, New Taipei City, 

Taiwan, Email: yphuang@ntut.edu.tw. 

Tarek Zayed, Department of Building and Real 

Estate, The Hong Kong Polytechnic University, 

Hung Hom, 8 Kowloon, Hong Kong, China, 

Email:  tarek.zayed@polyu.edu.hk. 

Vakkas Ulucay, Kilis 7 Aralık University, Turkey, 

Email: vulucay27@gmail.com. 

Peide Liu, Shandong University of Finance and 

Economics, China, Email: peide.liu@gmail.com. 

Jun Ye, Ningbo University, School of Civil and 

Environmental Engineering, 818 Fenghua Road, 

Jiangbei District, Ningbo City, Zhejiang Province, 

People's Republic of China, 

Email: yejun1@nbu.edu.cn. 

Memet Şahin, Department of Mathematics, 

Gaziantep University, Gaziantep 27310, Turkey, 

Email: mesahin@gantep.edu.tr. 

Muhammad Aslam & Mohammed Alshumrani, 

King Abdulaziz Univ., Jeddah, Saudi Arabia, 

Emails magmuhammad@kau.edu.sa, maalshmrani

@kau.edu.sa. 

Mutaz Mohammad, Department of Mathematics, 

Zayed University, Abu Dhabi 144534, United Arab 

Emirates. Email: Mutaz.Mohammad@zu.ac.ae. 

Abdullahi Mohamud Sharif, Department of 

Computer Science, University of Somalia, Makka 

Al-mukarrama Road, Mogadishu, Somalia, 

Email: abdullahi.shariif@uniso.edu.so. 

Editors-in-Chief 

 

 

                                                                     Copyright © Neutrosophic Systems with Applications, 2023 

                  
Neutrosophic Systems with Applications

 

  
  

 
   

An International Journal on Informatics, Decision Science, Intelligent Systems Applications   
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

mailto:smarand@unm.edu
mailto:mohamedbasset@ieee.org
mailto:s.broumi@flbenmsik.ma
mailto:adhital@unm.edu
mailto:saedalatpanah@gmail.com
mailto:cashbacher@prodigy.net
mailto:zhangxh@shmtu.edu.cn
mailto:vasantha.wb@vit.ac.in
mailto:yguo56@uis.edu
mailto:giorgio.nordo@unime.it
mailto:mohamed.elhoseny@aue.ae
mailto:sonlh@vnu.edu.vn
mailto:dr.huda-ismael@uotelafer.edu.iq
mailto:dr.huda-ismael@uotelafer.edu.iq
mailto:ahmed_salama_2000@sci.psu.edu.eg
mailto:skywine@gmail.com
mailto:yphuang@ntut.edu.tw
mailto:tarek.zayed@polyu.edu.hk
mailto:vulucay27@gmail.com
mailto:peide.liu@gmail.com
mailto:yejun1@nbu.edu.cn
mailto:mesahin@gantep.edu.tr
mailto:magmuhammad@kau.edu.sa
mailto:maalshmrani@kau.edu.sa
mailto:maalshmrani@kau.edu.sa
mailto:Mutaz.Mohammad@zu.ac.ae
mailto:abdullahi.shariif@uniso.edu.so


Katy D. Ahmad, Islamic University of Gaza, 

Palestine,Email: katyon765@gmail.com. 

NoohBany Muhammad, American University of 

Kuwait,Kuwait,Email: noohmuhammad12@gmail

.com. 

Soheyb Milles, Laboratory of Pure and Applied 

Mathematics, University of Msila, Algeria, 

Email: soheyb.milles@univ-msila.dz. 

Pattathal Vijayakumar Arun, College of Science and 

Technology,Phuentsholing,Bhutan, 

Email: arunpv2601@gmail.com. 

Endalkachew Teshome Ayele, Department of 

Mathematics, Arbaminch University, Arbaminch, 

Ethiopia,Email:  endalkachewteshome83@yahoo.

com. 

A. Al-Kababji, College of Engineering, Qatar 

University,Doha,Qatar, 

Email: ayman.alkababji@ieee.org. 

Xindong Peng, School of Information Science and 

Engineering, Shaoguan University, Shaoguan 

512005, China, Email: 952518336@qq.com. 

Xiao-Zhi Gao, School of Computing, University of 

Eastern Finland, FI-70211 Kuopio, Finland, xiao-

zhi.gao@uef.fi. 

Madad Khan, Comsats Institute of Information 

Technology,Abbottabad,Pakistan, 

Email: madadmath@yahoo.com. 

G. Srinivasa Rao, Department of Statistics, The 

University of Dodoma, Dodoma, PO. Box: 259, 

Tanzania,Email: gaddesrao@gmail.com. 

Ibrahim El-henawy, Faculty of Computers and 

Informatics,ZagazigUniversity,Egypt, 

Email: henawy2000@yahoo.com. 

Muhammad Saeed, Department of Mathematics, 

University of Management and Technology, 

Lahore, Pakistan, 

Email: muhammad.saeed@umt.edu.pk. 

A. A. A. Agboola, Federal University of 

Agriculture, Abeokuta, Nigeria, 

Email: agboolaaaa@funaab.edu.ng. 

Abduallah Gamal, Faculty of Computers and 

Informatics, Zagazig University, Egypt, 

Email: abduallahgamal@zu.edu.eg. 

Ebenezer Bonyah, Department of Mathematics 

Education, Akenten Appiah-Menka University of 

Skills Training and Entrepreneurial Development, 

Kumasi 00233, Ghana, 

Email: ebbonya@gmail.com.  

Roan Thi Ngan, Hanoi University of Natural 

Resources and Environment, Hanoi, Vietnam, 

Email: rtngan@hunre.edu.vn. 

Sol David Lopezdomínguez Rivas, Universidad 

Nacional de Cuyo, Argentina. 

Email: sol.lopezdominguez@fce.uncu.edu.ar. 

Maikel Yelandi Leyva Vázquez, Universidad 

Regional Autónoma de los Andes (UNIANDES), 

Avenida Jorge Villegas, Babahoyo, Los Ríos, 

Ecuador, 

Email: ub.c.investigacion@uniandes.edu.ec. 

Arlen Martín Rabelo, Exxis, Avda. Aviadores del 

Chaco N° 1669 c/ San Martin, Edif. Aymac I, 4to. 

piso, Asunción, Paraguay, 

Email: arlen.martin@exxis-group.com. 

Carlos Granados, Estudiante de Doctorado en 

Matematicas, Universidad del Antioquia, Medellın, 

Colombia, 

Email: carlosgranadosortiz@outlook.es.  

Tula Carola Sanchez Garcia, Facultad de 

Educacion de la Universidad Nacional Mayor de 

San Marcos, Lima, Peru, 

Email: tula.sanchez1@unmsm.edu.pe. 

Carlos Javier Lizcano Chapeta, Profesor - 

Investigador de pregrado y postgrado de la 

Universidad de Los Andes, Mérida 5101, 

Venezuela, Email: lizcha_4@hotmail.com. 

Noel Moreno Lemus, Procter & Gamble 

International Operations S.A., Panamá, 

Email: nmlemus@gmail.com. 

Asnioby Hernandez Lopez, Mercado Libre, 

Montevideo, Uruguay. 

Email: asnioby.hernandez@mercadolibre.com. 

Muhammad Akram, University of the Punjab, New 

Campus, Lahore, Pakistan, 

Email: m.akram@pucit.edu.pk. 

Tatiana Andrea Castillo Jaimes, Universidad de 

Chile, Departamento de Industria, Doctorado en 

Sistemas de Ingeniería, Santiago de Chile, Chile, 

Email: tatiana.a.castillo@gmail.com. 

Irfan Deli, Muallim Rifat Faculty of Education, 

Kilis 7 Aralik University, Turkey, 

Email: irfandeli@kilis.edu.tr. 

Ridvan Sahin, Department of Mathematics, Faculty 

of Science, Ataturk University, Erzurum 25240, 

Turkey, Email: mat.ridone@gmail.com. 

Ibrahim M. Hezam, Department of computer, 

Faculty of Education, Ibb University, Ibb City, 

 

 

                                                                     Copyright © Neutrosophic Systems with Applications, 2023 

                  
Neutrosophic Systems with Applications

 

  
  

 
   

An International Journal on Informatics, Decision Science, Intelligent Systems Applications   
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

mailto:katyon765@gmail.com
mailto:noohmuhammad12@gmail.com
mailto:noohmuhammad12@gmail.com
mailto:soheyb.milles@univ-msila.dz
mailto:arunpv2601@gmail.com
mailto:endalkachewteshome83@yahoo.com
mailto:endalkachewteshome83@yahoo.com
mailto:ayman.alkababji@ieee.org
mailto:952518336@qq.com
mailto:xiao-zhi.gao@uef.fi
mailto:xiao-zhi.gao@uef.fi
mailto:madadmath@yahoo.com
mailto:gaddesrao@gmail.com
mailto:henawy2000@yahoo.com
mailto:muhammad.saeed@umt.edu.pk
mailto:agboolaaaa@funaab.edu.ng
mailto:abduallahgamal@zu.edu.eg
mailto:ebbonya@gmail.com
mailto:rtngan@hunre.edu.vn
mailto:sol.lopezdominguez@fce.uncu.edu.ar
mailto:ub.c.investigacion@uniandes.edu.ec
mailto:arlen.martin@exxis-group.com
mailto:carlosgranadosortiz@outlook.es
mailto:tula.sanchez1@unmsm.edu.pe
mailto:lizcha_4@hotmail.com
mailto:nmlemus@gmail.com
mailto:asnioby.hernandez@mercadolibre.com
mailto:asnioby.hernandez@mercadolibre.com
mailto:m.akram@pucit.edu.pk
mailto:tatiana.a.castillo@gmail.com
mailto:irfandeli@kilis.edu.tr
mailto:mat.ridone@gmail.com


Yemen, Email: ibrahizam.math@gmail.com. 

Moddassir khan Nayeem, Department of Industrial 

and Production Engineering, American 

International University-Bangladesh, Bangladesh; 

nayeem@aiub.edu. 

Aiyared Iampan, Department of Mathematics, 

School of Science, University of Phayao, Phayao 

56000, Thailand, Email: aiyared.ia@up.ac.th. 

Ameirys Betancourt-Vázquez, 1 Instituto Superior 

Politécnico de Tecnologias e Ciências (ISPTEC), 

Luanda, Angola, Email: ameirysbv@gmail.com. 

H. E. Ramaroson, University of Antananarivo, 

Madagascar, Email: erichansise@gmail.com. 

G. Srinivasa Rao, Department of Mathematics and 

Statistics, The University of Dodoma, Dodoma 

PO. Box: 259, Tanzania. 

Onesfole Kuramaa, Department of Mathematics, 

College of Natural Sciences, Makerere University, 

P.O Box 7062, Kampala, Uganda, 

Email: onesfole.kurama@mak.ac.ug. 

Karina Pérez-Teruel, Universidad Abierta para 

Adultos (UAPA), Santiago de los Caballeros, 

República Dominicana, 

Email: karinaperez@uapa.edu.do. 

Neilys González Benítez, Centro Meteorológico 

Pinar del Río, Cuba, Email: neilys71@nauta.cu. 

Jesus Estupinan Ricardo, Centro de Estudios para 

la Calidad Educativa y la Investigation Cinetifica, 

Toluca,Mexico,Email: jestupinan2728@gmail.com 

Victor Christianto, Malang Institute of Agriculture 

(IPM), Malang, Indonesia, 

Email: victorchristianto@gmail.com. 

Wadei Al-Omeri, Department of Mathematics, Al-

Balqa Applied University, Salt 19117, 

Jordan, Email: wadeialomeri@bau.edu.jo. 

Ganeshsree Selvachandran, UCSI University, Jalan 

Menara Gading, Kuala Lumpur, Malaysia, 

Email: Ganeshsree@ucsiuniversity.edu.my. 

Ilanthenral Kandasamy, School of 

Computer Science and Engineering 

(SCOPE), Vellore Institute of Technology (VIT), 

Vellore 632014, India, 

Email: ilanthenral.k@vit.ac.in  

Kul Hur, Wonkwang University, Iksan, 

Jeollabukdo, South Korea, 

Email: kulhur@wonkwang.ac.kr. 

Kemale Veliyeva & Sadi Bayramov, Department 

of Algebra and Geometry, Baku State University, 

23 Z. Khalilov Str., AZ1148, Baku, Azerbaijan, 

Email: kemale2607@mail.ru, 

Email: baysadi@gmail.com. 

Irma Makharadze & Tariel Khvedelidze, Ivane 

Javakhishvili Tbilisi State University, Faculty of 

Exact and Natural Sciences, Tbilisi, Georgia. 

Inayatur Rehman, College of Arts and Applied 

Sciences, Dhofar University Salalah, Oman, 

Email: irehman@du.edu.om. 

Mansour Lotayif, College of Administrative 

Sciences, Applied Science University, P.O. Box 

5055, East Al-Ekir, Kingdom of Bahrain. 

Riad K. Al-Hamido, Math Department, College of 

Science, Al-Baath University, Homs, Syria, 

Email: riad-hamido1983@hotmail.com.   

Saeed Gul, Faculty of Economics, Kardan 

University, Parwan-e- Du Square, Kabil, 

Afghanistan, Email: s.gul@kardan.edu.af. 

Faruk Karaaslan, Çankırı Karatekin University, 

Çankırı, Turkey, 

Email: fkaraaslan@karatekin.edu.tr. 

Morrisson Kaunda Mutuku, School of Business, 

Kenyatta University, Kenya 

Surapati Pramanik, Department of Mathematics, 

Nandalal Ghosh B T College, India, 

Email: drspramanik@isns.org.in. 

Suriana Alias, Universiti Teknologi MARA (UiTM) 

Kelantan, Campus Machang, 18500 Machang, 

Kelantan, Malaysia, 

Email: suria588@kelantan.uitm.edu.my. 

Arsham  Borumand Saeid, Dept. of Pure 

Mathematics, Faculty of Mathematics and 

Computer, Shahid Bahonar University of Kerman, 

Kerman, Iran, Email: arsham@uk.ac.ir. 

Ahmed Abdel-Monem, Department of Decision 

support, Zagazig University, Egypt, 

Email: aabdelmounem@zu.edu.eg. 

Çağlar Karamasa, Anadolu University, Faculty of 

Business, 

Turkey, Email: ckaramasa@anadolu.edu.tr. 

Mohamed Talea, Laboratory of Information 

Processing, Faculty of Science Ben M’Sik, 

Morocco, Email: taleamohamed@yahoo.fr. 

Assia Bakali, Ecole Royale Navale, Casablanca, 

Morocco, Email: assiabakali@yahoo.fr. 

V.V. Starovoytov, The State Scientific Institution 

«The United Institute of Informatics Problems of 

the National Academy of Sciences of Belarus», 

 

 

                                                                     Copyright © Neutrosophic Systems with Applications, 2023 

                  
Neutrosophic Systems with Applications

 

  
  

 
   

An International Journal on Informatics, Decision Science, Intelligent Systems Applications   
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

mailto:ibrahizam.math@gmail.com
mailto:nayeem@aiub.edu
mailto:aiyared.ia@up.ac.th
mailto:ameirysbv@gmail.com
mailto:erichansise@gmail.com
mailto:onesfole.kurama@mak.ac.ug
mailto:karinaperez@uapa.edu.do
mailto:neilys71@nauta.cu
mailto:jestupinan2728@gmail.com
mailto:victorchristianto@gmail.com
mailto:Ganeshsree@ucsiuniversity.edu.my
mailto:ilanthenral.k@vit.ac.in
mailto:kulhur@wonkwang.ac.kr
mailto:kemale2607@mail.ru
mailto:baysadi@gmail.com
mailto:irehman@du.edu.om
mailto:riad-hamido1983@hotmail.com
mailto:s.gul@kardan.edu.af
mailto:fkaraaslan@karatekin.edu.tr
mailto:drspramanik@isns.org.in
mailto:suria588@kelantan.uitm.edu.my
mailto:arsham@uk.ac.ir
mailto:aabdelmounem@zu.edu.eg
mailto:ckaramasa@anadolu.edu.tr
mailto:taleamohamed@yahoo.fr
mailto:assiabakali@yahoo.fr


Minsk, Belarus, Email: ValeryS@newman.bas-

net.by. 

E.E. Eldarova, L.N. Gumilyov Eurasian National 

University, Nur-Sultan, Republic of Kazakhstan, 

Email: Doctorphd_eldarova@mail.ru.  Mukhamed

iyeva Dilnoz Tulkunovna & Egamberdiev Nodir 

Abdunazarovich, Science and innovation center 

for information and communication technologies, 

Tashkent University of Information Technologies 

(named after Muhammad Al-Khwarizmi), 

Uzbekistan. 

Mohammad Hamidi, Department of Mathematics, 

Payame Noor University (PNU), Tehran, 

Iran. Email: m.hamidi@pnu.ac.ir. 

Lemnaouar Zedam, Department of Mathematics, 

Faculty of Mathematics and Informatics, University 

Mohamed Boudiaf, M’sila, Algeria, 

Email: l.zedam@gmail.com. 

M. Al Tahan, Department of Mathematics, 

Lebanese International University, Bekaa, 

Lebanon, Email: madeline.tahan@liu.edu.lb. 

Mohammad Abobala, Tishreen University, Faculty 

of Science, Department of Mathematics, Lattakia, 

Syria,Email” mohammad.abobala@tishreen.edu.sy 

Rafif Alhabib, AL-Baath University, College of 

Science, Mathematical Statistics Department, 

Homs, Syria, Email: ralhabib@albaath-univ.edu.sy. 

R. A. Borzooei, Department of Mathematics, 

Shahid Beheshti University, Tehran, 

Iran, borzooei@hatef.ac.ir.  

Selcuk Topal, Mathematics Department, Bitlis 

Eren University, Turkey, 

Email: s.topal@beu.edu.tr. 

Qin Xin, Faculty of Science and Technology, 

University of the Faroe Islands, Tórshavn, 100, 

Faroe Islands. 

Sudan Jha, Pokhara University,Kathmandu, Nepal, 

Email: jhasudan@hotmail.com. 

Mimosette Makem and Alain Tiedeu, Signal, Image 

and Systems Laboratory, Dept. of Medical and 

Biomedical Engineering, Higher Technical 

Teachers’ Training College of EBOLOWA, PO 

Box 886, University of Yaoundé, Cameroon, E-

mail: alain_tiedeu@yahoo.fr. 

Mujahid Abbas, Department of Mathematics and 

Applied Mathematics, University of Pretoria 

Hatfield 002, Pretoria, South Africa, 

Email: mujahid.abbas@up.ac.za. 

Željko Stević, Faculty of Transport and Traffic 

Engineering Doboj, University of East Sarajevo, 

Lukavica, East Sarajevo, Bosnia and Herzegovina, 

Email: zeljko.stevic@sf.ues.rs.ba. 

Michael Gr. Voskoglou, Mathematical Sciences 

School of Technological Applications, Graduate 

Technological Educational Institute of Western 

Greece, Patras, Greece, 

Email: voskoglou@teiwest.gr. 

Saeid Jafari, College of Vestsjaelland South, 

Slagelse, Denmark, Email: sj@vucklar.dk. 

Angelo de Oliveira, Ciencia da Computacao, 

Universidade Federal de Rondonia, Porto Velho - 

Rondonia, Brazil, Email: angelo@unir.br. 

Valeri Kroumov, Okayama University of Science, 

Okayama, Japan, Email: val@ee.ous.ac.jp. 

Rafael Rojas, Universidad Industrial de Santander, 

Bucaramanga, Colombia, 

Email: rafael2188797@correo.uis.edu.co. 

Walid Abdelfattah, Faculty of Law, Economics and 

Management, Jendouba, Tunisia, 

Email: abdelfattah.walid@yahoo.com. 

Akbar Rezaei, Department of Mathematics, 

Payame Noor University, P.O.Box 19395-3697, 

Tehran, Iran, Email: rezaei@pnu.ac.ir. 

John Frederick D. Tapia, Chemical Engineering 

Department, De La Salle University - Manila, 2401 

Taft Avenue, Malate, Manila, Philippines, 

Email: john.frederick.tapia@dlsu.edu.ph. 

Darren Chong, independent researcher, Singapore, 

Email:  darrenchong2001@yahoo.com.sg. 

Galina Ilieva, Paisii Hilendarski, University of 

Plovdiv, 4000 Plovdiv, Bulgaria, Email: galili@uni-

plovdiv.bg. 

Paweł Pławiak, Institute of Teleinformatics, 

Cracow University of Technology, Warszawska 24 

st., F-5, 31-155 Krakow, Poland, 

Email: plawiak@pk.edu.pl. 

E. K. Zavadskas, Vilnius Gediminas Technical 

University, Vilnius, Lithuania, 

Email: edmundas.zavadskas@vgtu.lt. 

Darjan Karabasevic, University Business Academy, 

Novi Sad, Serbia, 

Email: darjan.karabasevic@mef.edu.rs. 

Dragisa Stanujkic, Technical Faculty in Bor, 

University of Belgrade, Bor, Serbia, 

Email: dstanujkic@tfbor.bg.ac.rs. 

Katarina Rogulj, Faculty of Civil Engineering, 

 

 

                                                                     Copyright © Neutrosophic Systems with Applications, 2023 

                  
Neutrosophic Systems with Applications

 

  
  

 
   

An International Journal on Informatics, Decision Science, Intelligent Systems Applications   
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

mailto:ValeryS@newman.bas-net.by
mailto:ValeryS@newman.bas-net.by
mailto:Doctorphd_eldarova@mail.ru
mailto:m.hamidi@pnu.ac.ir
mailto:l.zedam@gmail.com
mailto:madeline.tahan@liu.edu.lb
mailto:mohammad.abobala@tishreen.edu.sy
mailto:ralhabib@albaath-univ.edu.sy
mailto:borzooei@hatef.ac.ir
mailto:s.topal@beu.edu.tr
mailto:jhasudan@hotmail.com
mailto:alain_tiedeu@yahoo.fr
mailto:mujahid.abbas@up.ac.za
mailto:zeljko.stevic@sf.ues.rs.ba
mailto:voskoglou@teiwest.gr
mailto:sj@vucklar.dk
mailto:angelo@unir.br
mailto:val@ee.ous.ac.jp
mailto:rafael2188797@correo.uis.edu.co
mailto:abdelfattah.walid@yahoo.com
mailto:rezaei@pnu.ac.ir
mailto:john.frederick.tapia@dlsu.edu.ph
mailto:darrenchong2001@yahoo.com.sg
mailto:galili@uni-plovdiv.bg
mailto:galili@uni-plovdiv.bg
mailto:plawiak@pk.edu.pl
mailto:edmundas.zavadskas@vgtu.lt
mailto:darjan.karabasevic@mef.edu.rs
mailto:dstanujkic@tfbor.bg.ac.rs


Architecture and Geodesy, University of Split, 

Matice Hrvatske 15, 21000 Split, Croatia; 

Email: katarina.rogulj@gradst.hr. 

Luige Vladareanu, Romanian Academy, Bucharest, 

Romania, Email: luigiv@arexim.ro. 

Hashem Bordbar, Center for Information 

Technologies and Applied Mathematics, University 

of Nova Gorica, Slovenia, 

Email: Hashem.Bordbar@ung.si. 

N. Smidova, Technical University of Kosice, SK 

88902, Slovakia, Email: nsmidova@yahoo.com. 

Quang-Thinh Bui, Faculty of Electrical 

Engineering and Computer Science, VŠB-

Technical University of Ostrava, Ostrava-Poruba, 

Czech Republic, Email: qthinhbui@gmail.com. 

Mihaela Colhon & Stefan Vladutescu, University of 

Craiova, Computer Science Department, Craiova, 

Romania,Emails: colhon.mihaela@ucv.ro, vladute

scu.stefan@ucv.ro.  

Philippe Schweizer, Independent Researcher, Av. 

de Lonay 11, 1110 Morges, Switzerland, 

Email: flippe2@gmail.com. 

Madjid Tavanab, Business Information Systems 

Department, Faculty of Business Administration 

and Economics University of Paderborn, D-33098 

Paderborn, Germany, Email: tavana@lasalle.edu. 

Rasmus Rempling, Chalmers University of 

Technology, Civil and Environmental Engineering, 

Structural Engineering, Gothenburg, Sweden. 

Fernando A. F. Ferreira, ISCTE Business School, 

BRU-IUL, University Institute of Lisbon, Avenida 

das Forças Armadas, 1649-026 Lisbon, Portugal, 

Email: fernando.alberto.ferreira@iscte-iul.pt.     

Julio J. Valdés, National Research Council 

Canada, M-50, 1200 Montreal Road, Ottawa, 

Ontario K1A 0R6, Canada, 

Email: julio.valdes@nrc-cnrc.gc.ca. 

Tieta Putri, College of Engineering Department of 

Computer Science and Software Engineering, 

University of Canterbury, Christchurch, New 

Zeeland. 

Phillip Smith, School of Earth and Environmental 

Sciences, University of Queensland, Brisbane, 

Australia, phillip.smith@uq.edu.au. 

Sergey Gorbachev, National Research Tomsk State 

University, 634050 Tomsk, Russia, 

Email: gsv@mail.tsu.ru. 

Sabin Tabirca, School of Computer Science, 

University College Cork, Cork, Ireland, 

Email: tabirca@neptune.ucc.ie. 

Umit Cali, Norwegian University of Science and 

Technology, NO-7491 Trondheim, Norway, 

Email: umit.cali@ntnu.no. 

Willem K. M. Brauers, Faculty of Applied 

Economics, University of Antwerp, Antwerp, 

Belgium, Email: willem.brauers@uantwerpen.be. 

M. Ganster, Graz University of Technology, Graz, 

Austria, Email: ganster@weyl.math.tu-graz.ac.at. 

Ignacio J. Navarro, Department of Construction 

Engineering, Universitat Politècnica de València, 

46022 València, Spain, 

Email:  ignamar1@cam.upv.es. 

Francisco Chiclana, School of Computer Science 

and Informatics, De Montfort University, The 

Gateway, Leicester, LE1 9BH, United Kingdom, 

Email: chiclana@dmu.ac.uk. 

Jean Dezert, ONERA, Chemin de la Huniere, 

91120 Palaiseau, France, 

Email: jean.dezert@onera.fr.  

 

 

                                                                     Copyright © Neutrosophic Systems with Applications, 2023 

                  
Neutrosophic Systems with Applications

 

  
  

 
   

An International Journal on Informatics, Decision Science, Intelligent Systems Applications   
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

mailto:katarina.rogulj@gradst.hr
mailto:luigiv@arexim.ro
mailto:Hashem.Bordbar@ung.si
mailto:nsmidova@yahoo.com
mailto:qthinhbui@gmail.com
mailto:colhon.mihaela@ucv.ro
mailto:vladutescu.stefan@ucv.ro
mailto:vladutescu.stefan@ucv.ro
mailto:flippe2@gmail.com
mailto:tavana@lasalle.edu
mailto:fernando.alberto.ferreira@iscte-iul.pt
mailto:julio.valdes@nrc-cnrc.gc.ca
mailto:phillip.smith@uq.edu.au
mailto:gsv@mail.tsu.ru
mailto:tabirca@neptune.ucc.ie
mailto:umit.cali@ntnu.no
mailto:willem.brauers@uantwerpen.be
mailto:ganster@weyl.math.tu-graz.ac.at
mailto:ignamar1@cam.upv.es
mailto:ignamar1@cam.upv.es
mailto:chiclana@dmu.ac.uk
mailto:jean.dezert@onera.fr


 

                                                                   Copyright © Neutrosophic Systems with Applications, 2023 
 

                  
Neutrosophic Systems with Applications

 

  
  

 
   

An International Journal on Informatics, Decision Science, Intelligent Systems Applications   
ISSN (online): 2993-7159 

   ISSN (print):  2993-7140    

 

 

 

Contents 

 
Sudeep Dey and Gautam Chandra Ray, Covering Properties via Neutrosophic b-open 
Sets.....................................................................................................................................................1 
 
Mona Mohamed and Nissreen El-Saber, Toward Energy Transformation: Intelligent Decision-
Making Model Based on Uncertainty Neutrosophic Theory..........................................................13 

S.P.Priyadharshini and F. Nirmala Irudayam, An Analysis of Obesity in School Children during the 
Pandemic COVID-19 Using Plithogenic Single Valued Fuzzy Sets...............................................24 

Siti Nur Idara Binti Rosli and Mohammad Izat Emir Bin Zulkifly, A Neutrosophic Approach for B-
Spline Curve by Using Interpolation Method.................................................................................29 

Maissam Jdid and Florentin Smarandache, Graphical Method for Solving Neutrosophical Nonlinear 
Programming Models......................................................................................................................41 
 
Naeem Saleem, Umar Ishtiaq, Khaleel Ahmad, Salvatore Sessa, and Ferdinando Di Martino, Fixed Point 
Results in Neutrosophic Rectangular Extended b-Metric Spaces..................................................48 
 
M. Jeyaraman and Iswariya. S, A New Approach for the Statistical Convergence over Non-
Archimedean Fields in Neutrosophic Normed Spaces...................................................................81 

Ramya G and Francina Shalini A, Trigonometric Similarity Measures of Pythagorean Neutrosophic 
Hypersoft Sets..................................................................................................................................91 

Ranulfo Paiva Barbosa (Sobrinho) and Florentin Smarandache, Pura Vida Neutrosophic 
Algebra............................................................................................................................................101 
 
 
 
 

 



                            Neutrosophic Systems with Applications, Vol. 9, 2023 

        https://doi.org/10.61356/j.nswa.2023.66 

 

Sudeep Dey and Gautam Chandra Ray, Covering Properties via Neutrosophic b-open Sets 

Covering Properties via Neutrosophic b-open Sets 
 

Sudeep Dey 1,2,*  and Gautam Chandra Ray 2  

1 Department of Mathematics, Science College, Kokrajhar, Assam, India; sudeep.dey.1976@gmail.com. 
2 Department of Mathematics, Central Institute of Technology, Kokrajhar, Assam, India; gautomofcit@gmail.com. 

 
* Correspondence: sudeep.dey.1976@gmail.com. 

Abstract: The purpose of this article is to study some covering properties in neutrosophic 

topological spaces using neutrosophic 𝑏 -open sets. We define neutrosophic 𝑏 -open cover, 

neutrosophic 𝑏 -compactness, neutrosophic countably 𝑏 -compactness neutrosophic 𝑏 -

Lindel�̈�fness, neutrosophic local 𝑏-compactness and study various properties entangled with them. 

We study some covering properties involving neutrosophic continuous, neutrosophic 𝑏-continuous 

and neutrosophic 𝑏∗ -continuous functions. Lastly, we define neutrosophic base, neutrosophic 

subbase, neutrosophic second countability via neutrosophic 𝑏 -open sets and investigate some 

properties. 

Keywords: Neutrosophic 𝑏-open cover; Neutrosophic 𝑏-compact space; Neutrosophic countably 

𝑏-compact space; Neutrosophic local 𝑏-compact space; Neutrosophic b-base. 

 

1. Introduction 

In 1965, Zadeh [30] introduced the concept of a fuzzy set. K. Atanassov [1], in 1986, extended 

this notion to intuitionistic fuzzy set. After that, the idea of a neutrosophic set was developed and 

studied by Florentin Smarandache [20-22]. Later, the theory was studied and taken ahead by many 

researchers [9,12,26,28]. It had been proved by Smarandache [22] that a neutrosophic set was a 

generalized form of an intuitionistic fuzzy set. Various applications [4,5,15,29] in different fields were 

done in a neutrosophic environment. 

In the year 1968, C. L. Chang [7] created the notion of a fuzzy topological space and then, in 1997, 

D. Coker [8] gave the idea of intuitionistic fuzzy topological space. In the year 2012, Salama & Alblowi 

[23] introduced neutrosophic topological space as a generalization of intuitionistic fuzzy topological 

space. Afterwards, many studies were done by the researchers [2,3,6,11,16-19,24,25,27] to develop 

various aspects of neutrosophic topological spaces. The concept of neutrosophic 𝑏-open sets was 

given by Ebenanjar et al.[14]. Recently Dey & Ray [10] studied compactness in neutrosophic 

topological spaces. But compactness via neutrosophic 𝑏-open sets has not bee studied so far. In this 

write-up, we study covering properties using neutrosophic 𝑏-open sets. 

The article is organized by stating some basic concepts in section 2. In section 3, we define 

neutrosophic 𝑏 -open covering, neutrosophic 𝑏 -compactness, neutrosophic countably 𝑏 -

compactness and neutrosophic 𝑏-Lindel�̈�fness and study various properties associated with them. 

In section 4, we define neutrosophic local 𝑏-compactness and try to establish some properties. We 

define neutrosophic 𝑏 -base, neutrosophic 𝑏 -subbase, neutrosophic b-second countability and 

investigate some covering properties in section 5 and lastly, in section 6, we confer a conclusion. 

2. Preliminaries 

In this section, we state some basic concepts which will be helpful in the later sections. 

2.1. Definition: [20] Let 𝑋 be the universe of discourse. A neutrosophic set 𝐴 over 𝑋 is defined as 

𝐴 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}, where the functions T𝐴, I𝐴, F𝐴 are real standard or non-standard 

subsets of ]−0, 1+[, i.e., T𝐴: 𝑋 → ]−0, 1+[, I𝐴: 𝑋 → ]−0, 1+[, F𝐴: 𝑋 → ]−0, 1+[ and −0 ≤ T𝐴(𝑥) + I𝐴(𝑥) +

T𝐴(𝑥) ≤ 3+. 

https://doi.org/10.61356/j.nswa.2023.66
https://orcid.org/0000-0002-7427-9839
https://orcid.org/0000-0001-7482-0595
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The neutrosophic set 𝐴  is characterized by the truth-membership function T𝐴 , indeterminacy-

membership function I𝐴, falsehood-membership function F𝐴. 

2.2. Definition: [28] Let 𝑋 be the universe of discourse. A single valued neutrosophic set 𝐴 over 𝑋 

is defined as 𝐴 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}, where T𝐴, I𝐴, F𝐴  are functions from 𝑋 to [0,1] and 

0 ≤ T𝐴(𝑥) + I𝐴(𝑥) + T𝐴(𝑥) ≤ 3. 

 

The set of all single valued neutrosophic sets over 𝑋 is denoted by 𝒩(𝑋). 

Throughout this article, a neutrosophic set (NS, for short) will mean a single-valued neutrosophic set. 

2.3. Definition: [16] Let 𝐴, 𝐵 ∈ 𝒩(𝑋). Then 

i) (Inclusion): If T𝐴(𝑥) ≤ T𝐵(𝑥), I𝐴(𝑥) ≥ I𝐵(𝑥), F𝐴(𝑥) ≥ F𝐵(𝑥) for all 𝑥 ∈ 𝑋 then 𝐴 is said to be 

a neutrosophic subset of 𝐵 and which is denoted by 𝐴 ⊆ 𝐵. 

ii) (Equality): If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 then 𝐴 = 𝐵. 

iii) (Intersection): The intersection of 𝐴  and 𝐵 , denoted by 𝐴 ∩ 𝐵 , is defined as 𝐴 ∩ 𝐵 =

{⟨𝑥, T𝐴(𝑥) ∧ T𝐵(𝑥), I𝐴(𝑥) ∨ I𝐵(𝑥), F𝐴(𝑥) ∨ F𝐵(𝑥)⟩: 𝑥 ∈ 𝑋}. 

iv) (Union): The union of 𝐴  and 𝐵 , denoted by 𝐴 ∪ 𝐵 , is defined as 𝐴 ∪ 𝐵 = {⟨𝑥, T𝐴(𝑥) ∨

T𝐵(𝑥), I𝐴(𝑥) ∧ I𝐵(𝑥), F𝐴(𝑥) ∧ F𝐵(𝑥)⟩: 𝑥 ∈ 𝑋}. 

v) (Complement): The complement of the NS 𝐴 , denoted by 𝐴𝑐 , is defined as 𝐴𝑐 =

{⟨𝑥, F𝐴(𝑥), 1 − I𝐴(𝑥), T𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} 

vi) (Universal Set): If T𝐴(𝑥) = 1, I𝐴(𝑥) = 0, F𝐴(𝑥) = 0  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic universal set and which is denoted by �̃�. 

vii) (Empty Set): If T𝐴(𝑥) = 0, I𝐴(𝑥) = 1, F𝐴(𝑥) = 1  for all 𝑥 ∈ 𝑋  then 𝐴  is said to be 

neutrosophic empty set and which is denoted by ∅̃. 

2.4. Definition: [18] Let 𝒩(𝑋)  be the set of all neutrosophic sets over 𝑋 . An NS 𝑃 =

{⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} is called a neutrosophic point (NP, for short) iff for any element 𝑦 ∈ 𝑋, 

T𝑃(𝑦) = 𝛼, I𝑃(𝑦) = 𝛽, F𝑃(𝑦) = 𝛾   for  𝑦 = 𝑥  and T𝑃(𝑦) = 0, I𝑃(𝑦) = 1, F𝑃(𝑦) = 1  for  𝑦 ≠ 𝑥, where 

0 < 𝛼 ≤ 1,0 ≤ 𝛽 < 1,0 ≤ 𝛾 < 1 . A neutrosophic point 𝑃 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}  will be 

denoted by 𝑥𝛼,𝛽,𝛾. For the NP 𝑥𝛼,𝛽,𝛾, 𝑥 will be called its support. The complement of the NP 𝑥𝛼,𝛽,𝛾 

will be denoted by 𝑥𝛼,𝛽,𝛾
𝑐  or (𝑥𝛼,𝛽,𝛾)

𝑐
. 

2.5. Definition: [16] Let 𝜏 ⊆ 𝒩(𝑋). Then 𝜏 is called a neutrosophic topology on 𝑋 if 

i) ∅̃ and �̃� belong to 𝜏. 

ii) An arbitrary union of neutrosophic sets in 𝜏 is in 𝜏. 

iii) The intersection of any two neutrosophic sets in 𝜏 is in 𝜏. 

 

If 𝜏 is a neutrosophic topology on 𝑋 then the pair (𝑋, 𝜏) is called a neutrosophic topological space 

(NTS, for short) over 𝑋 . The members of 𝜏  are called neutrosophic open sets in 𝑋 . If for a 

neutrosophic set 𝐴, 𝐴𝑐 ∈ 𝜏 then 𝐴 is said to be a neutrosophic closed set in 𝑋. 

2.6. Definition:[14] Let (𝑋, 𝜏) be an NTS and 𝐺 be a NS over 𝑋. Then 𝐺 is called a 

i) Neutrosophic 𝑏-open (NBO, for short) set iff 𝐺 ⊆ [𝑖𝑛𝑡(𝑐𝑙(𝐺))] ∪ [𝑐𝑙(𝑖𝑛𝑡(𝐺))]. 

ii) Neutrosophic 𝑏-closed (NBC, for short) set iff 𝐺 ⊇ [𝑖𝑛𝑡(𝑐𝑙(𝐺))] ∪ [𝑐𝑙(𝑖𝑛𝑡(𝐺))]. 

 

If 𝐺 is an NBO (resp. NBC) set in (𝑋, 𝜏) then we shall also say that 𝐺 is a 𝜏-NBO (resp. 𝜏-NBC) set. 
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2.7. Theorem: [14] Let (𝑋, 𝜏) be an NTS. 

i) If 𝐺 ∈ 𝒩(𝑋) then 𝐺 is an NBO set iff 𝐺𝑐 is an NBC set. 

ii) If 𝐺 ∈ 𝒩(𝑋) then 𝐺 is an NBC set iff 𝐺𝑐 is an NBO set. 

 

2.8. Theorem: [13] Let (𝑋, 𝜏) be an NTS and 𝐴 ∈ 𝒩(𝑋). Then 

i) Every neutrosophic open set in an NTS is an NBO set. 

ii) Every neutrosophic closed set in an NTS is an NBC set. 

 

2.9. Definition: [27] Let 𝑓 be a function from an NTS (𝑋, 𝜏) to the NTS (𝑌, σ). Then 

i) 𝑓 is called a neutrosophic open function if 𝑓(𝐺) ∈ σ for all 𝐺 ∈ 𝜏 

ii) 𝑓 is called a neutrosophic continuous function if 𝑓−1(𝐺) ∈ 𝜏 for all 𝐺 ∈ σ. 

 

2.10. Definition: [13] Let 𝑓 be a function from an NTS (𝑋, 𝜏) to the NTS (𝑌, σ). Then 𝑓 is called a 

neutrosophic 

i) 𝑏-open function if 𝑓(𝐺) is an NBO set in 𝑌 for every neutrosophic open set 𝐺 in 𝑋. 

ii) 𝑏-continuous function if 𝑓−1(𝐺) is an NBO set in 𝑋 for every σ-open NS 𝐺 in 𝑌. 

iii) 𝑏∗-continuous function if 𝑓−1(𝐺) is an NBO set in 𝑋 for every NBO set 𝐺 in 𝑌. 

 

2.11. Proposition: [13] Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏). Then 

i) 𝐺 ∣𝑌 is a 𝜏 ∣𝑌-NBO set in 𝑌 for every 𝜏-NBO set 𝐺 in 𝑋. 

ii) 𝐺 ∣𝑌 is a 𝜏 ∣𝑌-NBC set in 𝑌 for every 𝜏-NBC set 𝐺 in 𝑋. 

 

2.12. Definition: [10] Let (𝑋, 𝜏) be an NTS. A collection {𝐺𝜆: 𝜆 ∈ Δ} of neutrosophic sets of 𝑋 is said 

to have the finite intersection property (FIP, in short) iff every finite subcollection {𝐺𝜆𝑘
: 𝑘 = 1,2, ⋯ , 𝑛} 

of {𝐺𝜆: 𝜆 ∈ Δ} satisfies the condition ⋂𝑘=1
𝑛 𝐺𝜆𝑘

≠ ∅̃, where Δ is an index set. 

*For neutrosophic function and its properties, please see [25]. 

3. Neutrosophic b-compactness 

3.1. Definition: Let (𝑋, 𝜏) be an NTS and 𝐴 ∈  𝒩(𝑋). A collection 𝐶 = {𝐺𝑖 : 𝑖 ∈ ∆} of NBO sets of 𝑋 

is called a neutrosophic 𝑏-open cover (NBOC, in short) of 𝐴 iff 𝐴 ⊆∪𝑖∈∆ 𝐺𝑖. In particular, 𝐶 is said 

to be an NBOC of 𝑋 iff  �̃� = ∪𝑖∈∆ 𝐺𝑖. 

 

Let 𝐶  be an NBOC of the NS 𝐴  and 𝐶′ ⊆ 𝐶 . Then 𝐶′  is called a neutrosophic b-open subcover 

(NBOSC, in short) of 𝐶 if 𝐶′ is also a NBOC of 𝐴. 

 

An NBOC 𝐶 of an NS 𝐴 is said to be countable (resp. finite) if 𝐶 consists of a countable (resp. finite) 

number of NBO sets. 

 

3.2. Definition: An NS 𝐴 in an NTS (𝑋, τ) is said to be a neutrosophic 𝑏-compact set iff every NBOC 

of 𝐴 has a finite NBOSC.  

 

An NS 𝐴 in an NTS (𝑋, τ) is said to be a neutrosophic 𝑏-Lindel�̈�f (resp. neutrosophic countably 𝑏-

compact) set iff every NBOC (resp. countable NBOC) of 𝐴 has a countable(resp. finite) NBOSC. 

 

An NTS (𝑋, τ)  is said to be a neutrosophic 𝑏 -compact space iff every NBOC of 𝑋  has a finite 

NBOSC.  

 



Neutrosophic Systems with Applications, Vol. 9, 2023                                                 4 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Sudeep Dey and Gautam Chandra Ray, Covering Properties via Neutrosophic b-open Sets 

An NTS (𝑋, τ) is said to be a neutrosophic 𝑏-Lindel�̈�f (neutrosophic countably 𝑏-compact) space iff 

every NBOC (countable NBOC) of 𝑋 has a countable(finite) NBOSC. 

3.3. Proposition: Every neutrosophic 𝑏-compact space is a neutrosophic countably 𝑏-compact space. 

Proof: Obvious. 

3.4. Proposition: In an NTS, every neutrosophic 𝑏-compact set is a neutrosophic compact set. 

Proof: Let 𝐴 be a neutrosophic 𝑏-compact set of an NTS (𝑋, τ). Let 𝐶 = {𝐺𝑖: 𝑖 ∈ Δ} be an NOC of 𝐴. 

Since every neutrosophic open set is an NBO set[by 2.9], so 𝐺𝑖 is an NBO set for each 𝑖 ∈ Δ. Therefore 

𝐶 is an NBOC of 𝐴. Since A is 𝑏-compact, so there exists a finite subcollection {𝐺𝑖
1 , 𝐺𝑖

2, . . . , 𝐺𝑖
𝑚}, say, 

of 𝐶  such that 𝐴 ⊆ 𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚 . Thus the NOC 𝐶  of 𝐴  has a finite NOSC {𝐺𝑖

1, 𝐺𝑖
2, . . . , 𝐺𝑖

𝑚}. 

Hence 𝐴 is a neutrosophic compact set. 

3.5. Example : Converse of the prop. 3.4 is not true. We establish it by the following example. 

Let 𝑋 = {𝑎, 𝑏}, 𝐵 = {⟨𝑎, 0,1,1⟩, ⟨𝑏, 1,0,0⟩}, 𝐺𝑛 = {⟨𝑎, 0,1,1⟩, ⟨𝑏,
𝑛

𝑛+1
,

1

𝑛
,

1

𝑛+1
⟩}, 𝑛 ∈ N = {1,2,3, ⋯ } and 𝜏 =

{�̃�, ∅̃, 𝐵} . Clearly (𝑋, 𝜏)  is an NTS and 𝐺𝑛  is an NBO set for each 𝑛 ∈ N . Obviously 𝐵  is a 

neutrosophic compact set. We observe that {𝐺𝑛: 𝑛 ∈ N} is an NBOC of 𝐵  but it has no NBOSC. 

Therefore 𝐵 is not a neutrosophic 𝑏-compact set. 

3.6. Proposition: Every neutrosophic 𝑏-compact space is a neutrosophic compact space. 

Proof: Obvious from prop. 3.4. 

3.7. Remark: Converse of prop. 3.6 is not true. We establish it by the following example. 

Let us consider the NTS (N, 𝜏), where 𝜏 = {∅̃, Ñ}, N = {1, 2, 3, ⋯ }. Clearly (N, 𝜏) is a neutrosophic 

compact space. We show that (N, 𝜏) is not a neutrosophic 𝑏-compact space. For 𝑛 ∈ N, we define 

𝐺𝑛 = {⟨𝑥, T𝐺𝑛
(𝑥), I𝐺𝑛

(𝑥), F𝐺𝑛
(𝑥): 𝑥 ∈ N} , where T𝐺𝑛

(𝑥) = 1, I𝐺𝑛
(𝑥) = 0, F𝐺𝑛

(𝑥) = 0  if 𝑥 = 𝑛  and 

T𝐺𝑛
(𝑥) = 0, I𝐺𝑛

(𝑥) = 1, F𝐺𝑛
(𝑥) = 1  if 𝑥 ≠ 𝑛 . Clearly, for each 𝑛 ∈ N , 𝐺𝑛  is an NBO set in (N, τ) . 

Obviously the collection 𝐶 = {𝐺𝑛: 𝑛 ∈ N} is an NBOC of N but it has no finite NBOSC. Therefore 

(N, 𝜏) is not a neutrosophic 𝑏-compact space. Thus (N, 𝜏) is a neutrosophic compact space but not a 

neutrosophic 𝑏-compact space. 

3.8. Proposition: In an NTS, union of two neutrosophic 𝑏-compact sets is neutrosophic 𝑏-compact. 

Proof: Let A and B be two neutrosophic 𝑏-compact sets of an NTS (𝑋, 𝜏). Let 𝐶 = {𝐺𝑖: 𝑖 ∈ Δ} be an 

NBOC of 𝐴 ∪ 𝐵. Then 𝐴 ∪ 𝐵 ⊆∪𝑖∈Δ 𝐺𝑖 . Since 𝐴 ⊆ 𝐴 ∪ 𝐵, so 𝐶  is an NBOC of 𝐴. Again since A is 

neutrosophic 𝑏-compact, so there exists a finite subcollection {𝐺𝑖
1 , 𝐺𝑖

2, . . . , 𝐺𝑖
𝑚} of 𝐶 such that 𝐴 ⊆

𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚. Similarly, since B is neutrosophic 𝑏-compact, so there exists a finite subcollection 

{𝐻𝑖
1, 𝐻𝑖

2, . . . , 𝐻𝑖
𝑛}  of 𝐶  such that 𝐵 ⊆ 𝐻𝑖

1 ∪ 𝐻𝑖
2 ∪. . .∪ 𝐻𝑖

𝑛 . Therefore 𝐴 ∪ 𝐵 ⊆ 𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚 ∪ 𝐻𝑖

1 ∪

𝐻𝑖
2 ∪. . .∪ 𝐻𝑖

𝑛. Thus there exists a finite subcollection {𝐺𝑖
1, 𝐺𝑖

2, . . . , 𝐺𝑖
𝑚 , 𝐻𝑖

1 , 𝐻𝑖
2, . . . , 𝐻𝑖

𝑛} of 𝐶 such that ∪

𝐵 ⊆ 𝐺𝑖
1 ∪ 𝐺𝑖

2 ∪. . .∪ 𝐺𝑖
𝑚 ∪ 𝐻𝑖

1 ∪ 𝐻𝑖
2 ∪. . .∪ 𝐻𝑖

𝑛  . Therefore  𝐴 ∪ 𝐵  is neutrosophic 𝑏 -compact. Hence 

proved. 

3.9. Proposition: In an NTS, finite union of neutrosophic 𝑏-compact sets is neutrosophic 𝑏-compact. 

Proof: Immediate from the prop. 3.8. 

3.10. Proposition: In an NTS, union of a neutrosophic 𝑏-compact set and a neutrosophic compact set 

is a neutrosophic compact set. 

Proof: Obvious. 

3.11. Definition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏). Then the set of all NBO 

sets 𝐺 ∣𝑌 in 𝑌 for which 𝐺 is an NBO set in 𝑋 will be denoted by 𝑁𝐵𝑂(𝑌), i.e., 𝑁𝐵𝑂(𝑌) = {𝐺 ∣𝑌⊆

𝑌: 𝐺 ∣𝑌  is an NBO set in 𝑌 and 𝐺 ⊆ 𝑋 is an NBO set in 𝑋}. 

3.12. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. Then 𝐴 is 

neutrosophic 𝑏-compact in 𝑋 iff every cover of 𝐴 by the sets in 𝑁𝐵𝑂(𝑌) has a finite subcover. 

Proof: Necessary part: Let 𝐶 = {𝐺𝑖 ∣𝑌: 𝑖 ∈ Δ} be a cover of 𝐴, where 𝐺𝑖 ∣𝑌∈ 𝑁𝐵𝑂(𝑌) for each 𝑖 ∈ Δ. 

Then 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖 ∣𝑌⇒ 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖. Clearly 𝐺𝑖 is an NBO set in 𝑋 [by 3.11] for each 𝐺𝑖 ∣𝑌∈ 𝐶 and so, 

𝐶∗ = {𝐺𝑖: 𝐺𝑖 ∣𝑌∈ 𝑁𝐵𝑂(𝑌)} is an NBOC of 𝐴 in 𝑋. Since A is 𝑏-compact in 𝑋, so there exists a finite 

subcollection {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  of 𝐶∗  such that 𝐴 ⊆∪𝑘=1

𝑛 𝐺𝑖𝑘
⇒ 𝐴 ⊆ (∪𝑘=1

𝑛 𝐺𝑖𝑘
) ∣𝑌⇒ 𝐴 ⊆

∪𝑘=1
𝑛 (𝐺𝑖𝑘

∣𝑌). Thus the cover 𝐶 of 𝐴 has a finite subcover {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}. 
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Sufficient part: Let 𝐵 = {𝐺𝑖: 𝑖 ∈ Δ} be an NBOC of 𝐴 in 𝑋, where 𝐺𝑖 is an NBO set in 𝑋 for each 𝑖 ∈

Δ . Then 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖 ⇒ 𝐴 ⊆ (∪𝑖∈Δ 𝐺𝑖) ∣𝑌⇒ 𝐴 ⊆∪𝑖∈Δ (𝐺𝑖 ∣𝑌) . Since 𝐺𝑖 ∣𝑌∈ 𝑁𝐵𝑂(𝑌)  for each 𝐺𝑖 ∈ 𝐵 [by 

2.12], so 𝐵∗ = {𝐺𝑖 ∣𝑌: 𝑖 ∈ Δ} is a cover of 𝐴 by the NBO sets in 𝑁𝐵𝑂(𝑌). Therefore, by hypothesis, 

there exists a finite subcollection {𝐺𝑖𝑘
∣𝑌: 𝑘 = 1,2,3, . . . , 𝑛}  of 𝐵∗  such that 𝐴 ⊆∪𝑘=1

𝑛 (𝐺𝑖𝑘
∣𝑌) ⇒ 𝐴 ⊆

(∪𝑘=1
𝑛 𝐺𝑖𝑘

) ∣𝑌⇒ 𝐴 ⊆∪𝑘=1
𝑛 𝐺𝑖𝑘

. Thus the NBOC 𝐵  of 𝐴  has a finite NBOSC {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛} . 

Therefore, 𝐴 is neutrosophic 𝑏-compact in 𝑋. 

3.13. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. Then 𝐴 is 

neutrosophic countably 𝑏-compact in 𝑋 iff every countable cover of 𝐴 by the sets in 𝑁𝐵𝑂(𝑌) has a 

finite subcover. 

Proof: Obvious from the prop. 3.12. 

3.14. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. Then 𝐴 is 

neutrosophic 𝑏-Lindel�̈�f in 𝑋 iff every cover of 𝐴 by the sets in 𝑁𝐵𝑂(𝑌) has a countable subcover. 

Proof: Obvious from the prop. 3.12. 

3.15. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌 . If 𝐴  is 

neutrosophic 𝑏-compact in 𝑋 then 𝐴 is neutrosophic compact in 𝑌. 

Proof: Let  𝐶  = {𝐺𝑖 ∣𝑌: 𝑖 ∈ Δ}  be an NOC of 𝐴  in 𝑌 , where 𝐺𝑖 ∣𝑌∈ 𝜏 ∣𝑌  for each 𝑖 ∈ Δ . Then 𝐴 ⊆

∪𝑖∈Δ (𝐺𝑖 ∣𝑌) ⇒ 𝐴 ⊆∪𝑖∈Δ 𝐺𝑖. Obviously 𝐺𝑖 ∈ 𝜏 and so, 𝐺𝑖 is an NBO set in 𝑋 for each 𝑖 ∈ Δ. Therefore, 

𝐶∗ = {𝐺𝑖: 𝐺𝑖 ∣𝑌∈ 𝐶}  is an NBOC of 𝐴  in 𝑋 . Since A is 𝑏 -compact in 𝑋 , so there exists a finite 

subcollection {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  of 𝐶∗  such that 𝐴 ⊆∪𝑘=1

𝑛 𝐺𝑖𝑘
⇒ 𝐴 ⊆ (∪𝑘=1

𝑛 𝐺𝑖𝑘
) ∣𝑌⇒ 𝐴 ⊆

∪𝑘=1
𝑛 (𝐺𝑖𝑘

∣𝑌) . Thus the NOC 𝐶  of 𝐴  has a finite NOSC {𝐺𝑖𝑘
: 𝑘 = 1,2,3, . . . , 𝑛} . Therefore 𝐴  is 

neutrosophic compact in 𝑌. 

3.16. Proposition: Let (𝑌, 𝜏 ∣𝑌) be a neutrosophic subspace of the NTS (𝑋, 𝜏) and 𝐴 ⊆ 𝑌. If 𝐴 is 𝑏-

compact in 𝑌 then 𝐴 is 𝑏-compact in 𝑋. 

Proof: Obvious. 

3.17. Proposition: If G is an NBC subset of a neutrosophic 𝑏-compact space (𝑋, 𝜏) such that 𝐺 ∩ 𝐺𝑐 =

∅̃ then 𝐺 is a neutrosophic 𝑏-compact. 

Proof: Let 𝐶 = {𝐻𝑖 : 𝑖 ∈ Δ} be an NBOC of 𝐺. Then 𝐴 ⊆∪𝑖∈Δ 𝐻𝑖. Since 𝐺𝑐 is an NBO set and since 𝐺 ∩

𝐺𝑐 = ∅̃ , i.e., 𝐺 ∪ 𝐺𝑐 = �̃� , so 𝐷 = {𝐻𝑖 : 𝑖 ∈ Δ} ∪ {𝐺𝑐}  is an NBOC of 𝑋 . As 𝑋  is neutrosophic 𝑏 -

compact, so there exists a finite subcollection 𝐷′ = {𝐻𝑖1
, 𝐻𝑖2

, . . . , 𝐻𝑖𝑛
} ∪ {𝐺𝑐} of 𝐷 such that 𝑋 ⊆ 𝐻𝑖1

∪

𝐻𝑖2
∪. . .∪ 𝐻𝑖𝑛

∪ 𝐺𝑐 . Therefore 𝐺 ⊆ 𝐻𝑖1
∪ 𝐻𝑖2

∪. . .∪ 𝐻𝑖𝑛
∪ 𝐺𝑐 . But 𝐺 ∩ 𝐺𝑐 = ∅̃ , so 𝐺 ⊆ 𝐻𝑖1

∪ 𝐻𝑖2
∪. . .∪

𝐻𝑖𝑛
. Thus the NBOC 𝐶 of 𝐺 has a finite NBOSC {𝐻𝑖1

, 𝐻𝑖2
, . . . , 𝐻𝑖𝑛

}. Hence 𝐺 is a neutrosophic 𝑏-

compact set. 

3.18. Proposition: If 𝐺 is an NBC subset of a neutrosophic 𝑏-compact space (𝑋, τ) such that 𝐺 ∩

𝐺𝑐 = ∅̃ then 𝐺 is neutrosophic compact. 

Proof: Immediate from the prop. 3.17 as 𝑏-compactness implies compactness. 

3.19. Proposition: If 𝐺  is a neutrosophic closed subset of a neutrosophic 𝑏-compact space (𝑋, τ) 

such that 𝐺 ∩ 𝐺𝑐 = ∅̃ then 𝐺 is neutrosophic 𝑏-compact. 

Proof: Immediate from the prop. 3.17 as every neutrosophic closed set is an NBC set. 

3.20. Proposition: If 𝐺  is a neutrosophic closed subset of a neutrosophic 𝑏-compact space (𝑋, 𝜏) 

such that 𝐺 ∩ 𝐺𝑐 = ∅̃ then 𝐺 is neutrosophic compact. 

Proof: Immediate from the prop. 3.19. 

3.21. Proposition: Let (𝑋, 𝜏)  be an NTS. An NS 𝐴 = {⟨𝑥, T𝐴(𝑥), I𝐴(𝑥), F𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}  over 𝑋  is 

neutrosophic 𝑏-compact iff for every collection 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} of NBO sets of 𝑋 satisfying T𝐴(𝑥) ≤

⋁𝜆∈ΔT𝐺𝜆
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥))  and 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) , there exists a finite 

subcollection {𝐺𝜆𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  such that T𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 T𝐺𝜆𝑘
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 (1 − I𝐺𝜆𝑘
(𝑥)) 

and 1 − F𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)). 

Proof: Necessary Part: Let 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ}  be any collection of NBO sets of 𝑋 satisfying T𝐴(𝑥) ≤

⋁𝜆∈ΔT𝐺𝜆
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥))  and 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) . Now 1 − I𝐴(𝑥) ≤
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⋁𝜆∈Δ (1 − I𝐺𝜆
(𝑥))  ⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝛽

(𝑥)  for some ∈ Δ  ⇒ I𝐴(𝑥) ≥ I𝐺𝛽
(𝑥) ⇒ I𝐴(𝑥) ≥ ⋀𝜆∈ΔI𝐺𝜆

(𝑥) . 

Similarly 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) ⇒ F𝐴(𝑥) ≥ ⋀𝜆∈ΔF𝐺𝜆

(𝑥). Therefore 𝐴 ⊆∪𝜆∈Δ 𝐺𝜆 , i.e., 𝐶  is an 

NBOC of 𝐴. Since 𝐴 is neutrosophic 𝑏-compact, so 𝐶 has a finite NBOSC {𝐺𝜆𝑘
: 𝑘 = 1,2,3, ⋯ , 𝑛}, say. 

Therefore 𝐴 ⊆∪𝑘=1
𝑛 𝐺𝜆𝑘

. Then T𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 T𝐺𝜆𝑘

(𝑥) , I𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 I𝐺𝜆𝑘

(𝑥)  and F𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 F𝐺𝜆𝑘

(𝑥) . 

Now I𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 I𝐺𝜆𝑘

(𝑥) ⇒ I𝐴(𝑥) ≥ I𝐺𝜆𝑚
(𝑥)  for some 𝑚, 1 ≤ 𝑚 ≤ 𝑛  ⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝜆𝑚

(𝑥)  for 

some 𝑚, 1 ≤ 𝑚 ≤ 𝑛 ⇒ 1 − I𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥)). Similarly F𝐴(𝑥) ≥ ⋀𝑘=1
𝑛 F𝐺𝜆𝑘

(𝑥) ⇒ 1 − F𝐴(𝑥) ≤

⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)) . Thus T𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 T𝐺𝜆𝑘

(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥))  and 1 − F𝐴(𝑥) ≤

⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)). 

Sufficient Part: Let 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} be an NBOC of 𝐴 . Then 𝐴 ⊆∪𝜆∈Δ 𝐺𝜆 , i.e., T𝐴(𝑥) ≤ ⋁𝜆∈ΔT𝐺𝜆
(𝑥), 

I𝐴(𝑥) ≥ ⋀𝜆∈ΔI𝐺𝜆
(𝑥) and F𝐴(𝑥) ≥ ⋀𝜆∈ΔF𝐺𝜆

(𝑥). Now I𝐴(𝑥) ≥ ⋀𝜆∈ΔI𝐺𝜆
(𝑥) ⇒ I𝐴(𝑥) ≥ I𝐺𝛼

(𝑥) for some ∈ Δ 

⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝛼
(𝑥) ⇒ 1 − I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥)) . Similarly F𝐴(𝑥) ≥ ⋀𝜆∈ΔF𝐺𝜆
(𝑥) ⇒ 1 −

F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆
(𝑥)) . Thus the collection 𝐶  satisfies the condition T𝐴(𝑥) ≤ ⋁𝜆∈ΔT𝐺𝜆

(𝑥) , 1 −

I𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − I𝐺𝜆
(𝑥)) and 1 − F𝐴(𝑥) ≤ ⋁𝜆∈Δ (1 − F𝐺𝜆

(𝑥)). By the hypothesis, there exists a finite 

subcollection {𝐺𝜆𝑘
: 𝑘 = 1,2,3, . . . , 𝑛}  such that T𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 T𝐺𝜆𝑘
(𝑥) , 1 − I𝐴(𝑥) ≤ ⋁𝑘=1

𝑛 (1 − I𝐺𝜆𝑘
(𝑥)) 

and 1 − F𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)) . Now 1 − I𝐴(𝑥) ≤ ⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥)) ⇒ 1 − I𝐴(𝑥) ≤ 1 − I𝐺𝜆𝑚
(𝑥) 

for some , 1 ≤ 𝑚 ≤ 𝑛  ⇒ I𝐴(𝑥) ≥ I𝐺𝜆𝑚
(𝑥) ⇒ I𝐴(𝑥) ≥ ⋀𝑘=1

𝑛 I𝐺𝜆𝑘
(𝑥) . Similarly, we shall have F𝐴(𝑥) ≥

⋀𝑘=1
𝑛 F𝐺𝜆𝑘

(𝑥) . Therefore 𝐴 ⊆∪𝑘=1
𝑛 𝐺𝜆𝑘

, i.e., the NBOC 𝐶  of 𝐴  has a finite NBOSC {𝐺𝜆𝑘
: 𝑘 =

1,2,3, ⋯ , 𝑛}. Therefore, 𝐴 is neutrosophic 𝑏-compact set. 

Hence proved. 

3.22. Proposition: Let (𝑋, 𝜏) be an NTS. Then 𝑋 is neutrosophic 𝑏-compact iff for every collection 

𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} of NBO sets of 𝑋  satisfying ⋁𝜆∈ΔT𝐺𝜆
(𝑥) = 1, ⋁𝜆∈Δ (1 − I𝐺𝜆

(𝑥)) = 1 and ⋁𝜆∈Δ (1 −

F𝐺𝜆
(𝑥)) = 1 , there exists a finite subcollection {𝐺𝜆𝑘

: 𝑘 = 1,2,3, . . . , 𝑛}  such that ⋁𝑘=1
𝑛 T𝐺𝜆𝑘

(𝑥) = 1 , 

⋁𝑘=1
𝑛 (1 − I𝐺𝜆𝑘

(𝑥)) = 1 and ⋁𝑘=1
𝑛 (1 − F𝐺𝜆𝑘

(𝑥)) = 1. 

Proof: Immediate from the prop. 3.21. 

3.23. Proposition: An NTS (𝑋, 𝜏) is neutrosophic 𝑏-compact iff every collection of NBC sets with FIP 

has a non-empty intersection. 

Proof: Necessary part: Let 𝐴 = {𝑁𝑖: 𝑖 ∈ Δ}   be an arbitrary collection of NBC sets with FIP. We show 

that ∩𝑖∈Δ 𝑁𝑖 ≠ ∅̃. On the contrary, suppose that ∩𝑖∈Δ 𝑁𝑖 = ∅̃. Then (∩𝑖∈Δ 𝑁𝑖)
𝑐 = (∅̃)

𝑐
⇒∪𝑖∈Δ 𝑁𝑖

𝑐 = �̃�. 

Therefore 𝐵 = {𝑁𝑖
𝑐: 𝑁𝑖 ∈ 𝐴} is an NBOC of 𝑋 and so, 𝐵 has a finite NBOSC {𝑁𝑖1

𝑐 , 𝑁𝑖2

𝑐 , . . . , 𝑁𝑖𝑘

𝑐 }, say. 

Then ∪𝑗=1
𝑘 𝑁𝑖𝑗

𝑐 = �̃� ⇒∩𝑗=1
𝑘 𝑁𝑖𝑗

= ∅̃, which is a contradiction as 𝐴 has FIP. Therefore ∩𝑖∈Δ 𝑁𝑖 ≠ ∅̃.  

Sufficient part: Suppose that 𝑋  is not neutrosophic 𝑏-compact. Then there exists an NBOC 𝐶 =

{𝐺𝑖: 𝑖 ∈ Δ} of 𝑋 which has no finite NBOSC. Then for every finite subcollection {𝐺𝑖1
, 𝐺𝑖2

, . . . , 𝐺𝑖𝑘
} of 

𝐶, we have ∪𝑗=1
𝑘 𝐺𝑖𝑗

≠ �̃� ⇒∩𝑗=1
𝑘 𝐺𝑖𝑗

𝑐 ≠ ∅̃. Therefore, {𝐺𝑖
𝑐 : 𝐺𝑖 ∈ 𝐶} is a collection of NBC sets having the 

FIP. By the assumption, ∩𝑖∈Δ 𝐺𝑖
𝑐 ≠ ∅̃ ⇒∪𝑖∈Δ 𝐺𝑖 ≠ �̃�. This shows that 𝐶 is not an NBOC of 𝑋, which is 

a contradiction. Therefore, the NBOC 𝐶  of 𝑋  must have a finite NBOSC. Therefore 𝑋  is 

neutrosophic 𝑏-compact. 

Hence proved. 

3.24. Proposition: Let 𝑓 be a neutrosophic 𝑏-open function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎) 

and 𝐴 ∈ 𝒩(𝑌). If 𝐴 is neutrosophic 𝑏-compact in 𝑌 then 𝑓−1(𝐴) is neutrosophic compact in 𝑋. 

Proof: Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ} be an NOC of 𝑓−1(𝐴). Then 𝑓−1(𝐴) ⊆∪𝜆∈Δ 𝐺𝜆 ⇒ 𝐴 ⊆ 𝑓(∪𝜆∈Δ 𝐺𝜆) ⇒ 𝐴 ⊆

∪𝜆∈Δ 𝑓(𝐺𝜆). Since 𝐺𝜆 is τ-open set, so 𝑓(𝐺𝜆) is 𝜎-NBO set for each 𝜆 ∈ Δ as 𝑓 is a 𝑏-open function. 

Therefore, 𝐶 = {𝑓(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an NBOC of 𝐴. Since A is neutrosophic 𝑏-compact, so 𝐶  has a 

finite NBOSC {𝑓(𝐺𝜆1
), 𝑓(𝐺𝜆2

), 𝑓(𝐺𝜆3
), . . . , 𝑓(𝐺𝜆𝑛

)} , say. Therefore 𝐴 ⊆∪𝑖=1
𝑛 𝑓(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆
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𝑓(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓−1(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NOC 𝐵  of 𝑓−1(𝐴)  has a finite NOSC 

{𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

}. Therefore 𝑓−1(𝐴) is neutrosophic compact in 𝑋. Hence proved. 

3.25. Proposition: Let 𝑓 be a neutrosophic 𝑏-open function from an NTS (𝑋, τ) onto the NTS (𝑌, 𝜎). 

If (𝑌, 𝜎)  is neutrosophic 𝑏 -compact (resp. neutrosophic countably 𝑏 -compact, neutrosophic 𝑏 -

Lindel�̈�f) then (𝑋, τ) is neutrosophic compact (resp. neutrosophic countably compact, neutrosophic 

Lindel�̈�f). 

Proof: Immediate from the prop. 3.24 as 𝑓 is onto. 

3.26. Proposition: Let 𝑓 be a neutrosophic open function from an NTS (𝑋, τ) onto the NTS (𝑌, 𝜎). If 

(𝑌, 𝜎)  is neutrosophic 𝑏 -compact (resp. neutrosophic countably 𝑏 -compact, neutrosophic 𝑏 -

Lindel�̈�f) then (𝑋, τ) is neutrosophic compact (resp. neutrosophic countably compact, neutrosophic 

Lindel�̈�f). 

Proof: Obvious as every neutrosophic open set is an NBO set. 

3.27. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) to the NTS 

(𝑌, 𝜎). If 𝐴 is neutrosophic 𝑏-compact set in 𝑋 then 𝑓(𝐴) is neutrosophic compact set in 𝑌. 

Proof: Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ} be an NOC of 𝑓(𝐴). Then 𝑓(𝐴) ⊆∪𝜆∈Δ 𝐺𝜆 ⇒ 𝑓−1(𝑓(𝐴)) ⊆ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) ⇒

𝑓−1(𝑓(𝐴)) ⊆∪𝜆∈Δ 𝑓−1(𝐺𝜆) ⇒ 𝐴 ⊆∪𝜆∈Δ 𝑓−1(𝐺𝜆). Since 𝐺𝜆 is 𝜎-open NS in 𝑌, so 𝑓−1(𝐺𝜆) is τ-NBO set 

in 𝑋  as 𝑓  is 𝑏 -continuous. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵}  is an NBOC of 𝐴 . Since 𝐴  is 

neutrosophic 𝑏-compact, so 𝐶 has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)}, say. Therefore 

𝐴 ⊆∪𝑖=1
𝑛 𝑓−1(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆ 𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NOC 𝐵  of 𝑓(𝐴)  has a finite 

NOSC. Therefore 𝑓(𝐴) is neutrosophic compact. Hence proved. 

3.28. Proposition: Let 𝑓  be a neutrosophic continuous function from an NTS (𝑋, τ)  to the NTS 

(𝑌, 𝜎). If 𝑓 is neutrosophic 𝑏-compact in 𝑋 then 𝑓(𝐴) is neutrosophic compact in 𝑌. 

Proof: Obvious from the prop. 3.27 as every neutrosophic open set is an NBO set. 

3.29. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic 𝑏-compact then (𝑌, 𝜎) is neutrosophic compact. 

Proof: Since 𝑓  is onto, so 𝑓(�̃�) = �̃� . Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ}  be an NOC of 𝑌 . Then ∪𝜆∈Δ 𝐺𝜆 = �̃� ⇒

∪𝜆∈Δ 𝐺𝜆 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) = �̃� ⇒∪𝜆∈Δ 𝑓−1(𝐺𝜆) = �̃�. Since 𝐺𝜆 is 𝜎-open NS in 𝑌, so 𝑓−1(𝐺𝜆) is 

τ-NBO set in 𝑋 as 𝑓 is 𝑏-continuous. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an NBOC of 𝑋. Since 𝑋 is 

𝑏 -compact, so 𝐶  has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore 

∪𝑖=1
𝑛 𝑓−1(𝐺𝜆𝑖

) = �̃� ⇒ 𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) = �̃� ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= 𝑓(�̃�) ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= �̃�. Thus the NOC 𝐵 of 𝑌 has 

a finite NOSC. Therefore 𝑌 is neutrosophic compact. Hence proved. 

3.30. Proposition: Let 𝑓 be a neutrosophic continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic 𝑏-compact then (𝑌, 𝜎) is neutrosophic compact. 

Proof: Obvious from the prop. 3.29 as every neutrosophic open set is an NBO set. 

3.31. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic countably 𝑏-compact then 𝑌 is neutrosophic countably compact. 

Proof: Since 𝑓 is onto, so 𝑓(�̃�) = �̃�. Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ}  be a countable NOC of 𝑌. Then ∪𝜆∈Δ 𝐺𝜆 =

�̃� ⇒∪𝜆∈Δ 𝐺𝜆 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) = �̃� ⇒∪𝜆∈Δ 𝑓−1(𝐺𝜆) = �̃�. Since 𝐺𝜆 is 𝜎-open NS in 𝑌, so 𝑓−1(𝐺𝜆) 

is τ -NBO set in 𝑋  as 𝑓  is 𝑏 -continuous. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵}  is an NBOC of 𝑋 . 

Obviously 𝐶 is countable as 𝐵 is countable. Again since 𝑋 is neutrosophic countably 𝑏-compact, 

so 𝐶  has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore ∪𝑖=1

𝑛 𝑓−1(𝐺𝜆𝑖
) = �̃� ⇒

𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) = �̃� ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= 𝑓(�̃�) ⇒∪𝑖=1
𝑛 𝐺𝜆𝑖

= �̃� . Thus the countable NOC 𝐵  of 𝑌  has a finite 

NOSC. Hence 𝑌 is neutrosophic countably compact. 

3.32. Proposition: Let 𝑓 be a neutrosophic continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic countably 𝑏-compact then 𝑌 is neutrosophic countably compact. 

Proof: Immediate from the prop. 3.31 as every neutrosophic open set is an NBO set. 

3.33. Proposition: Let 𝑓 be a neutrosophic 𝑏-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic 𝑏-Lindel�̈�f then 𝑌 is neutrosophic Lindel�̈�f. 

Proof: Since 𝑓  is onto, so 𝑓(�̃�) = �̃� . Let 𝐶 = {𝐺𝑖: 𝑖 ∈ Δ}   be an NOC of 𝑌 . Then ∪𝑖∈Δ 𝐺𝑖 = �̃� ⇒

∪𝑖∈Δ 𝐺𝑖 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝑖∈Δ 𝐺𝑖) = �̃� ⇒∪𝑖∈Δ 𝑓−1(𝐺𝑖) = �̃� ⇒ {𝑓−1(𝐺𝑖): 𝐺𝑖 ∈ 𝐶} is an NBOC of 𝑋. Since 𝑋 
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is neutrosophic 𝑏 - Lindel �̈� f, so {𝑓−1(𝐺𝑖): 𝐺𝑖 ∈ 𝐶}  has a countable NBOSC 𝐵 = {𝑓−1(𝐺𝑖𝑘
): 𝑘 =

1,2,3, … }, say. Therefore, �̃� = 𝑓−1(𝐺𝜆1
) ∪ 𝑓−1(𝐺𝜆2

) ∪ 𝑓−1(𝐺𝜆3
) ∪ … . This gives �̃� = 𝑓−1(𝐺𝜆1

∪ 𝐺𝜆2
∪

𝐺𝜆3
∪ … ) ⇒ 𝑓(�̃�) = 𝐺𝜆1

∪ 𝐺𝜆2
∪ 𝐺𝜆3

∪ …  ⇒ �̃� = 𝐺𝜆1
∪ 𝐺𝜆2

∪ 𝐺𝜆3
∪ …  ⇒ {𝐺𝑖𝑘

: 𝑘 = 1,2,3, … }  is an NOC 

of 𝑌. Since 𝐵 is countable so, {𝐺𝑖𝑘
: 𝑘 = 1,2,3, … } is also countable.  Therefore, the NOC 𝐶 of 𝑌 has 

a countable NOSC {𝐺𝑖𝑘
: 𝑘 = 1,2,3, … } and so, 𝑌 is neutrosophic Lindel�̈�f. 

3.34. Proposition: Let 𝑓 be a neutrosophic continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If 𝑋 is neutrosophic 𝑏-Lindel�̈�f then 𝑌 is neutrosophic Lindel�̈�f. 

Proof: Immediate from the prop. 3.33 as every neutrosophic open set is an NBO set. 

3.35. Definition: Let 𝑓 be a neutrosophic function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎).  Then 𝑓 

is called a neutrosophic 𝑏∗-open function if 𝑓(𝐺) is an NBO set in 𝑌 for every NBO set 𝐺 in 𝑋. 

3.36. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-open function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎) 

and 𝐴 ∈ 𝒩(𝑌). If 𝐴 is neutrosophic 𝑏-compact in 𝑌 then 𝑓−1(𝐴) is neutrosophic 𝑏-compact in 𝑋. 

Proof: Let 𝐵 = {𝐺𝑖: 𝑖 ∈ Δ}   be an  NBOC of 𝑓−1(𝐴) . Then  𝑓−1(𝐴) ⊆ ∪𝑖∈Δ 𝐺𝑖 ⇒ 𝐴 ⊆ 𝑓(∪𝑖∈Δ 𝐺𝑖) ⇒

A ⊆ ∪𝑖∈Δ 𝑓(𝐺𝑖) . Since 𝐺𝑖  is a τ -NBO set, so 𝑓(𝐺𝑖)  is a 𝜎 -NBO set for each 𝑖 ∈ Δ  as 𝑓  is a 

neutrosophic 𝑏∗ -open function. Therefore, 𝐶 = {𝑓(𝐺𝑖): 𝐺𝑖 ∈ 𝐵}  is an NBOC of A. Since 𝐴  is 

neutrosophic 𝑏 -compact, so 𝐶  has a finite NBOSC {𝑓(𝐺𝜆1
), 𝑓(𝐺𝜆2

), 𝑓(𝐺𝜆3
), . . . , 𝑓(𝐺𝜆𝑛

)} , say. 

Therefore, 𝐴 ⊆∪𝑖=1
𝑛 𝑓(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆ 𝑓(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓−1(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NBOC 𝐵 of 𝑓−1(𝐴) has 

a finite NBOSC {𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

} . Therefore 𝑓−1(𝐴)  is neutrosophic 𝑏 -compact in 𝑋 . Hence 

proved.   

3.37. Proposition: Let 𝑓  be a neutrosophic 𝑏∗ -open function from an NTS (𝑋, τ)  onto the NTS 

(𝑌, 𝜎). If (𝑌, 𝜎)  is neutrosophic 𝑏-compact in then (𝑋, τ) is also neutrosophic 𝑏-compact. 

Proof: Immediate from the prop. 3.36 as 𝑓 is onto. 

3.38. Proposition: Let 𝑓  be a neutrosophic 𝑏∗ -open function from an NTS (𝑋, τ)  onto the NTS 

(𝑌, 𝜎). If (𝑌, 𝜎) is neutrosophic countably 𝑏-compact (neutrosophic 𝑏-Lindel�̈�f) then (𝑋, τ) is also 

neutrosophic countably 𝑏-compact (neutrosophic 𝑏-Lindel�̈�f). 

Proof: Obvious. 

3.39. Definition: Let 𝑓 be a neutrosophic function from an NTS (𝑋, τ) to the NTS (𝑌, 𝜎). Then 𝑓 is 

called a neutrosophic 𝑏∗-continuous function if 𝑓−1(𝐺) is an NBO set in 𝑋 for every NBO set 𝐺 in 

𝑌. 

3.40. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-continuous function from an NTS (𝑋, τ) to the NTS 

(𝑌, 𝜎). If 𝐴 is neutrosophic 𝑏-compact in 𝑋 then 𝑓(𝐴) is also neutrosophic 𝑏-compact in 𝑌. 

Proof: Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ}  be an NBOC of 𝑓(𝐴) . Then 𝑓(𝐴) ⊆ ∪𝜆∈Δ 𝐺𝜆 ⇒ A ⊆ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) ⇒ A ⊆

∪𝜆∈Δ 𝑓−1(𝐺𝜆). Since 𝐺𝜆 is 𝜎-NBO set in 𝑌, so 𝑓−1(𝐺𝜆) is τ-NBO set in 𝑋 as 𝑓 is neutrosophic 𝑏∗-

continuous function. Therefore 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an NBOC of 𝐴. Since 𝐴 is neutrosophic 𝑏-

compact in 𝑋 , so 𝐶  has a finite NBOSC {𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore 𝐴 ⊆

∪𝑖=1
𝑛 𝑓−1(𝐺𝜆𝑖

) ⇒ 𝐴 ⊆ 𝑓−1(∪𝑖=1
𝑛 𝐺𝜆𝑖

) ⇒ 𝑓(𝐴) ⊆∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NBOC 𝐵 of 𝑓(𝐴) has a finite NBOSC 

{𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

}.. Therefore 𝑓(𝐴) is neutrosophic 𝑏-compact.  

3.41. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic 𝑏-compact then (𝑌, 𝜎) is also neutrosophic 𝑏-compact. 

Proof: Since 𝑓  is onto, so 𝑓(�̃�) = �̃� . Let 𝐵 = {𝐺𝜆: 𝜆 ∈ Δ} be an NBOC of 𝑌 . Then ∪𝜆∈Δ 𝐺𝜆 = �̃� ⇒

∪𝜆∈Δ 𝐺𝜆 = 𝑓(�̃�) ⇒ 𝑓−1(∪𝜆∈Δ 𝐺𝜆) = �̃� ⇒∪𝜆∈Δ 𝑓−1(𝐺𝜆) = �̃�. Since 𝐺𝜆 is 𝜎-NBO set in 𝑌, so 𝑓−1(𝐺𝜆) is 

τ-NBO set in 𝑋 as 𝑓 is neutrosophic 𝑏∗-continuous function. Therefore, 𝐶 = {𝑓−1(𝐺𝜆): 𝐺𝜆 ∈ 𝐵} is an 

NBOC of 𝑋 . Since 𝑋  is neutrosophic 𝑏 -compact, so 𝐶  has a finite NBOSC 

{𝑓−1(𝐺𝜆1
), 𝑓−1(𝐺𝜆2

), … , 𝑓−1(𝐺𝜆𝑛
)} , say. Therefore, �̃� =∪𝑖=1

𝑛 𝑓−1(𝐺𝜆𝑖
) ⇒ �̃� = 𝑓−1(∪𝑖=1

𝑛 𝐺𝜆𝑖
) ⇒ 𝑓(�̃�) =

∪𝑖=1
𝑛 𝐺𝜆𝑖

⇒ �̃� =∪𝑖=1
𝑛 𝐺𝜆𝑖

. Thus the NBOC 𝐵 of 𝑌 has a finite NBOSC {𝐺𝜆1
, 𝐺𝜆2

, 𝐺𝜆3
, . . . , 𝐺𝜆𝑛

}. Therefore 

𝑌 is neutrosophic 𝑏-compact. 
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3.42. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-continuous function from an NTS (𝑋, τ) onto the NTS 

(𝑌, 𝜎). If (𝑋, τ) is neutrosophic countably 𝑏-compact (resp. neutrosophic 𝑏-Lindel�̈�f) then (𝑌, 𝜎) is 

also neutrosophic countably 𝑏-compact (resp. neutrosophic 𝑏-Lindel�̈�f). 

Proof: Obvious. 

4. Neutrosophic local b-compactness 

4.1. Definition: An NTS (𝑋, τ) is said to be a neutrosophic locally 𝑏-compact space iff for every NP 

𝑥𝛼,𝛽,𝛾 in 𝑋, there exists an NBO set G in 𝑋 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 and 𝐺 is neutrosophic 𝑏-compact in 

𝑋. 

4.2. Proposition: Every neutrosophic 𝑏-compact space is a neutrosophic locally 𝑏-compact space. 

Proof: Let (𝑋, τ)  be a neutrosophic 𝑏 -compact space and let 𝑥𝛼,𝛽,𝛾  be an NP in 𝑋 . Since 𝑋  is 

neutrosophic 𝑏-compact and since �̃� is an NBO set such that 𝑥𝛼,𝛽,𝛾 ∈ �̃�, so, (𝑋, τ) is a neutrosophic 

locally 𝑏-compact space. 

4.3. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-open and 𝑏∗-continuous function from an NTS space 

(𝑋, τ) to the NTS (𝑌, τ). If (𝑌, τ) neutrosophic locally 𝑏-compact then (𝑋, τ) is also a neutrosophic 

locally 𝑏-compact space. 

Proof: Let 𝑥𝛼,𝛽,𝛾 be any NP in 𝑋. Also let 𝑦𝑝,𝑞,𝑟  be the NP in 𝑌 such that 𝑓(𝑥𝛼,𝛽,𝛾) = 𝑦𝑝,𝑞,𝑟 . Since 

𝑦𝑝,𝑞,𝑟 ∈ 𝑌 and 𝑌 neutrosophic locally 𝑏-compact, so there exists a 𝜎-NBO set 𝐺 such that 𝑦𝑝,𝑞,𝑟 ∈ 𝐺 

and 𝐺 is neutrosophic 𝑏-compact in 𝑌. Now 𝑦𝑝,𝑞,𝑟 ∈ 𝐺 ⇒ 𝑓(𝑥𝛼,𝛽,𝛾) ∈ 𝐺 ⇒ 𝑥𝛼,𝛽,𝛾 ∈ 𝑓−1(𝐺). Since 𝑓 is 

neutrosophic 𝑏∗ -open and 𝐺  is neutrosophic 𝑏 -compact in 𝑌 , so by the prop. 3.36, 𝑓−1(𝐺)  is 

neutrosophic 𝑏-compact in 𝑋. Again since 𝑓 is a neutrosophic 𝑏∗-continuous function, so 𝑓−1(𝐺) is 

a 𝜏-NBO set. Thus for any any NP 𝑥𝛼,𝛽,𝛾 in 𝑋, there exists a 𝜏-NBO set 𝑓−1(𝐺) such that 𝑥𝛼,𝛽,𝛾 ∈

𝑓−1(𝐺)  and 𝑓−1(𝐺)  is neutrosophic 𝑏-compact in 𝑋 . Therefore (𝑋, τ)  is neutrosophic locally 𝑏-

compact space. 

4.4. Proposition: Let 𝑓 be a neutrosophic 𝑏∗-open and 𝑏∗-continuous function from an NTS space 

(𝑋, τ)  onto the NTS (𝑌, τ) . If (𝑋, τ)  neutrosophic locally 𝑏 -compact then (𝑌, σ)  is also a 

neutrosophic locally 𝑏-compact space. 

Proof: Let 𝑦𝑝,𝑞,𝑟  be any NP in 𝑌 . Since 𝑓  is onto, so there exists an NP 𝑥𝛼,𝛽,𝛾  in 𝑋  such that 

𝑓(𝑥𝛼,𝛽,𝛾) = 𝑦𝑝,𝑞,𝑟. Since 𝑥𝛼,𝛽,𝛾 ∈ 𝑋 and 𝑋 neutrosophic locally 𝑏-compact, so there exists a τ-NBO set 

𝐺 such that 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 and 𝐺 is neutrosophic 𝑏-compact in 𝑋. Now 𝑥𝛼,𝛽,𝛾 ∈ 𝐺 ⇒ 𝑓(𝑥𝛼,𝛽,𝛾) ∈ 𝑓(𝐺) ⇒

𝑦𝑝,𝑞,𝑟 ∈ 𝑓(𝐺). Since 𝑓 is neutrosophic 𝑏∗-continuous and 𝐺 is neutrosophic 𝑏-compact in 𝑋, so by 

3.40, 𝑓(𝐺) is neutrosophic 𝑏-compact in 𝑌. Again since 𝑓 is a neutrosophic 𝑏∗-open function, so 

𝑓(𝐺) is a σ-NBO set. Thus for any any NP 𝑦𝑝,𝑞,𝑟  in 𝑌, there exists a σ-NBO set 𝑓(𝐺) such that 

𝑦𝑝,𝑞,𝑟 ∈ 𝑓(𝐺) and 𝑓(𝐺) is neutrosophic 𝑏-compact in 𝑌. Therefore (𝑌, σ) is neutrosophic locally 𝑏-

compact space. 

5. Covering properties via neutrosophic b-base 

5.1. Definition : Let (𝑋, τ)  be an NTS and 𝑁𝐵𝑂(𝑋)  be the collection of all NBO sets in 𝑋 . A 

subcollection 𝐵 of 𝑁𝐵𝑂(𝑋) is called a neutrosophic 𝑏-base (Nb-base, for short) for 𝑋 iff for each 

𝐴 ∈ 𝑁𝐵𝑂(𝑋), there exists a subcollection {𝐴𝑖: 𝑖 ∈ Δ} of 𝐵 such that 𝐴 =∪ {𝐴𝑖: 𝑖 ∈ Δ}, where Δ is an 

index set. 

A subcollection 𝐵∗ of 𝑁𝐵𝑂(𝑋) is called a neutrosophic 𝑏-subbase (Nb-subbase, for short) for 𝑋 iff 

the finite intersection of members of 𝐵∗ forms a neutrosophic 𝑏-base for 𝑋. 

5.2. Definition: An NTS (𝑋, τ) is said to be a neutrosophic 𝑏-second countable or neutrosophic 𝑏 −

𝐶𝐼𝐼 space iff 𝑋 has a countable neutrosophic 𝑏-base. 

5.3. Proposition: Let 𝐵 be an Nb-base for an NTS (𝑋, τ). Then 𝑋 is neutrosophic 𝑏-compact iff every 

NBOC of 𝑋 by the members of 𝐵 has a finite NBOSC. 

Proof: Necessary Part: Obvious. 

Sufficient Part : Let 𝐵 = {𝐵𝛼: 𝛼 ∈ Δ} be the Nb-base. Also let 𝐶 = {𝐺𝜆: 𝜆 ∈ Δ} be an NBOC of 𝑋. Then 

each member 𝐺𝜆 of 𝐶 is the union of some members of 𝐵 and the totality of such members of 𝐵 is 
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evidently an NBOC of 𝑋. By the hypothesis, this collection of members of 𝐵 has a finite NBOSC 𝐷 =

{𝐵𝛼𝑗
: 𝑗 = 1,2,3, ⋯ , 𝑛} , say. Clearly for each 𝐵𝛼𝑗

 in 𝐷 , there is a 𝐺𝜆𝑗
 in 𝐶  such that 𝐵𝛼𝑗

⊆ 𝐺𝜆𝑗
. 

Therefore the finite subcollection {𝐺𝜆𝑗
: 𝑗 = 1,2,3, ⋯ , 𝑛} of 𝐶 is an NBOC of 𝑋, i.e., the NBOC 𝐶 of 𝑋 

has a finite NBOSC. Therefore 𝑋 is neutrosophic 𝑏-compact. 

5.4. Proposition: Let (𝑋, τ) be a neutrosophic countably 𝑏-compact space. If 𝑋 is neutrosophic 𝑏 −

𝐶𝐼𝐼 then 𝑋 neutrosophic 𝑏-compact. 

Proof: Let 𝐷 = {𝐴𝑖: 𝑖 ∈ Δ} be any NBOC of 𝑋 . Since 𝑋  is neutrosophic 𝑏 − 𝐶𝐼𝐼 , so there exists a 

countable Nb-base 𝐵 = {𝐵𝑛: 𝑛 = 1,2,3, ⋯ } for 𝑋. Then each 𝐴𝑖 ∈ 𝐷 can be expressed as a countable 

union of members of 𝐵, i.e., for each 𝐴𝑖 ∈ 𝐷, we have 𝐴𝑖 = ⋃𝑘=1
𝑖0 𝐵𝑛𝑘

, where 𝐵𝑛𝑘
∈ 𝐵 and 𝑖0 may be 

infinity. Clearly 𝐵0 = {𝐵𝑛𝑘
} is an NBOC of 𝑋. Also 𝐵0 is countable as 𝐵0 ⊆ 𝐵. Therefore, 𝐵0 is a 

countable NBOC of 𝑋. Since 𝑋 is countably 𝑏-compact, so 𝐵0 has a finite NBOSC 𝐵′, say. Since by 

construction, each member of 𝐵′ is contained in one member 𝐴𝑖 of 𝐷, so these 𝐴𝑖’s form a finite 

NBOC of 𝑋. Thus the NBOC 𝐷 of 𝑋 has a finite NBOSC. Therefore 𝑋 is neutrosophic 𝑏-compact. 

Hence Proved. 

5.5. Remark: From the propositions 3.3 and 5.4, it is clear that if an NTS (𝑋, τ)  is neutrosophic 𝑏 −

𝐶𝐼𝐼 then neutrosophic 𝑏-compactness and neutrosophic countably 𝑏-compactness are equivalent. 

5.6. Proposition: If an NTS (𝑋, τ)   is neutrosophic 𝑏 − 𝐶𝐼𝐼 then it is neutrosophic 𝑏-Lindel�̈�f. 

Proof: Let 𝐷 = {𝐴𝑖: 𝑖 ∈ Δ} be any NBOC of 𝑋 . Since 𝑋  is neutrosophic 𝑏 − 𝐶𝐼𝐼 , so there exists a 

countable Nb-base 𝐵  = {𝐵𝑛: 𝑛 = 1,2,3, ⋯ }  for 𝑋 . Then each 𝐴𝑖 ∈ 𝐷  can be expressed as the 

countable union of members of 𝐵, i.e., for each 𝐴𝑖 ∈ 𝐷, we have  𝐴𝑖 = ⋃𝑘=1
𝑖0 𝐵𝑛𝑘

, where 𝐵𝑛𝑘
∈ 𝐵 and 

𝑖0  may be infinity. Let 𝐵0  = {𝐵𝑛𝑘
}. Then 𝐵0  is an NBOC of 𝑋 . Also 𝐵0  is countable as 𝐵0 ⊆ 𝐵 . 

Therefore, 𝐵0 is a countable NBOC of 𝑋. By construction, each member of 𝐵0 is contained in one 

member 𝐴𝑖 of 𝐷. So, these 𝐴𝑖’s of 𝐷 form a countable NBOSC of 𝑋. Thus the NBOC 𝐷 of 𝑋 has a 

countable NBOSC. Therefore 𝑋 is neutrosophic 𝑏- Lindel�̈�f.  

5.7. Proposition: Let 𝛽 be an Nb-subbase of an NTS (𝑋, τ). Then 𝑋 is neutrosophic 𝑏-compact iff for 

every collection of NBC sets taken from 𝛽𝑐 having the FIP, there is a non-empty intersection. 

Proof: Necessary part: Immediate from the prop. 3.23. 

Sufficient Part: On the contrary, let us suppose that 𝑋 is not 𝑏-compact. Then by the prop. 3.23, there 

exists a collection 𝐶 = {𝐺𝑖: 𝑖 ∈ 𝐼} of NBC sets of 𝑋 having FIP such that ∩𝑖∈𝐼 𝐺𝑖 = ∅̃. The collection 

𝐹 = {𝐶} of all such collections 𝐶 can be arranged in an order by using the classical inclusion(⊆) and 

therefore, the collection 𝐹 will have an upper bound. By Zorn’s lemma, there will be a maximal 

collection of all these collections 𝐶 . Let 𝑃 = {𝐾𝑗 : 𝑗 ∈ 𝐽}  be the maximal collection. Clearly, this 

collection 𝑃 has the following properties: 

(i) ∅̃ ∉ 𝑃 (ii) 𝐴 ∈ 𝑃, 𝐴 ⊆ 𝐵 ⇒ 𝐵 ∈ 𝑃 (iii) 𝐴, 𝐵 ∈ 𝑃 ⇒ 𝐴 ∩ 𝐵 ∈ 𝑃 (iv) ∩ (𝑃 ∩ 𝛽𝑐) = ∅̃.  

Clearly the property (iv) creates a contradiction to the hypothesis. Therefore 𝑋 is neutrosophic 

𝑏-compact. 

Hence proved. 

 

6. Conclusions 

In this article, we have defined neutrosophic 𝑏-open cover with the help of neutrosophic 𝑏-open 

sets and then we have defined neutrosophic 𝑏 -compact, neutrosophic countably 𝑏 -compact, 

neutrosophic 𝑏-Lindel�̈�f spaces and investigated various covering properties. We have proved that 

every neutrosophic 𝑏-compact space is a neutrosophic compact space but the converse is not true. 

We have shown that if 𝑓  is a neutrosophic continuous or a 𝑏 -continuous function from a 

neutrosophic 𝑏-compact (resp. countably 𝑏-compact, 𝑏-Lindel�̈�f) space (𝑋, τ) onto a neutrosophic 

topological space (𝑌, σ) then (𝑌, 𝜎) is a neutrosophic compact (resp. countably compact, Lindel�̈�f) 

space. In 3.41 (resp. 3.42), we have established that neutrosophic 𝑏-compactness (resp. countably 𝑏-

compactness, 𝑏-Lindel�̈�fness) is preserved under a neutrosophic 𝑏∗-continuous function. We have 

then defined and studied a few properties of neutrosophic local 𝑏-compactness. At last, in section 5, 
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we have defined neutrosophic 𝑏 -base, 𝑏 -subbase, neutrosophic 𝑏 - 𝐶𝐼𝐼  and investigated some 

properties. We have set up that if a neutrosophic topological space is neutrosophic 𝑏 -𝐶𝐼𝐼  then 

neutrosophic 𝑏-compactness and neutrosophic countably 𝑏-compactness are equivalent. In 5.7, we 

have stated and proved “Alexander subbase lemma” in case of a neutrosophic 𝑏-compact space. 

Hope that the findings in this article will assist the research fraternity to move forward for the 

development of different aspects of neutrosophic topology. 
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Abstract: There has been an increasing tendency for the generation of energy from diverse renewable 

resources because of the application of contemporary pollution mitigation and justification 

regulations. Precisely a consequence, choosing the best renewable energy source might be considered 

a challenging issue given the complexity of the future conditions in any society. Environmental, 

economic, social, and technical aspects are merely some of the factors that are taken into consideration 

while evaluating renewable energy sources (RnESs). The suitable RES selection problem, which relies 

on ambiguous and imprecise data, is also influenced by a variety of circumstances. Hence, this study 

constructs multi-stages intelligent decision-making model (MsIDMM) based on multi-criteria 

decision making (MCDM) with support with neutrosophic theory especially, interval valued 

neutrosophic sets to rank the sources of renewable energy. Ultimately, combinative distance-based 

assessment (CODAS) method under interval-valued neutrosophic sets is used to rank the sources of 

renewable energy. 

Keywords: Renewable Energy; CODAS; MCDM; Interval Valued Neutrosophic Set; Sustainability. 

 

 

1. Introduction 

Given the ongoing rise in energy demand and the potential depletion of fossil fuels, academics 

and energy producers alike should focus more on the sustainability of renewable energy sources 

(RnESs) [1]. Arguably based on [2] the most serious issues the world is currently facing are the 

enormous and rapid growth of the population reaching 9 Billion by 2050, innovation, growth, and 

cultural advancement, which is related to the enormous demand and excessive consumption patterns 

of energy, water, and food resources compared to the generation of energy and the limited natural 

land, water, materials, and fuels resources. Therefore, changes in energy usage have a substantial 

impact on economic activity and the determination of income [3]. Hence sustainable Energy (SusE) is 

crucial for a nation's economic and social development as well as for improving people's quality of 

life [4]. 

In order to ensure that everyone has access to cheap, dependable, sustainable, and contemporary 

energy, one of the global goals of the 2030 Agenda for Sustainable Development (SusD) is to promote 

SE [4]. The goals of SusD are threatened by conventional energy-generating techniques such as those 

that rely on fossil fuels. According to [5] utilizing fossil fuels not only harms the environment and 

produces harmful pollutants, not only damage the environment and emit hazardous gases, but also 

their energy sources are not sustainable. From the researchers' point of view in [6], the problem raised 

in [5] can be controlled by offering substitute and cleaner sources, and the nation's level of living may 

raise. The solution of [6] is represented in  RnESs which play an essential role in guaranteeing 

the cleanest possible energy that is sustainable. In a similar vein, [7] emphasized that to fulfill the 

https://orcid.org/0000-0002-3988-1437
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energy demand, combat climate change, and fulfill the need for clean and sustainable development, 

the continued growth of RnESs has become a crucial strategy. 

Making the best choice for a renewable energy source would benefit sustainability in other 

aspects as social, and environmental in addition to the economic one. Contrariwise [8], the wrong 

choice of RnES might have negative effects on aspects of sustainability as the environment and the 

economy as exhibited in Figure 1. 

 
Figure 1. Consequences of adopting an undesirable renewable energy source. 

Wherefore, selecting optimal or suitable RnES is a critical process. In order to reduce environmental 

pollution, usage of traditional resources, and improve economic growth, [6] affirmed that   the 

selection process need to be strategically chosen.  

For the purpose of planning for sustainable energy, [9] indicated that there are a number of 

aspects including environmental, social, economic, technological, and institutional considerations, 

should be utilized as benchmarks. Consequently [10] contributed multi-criteria decision-making 

(MCDM) methods in choosing an optimal RnES candidate. Nevertheless, there is a further 

perspective on the application of these methods. For instance, [6] MCDM methods are insufficient for 

handling the ambiguous information that frequently arises during energy planning procedures. So, 

scholars as Zadeh [11] resorted to using Fuzzy Sets (FSs). Its adaptability and efficiency in resolving 

circumstances where the information at hand is ambiguous or insufficient are remarkable. Ditto the 

generalization of (FSs) is Intuitionistic fuzzy sets (IFSs) which take into consideration measurements 

of truth and non-truth otherwise FSs which concerns truth. 

Nonetheless, herein the study is followed suit Smarandache [12] through volunteering 

neutrosophic theory. This is a result of having a significant aptitude for developing approaches using 

vague and erratic information. The neutrosophic theory is distinguished by three separate 

membership functions that represent the roles of truth, indeterminacy, and falsity. 

Interval valued neutrosophic theory is inspired by neutrosophic theory. Therefore, in this study 

SVNS combined with MCDM methods, especially CODAS method for handling the multi-criteria 

RnESs to choose optimal one. 

This study is organized into a set of sections; each one plays a certain role. Whereas the motives 

on where the study was based are illustrated in Section 2. Through prior studies we aggregated 

essential sources of renewable energy in Section 3. These sources need to be analyzed and evaluated, 

hence we constructed hybrid model for evaluating these sources in Section 4. After that we are 
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applying this model to verify it through evaluating 6 sources based on 22 criteria. Finally, we exhibit 

synopsis for the study.  

2. Motivations of the Study 

This section represents motivations for conducting this study. These motivations are illustrated 

through set of aspects as following: 

• Societal  Aspect:  According to [13], utilization of  fossil fuels or improper RnESs leads to 

environment problems; i.e. global warming is caused by greenhouse gas (GHG) emissions such 

as carbon dioxide, methane oxide, and nitrous oxide in the atmosphere. Which in turn affects 

human life and threatens health. 

• Technical/Practical Aspect: Selecting suitable and optimal RnES is vital to lessen the hazards 

associated with selecting renewable energy incorrectly, which jeopardizes sustainability. 

Therefore, it is important to utilize flexible and efficient techniques which can analyze various 

alternatives of RnESs based on a set of criteria. Herein, the study uses MCDM methods to rank 

the sources of renewable energy with support of neutrosophic theory especially Interval valued 

neutrosophic to strength CODAS of MCDM to generate robust hybrid intelligent model. 

• Experimental  Aspect: We are applying constructed hybrid intelligent framework for ranking six 

renewable energy sources as alternatives based on 22 criteria. Herein, the utilized alternatives 

(An) are solar energy, wind energy, hydro energy, biomass energy, geothermal energy, and wave 

energy. 

3. Essential Principles of Renewable Energy Sources 

This section exhibits the different RnESs based on prior studies which related to our interested 

scope. For instance, [14]-[15] exhibited set of RnESs where aggregated in Figure 2. 

 
Figure 2. Various sources of renewable energy. 
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4. Multi-stages Intelligent Decision-Making Model (MsIDMM) 

In our constructed model, we use two elements to determine which options are preferable. Both 

the Euclidean and Taxicab distances of options to the cost-ideal are used as indicators of 

attractiveness, the greater the distance means the more desirable the option. The CODAS method is 

integrated with the neutrosophic method to deal with vague data. We evaluate the criteria and 

alternatives according to [16]- [21]. 

In this study, the first stage included determining 22 criteria which contribute to selection 

process for RnESs. After that the second stage is evaluating the determined criteria by formed expert 

panel. Third stage represented in analyzing process for expert’s evaluations through MsIDMM based 

on neutrosophic theory combined with MCDM methods. The result of MsIDMM is ranking and 

selecting optimal RnES. Figure 3 summarizes the stages of model. 

Step 4.1 Determine The Criteria of Renewable Energy 

In the first stage, the process aim is established, and the relevant criteria for assessing the options are 

selected. 

Step 4.2 Formulate the Matrix Between Criteria and Resources of Renewable Energy. 

The matrix is built by the criteria 𝑖 = 1,2,3 … . 𝑚; 𝑗 = 1,2,3 … 𝑛, and the element of matrix is 𝑘𝑖𝑗. 

Step 4.3 Normalize the Decision Matrix. 

𝑟𝑖𝑗 =  {

𝑘𝑖𝑗 

max
𝑖

𝑘𝑖𝑗

min
𝑖

𝑘𝑖𝑗

𝑘𝑖𝑗

                                                                        (1) 

Step 4.4 Determine the Weighted Normalized Matrix. 

𝑞𝑖𝑗 = 𝑒𝑗𝑟𝑖𝑗                                                                            (2) 

Where 𝑒𝑗 refers to the weights of criteria.  

Step 4.5 Compute the Point of Cost Ideal Solution.  

𝑐𝑞𝑗 =  min
𝑖

𝑞𝑖𝑗                                                                         (3) 

Step 4.6 Compute the Taxicab and Euclidean Distances. 

𝐴𝑖 =  ∑ |𝑞𝑖𝑗 − 𝑐𝑞𝑗|𝑚
𝑗=1                                                                   (4) 

𝐷𝑖 =  √∑ (𝑞𝑖𝑗 − 𝑐𝑞𝑗)
2𝑚

𝑗=1                                                                (5) 

Step 4.7 Compute the Matrix of Comparative Assessment.  

𝐴𝑠𝑠𝑖𝑦 = (𝐷𝑖 − 𝐷𝑦 ) + (𝛼(𝐷𝑖 − 𝐷𝑦) × (𝐴𝑖 − 𝐴𝑦))                                            (6) 

Where 𝑦 = 1,2,3, … 𝑛, and 𝛼 refers to the function of threshold. 

𝛼(𝑘) = {
1, 𝑖𝑓 |𝑘| ≥ 𝛽

0, 𝑖𝑓 |𝑘| < 𝛽
                                                                  (7) 

Where 𝛽 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0.01 𝑎𝑛𝑑 0.05 refers to the expert’s threshold. 

Step 4.8 Compute the Evaluation Score. 

𝑈𝑖 =  ∑ 𝐴𝑠𝑠𝑖𝑦
𝑛
𝑦=1                                                    (8) 

Step 4.9 Rank the Sources of Renewable Energy 

The renewable energy resources are ranked according to the Maximum value of 𝑈𝑖 
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Figure 3. Various stages of Multi-stages Intelligent Decision-Making Model. 
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5. Validation of Renewable Energy Resources based on MsIDMM 

Herein, the study validates the constructed MsIDMM for assessing determined RnESs. It 

computes the weights of criteria for determined RnESs highlighted by earlier studies as [14] ,[5]. 

Whereas there are 22 criteria. There are six renewable energy sources like solar, wind, hydro, biomass, 

geothermal, and wave energy. Figure 4 reveals the utilized criteria and alternatives. 

 
Figure 4. Selection alternatives of renewable energy sources based on criteria. 

 

Decision makers (DMs) and experts evaluate the renewable energy criteria and sources to create 

decision matrix between criteria and alternatives by using interval valued neutrosophic numbers. 

Then the decision matrix is normalized as shown in Table 1 by using Eq. (1). After that the weights 

of renewable energy criteria are computed. Then the weights of the criteria are multiplied by the 

normalization matrix using Eq. (3). 

Then the point of cost for the ideal solution is computed using Eq. (3). Then the taxicab is 

computed as shown in Table 2 and Euclidean distances using Eqs. (4-5) as shown in Table 3. After 

that the matrix of comparative assessment is computed using Eqs. (6-7). Then the evaluation score is 

computed using Eq. (8) as shown in Figure 5. The second renewable energy source is the best and the 

third renewable energy source is the worst. 
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Table 1. The normalization matrix between renewable energy criteria and sources. 
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Table 2. The taxicab distance from cost ideal solution. 
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Table 3. The Euclidean distance from cost ideal solution. 
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Figure 5. Evaluation score of each renewable energy sources. 

6. Conclusions 

There is no doubt that the quick advancement of energy is enticing owing to the growth in 

population and production firms, as well as the rise in air pollution and greenhouse gas emissions, 

which has resulted in significant advancements in renewable energies and the technologies that are 

related to them. 

The overall objectives of this study are fulfilling two aims. Firstly, MCDM methods (i.e., CODAS) 

have been strengthened by neutrosophic theory as supporter in uncertainty situations and 

incomplete data. Secondly, hybrid techniques of CODAS based Interval value neutrosohic have been 

employed for analyzing RnESs alternatives based on a set of determined criteria from earlier studies. 

For achieving such objective, we constructed MsIDMM.  

DMs are formed and volunteered for rating determined 6 alternatives of RnESs which being in 

wind energy, solar energy, hydro energy, biomass energy, geothermal energy, and wave energy. 

While 22 criteria are determined based on conducted survey for prior studies. These criteria have 

been rated by DMs. Consequently, MsIDMM analyzes DMS’ rating of 6 alternatives and 22 criteria in 

order to produce the optimum solution that overcomes all environmental and local challenges in real-

time application. Finally, the optimal and suitable RnES is obtained by constructed MsIDMM to 

sustain sustainability and its aspects. According to evaluation score for 6 RnESs in Figure 5, solar 

energy (A1) is the most appropriate and sustainable one with score value 0.88 followed by biomass 

energy (A4) with score value 0.509. Otherwise, hydro energy is the worst and least sustainable 

renewable energy resource with a score value -0.946.  
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Abstract: The objective of this research is to examine the perception that school children with 

obesity, when excluded from organized academic performance and constrained to their residences 

during the coronavirus epidemic 2019 will reveal negative consequences in health behaviors. To 

meet the objective, the concept of Plithogenic Single valued fuzzy sets (PSFS) and their aggregation 

operators were introduced. Based on the proposed theory, an analysis is presented with the case 

study to highlight its practicality and preciseness. 

Keywords: Fuzzy Set; Plithogenic Set; Plithogenic Single Valued Fuzzy Set; PSFS Operators. 

 

 

1. Introduction 

Global health analysts predict that school closures have worsened the epidemic of childhood 

obesity rates due to the COVID-19 pandemic. Analysts believe that school shutdowns associated with 

COVID-19 will double out-of-school time for several children worldwide the previous year and could 

increase hazard factors involved with a summer break for gaining weight [1-3]. 

Plithogeny which was introduced in 2017 by Florentine Smarandache [4, 5, 6] is the origination, 

existence, development, growth, and emergence of various entities from technologies and organic 

combinations of old objects that are conflicting and/or neutral and/or non-contradictory. A 

plithogenic set P is a set whose members are characterized by one or more attributes and there may 

be several values for each attribute. Moreover, it is the generalization of Crisp, Fuzzy, Intuitionistic 

fuzzy, and Neutrosophic sets. 

In this research work, we study how the Plithogenic Single valued fuzzy sets (PSFS) [7-10] and 

their aggregation operators help in analyzing the main factors for an increase in obesity among school 

children during the pandemic COVID-19 lockdown with the analyst’s fuzzy degree. 

The uniqueness of this technique is its effectiveness, as the learner does not have to engage with 

complex operators based on lengthy calculations. The proposed method also has a realistic approach 

to the need for a broad spectrum that can penetrate alterations according to the need for the social 

structure provided. 

2. Plithogenic Single valued fuzzy sets and its Operators  

Definition 3.1: Let U be a universal set and P is the subset and Px  be an element. P is called a 

Plithogenic set which has the form  FF CDP ,,,,   where A is the attribute Values,  is the set 

of all attributes values that helps in solving an application, FD is the degree of appurtenance and FC

is the dissimilarity degree. 

https://doi.org/10.61356/j.nswa.2023.51
https://orcid.org/0009-0007-3046-2133
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Let us assume two Analyst A & B each evaluating the PSFS degree of appurtenance of  of x to the 

Plithogenic set P with some given constraints 

       
inglycorrespondfuzzythebeandfuzzythebeAlso

DandD

conormfnormf

B
F

A
F







 .1,01,0
 

3.1.1 PSFS Intersection 

        11  fOfOp CC   

3.1.2 PSFS Union 

       21  fOfOp CC   

3.1.3 PSFS Negation 

Denying the attribute Value 

   , antip   i.e. the opposite of  , where   anti  or 

   .Re  ofsetrefinedfinedanti   

So we get    .xantiD X
f   

Results: 

(i) When more emphasis is allocated to    fnorm ,  when compared to 

   fconorm ,   for    5.0,0,  Od CC  is called an accurate plithogenic 

intersection. 

(ii) When more emphasis is allocated to    fconorm ,  when compared to 

   fnorm ,   for    5.0,0,  Od CC  is called an accurate plithogenic union. 

(iii) When more emphasis is allocated to    fnorm ,  when compared to 

   fconorm ,   for    1,5.0,  Od CC  is called an inaccurate plithogenic union. 

(iv) When more emphasis is allocated to    fconorm ,  when compared to 

   fnorm ,   for    1,5.0,  Od CC  is called an inaccurate plithogenic 

intersection. 

(v)    fconorm ,  and     fnorm ,  has allocated the same emphasis 0.5 for 

  5.0,  Od CC   

3. Proposed Method to Find the Optimum Solution Using PSFS Operators.  

Step 1: Classify the problem with the attributes and its corresponding values of attribute. 

Step 2: Find the dissimilarity degree according to the Experts X and Y fuzzy degrees. 

Step 3: Compute the optimum solution using Eq. (1). 

Note: We have used the intersection operator. But the alternative is free for the reader to work with 

other operators also. 

4. Application  

Consider the primary attribute “Reason for obesity in school children during lockdown” which has 

the attribute values. 

Food Habits- whose refined values are- less vegetable intake, sugary drinks, junk food and meat 

consumption which is represented by 4321 ,,, gggg . 
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Screen time - whose refined values are-mobile, television and computer which is symbolized by

 321 ,, ttt . 

Sleeping pattern - whose refined values are- increase in day time sleep and decrease in night time 

sleep which is denoted by 21, hh . 

Sports- whose refined values are- More Indoor games and lack of outdoor games which is signified 

by 21, rr . 

The multi attribute of dimension 4 is, 

  21,21,31,41,,,,4  lkjiallforrhtgR lkji  

The dominant attribute values are 2113 ,,, rhtg respectively for each corresponding uni-dimensional 

attribute. 

The unit dimensional attribute contradiction degrees are: 

      1,,
3

2
,,

3

1
, 313221  ggCggCggC ,   

    1,,
2

1
, 3121  ttCttC  

    1,1, 2121  llCandhhC . 

Let us use  abbabafuzzyabbafuzzy FconormFnorm   &  

 Four-dimensional PSFS Intersection  

Let   21,21,31,41,,,,  lkjiallforrhtgxdx lkjiAA  

and   21,21,31,41,,,,  lkjiallforrhtgxdx lkjiBB  

Then 

}.21]),(),([)),(1(),(),([),(

;21]),(),([)),(1(),(),([),(

;31]),(),([)),(1(),(),([),(

;41]),(),([)),(1(),(),([),({

),,,(),,,(











lrxdrxdrrcrxdrxdrrc
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According to Analyst (A & B) fuzzy degrees the following Table 1 and Figure 1 represents the 

optimum solution. 
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Table 1. Analysis Table for obesity in school children during pandemic Covid-19 lockdown using PSFS. 

Attribute Food Habits Screen time 
Sleeping 

Pattern 
Sports 

values  of 

Attribute 

L
ac

k
 o

f 
V

eg
et

ab
le

 
in

ta
k

e 

S
u

g
ar

y
 d

ri
n

k
s 

Ju
n

k
 f

o
o

d
 

M
ea

t 
co

n
su

m
p

ti
o

n
 

M
o

b
il

e 

T
el

ev
is

io
n

 

C
o

m
p

u
te

r 

M
o

re
 D

ay
 t

im
e 

sl
ee

p
 

L
es

s 
N

ig
h

t 
ti

m
e 

sl
ee

p
 

M
o

re
 o

f 
In

d
o

o
r 

g
am

es
 

L
ac

k
 o

f 
O

u
td

o
o

r 
g

am
es

 

Dissimilarity 

degree 
0 1/3 2/3 1 0 1/2 1 0 1 0 1 

Analyst A 

Fuzzy degree 
0.4 0.4 0.8 0.6 0.8 0.6 0.5 0.7 0.8 0.3 0.8 

Analyst B 

Fuzzy degree 
0.5 0.7 0.9 0.7 0.6 0.5 0.7 0.6 0.7 0.4 0.9 

BpA xx   0.7 0.7 0.8 0.4 0.9 0.6 0.4 0.9 0.6 0.6 0.7 

 

 

Figure 1. Analysis chart for obesity in school children during the pandemic Covid-19 lockdown using PSFS. 

5. Conclusion  

Based on the fuzzy degrees of Analyst’s (A & B) it is clearly shown that the major reasons for the 

obesity in children during Covid-19 lockdown is the consumption of more junk food and the time 

spending on using mobile phones, more day time sleep along with the lack of outdoor sports which 

reduces all their physical activities and in turn results in the obesity. In future, we can extend this 

PSFS concept to interval valued and also learn its applications in decision making.  
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Abstract: This study introduces a B-spline curve interpolation model based on the neutrosophic set 

technique. To begin, the neutrosophic notion is used to define the neutrosophic control point relation. 

After that, the neutrosophic control point is combined with the B-spline basis function. Besides, the 

neutrosophic B-spline curve interpolation model is illustrated using the interpolation method. 

Furthermore, an example and the methods are shown for creating the right curve. 

Keywords: Neutrosophic Set; Curve of B-Splinei; Method of Interpolation i; Neutrosophic Control 

Points. 

 

 

1. Introduction 

The link between a curve created from control polygon vertices and the curve is technically 

dependent i on some interpolation or approximation approach [1]. Basis function determines this 

scheme. Bézier curves are generated via the Bernstein basis. Piegl and Tiller [1] also noted that two 

Bernstein basis features restrict curve flexibility. The curve's polynomial order depends on the 

number of polygon vertices supplied. A four-vertex, three-span polygon defines a cubic curve. Six-

vertex polygons always generate fifth-degree curves. Decrease the number of vertices to decrease the 

curve degree, and vice versa.  

According to Piegl and Tiller [1], the second limiting feature of the Bernstein foundation is 

globality. For i i all i parameter i values along the curvei, the blending function is nonzero. Because each 

point is formed by mixing all i control vertices, a i change in i one control vertex i i affects the entire 

Bézier curve. i This avoids local alterations to the curve. The i end i i slopes i i of a i Bézier i curve i are 

defined by the orientations of i the i first i i and i last i i polygon spans, so changing the center vertex of a 

five-point i polygon has no effect. The Bernstein basis modifies the i curvature of the curve worldwide. 

A lack of local control could be problematic. As a result, Bernstein basis is a subset of B-spline basis. 

This foundation does not operate on a global scale [1]. Since each vertex has a basis function, B-spline 

curves are non-global. Thus, each vertex only influences curve shape in the parameter range where 

its basis i function i i is i nonzero i. The i B-spline i i basis allows i user to change the order i of the Basis 

functions and the degree i of the i curve i without i i changing i i the control i polygon i i vertices i. B-splines 

were invented by Schoenberg i [2]. Cox [3] and De Boor [4] each created their own definition of 

recursive numerical computing. The B-spline basis was used by Gordon and Riesenfeld [5] to define 

curves. 

Data points, according to Hoschek and Lasser [6] require curves. Data analysis and 

representation are complicated by noise and ambiguity. This problem is addressed by fuzzy set 

theory and geometric modelling. Tuohy and Patrikalakis [7] proposed using regionally scattered 

geophysical data to rebuild ambiguous surfaces. Their technique has been extended to describe 

volume data with periodic B-spline volume function [8,9]. Based on Tuohy and Patrikalakis [7], they 

https://doi.org/10.61356/j.nswa.2023.43
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developed enclosing or gap specific B-spline geometry [10] to describe underwater geophysical data 

and sensor measurement error. Tuohy and Patrikalakis [11] depicted functions with uncertainty 

defining an observed geophysical parameter using interval B-spline. 

Anile et al. extended the techniques presented in [12] to data modelling and data reduction 

difficulties [13-15]. Anile et al. [16] improved on the modelling of Patrikalakis et al. [10]. They begin 

by reducing a big data set to fuzzy integers with i suitable i membership i i functions i i. They created 

fuzzy B-splines to interpret fuzzy i data i and rapid algorithms i to calculate spline alpha values. Anile 

and Spinella [17] created the fuzzy B-splines methodology and used fuzzy arithmetic concepts to 

uncertain sparse data caused by measurement mistakes, data reduction issues, and modelling flaws. 

Using rigorous procedures, fuzzy B-splines that fit uncertain sparse data were generated and 

examined. 

To address uncertainty problems, Wahab et al. [18] employ fuzzy numbers and Zadeh's [19] 

fuzzy set theory. The ideas of instability in data, fuzzy numbers, implementation of control measures, 

B-spline, and Bézier were employed. In CAGD, the approaches are used to construct fuzzy Bézier 

and B-spline curves. Each crisper control point is composed of left and right vague control points, 

each of which has a different degree of similarity to the initial control points (crisp control points). Its 

membership function is left and right continuous in a closed interval at each alpha value. 

Fuzzy set theory (FST) only takes into account membership data, but not non-membership data 

and uncertainty. In 1986, Krasimir Atanassov expanded FST to include truth, falsehood, and 

uncertainty degrees [20]. It is best to accept ambiguity. As FST only accepts full membership data, 

Intuitionistic Fuzzy Sets (IFS) can be used when the data for categorization and processing is 

insufficient [21]. Florentin Smarandache, on the other hand, proposed mathematical theory, and 

neutrosophy advocates equality [22]. Neutrophil sets might be members, non-members, or 

undecided. Transdisciplinary challenges are addressed and described using Neutrosophic Set (NS) 

approaches. A true, incorrect, or ambiguous NS theory element can exist. This allows for more 

nuanced doubt and ambiguity, for as when two statements contradict each other. Geometric 

modelling has been employed by certain academics to build neutrosophic set procedures [23,24]. 

The Neutrosophic B-spline Curve Interpolation (NB-SCI) Model will be the primary focus of this 

project's creation of a geometric model that can deal with uncertainty data. The Neutrosophic Control 

Point Relation (NCPR) must be determined using neutrosophic set theories and the qualities it holds 

before generating the B-spline interpolation. These control points, together with the B-spline basis 

function, are used to build NB-SCI models, which are subsequently displayed using an interpolation 

method. The following section shows how to use the format of this paper. The initial part of this paper 

gave background information on the issue. Section 2 introduces the reader to the basic concept of 

Neutrosophic Set (NS), followed by Neutrosophic Point Relation (NPR) and Neutrosophic Control 

Point Relation (NCPR). The third section discusses how to calculate the NB-SCI using NCPR. The 

fourth section includes a numerical example, a graphical representation of NB-SCA, and the model-

creation algorithm. The fifth and final segment will conclude the probe. 

 

2. Preliminaries  

The intuitionistic set in fuzzy systems can accommodate imperfect information but not 

indeterminate or inconsistent information [25]. A NS has three membership functions. With the 

addition of the "indeterminacy" parameter to the NS specification [25], there are three sorts of 

membership functions: a membership function (denoted by the letter T), an indeterminacy 

membership function (denoted by the letter I), and a non-membership function (denoted by the letter 

F). 

Definition 1: [22] Let Z be the main of conversation, with element in Z denoted as z . The NS is an 

item in the form below and N̂ denoted as NS. 



Neutrosophic Systems with Applications, Vol. 9, 2023                                                  31 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Siti Nur Idara Rosli and Mohammad Izat Emir Zulkifly, A Neutrosophic Approach for B-Spline Curve by Using Interpolation 

Method 

     ˆ ˆ ˆ{ }ˆ : , ,
N z N z N z

N z T I F z Z ∣  (1) 

where, the degrees , , : ] 0,1 [T I F Z    the meaning of accordingly, the degree to which an element is 

a member of the truth, the degree to which it is indeterminate, and the degree to which it is a member 

of the false z Z  to the set Z  with the condition;  

ˆ ˆ ˆ0 ( ) ( ) ( ) 3
N N N

T z I z F z      (2) 

There is no restriction to values of 
ˆ ˆ( ), ( )

N N
T z I z and 

ˆ ( )
N

F z  

NS will pick a value from either one of the actual standard subsets or one of the non-standard 

subsets of ] 0,1 [  . The actual value of the interval  0,1 , on the other hand, ] 0,1 [  will be utilized in 

technical applications since its utilization in real data such as the resolution of scientific challenges, 

will be physically impossible. As a direct consequence of this, membership value utilization is 

increased. 

     ˆ ˆ ˆ
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{ } and
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There is no restriction on the sum of 
ˆ ˆ ˆ( ), ( ), ( )

N N N
T z I z F z .Therefore, 

ˆ ˆ ˆ0 ( ) ( ) ( ) 3
N N N

T z I z F z     (4) 

 

Definition 2: [23, 24] Let 
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M y M y M y
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neutrosophic elements. Thus, ( , ) ( , ) ( , ){ }ˆ ˆ( , ) : , , ,z y z y z yNR z y T I F z N y M  ∣ is a Neutrosophic Relation 

(NR) on N̂ and M̂ . 

Definition 3: [23,24] NS of N̂ in space Z is Neutrosophic Point (NP) and ˆ ˆ{ }iN N  where 

0,...,i n  is a collection of NPs where the existences
ˆ : [0,1]

N
T Z   as truth degree, 

ˆ : [0,1]
N

I Z   as 

indeterminacy degree and 
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N
F Z  as false degree with 

ˆ

ˆ

ˆ

0 if

ˆ( ) (0,1) if

1 if

0 if

ˆ( ) (0,1) if

1 if

0 i

ˆ

f

ˆ( ) (0,1) if

1 i

ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆf ˆ

i

i

i

i

i

i

i

i

i

N

N

N

T

N

N N

N N N

N N

N

N N N

N N

a

I b

F

N N

N N N

N N

c

 


  




 


  




 


  




 (5) 

2.1 Neutrosophic Point Relation (NPR)  
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The concept of the NS, which was discussed in the previous section, serves as the cornerstone 

for NPR. If is a group of Euclid eternal space points and then, the following is how NPR is described: 

Definition 4: Let ,N M be a grouping of elements in global area that are part of a set that is not null 

and , ,N M O  R R R , then the term "NPR" refers to 

  ,
ˆ

, , ( , ) ( , ), ( , )

( , ), ( , ), ( , )

i j R i j R i j R i j

R i j R i j R i j

n m T n m I n m F n m

T n m I n m F n m
R

I

  
  

 
∣

 (6) 

Where  ,i jn m is a set of ordered positions and  ,i jn m N M   while ( , ), ( , ), ( , )R i j R i j R i jT n m I n m F n m

are the truth membership, the indeterminacy membership, and the false membership that follows the 

condition of the neutrosophic set which is respectively, 
ˆ ˆ ˆ0 ( ) ( ) ( ) 3

N N N
T z I z F z    . 

2.2 Neutrosophic Control Point Relation (NCPR) 

The geometry of a spline only be determined by all of the data required to form the curve. The 

word "control point" relates to this. The control point is essential in the design, control, and 

production of smooth curves. In this section, the neutrosophic control point relationship (NCPR) is 

defined by first employing the concept of fuzzy control point from the research published in Wahab 

et al. [26] in the following: 

Definition 5: Let R̂  be a NPR, then NCPR is viewed as a group of points 1n  that denotes a 

locations and coordinates and is used to describe the curve and is indicated by 
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 (7) 

Where ˆT

iP , ˆ I

iP and ˆ F

iP are NCP for membership truth, indeterminacy and i is one less than n . 

3. Neutrosophic B-Spline Curve Interpolation (NB-SCI)  

This section may be divided by subheadings. It should provide a concise and precise description 

of the experimental results, their interpretation as well as the experimental conclusions that can be 

drawn. 

The NB-SCI is defined as follows after combining NCPR with a B-spline basis function: 

Definition 6: Let      0 1 0 1 0 1,ˆ , ,..., , ,..., , , ,...,ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆI I I I F F F FT T T T

i n i n i nP p p p P p p p P p p p   where  = 1,2,..., 1i n is 

NCPR and NB-SCI denoted by BSC  with the vector along curve as parameter t . As a result of 

combining, it with the blending function, NB-SCI is described as 

1

1

(( ) ˆ )
n

i

i

k

iBSC t NP t




  (8) 

Where 
min maxt t t   and 2 1k n    when ˆ

iP  are the position vector of 1n  as control polygon 

vertices and k

iN  as the B-spline basis function. The ( )k

iN t is describe as 
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The parametric function NB-SCI in (8) is defined as follows and is made up of three curves: a member 

curve, a non-member curve, and an indeterminacy curve. 

1

1
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1
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n

I

i

i

I k

iBSC t NP t




  (13) 

Assuming the data points are in the NB-SCI range, then the data point should be (8). For each data 

point indicated by
jM , equation (8) has been modified as follows: 

1 1 1 1 2 1 1 1

2 2 1 2 2
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(14) 

When 2 1k n j    . Equation (14) is expressed as a matrix as  

 ˆ ˆMQ S   
     (15) 

where 
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 (16) 

The measurement of data points along NB-SCI is the metric value 
jt  for each output. The parametric 

value on data point to l  for data point is j  as follows. 
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The greatest parameter is indicated by 
maxt , which is usually considered as the greatest value for the 

knot vector. If 2 1k n j    , then  M  is a square matrix, and the control polygon is derived 

immediately using an inverse matrix, such as 

 
1

 ˆ    1    ˆ 2  Q S k n jM






   


 

  (18) 

As a result, NB-SCI can be acquired using (18). 

3.1. Properties of Neutrosophic B-Spline Curve Interpolation (NB-SCI) 

Since a B-spline basis is utilized to define a B-spline curve, numerous features, in addition to 

those already described, are easily understood: 

 For any parameter value t , the sum of the B-spline basis functions is [4, 5] 

1

1

( ) 1
n

k

i

i

N t




  (19) 

 For all values of parameters, each basis functional is either positive or zero. Thus, 0k

iN   

 Each basis function, 1k   with the exception of first-order basis functions with, has a single 

highest value. 

 The highest order of the curve matches the number of control polygon vertices. The highest value 

is one degree less. 

 The curve demonstrates the variation-diminishing characteristic. As a result, the curve does not 

oscillate more frequently around any straight line than its control polygon. 

 In general, the curve follows the shape of the control polygon. 

 Any affine transformation is applied to the curve by transforming the control polygon vertices, 

which transforms the curve. 

 The control polygon's convex hull contains the curve. 

4. Numerical Example and Visualization 

This section will go over the application of NB-SCAI and visualization. The examples will only 

use a numerical example at random and will employ an interpolation method. A NB-SCI will be 

shown that consists of NCPR with a degree of polynomial of four 4 n  . 

4.1. Application of Neutrosophic B-Spline Curve Interpolation (NB-SCI) 

To illustrate NB-SCA, let’s consider NB-SCA with five neutrosophic control point relation as in 

Table 1. 
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Table 1. The NCPRs 

NCPR 
ˆ
iP  

Truth 

Membershi ˆT

iP  

False 

Membership ˆ F

iP  

Indeterminacy 

Membership ˆ I

iP  

 0
ˆ 2, 2P   0.7 0.4 0.2 

 2
ˆ 7,8P   0.5 0.5 0.3 

 3
ˆ 11,13P   0.8 0.3 0.2 

 4
ˆ 17,18P   0.6 0.2 0.5 

 5
ˆ 25, 23P   0.3 0.4 0.6 

 

From Figure 1 through Figure 3, the planned interpolation curve is presented on its own with its 

matching data points (black dots) and NCP (red dots) utilizing (18). A neutrosophic control polygon 

connects the control points and is made up of truth degree, false degree, and indeterminacy control 

polygons. Figures 1-3 are also known as "truth membership," "false membership," and "indeterminacy 

B-spline curve interpolation." The NCP and controlling polygon governed the curve and ensured that 

the data points were interpolated. 

 

Figure 1. NB-SCI for Truth Membership with its Data Points, NCPs and Control Polygon. 
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Figure 2. NB-SCI for False Membership with its Data Points, NCPs and Control Polygon 

 

Figure 3. NB-SCI for Indeterminacy Membership with Data Points, NCPs and its Control Polygon 

Figures 4 through 6 depict NB-SCI as true membership, false membership, and indeterminacy 

curves with data points and connected data points, separately. 
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Figure 4. NB-SCI for Truth Membership with its Data Points 

 

Figure 5. NB-SCI for False Membership with its Data Points 

 

Figure 6. NB-SCI for Indeterminacy Membership with its Data Points 
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Figures 7 and 8 depicted NB-SCI from various points of view. Figure 7 depicted NB-SCI using 

data points, NCPs, and control polygons. Finally, Figure 8 depicts NB-SCI with data points. The NB-

SCI for blue curve represents truth membership, green curve represents false membership and pink 

curve represents indeterminacy membership. All the memberships are demonstrated in an axis as 

Figures 7 and 8 shown. 

 

Figure 7. NB-SCI for All Membership with its Data Points, NCPs and Control Polygons. 

 

Figure 7. NB-SCI for All Membership with its Data Points only. 

Following that, the algorithm for obtaining NB-SCI is summarized below: 

Step 1: The knot vector and the neutrosophic data point relation are computed using  
1

1

ˆ ˆ
n

j
j

Q Q



  

and  
1

1

n

j j
k k




 . 
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Step 2: Determine the parametric value along the neutrosophic B-spline curves that corresponds to 

each NCPR by using (17). 

Step 3: 

1. Calculate the chord lengths between each point. 

2 1 3 2 1
ˆ ˆ ˆ ˆ ˆ ˆ, , , r rQ Q Q Q Q Q     

2. The parameter is computed as. 
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Step 3: Determine the B-spline basis function based on the knot vector in Step 1 by creating the  M  

matrix using (15) and (16). 

Step 4: Following that, NCPR can be obtained by using (18). 

Step 5: Lastly, the NCPR is combined with the B-spline basis function as shown in (8) - (13) to produce 

NB-SCI. 

5. Conclusions  

This paper provides an introduction to NB-SCI as well as some of its characteristics. NB-SCI is 

an extremely useful methodology that has the potential to be implemented in a broad variety of 

business sectors, such as real civil engineering concepts, shipbuilding, designs for architecture, 

aerospace, manufacture and a great deal more besides. Due to the availability of truth degree, false 

degree, and indeterminacy degree, the neutrosophic approach may solve a greater variety of 

challenges. This neutrosophic set approach, when combined with tools based on the B-spline, can 

construct a continuously differentiable smooth curve that is capable of providing a comprehensive 

description of any explored subject. This technique can be made more effective by utilizing the 

surface of interpolation or approximation for B-spline and NURBS. 
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Abstract: An important method for finding the optimal solution for linear and nonlinear models is 

the graphical method, which is used if the linear or nonlinear mathematical model contains one, 

two, or three variables. The models that contain only two variables are among the most models for 

which the optimal solution has been obtained graphically, whether these models are linear or 

non-linear in references and research that are concerned with the science of operations research, 

when the data of the issue under study is classical data. In this research, we will present a study 

through, which we present the graphical method for solving Neutrosophical nonlinear models in 

the following case: A nonlinear programming issue, the objective function is a nonlinear function, 

and the constraints are linear functions. Note that we can use the same method if (i) the objective 

function follower is a linear follower and the constraints are nonlinear; (ii) the objective function is 

a non-linear follower and the constraints are non-linear. In the three cases, the nonlinear models are 

neutrosophic, and as we know, the mathematical model is a nonlinear model if any of the 

components of the objective function or the constraints are nonlinear expressions, and the 

nonlinear expressions may be in both. At the left end of the constraints are neutrosophic values, at 

least one or all of them. Then, the possible solutions to the neutrosophic nonlinear programming 

problem are the set of rays 𝑁𝑋 ∈ 𝑅𝑛that fulfills all the constraints. As for the region of possible 

solutions, it is the region that contains all the rays that fulfill the constraints. The optimal solution is 

the beam that fulfills all constraints and at which the function reaches a maximum or minimum 

value, depending on the nature of the issue under study (noting that it is not necessary to be alone). 

Keywords: Nonlinear Models; Neutrosophic Logic; Neutrosophic Nonlinear Models; Graphical 

Method. 

 

 

1. Introduction 

Problems of mathematical examples search for maximizing or minimizing a certain quantity 

that we call the objective function, and this quantity depends on a number of decision variables, as 

these variables may be independent of each other or linked to each other through a set of constraints. 

Studying the methods of solving nonlinear programming problems that we encounter in many 

practical issues, for example when we want to determine the cost of producing or purchasing goods, 

as well as the cost of storing manufactured or unprocessed materials ــ and so on. It led to the 

creation of a basic structure used to find these solutions from these methods, the graphical solution 

method that was presented in many references using classical data, and due to the great interest in 

the research that was published in many international journals, which dealt with some topics of 

operations research using the concepts of science neutrosophic [1-11] The science that laid the 

foundations of the American scientist and mathematical philosopher Florentin Smarandache, which 
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explains the stages of its development. What was mentioned in the research [1], we will present in 

this research the graphic method used to find the optimal solution for nonlinear neutrosophic 

models, models that take data neutrosophic values of indefinite values A complete determination is 

not certain, and in reality it belongs to any neighborhood of the classical values and is given as 

follows: It is 𝑁𝑎 = a ± 𝜀  where 𝜀  is the indeterminacy and takes one of the forms  𝜀 = [𝜆1, 𝜆2 ] or  

𝜀 = {𝜆1 , 𝜆2} or  𝜀 ∈ [𝜆1, 𝜆2 ] -- otherwise, which is any neighborhood of the value 𝑎 that we get 

during data collection. 

2. Discussion  

The importance of nonlinear models comes from the fact that many practical issues lead to 

nonlinear models, which prompted many researchers and scholars to search for ways to solve these 

models. Many methods were presented that helped the great development of computer science to 

find them and were presented according to classical logic, i.e. data were specific values. Appropriate 

for the time period in which they were collected, and since the purpose of any study of such issues is 

to develop plans for the course of work in the future, the decision makers faced great difficulty 

because of the instability of the conditions surrounding the work environment and in order to 

control all conditions and provide ideal decisions for the issues that turn into models In two 

previous researches, we presented a formulation of some concepts of nonlinear programming, and 

one of the ways to solve it is the method of Lagrangian multiplication for models constrained by 

equal constraints using the concepts of neutrosophic science [12,13]. 

The neutrosophic mathematical model [12]: 

In the problem of examples where the objective and constraints are in the form of neutrosophic 

mathematical functions, then the neutrosophic mathematical model is written in the following form: 

𝑁𝑓 = 𝑁𝑓(𝑥1 , 𝑥2, −−, 𝑥𝑛) → (𝑀𝑎𝑥 )𝑜𝑟 (𝑀𝑖𝑛) 

According to the following restrictions: 

𝑁𝑔𝑖(𝑥1 , 𝑥2, −−, 𝑥𝑛) (
≤
≥
=

) 𝑁𝑏𝑖   ; 𝑖 = 1,2, − − −, 𝑚 

𝑥1 , 𝑥2, −−, 𝑥𝑛 ≥ 0 

In this model, the examples of the variables in the objective function and in the constraints are 

neutrosophic values, as well as the other side of the relations that represent the constraints. 
Based on the information provided in the reference [14]: 

The graphic method to find the optimal solution for nonlinear problems: 

This method is suitable for simple problems that contain only two variables, it is impractical for 

problems that contain more than one variables or in which the objective function is complex in 

addition to the presence of restrictions that we cannot express in simple forms, so to find the optimal 

solution for a nonlinear model in a graphic way we represent the constraints among the coordinate 

axes, we define the common solution area for these constraints, so that it is the area of the accepted 

solutions for the mathematical model, then we represent the objective function in order to determine 

the optimal solution. 

We have the following example using classic values [14]: 

𝑀𝑎𝑥𝑓(𝑥1 , 𝑥2) = (𝑥1 −  2)2 + (𝑥2 −  3)2 

𝑥1 + 2𝑥2 ≤ 12 

𝑥1 + 𝑥2 ≤ 9 

𝑥1 , 𝑥2 ≥ 0 
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Figure 1. The first figure represents the solution to Example No (1). 

From the Figure 1, it is clear 𝑓∗ = 𝑀𝑖𝑛𝑓 = (2 − 2)2 + (3 − 3)2 = 0 

Whereas, the smallest value reached by the function is in the center 𝑀(2 , 3) 

As for if it is required to find 𝑀𝑎𝑥𝑓 it will be on point 𝐸(9 , 0) and therefore  

𝑓∗ = 𝑀𝑎𝑥𝑓 = (9 − 2)2 + (0 − 3)2 = 58 

Neutrosophical formula for the previous example: 

Finding the optimal solution for a nonlinear programming problem, where the objective function is a 

nonlinear function, and the constraints are linear functions: 

Find the minimum value of the function: 

𝑀𝑖𝑛𝑁𝑓(𝑥1 , 𝑥2) = (𝑥1 −  2)2 + (𝑥2 −  3)2 

Within the restrictions: 

𝑥1 + 2𝑥2 ≤ 12 + 𝜀1 

𝑥1 + 𝑥2 ≤ 9 + 𝜀2 

𝑥1 , 𝑥2 ≥ 0 

Where 𝜀1  and 𝜀2  It is the indeterminacy and we take it as follows. 

Then the restrictions will look like this: 

In this example, we take  𝜀1 ∈ [0 , 3] and    𝜀2 ∈ [0 , 2] , and then the problem is written as follows: 

𝑥1 + 2𝑥2 ∈ [12 , 15] 

𝑥1 + 𝑥2 ∈ [9 , 11] 

𝑥1 , 𝑥2 ≥ 0 
Clarification: The second term of the constraints expresses the available potentials taken as 

Neutrosophical values. 

We need to find the vector 𝑁𝑋∗ = (𝑥1
∗ , 𝑥2

∗) So that the inequality is fulfilled: 

𝑁𝑓(𝑁𝑋∗) ≤ 𝑁𝑓(𝑋) 

∀𝑁𝑋 ∈ 𝐷 

The solution: 

1. We define the solution area 𝐷 This is done by representing the constraints in the coordinate 

plane 𝑜𝑥1𝑥2 

D 
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First constraint: 

𝑥1 + 2𝑥2 ∈ [12 , 15] 

We draw the straight line represented by the equation 𝑥1 + 2𝑥2 ∈ [12 , 15] 

𝑥1 = 0 ⇒ 2𝑥2 ∈ [12 , 15] ⇒ 𝑥2 ∈ [6 , 7.5] 

𝐴(0 , [6 , 7.5] ) 

𝑥2 = 0 ⇒ 𝑥1 ∈ [12 , 15] ⇒ 

𝐵([12 , 15] , 0) 

We define the region where the first constraint is satisfied: 

We know that the line represented by equation 𝑥1 + 2𝑥2 ∈ [12 , 15] the plane defined by the first 

quadrant is divided into two halves of a plane. We take a point, not on the specificity, from one of the 

two halves of the plane, and let the point be (0 , 0) we substitute in the constraint, we note that it 

achieves the inequality that represents the first constraint, that is, half of the plane to which this point 

belongs is half of the solution plane. 

 

The second constraint: 

𝑥1 + 𝑥2 ∈ [9 , 11] 

    We draw the straight line represented by the equation   𝑥1 + 𝑥2 ∈ [9 , 11]     
𝑥1 = 0 ⇒ 𝑥2 ∈ [9 , 11] 

𝐶(0 , [9 , 11] ) 

𝑥2 = 0 ⇒ 𝑥1 ∈ [9 , 11] ⇒ 

𝐸([9 , 11], 0 ) 

We define the region where the second constraint is satisfied: 

The line represented by equation 𝑥1 + 𝑥2 ∈ [9 , 11], the plane defined by the first quarter is divided 

into two halves of a plane. We take a point, not to be determined, from one of the two halves of the 

plane, let the point be (0 , 0) and substitute in the constraint. We note that it achieves the inequality 

representing the second constraint, meaning that half of the plane to which this point belongs is half 

of the solution plane. 

To find the optimal solution, we draw the objective function, which is a circle with a point center 

𝑀(2 , 3) radius 𝑟 = √𝑁𝑓. 

From the figure, it is clear that 𝑀𝑖𝑛 𝑁𝑓 = 0 the minimum value reached by the objective function is 

at the center of the circle, i.e. at the point 𝑀(2 , 3). 

If required, find the maximum value of the function: 

𝑀𝑎𝑥𝑓(𝑥1 , 𝑥2) = (𝑥1 −  2)2 + (𝑥2 −  3)2 

Within the restrictions: 

𝑥1 + 2𝑥2 ≤ 12 + 𝜀1 

𝑥1 + 𝑥2 ≤ 9 + 𝜀2 

𝑥1 , 𝑥2 ≥ 0 

In this case, we know that the optimal solution is located on the vertices of the common solution 

region, i.e. on the vertices of the polygon  𝑂𝐴𝐷𝐸 , we have the coordinates of these points 𝑂(0 , 0)   ،
𝐴(0 , [6 , 7.5] )    ، 𝐸([9 , 11], 0 ) for the coordinates of the point 𝐷  , and we determine it from the 

study of the intersection of the two lines represented by the following equations: 
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𝑥1 + 2𝑥2 ∈ [12 , 15] 

𝑥1 + 𝑥2 ∈ [9 , 11] 

Solving the two equations, we get 𝐷([6 , 7], [3 , 4]) then we calculate the value of the function at 

these points 

(𝑂(0 , 0) ) = (0 −  2)2 + (0 −  3)2 = 13 

𝑓(𝐴(0 , [6 , 7.5] )) = (0 −  2)2 + ([6 , 7.5] −  3)2 = 4 + ([3 , 4.5] )2 ∈ [13 , 24.25] 

𝑓(𝐸([9 , 11], 0 )) = ([9 , 11] −  2)2 + (0 −  3)2 = ([7 , 9] )2 + 9 ∈ [58 , 90] 

𝑓(𝐷([6 , 7], [3 , 4]  )) = ([6 , 7] −  2)2 + ([3 , 4] −  3)2 ∈ [19 , 24] 

The Maximum value the function takes at point 𝐸([9 , 11], 0 ) and is 

𝑅 = √[58 , 90] ∈ [7.6 , 9.5] 

Therefore, the optimal solution is a circle centered at point 𝑀(2 , 3) and whose radius is one of the 

domain values [7.6 , 9.5]. 

For clarification, we draw the Figure 2, for one of the values we find: 

 

Figure 2. Determination of the joint solution region of neutrosophic constraints. 

For the Neutrosophical objective function, it represents a set of circles whose center 𝑀(2 , 3) and 

radius are one of the domain values [7.6 , 9.5]. 

The following Figure 3 shows one of these circles:  
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Figure 3. The graphical representation of one of the solutions of the example neutrosophical values. 

 

We note that for both sides of the domain in both constraints is the optimal solution 𝑓∗ = 𝑀𝑎𝑥𝑓 =

68 ∈ [58 , 90] , wear [58 , 90] , the field that represents the maximum optimal solution of the 

neutrosophic model. 

3. Conclusions 

The graphical method is one of the important methods for finding the optimal solution for 

linear and nonlinear models. Therefore, it was necessary to present this study, which explains the 

difference between dealing with classical values and Neutrosophical values, and as we noticed from 

the results of the solution in the example, Neutrosophical values give us optimal solutions that are 

close to the optimal solution in the case of classical values, that is, they are in line with the conditions 

surrounding a work environment The system that this mathematical model represents, so it 

provides a safe environment that protects the systems from falling into losses and making greatest 

profits from them. 
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Abstract: In this manuscript, we establish the notion of neutrosophic rectangular extended b-metric 

spaces and derive some fixed point results for contraction mappings. Also, we provide several non-

trivial examples. Our results are more generalized with respect to the existing ones in the literature. 

At the end of the paper, we provide an application to non-linear fractional differential equations to 

test the validity of the results. 

Keywords: Neutrosophic Metric Spaces; Fixed Point; Graphical View; Non-Linear Fractional 

Differential Equations. 

 

 

1. Introduction 

In 1965, Zadeh [1] developed the "fuzzy notion" to contrast imprecise terms. Fuzzy sets (FSs) 

presented in [1] and metric spaces presented in [2] are combined to establish the concept of fuzzy 

metric spaces (FMSs), in which membership function is used. The notion of FMSs first introduced by 

Kramosil and Michalak [3] in 1975 and then George and Veeramani [4, 5] updated in 1994. Garbiec 

[6] established the fuzzy version of the Banach fixed point result. The notion of FSs only deals with 

membership functions, so there is a gap that FSs did not deal with non-membership functions. 

Atanassov [7] filled this gap to establish the concept of intuitionistic fuzzy sets (IFSs), in which, he 

used both degrees, the degree of membership and the degree of non-membership. But, there is still a 

gap that IFSs did not deals with naturalness. Smarandache [30] filled this gap to propose the concept 

of neutrosophic sets (NSs), as a generalization of IFSs. By combining the concepts of NSs and metric 

spaces, Kirişci and Simsek [32] presented the notion of neutrosophic metric spaces (NMSs). 

Fuzzy rectangular metric spaces and fuzzy rectangular b-metric spaces (FRBMSs) were 

introduced by Mehmood et al. [9], who also demonstrated the Banach contraction principle in the 

context of FRBMSs. The concept of orthogonal FMSs was developed by Hezarjaribi [10], who also 

demonstrated several fixed point theorems. The authors in [11–14, 33-38] established several 

interesting fixed point results. Park and Jeong [15] established fixed point results for fuzzy mappings. 

An intuitionistic fuzzy b-metric space was presented by Konwar [16]. The authors in [17–18,] 

demonstrated a number of fixed point results for in the context of an IFMS. Nice work was done on 
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fractional differential equations by the authors in [19–20]. Several fixed point results were proven by 

Javed et al. [21] in the setting of fuzzy b-metric-like spaces. Uddin et al. [22] presented a number of 

fixed point theorems for contraction mappings in the context of orthogonal controlled fuzzy metric 

spaces. Numerous algebraic structures have been used by mathematicians to apply several novel 

fuzzy set models [23–27, 32-35]. The idea of pentagonal controlled FMSs was recently given by Aftab 

et al. [28], who also demonstrated various fixed point theorems. Kattan et al. [29] established some 

fixed point results in a generalization of an IFMS.  

Jeyaraman et al. [39] proved common fixed point theorems in intuitionistic generalized fuzzy 

cone metric spaces. Ishtiaq et al. [40] derived several a fixed point results in the context of generalized 

neutrosophic cone metric spaces. Gupta et al. [41] examined the uniqueness of solution by employing 

CLR-property on V-fuzzy metric spaces. Chauhan et al. [42] examined the existence and uniqueness 

of fixed points in modified intuitionistic fuzzy metric spaces. Gupta et al. [43] solved some fixed point 

theorems for contraction mappings and investigate the xistence of fixed points for J-ψ-fuzzy 

contractions in fuzzy metric spaces endowed with graph.  

In this manuscript, we aim to introduce the concept of neutrosophic rectangular extended b-

metric spaces (NREBMSs) and to establish several fixed point results for contraction mappings. Also, 

we provide some non-trivial examples and an application to non-linear fractional differential 

equations to show the validity of results herein. An open problem is also raised after the conclusion 

section. 

2. Preliminaries 

In this section, we provide some basic notions that are helpful for readers to understand the main 

results. 

Definition 2.1: [8] A binary operation ∗: [0,1] × [0,1] → [0,1]  is a continuous t-norm (CTN) if it 

satisfies the following conditions: 

(i) ∗ is associative and commutative; 

(ii) ∗ is continuous; 

(iii) ℏ ∗ 1 = ℏ for all ℏ ∈ [0,1]; 

(iv) ℏ ∗ ℓ ≤ 𝑐 ∗ 𝑑 whenever ℏ ≤ 𝑐 and ℓ ≤ 𝑑, for all ℏ, ℓ, 𝑐, 𝑑 ∈ [0,1]. 

 

Example 2.1: [8] ℏ ∗ ℓ = ℏℓ and ℏ ∗ ℓ = min{ℏ, ℓ} are CTN. 

Definition 2.2: [8] A binary operation ○ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-conorm 

(CTCN) if it meets the below assertions:  

T1.  ○  is associative and commutative; 

T2.  ○ is continuous;  

T3.  ℏ ○ 0 = 0, for all  ℏ ∈ [0, 1]; 

T4.  ℏ ○ ℓ ≤ 𝑐 ○ 𝑑 whenever ℏ ≤ 𝑐 and ℓ ≤ 𝑑, for all ℏ, ℓ, 𝑐, 𝑑 ∈ [0,1]. 

Example 2.2: [8] ℏ ○ ℓ = max{ℏ, ℓ} is CTCN.  

Definition 2.3: [4] Let Ƹ is nonempty set, Ҝ is a FS on Ƹ × Ƹ × (0, +∞), and ∗ is a CTN. Then a 

triplet (Ƹ, Ҝ,∗) is known as FMS, if it verifies the following conditions, for all 𝜘, 𝜗, 𝑧 ∈ Ƹ and 𝜎, 𝜏 > 0: 

F1. Ҝ(𝜘, 𝜗, 𝜎) > 0;  

F2. Ҝ(𝜘, 𝜗, 𝜎) = 1 if and only if 𝜘 = 𝜗;  

F3.  Ҝ(𝜘, 𝜗, 𝜎) = Ҝ(𝜗, 𝜘, 𝜎);  

F4.  Ҝ(𝜘, 𝜗, 𝜎) ∗ Ҝ(𝜗, 𝑧, 𝜏) ≤ Ҝ(𝜘, 𝑧, 𝜎 + 𝜏);  

F5.  Ҝ(𝜘, 𝜗, . ): (0, + + ∞) → (0,1] is continuous. 
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Definition 2.4: [9] Let Ƹ is nonempty set, Ҝ is a FS on Ƹ × Ƹ × [0, +∞), and ∗ is a CTN. Then (Ƹ, Ҝ,∗

, ℓ) is known as FRBMS, if it verifies the following conditions, for all 𝜘, 𝜗, 𝑧 ∈ Ƹ and 𝜎, 𝜏, 𝑤 ≥ 0:  

S1. Ҝ(𝜘, 𝜗, 0) = 0;  

S2. Ҝ(𝜘, 𝜗, 𝜎) = 1 if and only if 𝜘 = 𝜗;  

S3. Ҝ(𝜘, 𝜗, 𝜎) = Ҝ(𝜗, 𝜘, 𝜎);  

S4. Ҝ(𝜘, 𝜗, 𝜎) ∗ Ҝ(𝜗, 𝔲, 𝜏) ∗ Ҝ(𝔲, 𝑧, 𝑤) ≤ Ҝ(𝜘, 𝑧, ℓ(𝜎 + 𝜏 + 𝑤)); 

S5. Ҝ(𝜘, 𝜗, . ): (0, +∞) → (0,1] is left continuous and lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1. 

Definition 2.5: [32] Let Ƹ be a non-empty set and Ҝ, П, 𝛥 are NSs on Ƹ × Ƹ × [0, +∞). Suppose 𝜓: Ƹ ×

Ƹ → [1, +∞)  be a function, ∗  and ○  are CTN and CTCN respectively. Then, a six tuple  

(Ƹ, Ҝ, П, 𝛥,∗,○) is known as NMS, if the following conditions are satisfying, for all 𝜘, 𝜗, 𝑧 ∈ Ƹ and 

𝜎, 𝜏, 𝑤 > 0,  

(N1) Ҝ(𝜘, 𝜗, 𝜎) + П(𝜘, 𝜗, 𝜎) + 𝛥(𝜘, 𝜗, 𝜎) ≤ 3; 

(N2) Ҝ(𝜘, 𝜗, 0) = 0; 

(N3) Ҝ(𝜘, 𝜗, 𝜎) = 1 if and only if 𝜘 = 𝜗; 

(N4) Ҝ(𝜘, 𝜗, 𝜎) = Ҝ(𝜗, 𝜘, 𝜎);  

(N5) Ҝ(𝜘, 𝑧, 𝜎 + 𝜏) ≥ Ҝ(𝜘, 𝜗, 𝜎) ∗ Ҝ(𝜗, 𝑧, 𝜏); 

(N6) Ҝ(𝜘, 𝜗, . ): (0, +∞) → [0,1] is continuous and lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1. 

(N7) П(𝜘, 𝜗, 0) = 1; 

(N8) П(𝜘, 𝜗, 𝜎) = 0 if and only if 𝜘 = 𝜗; 

(N9) П(𝜘, 𝜗, 𝜎) = П(𝜗, 𝜘, 𝜎);  

(N10) П(𝜘, 𝑧, 𝜎 + 𝜏) ≤ П(𝜘, 𝜗, 𝜎) ○ П(𝜗, 𝑧, 𝜏); 

(N11) П(𝜘, 𝜗, . ): (0, +∞) → [0,1] is continuous and lim
𝜎→+∞

П(𝜘, 𝜗, 𝜎) = 0. 

(N12) 𝛥(𝜘, 𝜗, 0) = 1; 

(N13) 𝛥(𝜘, 𝜗, 𝜎) = 0 if and only if 𝜘 = 𝜗; 

(N14) 𝛥(𝜘, 𝜗, 𝜎) = 𝛥(𝜗, 𝜘, 𝜎);  

(N15) 𝛥(𝜘, 𝑧, 𝜎 + 𝜏) ≤ 𝛥(𝜘, 𝜗, 𝜎) ○ 𝛥(𝜗, 𝑧, 𝜏); 

(N16) 𝛥(𝜘, 𝜗, . ): (0, +∞) → [0,1] is continuous and lim
𝜎→+∞

𝛥(𝜘, 𝜗, 𝜎) = 0. 

Then (Ƹ, Ҝ, П, 𝛥,∗,○) is called an NMS.  

3. Main Section 

In this section, we introduce the concept of NREBMS and establish some fixed point results. 

Definition 3.1: Let Ƹ be a non-empty set and Ҝ, П, 𝛥 are NSs on Ƹ × Ƹ × [0, +∞). Suppose 𝜓: Ƹ × Ƹ →

[1, +∞) be a function, ∗ and ○ are CTN and CTCN respectively. Then, a six tuple  (Ƹ, Ҝ, П, 𝛥,∗,○) is 

known as NREBMS, if the following conditions are satisfying, for all 𝜘, 𝜗, 𝑧 ∈ Ƹ and 𝜎, 𝜏, 𝑤 > 0, 

(NRE1) Ҝ(𝜘, 𝜗, 𝜎) + П(𝜘, 𝜗, 𝜎) + 𝛥(𝜘, 𝜗, 𝜎) ≤ 3; 

(NRE2) Ҝ(𝜘, 𝜗, 0) = 0; 

(NRE3) Ҝ(𝜘, 𝜗, 𝜎) = 1 if and only if 𝜘 = 𝜗; 

(NRE4) Ҝ(𝜘, 𝜗, 𝜎) = Ҝ(𝜗, 𝜘, 𝜎);  
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(NRE5) Ҝ(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≥ Ҝ(𝜘, 𝜗, 𝜎) ∗ Ҝ(𝜗, 𝔲, 𝜏) ∗ Ҝ(𝔲, 𝑧, 𝑤), ∀ distinct 𝜗, 𝔲 ∈

Ƹ\{𝜘, 𝑧}; 

(NRE6) Ҝ(𝜘, 𝜗, . ): (0, +∞) → [0,1] is continuous and lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1. 

(NRE7) П(𝜘, 𝜗, 0) = 1; 

(NRE8) П(𝜘, 𝜗, 𝜎) = 0 if and only if 𝜘 = 𝜗; 

(NRE9) П(𝜘, 𝜗, 𝜎) = П(𝜗, 𝜘, 𝜎);  

(NRE10) П(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ П(𝜘, 𝜗, 𝜎) ○ П(𝜗, 𝔲, 𝜏) ○ П(𝔲, 𝑧, 𝑤), ∀ distinct 𝜗, 𝔲 ∈

Ƹ\{𝜘, 𝑧}; 

(NRE11) П(𝜘, 𝜗, . ): (0, +∞) → [0,1] is continuous and lim
𝜎→+∞

П(𝜘, 𝜗, 𝜎) = 0. 

(NRE12) 𝛥(𝜘, 𝜗, 0) = 1; 

(NRE13) 𝛥(𝜘, 𝜗, 𝜎) = 0 if and only if 𝜘 = 𝜗; 

(NRE14) 𝛥(𝜘, 𝜗, 𝜎) = 𝛥(𝜗, 𝜘, 𝜎);  

(NRE15) 𝛥(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ 𝛥(𝜘, 𝜗, 𝜎) ○ 𝛥(𝜗, 𝔲, 𝜏) ○ 𝛥(𝔲, 𝑧, 𝑤), ∀ distinct 𝜗, 𝔲 ∈

Ƹ\{𝜘, 𝑧}; 

(NRE16) 𝛥(𝜘, 𝜗, . ): (0, +∞) → [0,1] is continuous and lim
𝜎→+∞

𝛥(𝜘, 𝜗, 𝜎) = 0. 

Example 3.1: Let (Ƹ, 𝑑) be a rectangular metric space, define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = 1 +

𝜘 + 𝜗 and define Ҝ, П, 𝛥: Ƹ × Ƹ × [0, +∞) → [0,1] by 

Ҝ(𝜘, 𝜗, 𝜎) =
𝜎

𝜎 + 𝑑(𝜘, 𝜗)
,

П(𝜘, 𝜗, 𝜎) =
𝑑(𝜘, 𝜗)

𝜎 + 𝑑(𝜘, 𝜗)
 and 𝛥(𝜘, 𝜗, 𝜎) =

𝑑(𝜘, 𝜗)

𝜎
 for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0, 

with CTN ℏ ∗ ℓ = min{ℏ, ℓ} and CTCN ℏ ○ ℓ = max{ℏ, ℓ}. Then (Ƹ, Ҝ, П, 𝛥,∗,○) is an NREBMS.  

Proof: Properties (NRE1)-(NRE4), (NRE6)-(NRE9), (NRE11)-(NRE14) and (NRE16) are easy obvious. 

Here, we prove (NRE5), (NRE10) and (NRE15). 

(NRE5) Ҝ(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≥ Ҝ(𝜘, 𝜗, 𝜎) ∗ Ҝ(𝜗, 𝔲, 𝜏) ∗ Ҝ(𝔲, 𝑧, 𝑤) for all distinct 𝜗, 𝔲 ∈ Ƹ\{𝜘, 𝑧}. 

Suppose that 

Ҝ(𝜘, 𝜗, 𝜎) ≤ Ҝ(𝜗, 𝔲, 𝜏) 

and 

Ҝ(𝜘, 𝜗, 𝜎) ≤ Ҝ(𝔲, 𝑧, 𝑤), 

which implies that 

𝜎

𝜎 + 𝑑(𝜘, 𝜗)
≤

𝜏

𝜏 + 𝑑(𝜗, 𝔲)
 

and  

𝜎

𝜎 + 𝑑(𝜘, 𝜗)
≤

𝑤

𝑤 + 𝑑(𝔲, 𝑧)
. 
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So, we obtain 

𝜎𝑑(𝜗, 𝔲) ≤ 𝜏𝑑(𝜘, 𝜗) and 𝜎𝑑(𝔲, 𝑧) ≤ 𝑤𝑑(𝜘, 𝜗). 

This implies 

                     (𝜏 + 𝑤)𝑑(𝜘, 𝜗) ≥ 𝜎[𝑑(𝜗, 𝔲) + 𝑑(𝔲, 𝑧)]                             (1) 

Now, observe that  

Ҝ(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≥ Ҝ(𝜘, 𝜗, 𝜎) 

⇔
𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)

𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝑑(𝜘, 𝑧)
≥

𝜎

𝜎 + 𝑑(𝜘, 𝜗)
 

⇔
𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)

𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝜓(𝜘, 𝑧)[𝑑(𝜘, 𝜗) + 𝑑(𝜗, 𝔲) + 𝑑(𝔲, 𝑧)]
≥

𝜎

𝜎 + 𝑑(𝜘, 𝜗)
 

⇔
𝜎 + 𝜏 + 𝑤

𝜎 + 𝜏 + 𝑤 + 𝑑(𝜘, 𝜗) + 𝑑(𝜗, 𝔲) + 𝑑(𝔲, 𝑧)
≥

𝜎

𝜎 + 𝑑(𝜘, 𝜗)
 

⇔ (𝜏 + 𝑤)𝑑(𝜘, 𝜗) ≥ 𝜎[𝑑(𝜗, 𝔲) + 𝑑(𝔲, 𝑧)]. 

Hence, 

Ҝ(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≥ Ҝ(𝜘, 𝜗, 𝜎) ∗ Ҝ(𝜗, 𝔲, 𝜏) ∗ Ҝ(𝔲, 𝑧, 𝑤). 

 (NRE10) П(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ П(𝜘, 𝜗, 𝜎) ○ П(𝜗, 𝔲, 𝜏) ○ П(𝔲, 𝑧, 𝑤)  for all distinct 𝜗, 𝔲 ∈ Ƹ\

{𝜘, 𝑧}. 

Recall that  

𝑑(𝜘, 𝑧) = 𝑑(𝜘, 𝑧)max {
𝑑(𝜘, 𝜗)

𝑑(𝜘, 𝜗)
,
𝑑(𝜗, 𝔲)

𝑑(𝜗, 𝔲)
,
𝑑(𝔲, 𝑧)

𝑑(𝔲, 𝑧)
} . 

Therefore, 

𝑑(𝜘, 𝑧) ≤ [𝜎 + 𝜏 + 𝑤 + 𝑑(𝜘, 𝑧)]max {
𝑑(𝜘, 𝜗)

𝑑(𝜘, 𝜗)
,
𝑑(𝜗, 𝔲)

𝑑(𝜗, 𝔲)
,
𝑑(𝔲, 𝑧)

𝑑(𝔲, 𝑧)
} . 

Define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = 1 + 𝜘 + 𝜗. Then 

𝑑(𝜘, 𝑧) ≤ [𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝑑(𝜘, 𝑧)]max {
𝑑(𝜘, 𝜗)

𝑑(𝜘, 𝜗)
,
𝑑(𝜗, 𝔲)

𝑑(𝜗, 𝔲)
,
𝑑(𝔲, 𝑧)

𝑑(𝔲, 𝑧)
} . 

Also observe the fact that 

𝑑(𝜘, 𝑧) ≤ [𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝑑(𝜘, 𝑧)]max { 
𝑑(𝜘, 𝜗)

𝜎 + 𝑑(𝜘, 𝜗)
,
𝑑(𝜗, 𝔲)

𝜏 + 𝑑(𝜗, 𝔲)
,
𝑑(𝔲, 𝑧)

𝑤 + 𝑑(𝔲, 𝑧)
} . 

This implies 

𝑑(𝜘, 𝑧)

𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝑑(𝜘, 𝑧)
≤ max {

𝑑(𝜘, 𝜗)

𝜎 + 𝑑(𝜘, 𝜗)
,
𝑑(𝜗, 𝔲)

𝜏 + 𝑑(𝜗, 𝔲)
,
𝑑(𝔲, 𝑧)

𝑤 + 𝑑(𝔲, 𝑧)
} . 

Then 

П(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ max{П(𝜘, 𝜗, 𝜎), П(𝜗, 𝔲, 𝜏), П(𝔲, 𝑧, 𝑤)}. 

Hence, 

П(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ П(𝜘, 𝜗, 𝜎) ○ П(𝜗, 𝔲, 𝜏) ○ П(𝔲, 𝑧, 𝑤). 

(NRE15) 𝛥(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ 𝛥(𝜘, 𝜗, 𝜎) ○ 𝛥(𝜗, 𝔲, 𝜏) ○ 𝛥(𝔲, 𝑧, 𝑤) for all distinct 𝜗, 𝔲 ∈ Ƹ\{𝜘, 𝑧}. 

Observe that, 

𝑑(𝜘, 𝑧) ≤ [𝜎 + 𝜏 + 𝑤 + 𝑑(𝜘, 𝑧)]max {
𝑑(𝜘, 𝜗)

𝜎
,
𝑑(𝜗, 𝔲)

𝜏
,
𝑑(𝔲, 𝑧)

𝑤
} . 
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Define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = 1 + 𝜘 + 𝜗. Then 

𝑑(𝜘, 𝑧) ≤ [𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝑑(𝜘, 𝑧)]max {
𝑑(𝜘, 𝜗)

𝜎
,
𝑑(𝜗, 𝔲)

𝜏
,
𝑑(𝔲, 𝑧)

𝑤
} . 

This implies 

𝑑(𝜘, 𝑧)

𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤) + 𝑑(𝜘, 𝑧)
≤ max {

𝑑(𝜘, 𝜗)

𝜎
,
𝑑(𝜗, 𝔲)

𝜏
,
𝑑(𝔲, 𝑧)

𝑤
} . 

Then 

𝛥(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ max{𝛥(𝜘, 𝜗, 𝜎), 𝛥(𝜗, 𝔲, 𝜏), 𝛥(𝔲, 𝑧, 𝑤)}. 

Hence 

𝛥(𝜘, 𝑧, 𝜓(𝜘, 𝑧)(𝜎 + 𝜏 + 𝑤)) ≤ 𝛥(𝜘, 𝜗, 𝜎) ○ 𝛥(𝜗, 𝔲, 𝜏) ○ 𝛥(𝔲, 𝑧, 𝑤). 

 

Therefore, (Ƹ, Ҝ, П, 𝛥,∗,○) is a NREBMS.  

Remark 3.1: The above example is not a NMS. But, if we let 𝜓 = 1, then it is NMS. 

Example 3.2: Let Ƹ = [0,1] and define 𝜓: Ƹ × Ƹ → [1, +∞)  by 𝜓(𝜘, 𝜗) = 1 + 𝜘2 + 𝜗3  and Ҝ, П, 𝛥: Ƹ ×

Ƹ × [0, +∞) → [0,1] by 

Ҝ(𝜘, 𝜗, 𝜎) = {
1,                    if       𝜘 = 𝜗

𝜎

𝜎 + max{𝜘, 𝜗}𝑝
, otherwise  

 П(𝜘, 𝜗, 𝜎) = {

0,           if        𝜘 = 𝜗
max{𝜘, 𝜗}𝑝

𝜎 +max{𝜘, 𝜗}𝑝
, otherwise

 

and 

𝛥(𝜘, 𝜗, 𝜎) = {

0,           if        𝜘 = 𝜗
max{𝜘, 𝜗}𝑝

𝜎
, otherwise

  for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0. 

Then (Ƹ, Ҝ, П, 𝛥,∗,○) is an NREBMS with CTN ℏ ∗ ℓ = ℏ ∙ ℓ, CTCN ℏ ○ ℓ = max{ℏ, ℓ} and  𝑝 ≥ 1.  

Example 3.3: Let Ƹ = [0, +∞) and define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = 1 +
𝜘

𝜗
 and Ҝ, П, 𝛥: Ƹ × Ƹ ×

[0, +∞) → [0,1] by 

Ҝ(𝜘, 𝜗, 𝜎) = {
1,                    if       𝜘 = 𝜗

𝜎

𝜎 + (𝜘 + 𝜗)𝑝
, otherwise  

 П(𝜘, 𝜗, 𝜎) = {

0,            if       𝜘 = 𝜗
(𝜘 + 𝜗)𝑝

𝜎 + (𝜘 + 𝜗)𝑝
, otherwise

 

and 

𝛥(𝜘, 𝜗, 𝜎) = {

0,            if       𝜘 = 𝜗
(𝜘 + 𝜗)𝑝

𝜎
, otherwise

  for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0. 

Then (Ƹ, Ҝ, П, 𝛥,∗,○) is an NREBMS with CTN ℏ ∗ ℓ = ℏ ∙ ℓ, CTCN ℏ ○ ℓ = max{ℏ, ℓ} and  𝑝 ≥ 1.  
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Example 3.4: Let Ƹ = [0, +∞) and define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = {
1,       if          𝜘 = 𝜗
1 + 𝜘 + 𝜗, otherwise

 and 

Ҝ, П, 𝛥: Ƹ × Ƹ × [0, +∞) → [0,1] by 

Ҝ(𝜘, 𝜗, 𝜎) =
𝜎

𝜎 + |𝜘 − 𝜗|𝑝
  

 П(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎 + |𝜘 − 𝜗|𝑝
 , 

and 

 𝛥(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎
  for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0. 

Then (Ƹ, Ҝ, П, 𝛥,∗,○) is an NREBMS with CTN ℏ ∗ ℓ = ℏ ∙ ℓ, CTCN ℏ ○ ℓ = max{ℏ, ℓ} and  𝑝 ≥ 1.  

Remark 3.2: The above examples 3.3 and 3.4 are also NREBMSs if we take ℏ ∗ ℓ = min{ℏ, ℓ} , and ℏ ○

ℓ = max{ℏ, ℓ}. 

Definition 3.2: Suppose (Ƹ, Ҝ, П, 𝛥,∗,○) is a NREBMS and assume {𝜘𝑛} be a sequence in Ƹ. Then  

 {𝜘𝑛} is said to be a convergent sequence if there exists 𝜘 ∈ Ƹ such that 

lim
𝑛→+∞

Ҝ(𝜘𝑛 , 𝜘, 𝜎) = 1, for all 𝜎 > 0 

lim
𝑛→+∞

П(𝜘𝑛 , 𝜘, 𝜎) = 0,   for all 𝜎 > 0. 

and  

lim
𝑛→+∞

𝛥(𝜘𝑛 , 𝜘, 𝜎) = 0,   for all 𝜎 > 0. 

 {𝜘𝑛} is said to be a Cauchy sequence if  

lim
𝑛→+∞

Ҝ(𝜘𝑛, 𝜘𝑛+𝑞 , 𝜎) = 1 for all 𝜎 > 0 

lim
𝑛→+∞

П(𝜘𝑛, 𝜘𝑛+𝑞 , 𝜎) = 0 for all 𝜎 > 0. 

and  

lim
𝑛→+∞

𝛥(𝜘𝑛 , 𝜘𝑛+𝑞 , 𝜎) = 0 for all 𝜎 > 0. 

 

 The NREBMS (Ƹ, Ҝ, П, 𝛥,∗,○) is called complete, if every Cauchy sequence is convergent in 

Ƹ. 

Example 3.5: Let Ƹ = [0, +∞) and define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = {
1,       if          𝜘 = 𝜗
1 + 𝜘 + 𝜗, otherwise

 and 

Ҝ, П, 𝛥: Ƹ × Ƹ × [0, +∞) → [0,1] by 

Ҝ(𝜘, 𝜗, 𝜎) =
𝜎

𝜎 + |𝜘 − 𝜗|𝑝
  

 П(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎 + |𝜘 − 𝜗|𝑝
  , 

and 
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 𝛥(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎 + |𝜘 − 𝜗|𝑝
  for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0, 

then (Ƹ, Ҝ, П, 𝛥,∗,○) is an NREBMS with CTN ℏ ∗ ℓ = ℏ ∙ ℓ, CTCN ℏ ○ ℓ = max{ℏ, ℓ} and  𝑝 ≥ 1.  

Let {𝜘𝑛} =
1

𝑛
 for all 𝑛 ∈ {1,2,3,⋯ } be a sequence in Ƹ, then {𝜘𝑛} converges to 0. Now  

lim
𝑛→+∞

Ҝ(𝜘𝑛 , 0, 𝜎) = lim
𝑛→+∞

𝜎

𝜎 + (
1
𝑛
)
𝑝 = 1, 

lim
𝑛→+∞

П(𝜘𝑛, 0, 𝜎) = lim
𝑛→+∞

(
1
𝑛
)
𝑝

𝜎 + (
1
𝑛
)
𝑝 = 0, 

and  

lim
𝑛→+∞

𝛥(𝜘𝑛, 0, 𝜎) = lim
𝑛→+∞

(
1
𝑛
)
𝑝

𝜎
= 0. 

 

That is, the sequence {𝜘𝑛} is convergent. 

Example 3.6: Consider the preceding example and a sequence 𝜘𝑛 =
1

𝑛
 for all 𝑛 ∈ {1,2,3,⋯ , }. Then 

for all 𝑞 ∈ {1,2,3,⋯ }, we get 

lim
𝑛→+∞

Ҝ(𝜘𝑛, 𝜘𝑛+𝑞 , 𝜎) = lim
𝑛→+∞

𝜎

𝜎 + (
1

𝑛 + 1
)
𝑝

+⋯+ (
1

𝑛 + 𝑞
)
𝑝 = 1, 

lim
𝑛→+∞

П(𝜘𝑛, 𝜘𝑛+𝑞 , 𝜎) = lim
𝑛→+∞

(
1

𝑛 + 1
)
𝑝

+⋯+ (
1

𝑛 + 𝑞
)
𝑝

𝜎 + (
1

𝑛 + 1
)
𝑝

+⋯+ (
1

𝑛 + 𝑞
)
𝑝 = 0, 

and  

lim
𝑛→+∞

𝛥(𝜘𝑛 , 𝜘𝑛+𝑞 , 𝜎) = lim
𝑛→+∞

(
1

𝑛 + 1
)
𝑝

+⋯+ (
1

𝑛 + 𝑞
)
𝑝

𝜎
= 0. 

That is, the sequence {𝜘𝑛} is Cauchy. 

Lemma 3.1: Let {𝜘𝑛}  be a Cauchy sequence in a NREBMS (Ƹ, Ҝ, П, 𝛥,∗,○)  such that 𝜘𝑛 ≠ 𝜘𝑚 , 

whenever 𝑛 ≠ 𝑚 for all 𝑚, 𝑛 ∈ ℕ. Then {𝜘𝑛} converges to at most one point in Ƹ.  

Lemma 3.2: Let 𝜘 and 𝜗 be any two points in a NREBMS (Ƹ, Ҝ, П, 𝛥,∗,○). If for any 𝜂 ∈ (0,1), we have  

Ҝ(𝜘, 𝜗, 𝜂𝜎) ≥ Ҝ(𝜘, 𝜗, 𝜎), П(𝜘, 𝜗, 𝜂𝜎) ≤ П(𝜘, 𝜗, 𝜎) and 𝛥(𝜘, 𝜗, 𝜂𝜎) ≤ 𝛥(𝜘, 𝜗, 𝜎), 

then 𝜘 = 𝜗. 

Theorem 3.1: Let (Ƹ, Ҝ, П, 𝛥,∗,○) be a complete NREBMS such that 

lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1, lim
𝜎→+∞

П(𝜘, 𝜗, 𝜎) = 0,  and lim
𝜎→+∞

𝛥(𝜘, 𝜗, 𝜎) = 0,   for all 𝜘, 𝜗 ∈ Ƹ.   (2) 

Let 𝜉: Ƹ → Ƹ be a mapping satisfying 

Ҝ(𝜉𝜘, 𝜉𝜗, 𝜂𝜎) ≥ Ҝ(𝜘, 𝜗, 𝜎), П(𝜉𝜘, 𝜉𝜗, 𝜂𝜎) ≤ П(𝜘, 𝜗, 𝜎), 

and  𝛥(𝜉𝜘, 𝜉𝜗, 𝜂𝜎) ≤ 𝛥(𝜘, 𝜗, 𝜎)        (3) 

for all 𝜘, 𝜗 ∈ Ƹ, 𝜂 ∈ (0,1). Then 𝜉 has a unique fixed point 𝔲 ∈ Ƹ. 
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Proof: Let 𝜘0 ∈ Ƹ  be an arbitrary point and let 𝑛 ∈ ℕ  then begin an iterative process such that 

𝜘𝑛+1 = 𝜉𝜘𝑛. Continuously, applying an inequality (3), we deduce that 

Ҝ(𝜘𝑛 , 𝜘𝑛+1, 𝜎) ≥ Ҝ (𝜘0, 𝜘1,
𝜎

𝜂𝑛
) , П(𝜘𝑛, 𝜘𝑛+1, 𝜎) ≤ П (𝜘0, 𝜘1,

𝜎

𝜂𝑛
)  and 𝛥(𝜘𝑛, 𝜘𝑛+1, 𝜎)

≤ 𝛥 (𝜘0, 𝜘1,
𝜎

𝜂𝑛
).                     (4) 

Since, (Ƹ, Ҝ, П, 𝛥,∗,○) is a complete NREBMS, then for the sequence {𝜘𝑛}, writing 𝜎 =
𝜎

3
+

𝜎

3
+

𝜎

3
 and 

using the rectangular inequality given in (NRE5), (NRE10) and (NRE15) on 

Ҝ(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎), П(𝜘𝑛 , 𝜘𝑛+𝑝, 𝜎) and 𝛥(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎), we have the following cases. 

Case 1: If 𝑝 is odd, then 𝑝 = 2𝑚 + 1 where 𝑚 ∈ {1,2,3, … }. So, we have 

Ҝ(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≥ Ҝ (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+2𝑚+1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+2𝑚+1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1,
𝜎

(3)𝑚𝜓(𝜘𝑛,𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2,𝜘𝑛+3)𝜓(𝜘𝑛+4,𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚,𝜘𝑛+2𝑚+1)
 )  

П(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ П (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘𝑛+2, 𝜘𝑛+2𝑚+1,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

≤ П(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 



Neutrosophic Systems with Applications, Vol. 9, 2023                                                 57 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Naeem Saleem, Umar Ishtiaq, Khaleel Ahmad, Salvatore Sessa, and Ferdinando Di Martino, Fixed Point Results in 

Neutrosophic Rectangular Extended b-Metric Spaces 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+2𝑚+1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≤ П(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ). 

and  

𝛥(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ 𝛥 (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+2𝑚+1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

≤ 𝛥 (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+2𝑚+1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≤ 𝛥 (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 
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○ 𝛥 (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ). 

Using (4) in the above inequalities, we deduce 

Ҝ(𝜘𝑛, 𝜘𝑛+2𝑚+1, 𝜎) ≥ Ҝ(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘0, 𝜘1,

𝜎

3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+4𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+5𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜂𝑛+2𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ) 

≥ Ҝ(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘0, 𝜘1,

𝜎

(3𝜂)𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)𝑚𝜂𝑛+𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ), 

П(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ П (𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘0, 𝜘1,

𝜎

3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+4𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 
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○ П(𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+5𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘0, 𝜘1,
𝜎

(3)𝑚𝜂𝑛+2𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ) 

≤ П(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘0, 𝜘1,

𝜎

(3𝜂)𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘0, 𝜘1,
𝜎

(3𝜂)𝑚𝜂𝑛+𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ), 

and  

𝛥(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ 𝛥 (𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘0, 𝜘1,

𝜎

3𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+4𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+5𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜂𝑛+2𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ) 

≤ 𝛥(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘0, 𝜘1,

𝜎

(3𝜂)𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 
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○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)𝑚𝜂𝑛+𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ). 

Case 2: If 𝑝 is even, then 𝑝 = 2𝑚;𝑚 ∈ {1,2,3,⋯ }. So, the we have 

Ҝ(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≥ Ҝ (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+2𝑚,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) ∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+2𝑚,

𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚,
𝜎

(3)𝑚−1𝜓(𝜘𝑛,𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2,𝜘𝑛+3)𝜓(𝜘𝑛+4,𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2,𝜘𝑛+2𝑚)
 )  

П(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≤ П (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ П (𝜘𝑛+2, 𝜘𝑛+2𝑚,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

≤ П(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+2𝑚,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 
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≤ П(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ), 

and  

𝛥(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≤ 𝛥 (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+2𝑚,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

≤ 𝛥(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+2𝑚,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≤ 𝛥(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝛥 (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ). 

Using (4) in the above inequalities, we deduce 
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Ҝ(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≥ Ҝ(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘0, 𝜘1,

𝜎

3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+4𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+5𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ(𝜘0, 𝜘1,
𝜎

(3)𝑚−1𝜂𝑛+2𝑚−2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ) 

≥ Ҝ(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘0, 𝜘1,

𝜎

(3𝜂)𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ (𝜘0, 𝜘1,
𝜎

(3𝜂)𝑚−1𝜂𝑛+𝑚−1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ), 

П(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≤ П (𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ П (𝜘0, 𝜘1,

𝜎

3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+4𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+5𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘0, 𝜘1,
𝜎

(3)𝑚𝜂𝑛+2𝑚−2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ) 

≤ П(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ П (𝜘0, 1,

𝜎

(3𝜂)𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 
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○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П (𝜘0, 𝜘1,
𝜎

(3𝜂)𝑚−1𝜂𝑛+𝑚−1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ), 

and  

𝛥(𝜘𝑛, 𝜘𝑛+2𝑚, 𝜎) ≤ 𝛥 (𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘0, 𝜘1,

𝜎

3𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜂𝑛+3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+4𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜂𝑛+5𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜂𝑛+2𝑚−2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ) 

≤ 𝛥(𝜘0, 𝜘1,
𝜎

3𝜂𝑛𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘0, 1,

𝜎

(3𝜂)𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)2𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)𝑚−1𝜂𝑛+𝑚−1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ). 

Therefore, from lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1, lim
𝜎→+∞

П(𝜘, 𝜗, 𝜎) = 0 and lim
𝜎→+∞

𝛥(𝜘, 𝜗, 𝜎) = 0, and cases (1),(2), we 

get 
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lim
𝑛→+∞

Ҝ(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎) = 1, lim
𝑛→+∞

П(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎) = 0  and lim
𝑛→+∞

𝛥(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎) = 0. 

That is, a sequence {𝜘𝑛} is Cauchy. Therefore, (Ƹ, Ҝ, П, 𝛥,∗,○) is a complete NREBMS, so there exists 

𝔲 ∈ Ƹ, and we have 

lim
𝑛→+∞

Ҝ(𝜘𝑛, 𝔲, 𝜎) = 1, lim
𝑛→+∞

П(𝜘𝑛, 𝔲, 𝜎) = 0 and lim
𝑛→+∞

𝛥(𝜘𝑛, 𝔲, 𝜎) = 0, for all 𝜎 > 0 and 𝑞 ≥ 1. 

Now, we show the existence of a fixed point 𝔲. 

Ҝ(𝔲, 𝜉𝔲, 𝜎) ≥ Ҝ (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜘𝑛, 𝜘𝑛+1,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜘𝑛+1, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≥ Ҝ(𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜉𝜘𝑛−1, 𝜉𝜘𝑛,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜉𝜘𝑛, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≥ Ҝ(𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜘𝑛−1, 𝜘𝑛,

𝜎

3𝜂𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜘𝑛 , 𝔲,

𝜎

3𝜂ℓ𝜓(𝔲, 𝜉𝔲)
) 

→ 1 ∗ 1 ∗ 1 = 1, as 𝑛 → +∞, 

П(𝔲, 𝜉𝔲, 𝜎) ≤ П (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜘𝑛 , 𝜘𝑛+1,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜘𝑛+1, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ П(𝔲, 𝜘𝑛 ,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜉𝜘𝑛−1, 𝜉𝜘𝑛 ,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜉𝜘𝑛 , 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ П (𝔲, 𝜘𝑛 ,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜘𝑛−1, 𝜘𝑛 ,

𝜎

3𝜂𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜘𝑛, 𝔲,

𝜎

3𝜂ℓ𝜓(𝔲, 𝜉𝔲)
) 

→ 0 ○ 0 ○ 0 = 0, as 𝑛 → +∞ 

and  

𝛥(𝔲, 𝜉𝔲, 𝜎) ≤ 𝛥 (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜘𝑛, 𝜘𝑛+1,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜘𝑛+1, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ 𝛥 (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜉𝜘𝑛−1, 𝜉𝜘𝑛 ,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜉𝜘𝑛, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ 𝛥 (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜘𝑛−1, 𝜘𝑛 ,

𝜎

3𝜂𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜘𝑛 , 𝔲,

𝜎

3𝜂ℓ𝜓(𝔲, 𝜉𝔲)
) 

→ 0 ○ 0 ○ 0 = 0 as 𝑛 → +∞. 

Uniqueness: Suppose 𝑣 ≠ 𝔲, be another fixed point, then 

Ҝ(𝑣, 𝔲, 𝜎) = Ҝ(𝜉𝑣, 𝜉𝔲, 𝜎) ≥ Ҝ(𝑣, 𝔲,
𝜎

𝜂
) = Ҝ (𝜉𝑣, 𝜉𝔲,

𝜎

𝜂
) 

≥ Ҝ(𝑣, 𝔲,
𝜎

𝜂2
) ≥ ⋯ ≥ Ҝ(𝑣, 𝔲,

𝜎

𝜂𝑛
) → 1 as 𝑛 → +∞, 

П(𝑣, 𝔲, 𝜎) = П(𝜉𝑣, 𝜉𝔲, 𝜎) ≤ П (𝑣, 𝔲,
𝜎

𝜂
) = П(𝜉𝑣, 𝜉𝔲,

𝜎

𝜂
) 

≤ П(𝑣, 𝔲,
𝜎

𝜂2
) ≤ ⋯ ≤ П(𝑣, 𝔲,

𝜎

𝜂𝑛
) → 0 as 𝑛 → +∞, 

and 

𝛥(𝑣, 𝔲, 𝜎) = 𝛥(𝜉𝑣, 𝜉𝔲, 𝜎) ≤ 𝛥 (𝑣, 𝔲,
𝜎

𝜂
) = 𝛥 (𝜉𝑣, 𝜉𝔲,

𝜎

𝜂
) 
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≤ 𝛥 (𝑣, 𝔲,
𝜎

𝜂2
) ≤ ⋯ ≤ 𝛥(𝑣, 𝔲,

𝜎

𝜂𝑛
) → 0 as 𝑛 → +∞, 

Hence, 𝔲 = 𝑣.  

 

Definition 3.3: Suppose (Ƹ, Ҝ, П, 𝛥,∗,○) be a complete NREBMS. A mapping 𝜉: Ƹ → Ƹ is known as 

neutrosophic rectangular contraction, if 

1

Ҝ(𝜉𝜘, 𝜉𝜗, 𝜎)
− 1 ≤ 𝜂 [

1

Ҝ(𝜘, 𝜗, 𝜎)
− 1] , П(𝜉𝜘, 𝜉𝜗, 𝜎) ≤ 𝜂П(𝜘, 𝜗, 𝜎)  

and 𝛥(𝜉𝜘, 𝜉𝜗, 𝜎) ≤ 𝜂𝛥(𝜘, 𝜗, 𝜎)                                   (5) 

for all 𝜘, 𝜗 ∈ Ƹ, 𝜂 ∈ (0,1) and 𝜎 > 0. 

Theorem 3.2: Suppose (Ƹ, Ҝ, П, 𝛥,∗,○) be a complete NREBMS, such that  

lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1, lim
𝜎→+∞

П(𝜘, 𝜗, 𝜎) = , and lim
𝜎→+∞

𝛥(𝜘, 𝜗, 𝜎) = 0    for all 𝜘, 𝜗 ∈ Ƹ.                 (6) 

Let 𝜉: Ƹ → Ƹ be a Neutrosophic rectangular contraction. Then 𝜉 has a unique fixed point 𝔲 ∈ Ƹ. 

Proof: Assume (Ƹ, Ҝ, П, 𝛥,∗,○) be a complete NREBMS, let an arbitrary point 𝜘0 ∈ Ƹ, and define a 

sequence {𝜘𝑛} in Ƹ by  

𝜘1 = 𝜉𝜘0 , 𝜘2 = 𝜉2𝜘0 = 𝜉𝜘1, … , 𝜘𝑛 = 𝜉𝑛𝜘0 = 𝜉𝜘𝑛−1 for all 𝑛 ∈ ℕ. 

If 𝜘𝑛 = 𝜘𝑛−1 for some 𝑛 ∈ ℕ then 𝜘𝑛 is a fixed point of 𝜉. We suppose that 𝜘𝑛 ≠ 𝜘𝑛−1  for all 𝑛 ∈

ℕ. For 𝜎 > 0 and 𝑛 ∈ ℕ, utilizing (5), we get 

1

Ҝ(𝜘𝑛 , 𝜘𝑛+1, 𝜎)
− 1 =

1

Ҝ(𝜉𝜘𝑛−1, 𝜉𝜘𝑛, 𝜎)
− 1 ≤ 𝜂 [

1

Ҝ(𝜘𝑛−1, 𝜘𝑛 , 𝜎)
− 1]. 

That is, 

1

Ҝ(𝜘𝑛, 𝜘𝑛+1, 𝜎)
≤

𝜂

Ҝ(𝜘𝑛−1, 𝜘𝑛 , 𝜎)
+ (1 − 𝜂), ∀ 𝜎 > 0, 

=
𝜂

Ҝ(𝜉𝜘𝑛−2, 𝜉𝜘𝑛−1, 𝜎)
+ (1 − 𝜂) ≤

𝜂2

Ҝ(𝜘𝑛−2, 𝜘𝑛−1, 𝜎)
+ 𝜂(1 − 𝜂) + (1 − 𝜂). 

Continuing this way, we get 

1

Ҝ(𝜘𝑛 , 𝜘𝑛+1, 𝜎)
≤

𝜂𝑛

Ҝ(𝜘0, 𝜘1, 𝜎)
+ 𝜂𝑛−1(1 − 𝜂) + 𝜂𝑛−2(1 − 𝜂) + ⋯+ 𝜂(1 − 𝜂) + (1 − 𝜂) 

≤
𝜂𝑛

Ҝ(𝜘0, 𝜘1, 𝜎)
+ (𝜂𝑛−1 + 𝜂𝑛−2 +⋯+ 1)(1 − 𝜂) 

≤
𝜂𝑛

Ҝ(𝜘0, 𝜘1, 𝜎)
+ (1 − 𝜂𝑛). 

We have, 

1

𝜂𝑛

Ҝ(𝜘0,𝜘1,𝜎)
+(1−𝜂𝑛)

≤  Ҝ(𝜘𝑛 , 𝜘𝑛+1, 𝜎), ∀ 𝜎 > 0, 𝑛 ∈ ℕ.                                     (7)  

П(𝜘𝑛 , 𝜘𝑛+1, 𝜎) = П(𝜉𝜘𝑛−1, 𝜉𝜘𝑛 , 𝜎) ≤ 𝜂П(𝜘𝑛−1, 𝜘𝑛, 𝜎) = 𝜂П(𝜉𝜘𝑛−2, 𝜉𝜘𝑛−1, 𝜎) 

                       ≤ 𝜂2П(𝜘𝑛−2, 𝜘𝑛−1, 𝜎) ≤ ⋯ ≤ 𝜂𝑛П(𝜘0, 𝜘1, 𝜎)                        (8) 

and  

𝛥(𝜘𝑛, 𝜘𝑛+1, 𝜎) = 𝛥(𝜉𝜘𝑛−1, 𝜉𝜘𝑛 , 𝜎) ≤ 𝜂𝛥(𝜘𝑛−1, 𝜘𝑛, 𝜎) = 𝜂𝛥(𝜉𝜘𝑛−2, 𝜉𝜘𝑛−1, 𝜎) 

                       ≤ 𝜂2𝛥(𝜘𝑛−2, 𝜘𝑛−1, 𝜎) ≤ ⋯ ≤ 𝜂𝑛𝛥(𝜘0, 𝜘1, 𝜎).                  (9)       
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Since (Ƹ, Ҝ, П, 𝛥,∗,○) is a complete NREBMS for the sequence {𝜘𝑛}, writing 𝜎 =
𝜎

3
+

𝜎

3
+

𝜎

3
 and using 

the rectangular inequalities given in (N5), (N10) and (N15) on 

Ҝ(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎), П(𝜘𝑛 , 𝜘𝑛+𝑝, 𝜎)and 𝛥(𝜘𝑛 , 𝜘𝑛+𝑝, 𝜎), in the following cases. 

Case 1: If 𝑝 is odd, then 𝑝 = 2𝑚 + 1 where 𝑚 ∈ {1,2,3, … }. So, we have 

Ҝ(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≥ Ҝ (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+2𝑚+1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+2𝑚+1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1,
𝜎

(3)𝑚𝜓(𝜘𝑛,𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2,𝜘𝑛+3)𝜓(𝜘𝑛+4,𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚,𝜘𝑛+2𝑚+1)
 )  

П(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ П (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘𝑛+2, 𝜘𝑛+2𝑚+1,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

≤ П(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+2𝑚+1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 



Neutrosophic Systems with Applications, Vol. 9, 2023                                                 67 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Naeem Saleem, Umar Ishtiaq, Khaleel Ahmad, Salvatore Sessa, and Ferdinando Di Martino, Fixed Point Results in 

Neutrosophic Rectangular Extended b-Metric Spaces 

≤ П(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ), 

and  

𝛥(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ 𝛥 (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+2𝑚+1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

≤ 𝛥 (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+2𝑚+1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≤ 𝛥 (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝛥 (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ). 

By using (7), (8) and (9) in the above inequalities, we have 
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Ҝ(𝜘𝑛, 𝜘𝑛+2𝑚+1, 𝜎)

≥
1

𝜂𝑛

Ҝ(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
)
+ (1 − 𝜂𝑛)

∗
1

𝜂𝑛+1

Ҝ(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
)
+ (1 − 𝜂𝑛+1)

∗
1

𝜂𝑛+2

Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘2, 𝜘𝑛+3)
)
+ (1 − 𝜂𝑛+2)

∗
1

𝜂𝑛+3

Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
)
+ (1 − 𝜂𝑛+3)

 

∗ ⋯∗ 
1

𝜂𝑛+2𝑚

Ҝ(𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
)
+ (1 − 𝜂𝑛+2𝑚)

, 

≥
1

𝜂𝑛

Ҝ (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
)
+ (1 − 𝜂𝑛)

∗
1

(𝜂)𝜂𝑛

Ҝ (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
)
+ (1 − (𝜂)𝜂𝑛)

∗
1

(𝜂)2𝜂𝑛

Ҝ(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘2, 𝜘𝑛+3)
)
+ (1 − (𝜂)2𝜂𝑛)

∗
1

(𝜂)2𝜂𝑛+1

Ҝ(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
)
+ (1 − (𝜂)2𝜂𝑛+1)

 

∗ ⋯∗ 
1

(𝜂)𝑚𝜂𝑛+𝑚

Ҝ (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
)
+ (1 − (𝜂)𝑚𝜂𝑛+𝑚)

, 

П(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ 𝜂𝑛П (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝜂𝑛+1П (𝜘0, 𝜘1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ 𝜂𝑛+2П(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+3П(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+4П(𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂𝑛+5П(𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝜂𝑛+2𝑚П (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ) 
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≤ 𝜂𝑛П(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝜂(𝜂𝑛)П (𝜘0, 𝜘1,

𝜎

(3)𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝜂2(𝜂𝑛)П (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂2(𝜂𝑛+1)П (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂3(𝜂𝑛+1)П (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂3(𝜂𝑛+2)П (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝜂𝑚(𝜂𝑛+𝑚)П (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ) 

and  

𝛥(𝜘𝑛 , 𝜘𝑛+2𝑚+1, 𝜎) ≤ 𝜂
𝑛𝛥 (𝜘0, 𝜘1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝜂𝑛+1𝛥 (𝜘0, 𝜘1,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)
 ) 

○ 𝜂𝑛+2𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+3𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+4𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂𝑛+5𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝜂𝑛+2𝑚𝛥 (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ) 

≤ 𝜂𝑛𝛥 (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) ○ 𝜂(𝜂𝑛)𝛥 (𝜘0, 𝜘1,

𝜎

(3)𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)
 ) 

○ 𝜂2(𝜂𝑛)𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂2(𝜂𝑛+1)𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂3(𝜂𝑛+1)𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂3(𝜂𝑛+2)𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝜂𝑚(𝜂𝑛+𝑚)𝛥 (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛, 𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚, 𝜘𝑛+2𝑚+1)
 ). 

Case 2: If 𝑝 is even, then 𝑝 = 2𝑚;𝑚 ∈ {1,2,3,⋯ }. So, we have 
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Ҝ(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≥ Ҝ (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+2𝑚,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) ∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+2𝑚,

𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≥ Ҝ(𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ∗ Ҝ (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

∗ Ҝ (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

∗ Ҝ (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 )

∗ Ҝ (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ Ҝ (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

∗ ⋯∗ 

Ҝ(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚,
𝜎

(3)𝑚−1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ), 

П(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≤ П (𝜘𝑛 , 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ П (𝜘𝑛+2, 𝜘𝑛+2𝑚,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

≤ П(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+4, 𝜘𝑛+2𝑚,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≤ П(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ П (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ П(𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ П(𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 
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○ П(𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ П(𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

П(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ), 

and  

𝛥(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≤ 𝛥 (𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+2𝑚,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

≤ 𝛥(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+2𝑚,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

≤ 𝛥(𝜘𝑛, 𝜘𝑛+1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) ○ 𝛥 (𝜘𝑛+1, 𝜘𝑛+2,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝛥 (𝜘𝑛+2, 𝜘𝑛+3,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+3, 𝜘𝑛+4,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝛥 (𝜘𝑛+4, 𝜘𝑛+5,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝛥 (𝜘𝑛+5, 𝜘𝑛+6,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝛥 (𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ). 

By using (7A), (8A) and (9A) in the above inequalities, we have 
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Ҝ(𝜘𝑛, 𝜘𝑛+2𝑚, 𝜎) ≥
1

𝜂𝑛

Ҝ (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
)
+ (1 − 𝜂𝑛)

∗
1

𝜂𝑛+1

Ҝ(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
)
+ (1 − 𝜂𝑛+1)

∗
1

𝜂𝑛+2

Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘2, 𝜘𝑛+3)
)
+ (1 − 𝜂𝑛+2)

∗
1

𝜂𝑛+3

Ҝ (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
)
+ (1 − 𝜂𝑛+3)

 

∗ ⋯∗ 
1

𝜂𝑛+2𝑚−2

Ҝ (𝜘0, 𝜘1,
𝜎

(3)𝑚−1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
)
+ (1 − 𝜂𝑛+2𝑚−2)

 

≥
1

𝜂𝑛

Ҝ(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
)
+ (1 − 𝜂𝑛)

∗
1

(𝜂)𝜂𝑛

Ҝ (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
)
+ (1 − (𝜂)𝜂𝑛)

∗
1

(𝜂)2𝜂𝑛

Ҝ(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘2, 𝜘𝑛+3)
)
+ (1 − (𝜂)2𝜂𝑛)

∗
1

(𝜂)2𝜂𝑛+1

Ҝ(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
)
+ (1 − (𝜂)2𝜂𝑛+1)

 

∗ ⋯∗ 

 
1

(𝜂)𝑚−1𝜂𝑛+𝑚−1

Ҝ(𝜘0,𝜘1,
𝜎

(3)𝑚−1𝜓(𝜘𝑛,𝜘𝑛+2𝑚+1)𝜓(𝜘𝑛+2,𝜘𝑛+3)𝜓(𝜘𝑛+4,𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚,𝜘𝑛+2𝑚+1)
)

+(1−(𝜂)𝑚−1𝜂𝑛+𝑚−1)
 

П(𝜘𝑛 , 𝜘𝑛+2𝑚, 𝜎) ≤ 𝜂𝑛П(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ 𝜂𝑛+1П(𝜘0, 𝜘1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) 

○ 𝜂𝑛+2П(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+3П(𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+4П(𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂𝑛+5П(𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝜂𝑛+2𝑚−2П(𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ) 

≤ 𝜂𝑛П(𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ (𝜂)𝜂𝑛П(𝜘0, 1,

𝜎

(3)𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 
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○ 𝜂2(𝜂𝑛)П (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂2(𝜂𝑛+1)П (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂3(𝜂𝑛+1)П (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂3(𝜂𝑛+2)П (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

(𝜂)𝑚−1𝜂𝑛+𝑚−1П(𝜘0, 𝜘1,
𝜎

(3)𝑚−1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ). 

and  

𝛥(𝜘𝑛, 𝜘𝑛+2𝑚, 𝜎) ≤ 𝜂
𝑛𝛥 (𝜘0, 𝜘1,

𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ 𝜂𝑛+1𝛥 (𝜘0, 𝜘1,

𝜎

3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝜂𝑛+2𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+3𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂𝑛+4𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂𝑛+5𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

𝜂𝑛+2𝑚−2𝛥 (𝜘0, 𝜘1,
𝜎

(3)𝑚𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ) 

≤ 𝜂𝑛𝛥 (𝜘0, 𝜘1,
𝜎

3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)
 ) ○ (𝜂)𝜂𝑛𝛥 (𝜘0, 1,

𝜎

(3)𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)
 ) 

○ 𝜂2(𝜂𝑛)𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂2(𝜂𝑛+1)𝛥 (𝜘0, 𝜘1,
𝜎

(3)2𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)
 ) 

○ 𝜂3(𝜂𝑛+1)𝛥 (𝜘0, 𝜘1,
𝜎

(3𝜂)3𝜂𝑛+1𝜓(𝜘𝑛 , 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○ 𝜂3(𝜂𝑛+2)𝛥 (𝜘0, 𝜘1,
𝜎

(3)3𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)
 ) 

○⋯○ 

(𝜂)𝑚−1𝜂𝑛+𝑚−1𝛥 (𝜘0, 𝜘1,
𝜎

(3)𝑚−1𝜓(𝜘𝑛, 𝜘𝑛+2𝑚)𝜓(𝜘𝑛+2, 𝜘𝑛+3)𝜓(𝜘𝑛+4, 𝜘𝑛+5)⋯𝜓(𝜘𝑛+2𝑚−2, 𝜘𝑛+2𝑚)
 ). 

Therefore, from lim
𝜎→+∞

Ҝ(𝜘, 𝜗, 𝜎) = 1, lim
𝜎→+∞

П(𝜘, 𝜗, 𝜎) = 0 and lim
𝜎→+∞

𝛥(𝜘, 𝜗, 𝜎) = 0,  and Cases (1), (2), 

we get 
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lim
𝑛→+∞

Ҝ(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎) = 1, lim
𝑛→+∞

П(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎) = 0 and lim
𝑛→+∞

𝛥(𝜘𝑛, 𝜘𝑛+𝑝, 𝜎) = 0. 

Hence {𝜘𝑛} is a Cauchy sequence. Since, (Ƹ, Ҝ, П, 𝛥,∗,○) is a complete NREBMS, so there exists 𝔲 ∈

Ƹ such that 

lim
𝑛→+∞

Ҝ(𝜘𝑛, 𝔲, 𝜎) = 1  lim
𝑛→+∞

П(𝜘𝑛 , 𝔲, 𝜎) = 0 and lim
𝑛→+∞

𝛥(𝜘𝑛, 𝔲, 𝜎) = 0, for all 𝜎 > 0 and 𝑞 ≥ 1. 

Now, we show the existence of a fixed point 𝔲. Utilizing (5), we have 

1

Ҝ(𝜉𝜘𝑛 , 𝜉𝔲, 𝜎)
− 1 ≤ 𝜂 [

1

Ҝ(𝜘𝑛, 𝔲, 𝜎)
− 1] =

𝜂

Ҝ(𝜘𝑛, 𝔲, 𝜎)
− 𝜂, 

1
𝜂

Ҝ(𝜘𝑛, 𝔲, 𝜎)
+ 1 − 𝜂

≤ Ҝ(𝜉𝜘𝑛, 𝜉𝔲, 𝜎), 

and 

1

Ҝ(𝜉𝜘𝑛−1, 𝜉𝜘𝑛, 𝜎)
− 1 ≤ 𝜂 [

1

Ҝ(𝜘𝑛−1, 𝜘𝑛, 𝜎)
− 1] =

𝜂

Ҝ(𝜘𝑛−1, 𝜘𝑛, 𝜎)
− 𝜂, 

1
𝜂

Ҝ(𝜘𝑛−1, 𝜘𝑛, 𝜎)
+ 1 − 𝜂

≤ Ҝ(𝜉𝜘𝑛−1, 𝜉𝜘𝑛, 𝜎). 

Using the above inequalities, we deduce 

Ҝ(𝔲, 𝜉𝔲, 𝜎) ≥ Ҝ (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜘𝑛, 𝜘𝑛+1,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜘𝑛+1, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≥ Ҝ(𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ (𝜉𝜘𝑛−1, 𝜉𝜘𝑛,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗ Ҝ ( 𝜉𝜘𝑛 , 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≥  Ҝ (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ∗

1
𝜂

Ҝ (𝜘𝑛−1, 𝜘𝑛 ,
𝜎

3𝜓(𝔲, 𝜉𝔲)
)
+ 1 − 𝜂

∗
1

𝜂

Ҝ(𝜘𝑛 , 𝔲,
𝜎

3𝜓(𝔲, 𝜉𝔲)
)
+ 1 − 𝜂

 

→ 1 ∗ 1 ∗ 1 = 1 as 𝑛 → +∞ 

П(𝔲, 𝜉𝔲, 𝜎) ≤ П (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜘𝑛 , 𝜘𝑛+1,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜘𝑛+1, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ П(𝔲, 𝜘𝑛 ,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П (𝜉𝜘𝑛−1, 𝜉𝜘𝑛 ,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ П ( 𝜉𝜘𝑛 , 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ П(𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝜂П (𝜘𝑛−1, 𝜘𝑛,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝜂П ( 𝜘𝑛, 𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

→ 0 ○ 0 ○ 0 = 0 as 𝑛 → +∞ 

and  

𝛥(𝔲, 𝜉𝔲, 𝜎) ≤ 𝛥 (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜘𝑛, 𝜘𝑛+1,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜘𝑛+1, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ 𝛥 (𝔲, 𝜘𝑛 ,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 (𝜉𝜘𝑛−1, 𝜉𝜘𝑛 ,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝛥 ( 𝜉𝜘𝑛, 𝜉𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 

≤ 𝛥 (𝔲, 𝜘𝑛,
𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝜂𝛥 (𝜘𝑛−1, 𝜘𝑛 ,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) ○ 𝜂𝛥 ( 𝜘𝑛, 𝔲,

𝜎

3𝜓(𝔲, 𝜉𝔲)
) 
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→ 0 ○ 0 ○ 0 = 0 as 𝑛 → +∞. 

That is, 𝜉𝔲 = 𝔲. 

Uniqueness: Suppose 𝑣 ≠ 𝔲 be another fixed point of 𝜉, such that Ҝ(𝔲, 𝑣, t)< 1 for some 𝜎 > 0, and 

utilizing (5), we have 

1

Ҝ(𝔲, 𝑣, 𝜎)
− 1 =

1

Ҝ(𝜉𝔲, 𝜉𝑣, 𝜎)
− 1 

≤ 𝜂 [
1

Ҝ(𝔲, 𝑣, 𝜎)
− 1] <

1

Ҝ(𝔲, 𝑣, 𝜎)
− 1 

a contradiction, 

П(𝔲, 𝑣, 𝜎) = П(𝜉𝔲, 𝜉𝑣, 𝜎) ≤ 𝜂П(𝔲, 𝑣, 𝜎) 

and 

𝛥(𝔲, 𝑣, 𝜎) = 𝛥(𝜉𝔲, 𝜉𝑣, 𝜎) ≤ 𝜂𝛥(𝔲, 𝑣, 𝜎) 

a contradiction. Therefore, we must have Ҝ(𝔲, 𝑣, 𝜎) = 1, П(𝔲, 𝑣, 𝜎) = 0 and 𝛥(𝔲, 𝑣, 𝜎) = 0 for all 𝜎 > 0, 

and hence, 𝔲 = 𝑣. 

Example 3.8: Let Ƹ = [0,1]. Define 𝜓: Ƹ × Ƹ → [1, +∞) by 𝜓(𝜘, 𝜗) = {
1,       if          𝜘 = 𝜗
1 + 𝜘 + 𝜗, otherwise

 and define 

Ҝ, П, 𝛥: Ƹ × Ƹ × [0, +∞) → [0,1] by 

Ҝ(𝜘, 𝜗, 𝜎) =
𝜎

𝜎 + |𝜘 − 𝜗|𝑝
  

 П(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎 + |𝜘 − 𝜗|𝑝
 , 

and 

 Δ(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎
  for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0. 

Defined by ℏ ∗ ℓ = ℏ ∙ ℓ, ℏ ○ ℓ = max{ℏ, ℓ} and  𝑝 ≥ 1, then (Ƹ, Ҝ, П, 𝛥,∗,○) is a complete NREBMS.  

Define 𝜉: Ƹ → Ƹ by 𝜉(𝜘) = √𝜂
𝑝

𝜘. Then 

Ҝ(𝜉𝜘, 𝜉𝜗, 𝜂𝜎) = Ҝ(√𝜂
𝑝

𝜘, √𝜂
𝑝

𝜗, 𝜂𝜎) =
𝜂𝜎

𝜂𝜎 + |√𝜂
𝑝

𝜘 − √𝜂
𝑝

𝜗|
𝑝 

=
𝜎

𝜎 + |𝜘 − 𝜗|𝑝
= Ҝ(𝜘, 𝜗, 𝜎) 

П(𝜉𝜘, 𝜉𝜗, 𝜂𝜎) = П(√𝜂
𝑝

𝜘, √𝜂
𝑝

𝜗, 𝜂𝜎) =
|√𝜂
𝑝

𝜘 − √𝜂
𝑝

𝜗|
𝑝

𝜂𝜎 + |√𝜂
𝑝

𝜘 − √𝜂
𝑝

𝜗|
𝑝 

=
|𝜘−𝜗|𝑝

𝜎+|𝜘−𝜗|𝑝
= П(𝜘, 𝜗, 𝜎), and  

𝛥(𝜉𝜘, 𝜉𝜗, 𝜂𝜎) = 𝛥(√𝜂
𝑝

𝜘, √𝜂
𝑝

𝜗, 𝜂𝜎) =
|√𝜂
𝑝

𝜘 − √𝜂
𝑝

𝜗|
𝑝

𝜂𝜎
 

=
|𝜘 − 𝜗|𝑝

𝜎
= 𝛥(𝜘, 𝜗, 𝜎). 

Also, contraction conditions of Theorem 3.2, 

1

Ҝ(𝜉𝜘,𝜉𝜗,𝜎)
− 1 ≤ 𝜂 [

1

Ҝ(𝜘,𝜗,𝜎)
− 1] , П(𝜉𝜘, 𝜉𝜗, 𝜎) ≤ 𝜂П(𝜘, 𝜗, 𝜎) and 𝛥(𝜉𝜘, 𝜉𝜗, 𝜎) ≤ 𝜂𝛥(𝜘, 𝜗, 𝜎) are satisfied.  
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Consequently, all of the assumptions of Theorems 3.1 and 3.2 are satisfied, and 0 is a unique fixed 

point. 

4. Application to Nonlinear Fractional Differential Equation 

Theorem 3.1 is used in this section to determine a solution's existence and uniqueness in nonlinear 

fractional differential equation (see [19]) given by 

𝐷𝑐
𝛼𝜘(𝜚) = 𝜓(𝜚, 𝜘(𝜚))           (𝜚 ∈ (0,1), 𝛼 ∈ (1,2]), 

with boundary conditions 

𝜘(0) = 0, 𝜘′(0) = 𝐼𝜘(𝜚)            𝜚 ∈ (0,1), 

Where 𝐷𝑐
𝛼  means caputo fractional derivative of order 𝛼, defined by 

𝐷𝑐
𝛼𝜓(𝜚) =

1

𝛤(𝑛 − 𝛼)
∫(𝜚 − 𝜛)𝑛−𝛼−1𝜓𝑛(𝜛)𝑑𝜛         (𝑛 − 1 < 𝛼 < 𝑛,   𝑛 = [𝛼] + 1)

𝜚

0

, 

and 𝜓: [0,1] × ℝ → ℝ+ is a continuous function. We suppose that Ƹ = 𝐶([0,1], ℝ), from [0,1] into ℝ 

with supremum |𝜘| = Sup
ө∈[0,1]

|𝜘(𝜚)|.  

The Riemann-Liouville fractional integral of order 𝛼 (see [20]) is given by 

𝐼𝛼𝜓(𝜚) =
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝜓(𝜛)𝑑𝜛            (𝛼 > 0)

𝜚

0

 

We first provide an acceptable form for a nonlinear fractional differential equation before 

investigating the existence of a solution. Now, we suppose the following fractional differential 

equation 

𝐷𝑐
𝛼𝜘(𝜚) = 𝜓(𝜚, 𝜘(𝜚))           (𝜚 ∈ (0,1), 𝛼 ∈ (1,2]),       (10) 

with the boundary conditions 

𝜘(0) = 0, 𝜘′(0) = 𝐼𝜘(𝜚)             (𝜚 ∈ (0,1)), 

where  

i. 𝜓: [0,1] × ℝ → ℝ+ is a continuous function, 

ii. 𝜘(𝜚): [0,1] → ℝ is continuous, 

and satisfying the following condition 

|𝜓(𝜚, 𝜘) − 𝜓(𝜚, 𝜗)| ≤ Л𝐿|𝜘 − 𝜗|, 

for all 𝜚 ∈ [0,1] and 𝐿 is a constant with 𝐿Л < 1 where 

Л =
1

𝛤(𝛼 + 1)
+

2𝜗𝛼+1𝛤(𝛼)

(2 − 𝜗2)𝛤(𝛼 + 1)
. 

Then the equation (10) has a unique solution. 

Proof: Suppose that 

Ҝ(𝜘, 𝜗, 𝜎) =
𝜎

𝜎 + |𝜘 − 𝜗|𝑝
  

 П(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎 + |𝜘 − 𝜗|𝑝
  , and 

 𝛥(𝜘, 𝜗, 𝜎) =
|𝜘 − 𝜗|𝑝

𝜎
  for all 𝜘, 𝜗 ∈ Ƹ and 𝜎 > 0, 
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defined by ℏ ∗ ℓ = ℏ ∙ ℓ, and ℏ ○ ℓ = max{ℏ, ℓ}.  Let |𝜘 − 𝜗| = Sup
𝜚∈[0,1]

|𝜘(𝜚) − 𝜗(𝜚)| , for all 𝜘, 𝜗 ∈ Ƹ. 

Then (Ƹ, Ҝ, П, 𝛥,∗,○) is a complete NREBMS. We define a mapping  𝜉: Ƹ → Ƹ by 

𝜉𝜘(𝜚) =
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝜓(𝜛, 𝜘(𝜛))𝑑𝜛

𝜚

0

+
2𝜚

(2 − 𝜗2)𝛤(𝛼)
∫ (∫(𝜛 −𝑚)𝛼−1𝜓(𝑚, 𝜘(𝑚))𝑑𝑚

𝜛

0

)𝑑𝜛

𝜗

0

       (11) 

for all 𝜚 ∈ [0,1]. Equation (10) has a solution 𝜘 ∈ Ƹ iff 𝜘(𝜚) = 𝜉𝜘(𝜚) for all 𝜚 ∈ [0,1]. Now 

Ҝ(𝜘(𝜚), 𝜗(𝜚), 𝜎) =
𝜎

𝜎 + |𝜘(𝜚) − 𝜗(𝜚)|𝑝

П(𝜘(𝜚), 𝜗(𝜚), 𝜎) =
|𝜘(𝜚) − 𝜗(𝜚)|𝑝

𝜎 + |𝜘(𝜚) − 𝜗(𝜚)|𝑝

𝛥(𝜘(𝜚), 𝜗(𝜚), 𝜎) =
|𝜘(𝜚) − 𝜗(𝜚)|𝑝

𝜎
 }
  
 

  
 

            (12) 

|𝜉𝜘(𝜚) − 𝜉𝜗(𝜚)| = |
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝜓(𝜛, 𝜘(𝜛))𝑑𝜛

𝜚

0

+
2𝜚

(2 − 𝜗2)𝛤(𝛼)
∫(∫(𝜛 −𝑚)𝛼−1𝜓(𝑚, 𝜘(𝑚))𝑑𝑚

𝜛

0

)𝑑𝜛| 

𝜗

0

|

− |
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝜓(𝜛, 𝜗(𝜛))𝑑𝜛

𝜚

0

+
2𝜚

(2 − 𝜗2)𝛤(𝛼)
∫(∫(𝜛 −𝑚)𝛼−1𝜓(𝑚, 𝜗(𝑚))𝑑𝑚

𝜛

0

)𝑑𝜛

𝜗

0

|. 

That is, 

|𝜉𝜘(𝜚) − 𝜉𝜗(𝜚)| = |
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝜓(𝜛, 𝜘(𝜛))𝑑𝜛

𝜚

0

+
2𝜚

(2 − 𝜗2)𝛤(𝛼)
∫(∫(𝜛 −𝑚)𝛼−1𝜓(𝑚, 𝜘(𝑚))𝑑𝑚

𝜛

0

)𝑑𝜛

𝜗

0

−
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝜓(𝜛, 𝜗(𝜛))𝑑𝜛

𝜚

0

−
2𝜚

(2 − 𝜗2)𝛤(𝛼)
∫(∫(𝜛 −𝑚)𝛼−1𝜓(𝑚, 𝜗(𝑚))𝑑𝑚

𝜛

0

)𝑑𝜛

𝜗

0

| 
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≤
1

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1|𝜓(𝜛, 𝜘(𝜛)) − 𝜓(𝜛, 𝜗(𝜛))|𝑑𝜛

𝜚

0

 

+
2𝜚

(2 − 𝜗2)𝛤(𝛼)
∫(∫(𝜛 −𝑚)𝛼−1|𝜓(𝑚, 𝜘(𝑚)) − 𝜓(𝑚, 𝜗(𝑚))|𝑑𝑚

𝜛

0

)𝑑𝜛

𝜗

0

 

≤
𝐿|𝜘 − 𝜗|

𝛤(𝛼)
∫(𝜚 − 𝜛)𝛼−1𝑑𝜛 +

2𝐿|𝜘 − 𝜗|

𝛤(𝛼)
∫(∫(𝜛 −𝑚)𝛼−1𝑑𝑚

𝜛

0

)𝑑𝜛

𝜗

0

𝜚

0

 

≤
𝐿|𝜘 − 𝜗|

𝛤(𝛼 + 1)
+
2𝜗𝛼+1𝐿|𝜘 − 𝜗|𝛤(𝛼)

(2 − 𝜗2)𝛤(𝛼 + 2)
 

≤ 𝐿|𝜘 − 𝜗| (
1

𝛤(𝛼 + 1)
+

2𝜗𝛼+1𝛤(𝛼)

(2 − 𝜗2)𝛤(𝛼 + 2)
) = 𝐿Л|𝜘 − 𝜗|. 

Utilizing 𝐿Л < 1 and (12), we have 

Ҝ(𝜉𝜘(𝜚), 𝜉𝜗(𝜚), 𝜂𝜎) =
𝜂𝜎

𝜂𝜎 + |𝜉𝜘(𝜚) − 𝜉𝜗(𝜚)|𝑝
≥

𝜂𝜎

𝜂𝜎 + 𝐿Л|𝜘(𝜚) − 𝜗(𝜚)|𝑝
 

≥
𝜎

𝜎 + |𝜘(𝜚) − 𝜗(𝜚)|𝑝
= Ҝ(𝜘(𝜚), 𝜗(𝜚), 𝜎) 

П(𝜉𝜘(𝜚), 𝜉𝜗(𝜚), 𝜂𝜎) =
|𝜉𝜘(𝜚) − 𝜉𝜗(𝜚)|𝑝

𝜂𝜎 + |𝜉𝜘(𝜚) − 𝜉𝜗(𝜚)|𝑝
≤

𝐿Л|𝜘(𝜚) − 𝜗(𝜚)|𝑝

𝜂𝜎 + 𝐿Л|𝜘(𝜚) − 𝜗(𝜚)|𝑝
 

≤
|𝜘(𝜚)−𝜗(𝜚)|𝑝

𝜎+|𝜘(𝜚)−𝜗(𝜚)|𝑝
= П(𝜘(𝜚), 𝜗(𝜚), 𝜎) and  

𝛥(𝜉𝜘(𝜚), 𝜉𝜗(𝜚), 𝜂𝜎) =
|𝜉𝜘(𝜚) − 𝜉𝜗(𝜚)|𝑝

𝜂𝜎
≤
𝐿Л|𝜘(𝜚) − 𝜗(𝜚)|𝑝

𝜂𝜎
 

≤
|𝜘(𝜚) − 𝜗(𝜚)|𝑝

𝜎
= 𝛥(𝜘(𝜚), 𝜗(𝜚), 𝜎). 

As a result, the conditions of Theorem 3.1 are all met. This shows that 𝜉 has unique solution. 

5. Conclusion 

In this manuscript, we introduced the notion of NREBMS and provided some non-trivial 

examples of defined space. Several fixed point results for contraction mappings are established with 

examples. Also, we provided an application to non-linear fractional differential equations to support 

the validity of main result. This is extendable in several more generalized spaces including 

neutrosophic rectangular controlled metric spaces, graphical neutrosophic metric spaces, 

neutrosophic rectangular double controlled metric-like spaces and Hausdorff neutrosophic 

rectangular metric spaces. Also, this work is extendable by increasing the number of self-mappings. 

 

6. Open Problem 

How to prove Theorem 3.1 and Theorem 3.2 (proved in this paper) in the context of graphical 

neutrosophic extended b-metric spaces? 
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Abstract: The goal of the research involves elaborating on the topics of statistical convergence, 

including statistical Cauchy sequences within non-Archimedean Neutrosophic normed spaces, as 

well as achieving specific useful conclusions. The present research shows how, within a 

non-Archimedean field, certain sections of statistically convergent sequences that could not be true 

often become true. Likewise, we created statistically complete and statistically continuous spaces 

for such regions that demonstrated certain essential facts. κ indicates a complete field of 

non-Archimedean and non-trivially valued research. 

Keywords: Neutrosophic Normed Spaces; Non-Archimedean Fields; Statistically Cauchy 

Sequence; Statistically Convergent. 

 

 

1. Introduction 

Zadeh [16] became the initial one person who creates the fuzzy set using a membership 

function. Many later researchers were adapted this idea to classical set theory. Atanassov [1] 

introduced an Intuitionistic Fuzzy (IF) set theory. Saadati along with Park proposed the notion of IF 

normed space. The study of analysis through fields of Non-Archimedean (NA) is referred to as NA 

analysis. Suja and Srinivasan [15] newly created statistically convergent along with statistically 

Cauchy sequences within NA fields. Eghbali and Ganji [3] investigated NAL-fuzzy normed spaces 

for extended statistical convergence. The research shows that statistical convergence exists in 

Non-Archimedean Neutrosophic Normed Spaces (NA-NNS) and confirms that key properties of 

statistical convergence from real sequences are still valid in NA fields [2,4-5,8-14]. The research 

article concentrates primarily upon the analysis of sequences in the field of NA 𝜅. 

    In 1998, Smarandache [12] developed the ideas of neutrosophic logic in addition to the 

Neutrosophic Set [NS]. Kirisci and Simsek establish the Neutrosophic Metric Space [NMS] 

suggestion which is associated with membership, non-membership and neutralness. Jeyaraman, 

Ramachandran and Shakila [7] established approximate fixed point theorems in 2022 regarding 

weak contractions on Neutrosophic Normed Spaces (NNS). Statistical ∆𝑚 convergence in NNS was 

recently presented by Jeyaraman and Jenifer [6]. 
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       A sequence �̿�= {𝓋𝓅} is said to have been statistically convergent towards a limit 𝔏when for 

any �̃�>0, lim
𝓃→∞

1

𝓃
{𝓅 ≤ 𝓃 ∶ |𝓋𝓅 − 𝔏| ≥ �̃�} = 0. 

In that case above, we put stat − lim
𝓅→∞

𝓋𝓅 = 𝔏. 

Example 1.1. Consider to define the �̿�= {𝓋𝓅} sequence by 

𝓋𝓅 = {

𝓅 − 1

𝓅2
,      𝓅 is a perfect square.

0,               otherwise;                    

 

Selecting the NA valuation to be 2-adic, the sequence terms become (0,0,0,1,0,0,0,0,1/8,0,0,....).  

As a result, it converges to zero statistically. 

A sequence of Statistically Cauchy (SC) when for all �̃�>0, then existing a range 𝓃 ∈ ℕ such that 

                                           lim
𝓃→∞

1

𝓃
{𝒾 ≤ 𝓃 ∶ 𝓃 ∈ ℕ ∶ |�̿�𝒾+1 − �̿�𝒾| ≥ �̃�} = 0 

Consider that 𝜅 to be NA fields. A valuation on 𝜅is referred with the NA if it meets these 

three given axioms: [1] 

(i) |�̿�| ≥ 0 and|�̿�| = 0 iff �̿�= 0,  

 (ii)|�̿��̌�|  =  |�̿�||�̌�|, 

(iii) |�̿� + �̌�| ≤ max[|�̿�|, |�̌�|] for every �̿�, �̌� ∈ 𝜅 (Ultrametric Inequality). 

 

2. Preliminaries 

Here, we will go through the notations along with definitions which will be utilized throughout this 

article in order to ensure a general understanding of the terminology and symbols used. 

Definition 2.1.The 7-tuple (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)is said to be a NA-NNS, if ∗ acts as a continuous 

 𝓉-norm, ⋄ and ⋆acts as a 𝓉-co norms which are continuous, Ξ become a vector space over a field κ 

and then 𝜍̃, �̇�, 𝜓 are fuzzy sets functions on Ξ × ℝ to [0, 1], for all 𝓋, 𝒽 ∈Ξ and 𝒻,́ �̀�∈ κ. 

 

(cn1) 𝜍̃(𝓋, �́�) + �̇�(𝓋, �́�) + 𝜓(𝓋, �́�) ≤ 3 

(cn2) 0 ≤ 𝜍̃(𝓋, �́�) ≤ 1; 0 ≤ �̇�(𝓋, �́�) ≤ 1 𝑎𝑛𝑑 0 ≤ 𝜓(𝓋, �́�) ≤ 1; 

(cn3) 𝜍̃(𝓋, �́�) > 0; 

(cn4) 𝜍̃(𝓋, �́�) = 1 ⇔ 𝓋 = 0, 

(cn5) 𝜍̃(�̈�𝓋, �́�) = 𝜍̃ (𝓋,
�́�

|�̈�|
), for all �̈� ∈ ℝ and �̈� ≠ 0; 

(cn6) 𝜍̃(𝓋 + 𝒽, max {�́� + �̀�}) ≥ 𝜍̃(𝓋, �́�) ∗ 𝜍̃(𝒽, �̀�), 

(cn7) 𝜍̃(𝓋, . ): (0, ∞) → [0,1] and it is continuous, 

(cn8) lim
�́�→∞

𝜍̃(𝓋, �́�) = 1 and lim
�́�→∞

𝜍̃(𝓋, �́�) = 0; 

(cn9)�̇�(𝓋, �́�) < 1; 

(cn10) �̇�(𝓋, �́�) = 0 ⇔ 𝓋 = 0, 

(cn11) �̇�(�̈�𝓋, �́�) = �̇� (𝓋,
�́�

|�̈�|
), for all �̈� ∈ ℝ and �̈� ≠ 0; 



Neutrosophic Systems with Applications, Vol. 9, 2023                                                       83 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Jeyaraman. M and Iswariya. S, A New Approach for the Statistical Convergence over Non-Archimedean Fields in 

Neutrosophic Normed Spaces 

(cn12)�̇�(𝓋 + 𝒽, max {�́� + �̀�}) ≤ �̇�(𝓋, �́�) ⋄ �̇�(𝒽, �̀�), 

(cn13) �̇�(𝓋, . ): (0, ∞) → [0,1]and it is continuous;  

(cn14) lim
�́�→∞

�̇�(𝓋, �́�) = 0 and lim
�́�→∞

�̇�(𝓋, �́�) = 1; 

(cn15) 𝜓(𝓋, �́�) < 1, 

(cn16) 𝜓(𝓋, �́�) = 0 ⇔ 𝓋 = 0, 

(cn17) 𝜓(�̈�𝓋, �́�) = 𝜓 (𝓋,
�́�

|�̈�|
), for all �̈� ∈ ℝ and �̈� ≠ 0, 

(cn18) 𝜓(𝓋 + 𝒽, max {�́� + �̀�}) ≤ 𝜓(𝓋, �́�) ⋆ 𝜓(𝒽, �̀�), 

(cn19) 𝜓(𝓋, . ): (0, ∞) → [0,1] is continuous and  

(cn20) lim
�́�→∞

𝜓(𝓋, �́�) = 0 and lim
�́�→∞

𝜓(𝓋, �́�) = 1. 

Here, (𝜍̃, �̇�, 𝜓) is known as a NA-NNS.  

A sequence {𝓋𝓅} is referred to be convergent in NA-NNS (𝔙, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) or simply 

(𝜍̃, �̇�, 𝜓)-convergent to �̿�∈Ξif for all �́�>0 and �̃�>0, then there exist 𝓅0∈ℕ so that 𝓅 ≥ 𝓅0, 

𝜍̃(𝓋𝓅 − �̿�, �́�) > 1 − �̃�, �̇�(𝓋𝓅 − �̿�, �́�) < �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) < �̃� 

In this case, we write (𝜍̃, �̇�, 𝜓) − lim𝓋𝓅=�̿�. 

Example 2.2 “Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)be a NA normed space, 𝓋∗ 𝒽=𝓋𝒽, 𝓋 ⋄ 𝒽= min {𝓋 + 𝒽, 1} and𝓋 ⋆

𝒽= min {𝓋 + 𝒽, 1} for all 𝓋, 𝒽∈ [0,1]. For every �̿�∈Ξ, every 𝜉>0 and 𝓅= 1, 2,….Consider the 

following form, 

𝜍̃𝓅(�̿�, 𝜉) = {

𝜉

𝜉 + 𝓅‖�̿�‖
,       𝑖𝑓               𝜉 > 0 

0,                                         𝜉 ≤ 0; 

 

�̇�𝓅(�̿�, 𝜉) = {

𝓅‖�̿�‖

𝜉 + 𝓅‖�̿�‖
,        𝑖𝑓              𝜉 > 0 

0,                                          𝜉 ≤ 0;

 

𝜓𝓅(�̿�, 𝜉) = {

𝓅‖�̿�‖

𝜉
,                𝑖𝑓              𝜉 > 0 

0,                                           𝜉 ≤ 0; 

 

Then (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) which is a NA-NNS.” 

Definition 2.3“A {𝓋𝓅} sequence in a NA-NNS(Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)is said to be a statistically convergent 

towards a limit �̿�∈Ξ relate with the NA fuzzy norm (𝜍̃, �̇�, 𝜓) when for each 𝜔 ̃>0 and �́� >0, 

lim
𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�)  ≤  1 − �̃�  or  �̇�(𝓋𝓅 − �̿�, �́�)  ≥  �̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�}| = 0. 

In this case, we write 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − 𝑙𝑖𝑚
𝓅

𝓋𝓅 = �̿� where �̿�is the 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓− limit.”  

Example 2.4 “Let (𝒬𝑃,|. |) indicate the p-adic numbers space in the standard norm, and consider 

𝓋 ∗𝒽=𝓋𝒽 , 𝓋 ⋄ 𝒽= min {𝓋 + 𝒽, 1} and 𝓋 ⋆ 𝒽= min {𝓋 + 𝒽, 1} for every 𝓋, 𝒽∈ [0, 1]. For every 

�̿� ∈ 𝒬𝑃 and all 𝜉 >0, let 𝜍0̃(�̿�, 𝜉) =
�̂�

�̂�+|�̿�| 
, �̇�0(�̿�, 𝜉) =

|�̿�| 

�̂�+|�̿�| 
 𝑎𝑛𝑑𝜓0(�̅�, 𝜉) =

|�̿�| 

�̂�
. In this case observe that 

(𝒬𝑃,𝜍̃, �̇�, 𝜓,∗,⋄,⋆) is a NA-NNS. 
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Define a sequence �̿�= {𝓋𝓅} the terms of which are provided by 

𝓋𝓅 = {
1,        𝑖𝑓 𝓅 = 𝓂2(𝓂 ∈ ℕ) 
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;                 

 

Then for every 0 <�̃�<1 and for any 𝜉>0, let  𝔎𝑛(�̃�, 𝜉) = 𝓅 ≤ 𝓃 ∶ 𝜍0̃(𝓋𝓅 , 𝜉) ≤ 1 − �̃� or 𝜑0̇(𝓋𝓅 , 𝜉) ≥

�̃� 𝑎𝑛𝑑 𝜓0(𝓋𝓅 , 𝜉) ≥ �̃�. 

Since 

𝓅𝑛(�̃�, 𝜉) = {𝓅 ≤ 𝓃 ∶
𝜉

𝜉 + |𝓋𝓅|
≤ 1 − �̃� or 

|𝓋𝓅|

𝜉 + |𝓋𝓅|
≥ �̃� 𝑎𝑛𝑑 

|𝓋𝓅|

𝜉
≥ �̃�} 

= {𝓅 ≤ 𝓃 ∶ |𝓋𝓅| ≥
�̃��̂�

1−�̃�
> 0}  =  {𝓅 ≤  𝓃 ∶  |𝓋𝓅| = 1}  =  {𝓅 ≤  𝓃 ∶  𝓅 = 𝓂2 𝑎𝑛𝑑 𝓂 ∈  ℕ}. 

We have, 

1

𝓃
|𝓅𝑛(�̃�, 𝜉)| =

1

𝓃
{𝓅 ≤  𝓃 ∶  𝓅 = 𝓂2 𝑎𝑛𝑑 𝓂 ∈  ℕ}  ≤  

√𝓃

𝓃
. 

This yields that”  

lim
𝓃

1

𝓃
|𝓅𝑛(�̃�, 𝜉)| = 0. 

Hence by the above definition, 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − 𝑙𝑖𝑚 𝓋𝓅 = 0. 

 

3. Statistical Convergence on Neutrosophic Normed Spaces  

Here, that portion having the goal is to determine theorems concerning convergence and statistical 

convergence within the context of NNS over NA fields 𝜅. 

Lemma 3.1 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be a NA-NNS. After that the given statements is equivalent for all 

�̃� > 0 and �́� > 0 

(𝑖) 𝑆𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓃

𝓋𝓅 = �̿�. 

(𝑖𝑖) 𝑙𝑖𝑚
𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃�}| = 𝑙𝑖𝑚

𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶ �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃�}| 

                                                                                        = 𝑙𝑖𝑚
𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶ 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�}| = 0. 

(𝑖𝑖𝑖) 𝑙𝑖𝑚
𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) > 1 − �̃�, �̇�(𝓋𝓅 − �̿�, �́�) < �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) < �̃�}| = 1. 

(𝑖𝑣) 𝑙𝑖𝑚
𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) > 1 − �̃�}|  = 𝑙𝑖𝑚

𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶ �̇�(𝓋𝓅 − �̿�, �́�) < �̃�}| 

                                                         = 𝑙𝑖𝑚
𝑛

1

𝑛
|{𝓅 ≤ 𝑛 ∶ 𝜓(𝓋𝓅 − �̿�, �́�) < �̃�}| = 1. 

(𝑣) 𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚 𝜍̃(𝓋𝓅 − �̿�, �́�) = 1, 𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚 �̇�(𝓋𝓅 − �̿�, �́�) = 0 𝑎𝑛𝑑  𝑠𝑡𝑎𝑡 − 𝑙𝑖𝑚 𝜓(𝓋𝓅 − �̿�, �́�) = 0           

Theorem 3.2 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be a NA-NNS. If a {𝓋𝓅} sequence is statistically convergent with 

respect to the NN(𝜍̃, �̇�, 𝜓), then 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 −limit is unique. 

Proof: Assume that  𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅

𝓋𝓅 = �̿�1  and  𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅

𝓋𝓅 = �̿�2 . Consider a given �̃� > 0, 

select 𝜉 > 0 so that we have(1 − 𝜉) ∗ (1 − 𝜉) > 1 − �̃�, 𝜉 ⋄ 𝜉 < �̃�and 𝜉 ⋆ 𝜉 < �̃�.  After that for any 

 �́�> 0, define the sets given below: 
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𝓅�̃�,1(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜍̃(𝓋𝓅 − �̿�1, �́�) ≤ 1 − 𝜉}, 𝓅�̃�,2(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜍̃(𝓋𝓅 − �̿�2, �́�) ≤ 1 − 𝜉}, 

  𝓅�̇�,1(𝜉, �́�) ∶= {𝓅 ∈ ℕ : �̇�(𝓋𝓅 − �̿�1, �́�) ≥ 𝜉},   𝓅�̇�,2(𝜉, �́�) ∶= {𝓅 ∈ ℕ : �̇�(𝓋𝓅 − �̿�2, �́�) ≥ 𝜉} and 

  𝓅𝜓,1(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜓(𝓋𝓅 − �̿�1, �́�) ≥ 𝜉},  𝓅𝜓,2(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜓(𝓋𝓅 − �̿�2, �́�) ≥ 𝜉}. 

Since 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅

𝓋𝓅 = �̿�1,  we have  

lim
𝓃

1

𝓃
{𝓅�̃�,1 (�̃�, �́�)} = lim

𝓃

1

𝓃
{𝓅𝓇,1(�̃�, �́�)} = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 �́� > 0. 

Furthermore, using 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅

𝓋𝓅 = �̿�2,  we get  

lim
𝓃

1

𝓃
{𝓅�̃�,2 (�̃�, �́�)} = lim

𝓃

1

𝓃
{𝓅𝓇,2(�̃�, �́�)} = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 �́� > 0. 

Now let,  

𝓅�̃�,�̇�,𝜓(�̃�, �́�) ∶= {𝓅�̃�,1(�̃�, �́�) ∪ 𝓅�̃�,2(�̃�, �́�)} ∩ {𝓅�̇�,1(�̃�, �́�) ∪ 𝓅�̇�,2(�̃�, �́�)} ∩ {𝓅𝜓,1(�̃�, �́�) ∪ 𝓅𝜓,2(�̃�, �́�)}. 

 If 𝓅�̃�,�̇�,𝜓(�̃�, �́�) = 𝓅�̃�,�̇�,𝜓, {𝓅�̃�,1(�̃�, �́�) ∪ 𝓅�̃�,2(�̃�, �́�)} = 𝓅�̃�, {𝓅�̇�,1(�̃�, �́�) ∪ 𝓅�̇�,2(�̃�, �́�)}and  

{𝓅𝜓,1(�̃�, �́�) ∪ 𝓅𝜓2(�̃�, �́�)} = 𝓅𝜓, 𝑡ℎ𝑒𝑛𝓅�̃�,�̇�,𝜓 = 𝓅�̃� ∩ 𝓅�̇� ∩ 𝓅𝜓. 

   Then observe that, lim
𝓃

1

𝓃
{𝓅�̃�,�̇�,𝜓} = 0. which implies, lim

𝓃

1

𝓃
{𝓅�̃�,�̇�,𝜓

𝐶 } = 1. 

If 𝓅 ∈ 𝓅�̃�,�̇�,�̇�
𝐶 , then there are three possibilities to consider:  

Then we have to select the initial part which is 𝓅 ∈ {𝓅�̃�
𝐶}, the second part which is 𝓅 ∈ {𝓅�̇�

𝐶 } and the 

later is 𝓅 ∈ {𝓅�̇�
𝐶 }.  

We first consider that 𝓅 ∈ {𝓅�̃�
𝐶}, then we have, 

𝜍̃(�̿�1 − �̿�2, �́�) = 𝜍̃(�̿�1 − 𝓋𝓅 + 𝓋𝓅 − �̿�2, �́�) ≥ 𝜍̃(�̿�1 − 𝓋𝓅 , �́�) ∗ 𝜍̃(𝓋𝓅 − �̿�2, �́�) 

                      = 𝜍̃(𝓋𝓅 − �̿�1, �́�) ∗ 𝜍̃(𝓋𝓅 − �̿�2, �́�) 

> (1 − 𝜉) ∗ (1 − 𝜉). 

Since (1 − 𝜉) ∗ (1 − 𝜉) > 1 − �̃�, it follows that  

𝜍̃(�̿�1 − �̿�2, �́�) > 1 − �̃�. 

Since �̃� > 0 was arbitrary, 𝜍̃(�̿�1 − �̿�2, �́�) > 1 for all �́�> 0, which given �̿�1 = �̿�2. 

On the second hand, if  𝓅 ∈ {𝓅�̇�
𝐶 }, then we may write that,  

�̇�(�̿�1 − �̿�2, �́�) ≤ �̇�(𝓋𝓅 − �̿�1, �́�) ⋄ �̇�(𝓋𝓅 − �̿�2, �́�) < 𝜉 ⋄ 𝜉. 

Now using the fact𝜉 ⋄ 𝜉 < �̃�,  we see that�̇�(�̿�1 − �̿�2, �́�) < �̃�. 

Again, since �̃� > 0 was arbitrary, we have �̇�(�̿�1 − �̿�2, �́�) = 0 for all �́�> 0.  

This implies �̿�1 = �̿�2. 

And on the other side, if 𝓅 ∈ {𝓅𝜓
𝐶 }, then we put 

𝜓(�̿�1 − �̿�2, �́�) ≤ 𝜓(𝓋𝓅 − �̿�1, �́�) ⋆ 𝜓(𝓋𝓅 − �̿�2, �́�) < 𝜉 ⋆ 𝜉. 

By using𝜉 ⋆ 𝜉 < �̃�, we get 𝜓(�̿�1 − �̿�2, �́�) < �̃�. 

Hence �̃� > 0 is arbitrary, 𝜓(�̿�1 − �̿�2, �́�) = 0 for every �́�> 0, which implies �̿�1 = �̿�2. 

Therefore, 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − limit is unique. 

Theorem 3.3   If a sequence {𝓋𝓅} in a NA-NNS (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) is (𝜍̃, �̇�, 𝜓) −convergent to �̿� ∈ Ξ, 

then this is 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 −convergent towards �̿� ∈ Ξ. 
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Proof:  Since {𝓋𝓅} is (𝜍̃, �̇�, 𝜓) −convergent towards�̿� ∈ Ξ, for all �̃�> 0 and �́�> 0, then there exist 𝓃0 ∈

ℕ such that for all 𝓃 ≥ 𝓃0, 

𝜍̃(𝓋𝓅 − �̿�, �́�) > 1 − �̃�, �̇�(𝓋𝓅 − �̿�, �́�) < �̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) < �̃�. 

This given the set {𝓅 ∈ ℕ ∶ 𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� or �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�} has at the 

most a finite number of terms.  

i.e.,lim
𝓃

1

𝓃
|{

𝓅 ≤  𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� or �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�
}| = 0. 

i.e.,𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − 𝑙𝑖𝑚𝓋𝓅 = �̿�. 

Note: It is interesting to note that the converse of this, which is not true classically, is true in a 

NA-NNS as shown below. 

Let {𝓋𝓅} be 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − convergent towards�̿� ∈ Ξ. Then for all�̃�> 0 and �́�> 0,  

lim
𝓃

1

𝓃
|{𝓅 ≤  𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� or �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�}| = 0. 

Now to prove that {𝓋𝓅} is (𝜍̃, �̇�, 𝜓) − convergent to 𝓋 ∈ Ξ.  i.e., to prove that for all �̃� > 0 and  𝒻 ́ > 0 

therefore 𝓃0 ∈ ℕ exists in that way and for every 𝓃 ≥ 𝓃0,  

𝜍̃(𝓋𝓅 − �̿�, �́�) > 1 − �̃� 𝑎𝑛𝑑 �̇�(𝓋𝓅 − �̿�, �́�) < �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) < �̃�. 

Let us assume the contrary that,  

𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� or �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�. 

This implies that the set  

{𝓅 ≤ 𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� or �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�} 

has infinitely many terms.  

ie, lim
𝓃

1

𝓃
|{𝓅 ≤ 𝓃 ∶  𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� or �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃� and 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�}| ≠ 0  which is a 

contradiction. Therefore, {𝓋𝓅} is (𝜍̃, 𝜑,̇ 𝜓) −convergent to 𝓋 ∈ Ξ. 

Theorem 3.4 Let {𝓋𝓅 } and {𝒽𝓅 } be sequences in a NA-NNS(Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) so that 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 −

lim
𝓃→∞

𝓋𝓅 = 𝓋  and 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓃→∞

𝒽𝓅 = 𝒽, where 𝓋, 𝒽 ∈ Ξ.  Then we have 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓃→∞

(𝓋𝓅 +

𝒽𝓅) = 𝓋 + 𝒽. 

Proof:  Let 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓃→∞

𝓋𝓅 = 𝓋  and 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓃→∞

𝒽𝓅 = 𝒽,   choose 𝜉> 0 such that (1 − 𝜉) ∗

(1 − 𝜉) > 1 − �̃�, 𝜉 ⋄ 𝜉 < �̃�and 𝜉 ⋆ 𝜉 < �̃�for a given�̃� > 0. Then, for �́�> 0, define  

𝓅�̃�,1(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜍̃(𝓋𝓅 − 𝓋, �́�) ≤ 1 − 𝜉}, 

𝓅�̃�,2(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜍̃(𝒽𝓅 − 𝒽, �́�) ≤ 1 − 𝜉}, 

  𝓅�̇�,1(𝜉, �́�) ∶= {𝓅 ∈ ℕ : �̇�(𝓋𝓅 − 𝓋, �́�) ≥ 𝜉}, 

𝓅�̇�,2(𝜉, �́�) ∶= {𝓅 ∈ ℕ : �̇�(𝒽𝓅 − 𝒽, �́�) ≥ 𝜉} and 

 𝓅𝜓,1(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜓(𝓋𝓅 − 𝓋, �́�) ≥ 𝜉}, 

 𝓅𝜓,2(𝜉, �́�) ∶= {𝓅 ∈ ℕ : 𝜓(𝒽𝓅 − 𝒽, �́�) ≥ 𝜉}. 

Since 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝓋𝓅 = 𝓋and 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝒽𝓅 = 𝒽,  

lim
𝓃

1

𝓃
{𝓅�̃�,1 (�̃�, �́�)} = lim

𝓃

1

𝓃
{𝓅�̇�,1(�̃�, �́�)} = lim

𝓃

1

𝓃
{𝓅𝜓,1(�̃�, �́�)} = 0, 
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lim
𝓃

1

𝓃
{𝓅�̃�,2 (�̃�, �́�)} = lim

𝓃

1

𝓃
{𝓅�̇�,2(�̃�, �́�)} = lim

𝓃

1

𝓃
{𝓅𝜓,2(�̃�, �́�)}  = 0. 

Now let,   

𝓅�̃�,�̇�,𝜓(�̃�, �́�) ∶= {𝓅�̃�,1(�̃�, �́�) ∪ 𝓅�̃�,2(�̃�, �́�)} ∩ {𝓅�̇�,1(�̃�, �́�) ∪ 𝓅�̇�,2(�̃�, �́�)} ∩ {𝓅𝜓,1(�̃�, �́�) ∪ 𝓅𝜓,2(�̃�, �́�)} 

i.e., if 𝔎 = 𝔎�̃�,�̇�,𝜓(�̃�, �́�), 𝔎1 = {𝓅�̃�,1(�̃�, �́�) ∪ 𝓅�̃�,2(�̃�, �́�)}, 𝔎2 =  {𝓅�̇�,1(�̃�, �́�) ∪ 𝓅�̇�,2(�̃�, �́�)} 

𝔎3 =  {𝓅𝜓,1(�̃�, �́�) ∪ 𝓅𝜓,2(�̃�, �́�)}. Then 𝔎 = 𝔎1 ∩ 𝔎2 ∩ 𝔎3. 

Since 𝔎𝐶is a non-empty set. Consider 𝓅 ∈ 𝔎𝐶 , then we have three possible cases. The former is 

𝓅 ∈ 𝔎1
𝐶 , the second is 𝓅 ∈ 𝔎2

𝐶and the later is 𝓅 ∈ 𝔎3
𝐶 .  First consider, 𝓅 ∈ 𝔎1

𝐶 ,  then we have,  

𝜍̃(𝓋𝓅 − 𝓋, �́�) > 1 − 𝜉 𝑎𝑛𝑑 𝜍̃(𝒽𝓅 − 𝒽, �́�) > 1 − 𝜉. 

Now, we have,                                                 

𝜍̃(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) > 𝜍̃(𝓋𝓅 − 𝓋, �́�) ∗ 𝜍̃(𝒽𝓅 − 𝒽, �́�) 

> (1 − 𝜉) ∗ (1 − 𝜉). 

Since (1 − 𝜉) ∗ (1 − 𝜉) > 1 − �̃�, it follows that 𝜍̃(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) > 1 − �̃�. 

Since �̃�  is arbitrary, 𝜍̃(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) = 1 for all �́� > 0,  

which yields,𝜍̃(𝓋𝓅 + 𝒽𝓅 − (𝓋 + 𝒽), �́�) = 1.   

Similarly, if  𝓅 ∈ 𝔎2
𝐶  then,  

�̇�(𝓋𝓅 − 𝓋, �́�) < 𝜉 𝑎𝑛𝑑 �̇�(𝒽𝓅 − 𝒽, �́�) < 𝜉. 

⟹   �̇�(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) ≤ �̇�(𝓋𝓅 − 𝓋, �́�) ⋄ �̇�(𝒽𝓅 − 𝒽, �́�) < 𝜉 < 𝜉 ⋄ 𝜉< �̃� . 

Since 𝜔 ̃is arbitrary, �̇�(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) = 0, for all �́� > 0 

⟹   �̇�(𝓋𝓅 + 𝒽𝓅 − (𝓋 + 𝒽), �́�) = 0 

And if  𝓅 ∈ 𝔎3
𝐶  then, 

𝜓(𝓋𝓅 − 𝓋, �́�) < 𝜉 𝑎𝑛𝑑 𝜓(𝒽𝓅 − 𝒽, �́�) < 𝜉 

⟹   𝜓(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) ≤ 𝜓(𝓋𝓅 − 𝓋, �́�) ⋆ 𝜓(𝒽𝓅 − 𝒽, �́�) < 𝜉 < 𝜉 ⋆ 𝜉<�̃�. 

Since  �̃� is arbitrary, 𝜓(𝓋𝓅 + 𝒽𝓅 − 𝓋 − 𝒽, �́�) = 0, for all �́� > 0 

⟹   𝜓(𝓋𝓅 + 𝒽𝓅 − (𝓋 + 𝒽), �́�) = 0. 

Thus, 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

(𝓋𝓅 + 𝒽𝓅) = 𝓋 + 𝒽. 

Theorem 3.5 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be an NA- NNS over 𝜅. If lim
𝓅→∞

𝜍̃(𝓋𝓅 − 𝓋, �́�) = 1, lim
𝓅→∞

�̇�(𝓋𝓅 − 𝓋, �́�) =

1 and lim
𝓅→∞

𝜓(𝓋𝓅 − 𝓋, �́�) = 1 then 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝓋𝓅 = 𝓋. 

Proof:  Let lim
𝓅→∞

𝜍̃(𝓋𝓅 − 𝓋, �́�) = 1, lim
𝓅→∞

�̇�(𝓋𝓅 − 𝓋, �́�) = 1 and lim
𝓅→∞

𝜓(𝓋𝓅 − 𝓋, �́�) = 1. Then for all 𝜉> 0 

and �̃� > 0,  that is a number 𝓅0 ∈ ℕ  in that way, 𝜍̃(𝓋𝓅 − 𝓋, �́�) > 1 − �̃�, �̇�(𝓋𝓅 − 𝓋, �́�) < �̃�  and 

𝜓(𝓋𝓅 − 𝓋, �́�) < �̃� for every 𝓅 ≥ 𝓅0. Hence the set, {𝓅 ∈ ℕ ∶ 𝜍̃(𝓋𝓅 − 𝓋, �́�) ≤ 1 − �̃�, �̇�(𝓋𝓅 − 𝓋, �́�) ≥

�̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋, �́�) ≥ �̃�} has a finite number of terms.  

So, lim
𝓃

1

𝓃
|{

𝓅 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − 𝓋, �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅 − 𝓋, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋, �́�) ≥ �̃�
}| = 0.  

Thus, 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝓋𝓅 = 𝓋. 

4. Statistically Cauchy Sequences on NNS 
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Definition 4.1 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)be a NA-NNS over 𝜅. Then, a {𝓋𝓅} sequence is referred to be SC 

when for each �̃� > 0 and �́�> 0 therefore ℕ exists in which case for every 𝓅, 𝓂 ≥ ℕ,  

lim
𝓃

1

𝓃
|{

𝓅, 𝓂 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − 𝓋𝓂 , �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅 − 𝓋𝓂 , �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋𝓂 , �́�) ≥ �̃�
}| = 0. 

Definition 4.2 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be a NA- NNS. A sequence {𝓋𝓅} is refer as a Cauchy sequence 

when for each�̃� > 0 and �́�> 0, that is a number𝓅0 ∈ ℕ exist that way, for every 𝓅,𝓂≥ 𝓅0,  

𝜍̃(𝓋𝓅 − 𝓋𝓂 , �́�) > 1 − �̃�, �̇�(𝓋𝓅 − 𝓋𝓂 , �́�) < �̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋𝓂 , �́�) < �̃�. 

Theorem 4.3 Every Cauchy sequence with respect to (𝜍̃, �̇�, 𝜓) in NA- NNS(Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)  over 𝜅 is 

SC.  

Proof: If {𝓋𝓅} is a Cauchy sequence with relate to (𝜍̃, �̇�, 𝜓), then there exists𝓅0 ∈ ℕ for all  �̃� > 0 

and 𝒻 ́ > 0 and let 𝓉 be an arbitrary constant, we have  

𝜍̃(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) > 1 − �̃�, 𝜑 ̇ (𝓋𝓅+𝓉 − 𝓋𝓅, �́�) < �̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) < �̃�. 

The number of terms in the set {
𝓅 ∈ ℕ ∶ 𝜍̃(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) ≥ �̃�
} is limited. 

So  

lim
𝓃

1

𝓃
|{

𝓅 + 𝓉, 𝓅 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅+𝓉 − 𝓋𝓅 , �́�) ≥ �̃�
}| = 0. 

Theorem 4.4 If a statistically convergent sequence in a NA- NNS (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) over 𝜅, then it is SC. 

Proof: If the sequence {𝓋𝓅} is statistically convergent to 𝔵 ̿then,  

lim
𝓃

1

𝓃
|{

𝓅 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − �̿�, �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅 − �̿�, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) ≥ �̃�
}| = 0. 

Now, we get  

lim
𝓃

1

𝓃
|{

𝓅, 𝓂 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − 𝓋𝓂 , �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅 − 𝓋𝓂 , �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋𝓂 , �́�) ≥ �̃�
}| 

 = lim
𝓃

1

𝓃
|{

𝓅, 𝓂 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − �̿�, �́�) ∗ 𝜍̃(𝓋𝓂 − �̿�, �́�)  ≤ 1 − �̃�

𝑜𝑟 �̇�(𝓋𝓅 − �̿�, �́�) ⋄ �̇�(𝓋𝑚 − �̿�, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) ⋆ 𝜓(𝓋𝑚 − �̿�, �́�) ≥ �̃�

}| = 0. 

 

5. Statistically complete and statistically continuous on NNS 

A NA- NNS (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)  is said to be complete if all(𝜍̃, �̇�, 𝜓)-Cauchy is (𝜍̃, �̇�, 𝜓)- convergent.  

Definition 5.1 A NA- NNS (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)  over 𝜅 is said to be statistically complete when all SC 

sequence with respect to (𝜍̃, �̇�, 𝜓) is statistically convergent in relate with the (𝜍̃, �̇�, 𝜓). 

Theorem 5.2 Every NA-NNS (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆)  over 𝜅 is statistically complete with relate to (𝜍̃, �̇�, 𝜓). 

Proof: Let {𝓋𝓅} be SC. If it is not statistically convergent to�̿� ∈ Ξ , then we get,  

lim
𝓃

1

𝓃
|{

𝓅, 𝓂 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − 𝓋𝓂 , �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅 − 𝓋𝓂 , �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋𝓂 , �́�) ≥ �̃�
}| 

  = lim
𝓃

1

𝓃
|{

𝓅, 𝓂 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − �̿�, �́�) ∗ 𝜍̃(𝓋𝓂 − �̿�, �́�) ≤ 1 − �̃�

𝑜𝑟 �̇�(𝓋𝓅 − �̿�, �́�) ⋄ �̇�(𝓋𝓂 − �̿�, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − �̿�, �́�) ⋆ 𝜓(𝓋𝓂 − �̿�, �́�) ≥ �̃�

}| = 0  

which is contradiction. 
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Definition 5.3 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be a NA- NNS over  𝜅 . A map  𝒿 : Ξ → Ξ is called (𝜍̃, �̇�, 𝜓) 

continuousat a point 𝓋 ∈ Ξ,  when the sequence with convergence in the NA-NNS implies that the 

sequence 𝒿(𝓋𝓅) to 𝒿(𝓋) convergence in the NA- NNS.  

Definition 5.4 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be a NA- NNS over  𝜅 . A map  𝒿 : Ξ → Ξ is called statistically 

continuous at a point 𝓋 ∈, when 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝓋𝓅 = 𝓋 implies that 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝒿(𝓋𝓅) = 𝒿(𝓋). 

Theorem 5.5 Let (Ξ, 𝜍̃, �̇�, 𝜓,∗,⋄,⋆) be a NA- NN space over 𝜅. If 𝒿: Ξ → Ξ is continuous in relate to 

the (𝜍̃, �̇�, 𝜓), then this is statistically continuous. 

Proof: Let  {𝓋𝓅} ∈ Ξ and  𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝓋𝓅 = 𝓋.  Then for every�̃� > 0 and �́�> 0, the inequality, 

𝜍̃(𝓋𝓅 − 𝓋, �́�) > 1 − �̃�, �̇�(𝓋𝓅 − 𝓋, �́�) < �̃� 𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋, �́�) < �̃�  implies that 𝜍̃(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) >

1 − �̃�, �̇�(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) < �̃� 𝑎𝑛𝑑 𝜓(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) < �̃� . Since 𝒿  is continuous in relate to 

the (𝜍̃, �̇�, 𝜓) at 𝓋 ∈ Ξ . Thus,  

{
𝓅 ∈ ℕ ∶ 𝜍̃(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) ≥ �̃�
} 

⊂ {
𝓅 ∈ ℕ ∶ 𝜍̃(𝓋𝓅 − 𝓋, �́�) ≤ 1 − �̃� 𝑎𝑛𝑑 �̇�(𝓋𝓅 − 𝓋, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋, �́�) ≥ �̃�
} 

   Since, 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝓋𝓅 = 𝓋. 

We have  

lim
𝓃

1

𝓃
|{

𝓅 ≤ 𝓃 ∶ 𝜍̃(𝓋𝓅 − 𝓋, �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝓋𝓅 − 𝓋, �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝓋𝓅 − 𝓋, �́�) ≥ �̃�
}| = 0. 

This implies that,  

lim
𝓃

1

𝓃
|{

𝓅 ≤ 𝓃 ∶ 𝜍̃(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) ≤ 1 − �̃� 𝑜𝑟 �̇�(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) ≥ �̃�

𝑎𝑛𝑑 𝜓(𝒿(𝓋𝓅) − 𝒿(𝓋), �́�) ≥ �̃�
}| = 0. 

This means that, 𝑠𝑡𝑎𝑡�̃�,�̇�,𝜓 − lim
𝓅→∞

𝒿(𝓋𝓅) = 𝒿(𝓋). 

Hence, 𝒿 is statistically continuous.  

 

6.  Conclusions 

The NA fields were extended from Archimedean fields with the established outcomes. In this 

article, we prove certain including relations involving statistical convergence along with SC 

sequences on the NNS regarding NA fields. 

 

Data availability 

The datasets generated during and/or analyzed during the current study are not publicly available 

due to the privacy-preserving nature of the data but are available from the corresponding author 

upon reasonable request. 

Conflict of interest 

The authors declare that there is no conflict of interest in the research.  

Ethical approval 

This article does not contain any studies with human participants or animals performed by any of 

the authors. 



Neutrosophic Systems with Applications, Vol. 9, 2023                                                       90 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Jeyaraman. M and Iswariya. S, A New Approach for the Statistical Convergence over Non-Archimedean Fields in 

Neutrosophic Normed Spaces 

 

 

© 2023 by the authors. Submitted for possible open access publication under the terms and conditions 

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 

References 

1. Atanassov K. T., “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems vol. 20, pp. 87-96, 1986. 

2. Bilalov B. T., Nazarova T.Y., “On statistical convergence in metric spaces,” Journal of           

mathematics research, vol. 7, no. 1, pp. 37-43, 2015. 

3. Eghbali N., Ganji M., “Generalized statistical convergence in the Non-Archimedean L-fuzzy normed 

spaces,” Azerbaijam Journal of Mathematics, vol. 6, no. 1, 2016. 

4. Jeyaraman M., “Generalized Hyers-Ulam-Rassias Stability in Neutrosophic Normed   Spaces,” Octogon 

Mathematical Magazine, vol. 30, no. 2, pp. 773 – 792, 2022. 

5. Jeyaraman M., Mangayarkkarasi AN., Jeyanthi V., Pandiselvi R., “Hyers-Ulam-RassiasStability for 

Functional Equation in Neutrosophic Normed Spaces,” International Journal of Neutrosophic Science 

(IJNS), vol. 18, no. 1, pp. 127-143, 2022. 

6. Jeyaraman M., Jenifer P., “Statistical  ∆ m-Convergence in Neutrosophic Normed Spaces,”Journal of 

Computational Mathematica, vol. 7, no. 1, pp. 46-60, 2023. 

7. Jeyaraman M., Ramachandran A., Shakila VB., “Approximate fixed point theorems for weak contractions 

on neutrosophic normed spaces,” Journal of Computational Mathematica, vol. 6, no. 1, pp.134-158, 2022. 

8. Karakaya V., Simsek N., Erturk M., Gursoy F., “Statistical convergence of sequences of functions in 

intuitionistic fuzzy normed spaces,” Abstract and Applied Analysis, vol. 2012, 19pages, 2012. 

9. Mangayarkkarasi AN., Jeyaraman M., Jeyanthi V., “On Stability of a cubic FunctionalEquation in 

Neutrosophic Normed Spaces,”Advances and Applications in MathematicalSciences, vol. 21, no. 4, pp. 

1975 – 1988, 2022. 

10. Mohiuddine S.A., Danish Lohani Q. M., “On generalized statistical convergence in intuitionistic fuzzy 

normed space,” Choas, Solitons and Fractals, vol. 42, pp.1731-1737, 2009. 

11. Mohiuddine S. A., Sevli H., Cancan M., “Statistical convergence of double sequences infuzzy normed 

spaces,” Filomat, vol. 26, no.4, pp. 673-681, 2012. 

12. Smarandache F., “Neutrosophy. Neutrosophic Probability, Set, and Logic,” Pro QuestInformation & 

Learning, Ann Arbor, Michigan, USA, 1998. 

13. Smarandache F., “Neutrosophic set a generalization of the intuitionistic Fuzzy sets,” Inter JPure Appl 

Math, vol. 24, pp. 287297, 2005. 

14. Sowndrarajan S., Jeyaraman M., “FlorentinSmarandache: Fixed Point theorems in Neutrosophic metric 

spaces,” Neutrosophic Sets a System, vol. 36, pp. 251-268, 2020. 

15. Suja K., Srinivasan V., “On Statistically Convergent and Statistically Cauchy Sequences in 

Non-Archimedean Fields,” Journal of Advances in Mathematics, vol. 6, no. 3, pp.1038-1043, 2014.  

16. Zadeh L. A., “Fuzzy Sets,” Inform and Control, vol. 8, pp.338-353, 1965. 

 

 

Received: Apr 02, 2023.     Accepted: Aug 30, 2023 

 
 

 



                            Neutrosophic Systems with Applications, Vol. 9, 2023 

        https://doi.org/10.61356/j.nswa.2023.53 

 

Ramya G and Francina Shalini A, Trigonometric Similarity Measures of Pythagorean Neutrosophic Hypersoft Sets  

 Trigonometric Similarity Measures of Pythagorean 
Neutrosophic Hypersoft Sets 

 

Ramya G 1,*  and Francina Shalini A 2   

1 Research Scholar, Nirmala College for Women, Coimbatore, India; ramyasrisai11@gmail.com. 
2 Associate Professor, Nirmala College for Women, Coimbatore, India; francshalu@gmail.com. 

 
* Correspondence: ramyasrisai11@gmail.com. 

 

Abstract: In our daily life, most problems stem from wrong decisions. Similarity measures (SMs) 

are very helpful in making good decisions. In this paper, distinct similarities of Pythagorean 

Neutrosophic Hypersoft Sets (PNHSSs) and its properties are presented. Finally, the proposed SMs 

applied for converting plastic waste into energy source problems. Comparing various suggested 

similarities makes decision-making simple, easy and accurate. 

Keywords: PNHSS; SM; Tangent Similarity Measure; Cotangent Similarity Measure; Cosine 

Similarity Measure. 

 

 

1. Introduction 

Recently, many ideas have been introduced to deal with ambiguity and uncertainty (UC). Fuzzy 

set (FS) theory [1, 2], Intuitionistic fuzzy set (IFS) [3] serve different means when dealing with 

inconsistent data. However, all of the above theories fail to address the conflicting information that 

exists in belief systems. In 1998, Smarandache proposed neutrosophic set (NS) [4] theory as a 

generalization of the theories mentioned above. He considered truth, ambiguity and falsehood 

separately. Later, Yager [5] was decided to introduce the novel idea of Pythagorean fuzzy sets 

(PFSs). PFSs have a limitation that their square sum is less than or equal to 1. To overcome 

unconstrained ambiguity, Molodtsov [6] proposed the concept of soft set (SS) as a new mathematical 

method. PFSS is derived from the combination of PFS and SS. Smarandache [7] introduced a new 

technique for dealing with UC. He generalized the SS to the hypersoft set (HSS) by turning the 

function into a multi-decision function. 

In section 2, the basic definitions of Pythagorean Neutrosophic Hypersoft Sets (PNHSSs) are 

presented. In section 3, six Tangent Similarity Measure (TSM) for PNHSSs are presented. In section 

4, given resources were used to determine the accuracy of the similarity measurements.  

2. Preliminaries 

Definition 2.1: [8] Let ∆̃̀ be the universe and 𝓟(∆̃̀) be a power set of ∆̃̀. Consider �⃛̃�𝟏, �⃛̃�𝟐, … , �⃛̃�𝛋⏞ for 

𝛋⏞ ≥ 1 be 𝛋⏞ well - defined attributes and attributive values are �⃛̃�𝟏, �⃛̃�𝟐, … , �⃛̃�𝛋⏞ with �⃛̃�
𝖎⏞̿
⋂�⃛̃�

𝖏⏞̿
= ∅, for 

𝖎⏞̿ ≠ 𝖏⏞̿ , 𝖎⏞̿ , 𝖏⏞̿ ∈̇ {𝟏, 𝟐, … , 𝛋⏞} and their relation �⃛̃�𝟏 × �⃛̃�𝟐, …× �⃛̃�𝛋⏞= ℵ⃛̃, (𝛈, �⃛̃�𝟏 × �⃛̃�𝟐 × …× �⃛̃�𝛋⏞) is said to 

be PNHSS over ∆̃̀ where 𝛈: �⃛̃�𝟏 × �⃛̃�𝟐 × …× �⃛̃�𝛋⏞ → 𝓟(∆̃̀)  and 𝛈 (�⃛̃�𝟏 × �⃛̃�𝟐 × …× �⃛̃�𝛋⏞)  = {(ℵ⃛̃, <

𝛞⏟̌ , �́�
𝛈(ℵ⃛̃)

(𝛞⏟̌) , �́�
𝛈(ℵ⃛̃)

(𝛞⏟̌) , �́�
𝛈(ℵ⃛̃)

(𝛞⏟̌) >) : 𝛞⏟̌ ∈̇ ∆̃̀, ℵ⃛̃ ∈̇ �⃛̃�𝟏 × �⃛̃�𝟐 × …× �⃛̃�𝛋⏞}  where �́�  is the truthiness, �́�  is 

https://doi.org/10.61356/j.nswa.2023.53
https://orcid.org/0009-0002-3155-085X
https://orcid.org/0000-0003-0372-7240
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the indeterminacy and �́� is the falseness such that �́�
𝛈(ℵ⃛̃)

(𝛞⏟̌),  �́�
𝛈(ℵ⃛̃)

(𝛞⏟̌) , �́�
𝛈(ℵ⃛̃)

(𝛞⏟̌) ∈̇ [𝟎, 𝟏] also 𝟎 ≤

(�́�
𝛈(ℵ⃛̃)

(𝛞⏟̌))

𝟐

+ (�́�
𝛈(ℵ⃛̃)

(𝛞⏟̌))

𝟐

+ (�́�
𝛈(ℵ⃛̃)

(𝛞⏟̌))

𝟐

≤ 𝟐.    

3. Trigonometric Similarity Measures for Pythagorean Neutrosophic Hypersoft Sets 

Definition 3.1: Let 𝒲⏟̈̆ =(ℵ⃛̃, < 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀);        

𝒱⏟̈̆  = (ℵ⃛̃, < 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀)  be PNHSSs. The TSMs between𝒲⏟̈̆ , 𝒱⏟̈̆  is, 

�̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 

(ℵ⃛̃, < 𝜘⏟̌ , 
1

�́�
∑

[
 
 
 
 

1 − 𝑡𝑎𝑛

(

 
 
𝜋(| �́�

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌)− �́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)|+|ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌)− ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)|+|ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌)− ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)|)

12

)

 
 

]
 
 
 
 

𝑛
𝑖=1 >) (1)                       

Proposition 1: 

The TSM �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) satisfies the following properties: 

(1) 0 ≤ �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) ≤ 1 

(2) �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1 iff  𝒲⏟̈̆ =  𝒱⏟̈̆ 

(3) �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = �̀�𝑃𝑁𝐻𝑆𝑆 (𝒱⏟̈̆ ,𝒲⏟̈̆ ) 

(4) If   𝔔⏟̈̆  is a PNHSS set and 𝒲⏟̈̆ ⊂ 𝒱⏟̈̆ ⊂  𝔔⏟̈̆  then �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ ,𝔔⏟̈̆)  ≤  �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆)  and 

�̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ �̀�𝑃𝑁𝐻𝑆𝑆 (𝒱⏟̈̆ , 𝔔⏟̈̆). 

Proof: 

(1) Since tangent values of PNHSSs are in the interval [0, 1]. Hence 0 ≤ �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) ≤ 1. 

(2) If 𝒲⏟̈̆  = 𝒱⏟̈̆  , then �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌)  = �́�

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌)= ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌)  = ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) . Hence 

|�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| = 0, |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| = 0, |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) −  ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| = 0. 

Thus �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1. Conversely, if �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1 then |�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| = 

0, |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| = 0, |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| = 0. Since, tan (0) = 0. �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) = 

�́�
𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌), ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌)=ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌), ℱ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) = ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌). Hence 𝒲⏟̈̆ =  𝒱⏟̈̆. 

(3) Proof is Straightforward. 
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(4) If 𝒲⏟̈̆ ⊂ 𝒱⏟̈̆ ⊂  𝔔⏟̈̆  , �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) ≤  �́�

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) ≤ �́�

𝜂(ℵ⃛̃)

𝔔⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) ≥  ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) ≥ ℐ́

𝜂(ℵ⃛̃)

𝔔⏟̈̆
 (𝜘⏟̌), 

ℱ́
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) ≥ ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) ≥ ℱ́

𝜂(ℵ⃛̃)

𝔔⏟̈̆
 (𝜘⏟̌). 

|�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| ≤ |�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|, 

|�́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)| ≤ |�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|, 

|ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)|  ≥ |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|, 

|ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|  ≥  |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|, 

|ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| ≥ |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|, 

|ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)| ≥ |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝔔⏟̈̆
2

 (𝜘⏟̌)|. 

Thus, �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) ; �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ �̀�𝑃𝑁𝐻𝑆𝑆 (𝒱⏟̈̆  𝔔⏟̈̆). 

Definition 3.2: 

Let 𝒲⏟̈̆ = (ℵ⃛̃, < 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀); 

          𝒱⏟̈̆  = (ℵ⃛̃,< 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀)  be PNHSSs. The Cotangent Similarity 

Measure (CTSM) based on the co-tangent function between 𝒲⏟̈̆ , 𝒱⏟̈̆ is, 𝐶𝑇1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) =  

(ℵ⃛̃, < 𝜘⏟̌ ,  
1

�́�
 ∑ 𝑐𝑜𝑡 [

𝜋

4
+

𝜋

4
(|�́�

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) −𝑛
𝔦=1

 ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)|)] -------------------------------------------------------------------------------------------      (2) 

𝐶𝑇2𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = (ℵ⃛̃, < 𝜘⏟̌ ,  
1

�́�
 ∑ 𝑐𝑜𝑡 [

𝜋

4
+

𝜋

12
(|�́�

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) −𝑛
𝔦=1

 ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌)|)] ------------------------------------------------------           (3) 

Here ⋁ denotes Max Operator. 

Proposition 2: 

The CTSMs 𝐶𝑇𝑃𝑁𝐻𝑆𝑆
1,2 (𝒲⏟̈̆ , 𝒱⏟̈̆) satisfies, 

(1) 0 ≤ 𝐶𝑇𝑃𝑁𝐻𝑆𝑆
1,2 (𝒲⏟̈̆ , 𝒱⏟̈̆) ≤ 1 

(2) 𝐶𝑇𝑃𝑁𝐻𝑆𝑆
1,2 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1 iff  𝒲⏟̈̆ =  𝒱⏟̈̆ 
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(3) 𝐶𝑇𝑃𝑁𝐻𝑆𝑆
1,2 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 𝐶𝑇𝑃𝑁𝐻𝑆𝑆

1,2 (𝒱⏟̈̆ ,𝒲⏟̈̆ ) 

(4) If  𝔔⏟̈̆  is a PNHSS set and 𝒲⏟̈̆ ⊂ 𝒱⏟̈̆ ⊂ 𝔔⏟̈̆  then 𝐶𝑇𝑃𝑁𝐻𝑆𝑆
1,2 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ 𝐶𝑇𝑃𝑁𝐻𝑆𝑆

1,2 (𝒲⏟̈̆ , 𝒱⏟̈̆); 

𝐶𝑇𝑃𝑁𝐻𝑆𝑆
1,2 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ 𝐶𝑇𝑃𝑁𝐻𝑆𝑆

1,2 (𝒱⏟̈̆ , 𝔔⏟̈̆). 

Proof: Proof is similar to Prop 1. 

 

Definition 3.3: 

 Let 𝒲⏟̈̆ = (ℵ⃛̃,< 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀);  

 𝒱⏟̈̆ = (ℵ⃛̃,< 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀) be PNHSSs. The Cosine Similarity Measures 

(CSMs) between 𝒲⏟̈̆ ,𝒱⏟̈̆ by using A.M is given by, �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 

(ℵ⃛̃, < 𝜘⏟̌ , 
1

�́�
 , ∑

(�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌))(�́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌))+(ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌))(ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌))+(ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌))(ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
2

 (𝜘⏟̌))

√�́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
4

 (𝜘⏟̌)+ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
4

 (𝜘⏟̌)+ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
4

 (𝜘⏟̌) √�́�
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
4

 (𝜘⏟̌)+ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
4

 (𝜘⏟̌)+ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒱⏟̈̆
4

 (𝜘⏟̌)

𝑛
𝔦=1 >)------      (4) 

 

Proposition 3: 

The CSMs �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) satisfies,  

(1) 0 ≤ �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) ≤ 1 

(2) �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1 iff  𝒲⏟̈̆ = 𝒱⏟̈̆ 

(3) �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒱⏟̈̆ ,𝒲⏟̈̆ ). 

Proof: 

(1) Value of the Cosine function lies between [0, 1]. Hence 0 ≤ �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) ≤ 1. 

(2) If  𝒲⏟̈̆ = 𝒱⏟̈̆, then  �́�
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
(𝜘⏟̌) = �́�

(𝜂(ℵ⃛̃))
𝔦

𝒱⏟̈̆
(𝜘⏟̌), ℐ́

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
(𝜘⏟̌) = ℐ́

(𝜂(ℵ⃛̃))
𝔦

𝒱⏟̈̆
(𝜘⏟̌), ℱ́

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
(𝜘⏟̌) = ℱ́

(𝜂(ℵ⃛̃))
𝔦

𝒱⏟̈̆
(𝜘⏟̌) 

for 𝔦 = 1,2,…n. Hence, �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1. 

(3) Proof is Straightforward. 

Definition 3.4: 

Let 𝒲⏟̈̆ = (ℵ⃛̃, < 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒲⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀); 

     𝒱⏟̈̆ = (ℵ⃛̃, < 𝜘⏟̌ , �́�
𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℐ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) , ℱ́

𝜂(ℵ⃛̃)

𝒱⏟̈̆
 (𝜘⏟̌) >: 𝜘⏟̌ ∈̇ ∆̃̀) be PNHSSs.  
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The CSMs between 𝒲⏟̈̆,  𝒱⏟̈̆ based on the cosine function is  

�̀�2𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ ,𝒱⏟̈̆) = (ℵ⃛̃, < 𝜘⏟̌ , 
1

�́�
 ∑ 𝑐𝑜𝑠 [

𝜋

2
(|�́�

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) −  �́�
(𝜂(ℵ⃛̃))

𝔦

 𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) −𝑛
𝔦=1

 ℐ́
(𝜂(ℵ⃛̃))

𝔦

 𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

 𝒱⏟̈̆
2

 (𝜘⏟̌)|)]  ------------------------------------------------------          (5) 

�̀�3𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆) = (ℵ⃛̃, < 𝜘⏟̌ ,  
1

�́�
 ∑ 𝑐𝑜𝑠 [

𝜋

6
(|�́�

(𝜂(ℵ⃛̃))
𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − �́�
(𝜂(ℵ⃛̃))

𝔦

 𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℐ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) −𝑛
𝔦=1

 ℐ́
(𝜂(ℵ⃛̃))

𝔦

 𝒱⏟̈̆
2

 (𝜘⏟̌)| ⋁ |ℱ́
(𝜂(ℵ⃛̃))

𝔦

𝒲⏟̈̆
2

 (𝜘⏟̌) − ℱ́
(𝜂(ℵ⃛̃))

𝔦

 𝒱⏟̈̆
2

 (𝜘⏟̌)|)]  --------------------------------------------------             (6) 

 

Proposition 4: 

The CSMs �̀�𝑃𝑁𝐻𝑆𝑆
2,3 (𝒲⏟̈̆ , 𝒱⏟̈̆)  satisfies the following properties: 

(1) 0 ≤ �̀�𝑃𝑁𝐻𝑆𝑆
2,3 (𝒲⏟̈̆ , 𝒱⏟̈̆) ≤ 1         

(2) �̀�𝑃𝑁𝐻𝑆𝑆
2,3 (𝒲⏟̈̆ , 𝒱⏟̈̆) = �̀�𝑃𝑁𝐻𝑆𝑆

2,3 ( 𝒱⏟̈̆ ,𝒲⏟̈̆ ). 

(3) �̀�𝑃𝑁𝐻𝑆𝑆
2,3 (𝒲⏟̈̆ , 𝒱⏟̈̆) = 1 iff  𝒲⏟̈̆ =   𝒱⏟̈̆ 

(4) If  𝔔⏟̈̆  is a PNHSS set and 𝒲⏟̈̆ ⊂  𝒱⏟̈̆ ⊂ 𝔔⏟̈̆  then �̀�𝑃𝑁𝐻𝑆𝑆
2,3 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ �̀�𝑃𝑁𝐻𝑆𝑆

2,3 (𝒲⏟̈̆ , 𝒱⏟̈̆) and  

�̀�𝑃𝑁𝐻𝑆𝑆
2,3 (𝒲⏟̈̆ ,𝔔⏟̈̆) ≤ �̀�𝑃𝑁𝐻𝑆𝑆

2,3 ( 𝒱⏟̈̆ , 𝔔⏟̈̆). 

Proof: The proof is similar to Prop.1. 

4. Application of TSMs for PNHSS 

All countries have been using different types of plastic like PETE, HDPE, PVC, LDPE, PP, PS 

and Mix plastic. Few countries are converting plastic waste into energy in the form of solid, liquid 

and gaseous fuels. Also, it’s possible to convert waste plastics into Hydrogen, Methane and 

Ethylene. Both Hydrogen and Methane can be used for clean fuels. Few states are currently sending 

their collected plastic waste to cement plants for Co-Processing. The world is affected a lot due to 

usage of plastic. Plastic things are prohibited by many countries. But still we could not minimize as 

expected. Several techniques are used for converting plastic waste into energy. Pyrolysis is a 

common technique used to convert plastic waste into energy. We try to develop a mathematical 

model to overcome this world problem. 

 

4.1 Methodology 
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Assessment of Standards and Development of 

Decision grid 

 

 

                 Computation for the correlation between Standards and 

options using suggested Resemblances 

 

 

 

 

Evaluate the optimal choice by 

selecting the greatest value 

 

 

Let 𝒞⏟́  = {𝒞1⏟́ , 𝒞2⏟́ , 𝒞3⏟́ , 𝒞4⏟́ , 𝒞5⏟́ , 𝒞6⏟́ , 𝒞7⏟́ , 𝒞8⏟́ , 𝒞9⏟́ , 𝒞10⏟́ , 𝒞11⏟́ , 𝒞12⏟́}  be a set of Countries and Ρ⏟́  = 

{𝑆𝑙𝑜𝑤 Pyrolysis(𝑆𝑃), 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 Pyrolysis(𝐼𝑃), 𝑈𝑙𝑡𝑟𝑎 𝐹𝑎𝑠𝑡 Pyrolysis(UFP)}  be a types of M       

Pyrolysis process. 

The collection of attributes to 𝒞⏟́ & Ρ⏟́ be, 

         ℭ̈⏟ = 

{
 
 
 

 
 
 ℭ̈⏟

1
(Mean Amount of plastic usage[PU] (MT/Day))

ℭ̈⏟
2
(Typical Amount of PU (MT/ Year))

ℭ̈⏟
3
 (Average Amount of PU (Grams/ Week))

ℭ̈⏟
4
 (Typical Amount of PU(𝑘𝑔/𝑝𝑒𝑟𝑠𝑜𝑛))

ℭ̈⏟
5
 (Mean Amount of PU (𝑔/𝑝𝑒𝑟𝑠𝑜𝑛)) }

 
 
 

 
 
 

 

Sub-Attributes are ℭ̈⏟
1
 =  {<  1.5 M. T, 1.5 − 2.5 M. T, 2.5 − 3.5 M. T, >  3.5 M. T}; ℭ̈⏟

2
 = {<  10 M. T, 10 −

15 M. T, 15 − 16.5 M. T} ; ℭ̈⏟
3
 = {0.1 − 2 G, 2 − 5 G, >  5 G} ;ℭ̈⏟

4
 = {< 5 kgs, 5 − 10 kgs, 10 − 15 kgs} ;ℭ̈⏟

5
 

= {0.1 − 2 g, 2 − 5 g, >  5 g}. The PNHSS be  𝜂: (ℭ̈⏟
1
× ℭ̈⏟

2
× ℭ̈⏟

3
× ℭ̈⏟

4
× ℭ̈⏟

5́
) → 𝒫 (𝒞⏟́)  and �̈�: (ℭ̈⏟

1
× ℭ̈⏟

2
×

ℭ̈⏟
3
× ℭ̈⏟

4
× ℭ̈⏟

5
) → 𝒫 (Ρ⏟́).  

Let (𝜂, 𝜁) = {2.5 M − 3.5 M, 10 − 15 M. T, 2 − 5 G, 10 − 15 kgs , > 5 g}. 

 

Now using the proposed several SMs for PNHSSs, we will decide which country is widely using 

mentioned energy techniques.  

For this purpose, we should first provide the relationship between {𝒞2⏟́ , 𝒞3⏟́ , 𝒞5⏟́ , 𝒞11⏟́} and {2.5 M −

3.5 M, 10 − 15 M. T, 2 − 5 G, 10 − 15 kgs, > 5 g } in terms of PNHSSs. 

In the 2nd step, we should provide the relationship between {2.5 M − 3.5 M, 10 − 15 M. T, 2 −

5 G, 10 − 15 kgs , > 5 g} and {(𝑆𝑃), (𝐼𝑃), (UFP)}.  

In Step 3, we should find the correlation between  {𝒞2⏟́ , 𝒞3⏟́ , 𝒞5⏟́ , 𝒞11⏟́} and {(𝑆𝑃), (𝐼𝑃), (FP), (UFP)}.  

In step 4, The association is determined with the proposed TSMs for PNHSS by Equations (1-6). 
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In step 5, Finding the best selection. 

 

 

Table 1. Relation between Regions and criteria 

Regions 𝟐. 𝟓 𝐌 − 𝟑. 𝟓 𝐌 𝟏𝟎 − 𝟏𝟓 𝐌. 𝐓 𝟐 − 𝟓 𝐆 𝟏𝟎 − 𝟏𝟓 𝐤𝐠𝐬 > 𝟓 𝐠 

𝓒𝟐⏟́ (.5, .3, .4) (.5, .4, .6) (.9, .4, .3) (.7, .3, .4) (.6, .3, .7) 

𝓒𝟑⏟́ (.6, .4, .5) (.7, .4, .5) (.8, .4, .1) (.8, .3, .5) (.8, .2, .6) 

𝓒𝟓⏟́ (.8, .3, .2) (.9, .3, .1) (.6, .7, .8) (.7, .5, .6) (.5, .4, .6) 

𝓒𝟏𝟏⏟́ (.7, .6, .1) (.5, .2, .6) (.4, .6, .7) (.4, .5, .7) (.7, .3, .6) 

 

Table 2. Relation between sources and criteria. 

Sources 𝟐. 𝟓 𝐌 − 𝟑. 𝟓 𝐌 𝟏𝟎 − 𝟏𝟓 𝐌. 𝐓 𝟐 − 𝟓 𝐆 𝟏𝟎 − 𝟏𝟓 𝐤𝐠𝐬 > 𝟓 𝐠 

SP (.6, .3, .5) (.8, .6, .4) (.7, .2, .3) (.8, .6, .5) (.7, .6, .2) 

IP (.7, .5, .3) (.7, .6, .4) (.8, .6, .1) (.6, .3, .7) (.9, .7, .2) 

UFP (.7, .2, .6) (.5, .6, .7) (.9, .1, .2) (.8, .7, .5) (.4, .2, .9) 

 

Table 3. SMs using �̀�𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆). 

SMs Regions SP IP UFP 

 

�̀�𝑷𝑵𝑯𝑺𝑺 (𝓦⏟̈̆ , 𝓥⏟̈̆) 

𝒞2⏟́ .85229 .82273 .88249 

𝒞3⏟́ .88170 .87670 .70570 

𝒞5⏟́ .82234 .79836 .75526 

𝒞11⏟́ .78589 .82361 .76558 
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Table 4. SMs using𝐶𝑇1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆). 

SMs Regions SP IP UFP 

 

𝑪𝑻𝟏𝑷𝑵𝑯𝑺𝑺 (𝓦⏟̈̆ , 𝓥⏟̈̆) 

𝒞2⏟́ .61163 .62552 .71484 

𝒞3⏟́ .72953 .66488 .63983 

𝒞5⏟́ .60579 .56037 .50495 

𝒞11⏟́ .53976 .62016 .51110 

 

Table 5: SM using 𝐶𝑇2𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆). 

SMs Regions SP IP UFP 

 

𝑪𝑻𝟐𝑷𝑵𝑯𝑺𝑺 (𝓦⏟̈̆ , 𝓥⏟̈̆) 

𝒞2⏟́ .85186 .85851 .87225 

𝒞3⏟́ .90033 .87437 .86319 

𝒞5⏟́ .84881 .82829 .80667 

𝒞11⏟́ .82248 .85499 .78950 

 

Table 6. SM using �̀�1𝑃𝑁𝐻𝑆𝑆 (𝒲⏟̈̆ , 𝒱⏟̈̆). 

SMs Regions SP IP UFP 

 

�̀�𝟏𝑷𝑵𝑯𝑺𝑺 (𝓦⏟̈̆ , 𝓥⏟̈̆) 

𝒞2⏟́ .86637 .82112 .94452 

𝒞3⏟́ .92401 .89219 .85379 

𝒞5⏟́ .79727 .80323 .71249 

𝒞11⏟́ .67766 .77675 .66510 
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Table 7: SM using �̀�𝟐𝑷𝑵𝑯𝑺𝑺 (𝒲⏟̈̆ , 𝒱⏟̈̆) 

SMs Regions SP IP UFP 

 

�̀�𝟐𝑷𝑵𝑯𝑺𝑺 (𝓦⏟̈̆ , 𝓥⏟̈̆) 

𝒞2⏟́ .87026 .88792 .94036 

𝒞3⏟́ .94101 .90718 .88230 

𝒞5⏟́ .86286 .79998 .82065 

𝒞11⏟́ .82876 .87008 .74815 

 

Table 8: SM using �̀�𝟑𝑷𝑵𝑯𝑺𝑺 (𝒲⏟̈̆ , 𝒱⏟̈̆). 

SMs Regions SP IP UFP 

 

�̀�𝟑𝑷𝑵𝑯𝑺𝑺 (𝓦⏟̈̆ , 𝓥⏟̈̆) 

𝒞2⏟́ .98518 .98724 .99328 

𝒞3⏟́ .99335 .98943 .98651 

𝒞5⏟́ .9842 .97647 .97527 

𝒞11⏟́ .98039 .98511 .97056 

 

The Highest Measure (Table values 3,4,5,6,7,8) reflects Region 𝒞2⏟́  should be selected for UFP, 

Region 𝒞3⏟́ should be selected for SP, Region 𝒞5⏟́ should be selected for SP, Region 𝒞11⏟́ should be 

selected for IP. 

5. Conclusions 

The aim of this paper is to establish Tangent, Cotangent and Cosine SMs of PNHSSs. The 

extension is very applicable to decision-making problems. We introduced six TSMs for PNHSSs with 

properties. Also, applied them to Energy source selection problem. 
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Abstract: We introduce Pura Vida Neutrosophic Algebra, an algebraic structure consisting of 

neutrosophic numbers equipped with two binary operations namely addition and multiplication. 

The addition can be calculated sometimes with the function min and other times with the max 

function. The multiplication operation is the usual sum between numbers. Pura Vida Neutrosophic 

Algebra is an extension of both Tropical Algebra (also known as Min-Plus, or Min-Algebra) and 

Max-Plus Algebra (also known as Max-algebra). Tropical and Max-Plus algebras are algebraic 

structures included in semirings and their operations can be used in matrices and vectors. Pura Vida 

Neutrosophic Algebra is included in Neutrosophic semirings and can be used in Neutrosophic 

matrices and vectors. 

Keywords: Tropical Algebra; Max-Plus Algebra; Pura Vida Neutrosophic Logic; Neutrosophic 

Number. 

 

 

1. Introduction 

Uncertain, indeterminacy, imprecise, and vague are common characteristics of data in real-life 

problems like decision-making, engineering, computer science, finance, etc. Several theories have 

been proposed to deal with these data characteristics, fuzzy set theory [1], intuitionistic fuzzy sets [2], 

rough set theory [3], Soft set [4], and Neutrosophy theory [5]. Since Smarandache introduced 

Neutrosophy to study the basis, nature, and range of neutralities as well as their contact with 

ideational spectra in the 1990s, we have seen the emergence of neutrosophic algebraic structures [6], 

neutrosophic probability and statistics [7, 8] neutrosophic numbers [8], single-valued neutrosophic 

sets (SVNSs) [9, 21], and several algebraic structures such as neutrosophic semirings [10], among 

others theoretical advances [11] and also applications [12]. 

Through neutrosophic semirings, we introduce Pura Vida (PV) Neutrosophic Algebra, an 

algebraic structure consisting of neutrosophic numbers equipped with two binary operations namely 

addition and multiplication. Pura Vida Neutrosophic Algebra is an extension of both Tropical 

Algebra (also known as Min-Plus) [13] and Max-Plus Algebra [14]. Both Tropical and Max-Plus 

algebra are algebraic structures included in semirings and were discovered independently by several 

researchers [13, 14]. They were defined on the real number domain and for the first time, we extended 

them to the neutrosophic domain. 

2. Preliminaries 

2.1. Semiring 

A semiring [15] denoted (V, ⊕, ⊗, 0, 1 ) is a set V equipped with two binary operations, 

addition: 

⊕ : V x V  → V 

And multiplication: 

https://doi.org/10.61356/j.nswa.2023.68
https://orcid.org/0000-0001-5202-941X
https://orcid.org/0000-0002-5560-5926
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⊗: V x V  → V 

Which satisfies the following axioms for any u, v, w ∈ V: 

1. (V, ⊕, 0) is a commutative monoid and (V, ⊗, 1) is a monoid. 

2. u ⊗  (v ⊕  w) = (u ⊗  v) ⊕  (u ⊗  w) and (v ⊕  w) ⊗  u = (v ⊗ u) ⊕  (w ⊗ u) 

(distributivity). 

3. 0 annihilates V: v ⊗ 0 = 0 ⊗ v = 0. 

When (V, ⊗,  1) is a commutative monoid, the semiring (V, ⊕ , ⊗ , 0, 1 ) is said to be a 

commutative semiring. 

 

2.2 Tropical algebra 

The tropical algebra is also referred to as tropical semiring T, which consists of the set of real 

numbers, R, extended with infinity, equipped with the operations of taking minimums (as semiring 

addition) and addition (as semiring multiplication) [14, 16]. Tropical algebra is also known as min-

plus algebra. With minimum replaced by maximum, we get the isomorphic max-plus algebra [17]. 

According to [17], the adjective "tropical" was coined by French mathematicians to honor their 

Brazilian colleague Imre Simon [16], who pioneered the use of min-plus algebra in optimization 

theory. 

T = (R ⋃ { ∞ }, ⊕, ⊗ ) 

Addition operation:  

a ⊕ b = min (a, b) 

Multiplication operation:  

a ⊗ b = a + b 

the operations of R, are extended to T in the usual way and the identities of ⊕ and ⊗ are, 

respectively, ∞ and 0. The element ∞ represents plus-infinity [13]. Given a real number, x ∈ T, its 

addition and multiplication identity are given, respectively: 

x ⊕ ∞ = x 

x ⊗ 0 = x 

Michaleck points out the following equations involving the two identity elements: 

x ⊗ ∞ = ∞     and    x ⊕ 0 = {
0, 𝑖𝑓  𝑥 ≥ 0
𝑥, 𝑖𝑓  𝑥 < 0

 

Michaleck said there is no subtraction in tropical arithmetic. Tropical division ⊘ is defined to 

be classical subtraction. 

Tropical division, x ⊘ y = x, exists if and only if y ⊗ z = x [20]. 

 

In Tropical algebra the pairs of operations (⊕,⊗) is extended to matrices and vectors similarly 

as in linear algebra. That is if A = (aij), B = ( bij ) and C = (cij) are matrices with elements from R of 

compatible sizes, we write: 

C = A ⊕ B if cij = aij ⊕ bij for all i, j 

C = A ⊗ B if cij =∑  ⊕
𝑘 aik ⊕ bkj = maxk (aik + bkj) for all i, j 

α ⊗ A = A ⊗ α = ( α ⊗ aij ) for all α ∈ R. 

 

2.3 Max-Plus algebra 

The Max-Plus algebra is an algebraic structure semiring MP, which consists of the set of real 

numbers, R, extended with infinity, equipped with the operations of taking maximums (as semiring 

addition) and addition (as semiring multiplication) [14]. 

MP = (R ⋃ { − ∞ }, ⊕ ′, ⊗) 

Addition operation:  

a ⊕ ′ b = max (a, b) 

Multiplication operation:  

a ⊗ b = a + b 
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the operations of R, are extended to MP in the usual way and the identities of ⊕ ′ and ⊗ are, 

respectively, -∞ and 0. 

In max-plus algebra the pairs of operations (⊕ ′,⊗) is extended to matrices and vectors similarly 

as in linear algebra. That is if A = (aij), B = (bij) and C = (cij) are matrices with elements from R of 

compatible sizes, we write: 

C = A ⊕ ′ B if cij = aij ⊕ ′ bij for all i, j 

C = A ⊗ B if cij =∑  ⊕′
𝑘 aik ⊕ bkj = maxk (aik + bkj) for all i, j 

α ⊗ A = A ⊗ α = ( α ⊗ aij ) for all α ∈ R. 

 

2.4 Neutrosophic Set 

Smarandache [5] defined Neutrosophic set as a set of elements composed of tripart structure: a 

Truth membership (T), an Indeterminacy membership (I) and a False membership (F). These parts 

are independent each other and can be represented by different functions. Together, <T, I, F>, these 

parts compose an element of Neutrosophic set. 

 

2.5 Neutrosophic Number 

According to [18] the neutrosophic number (NN) is a number which structure is given by “X = a 

+ bI”, where I represents the indeterminacy component of X, and ‘a’ and ‘b’ are real or complex 

numbers [19]. 

 

2.6 Neutrosophic Semiring 

 An algebraic structure (S∪I, ⊕, ⊗) is called neutrosophic semiring [10] if ⊕ and ⊗ are the closed 

and associative binary operations and ⊗ is distributive over ⊕, where S is semiring with respect to 

⊕ and ⊗ and I is the neutrosophic element (I = I2) and < S∪I> = { a + bI; a, b ∈ S}. 

 

2.7 Neutrosophic field [6]  

Let K be the field of reals. We call the field generated by K ∪ I to be the neutrosophic field for it 

involves the indeterminacy (I) factor in it. We define I2 = I, I + I = 2I, i.e., I + … + I = nI, and if k ∈ K 

then kI = Ik, 0I = 0. We denote the neutrosophic field by K(I). 

 

2.8 Neutrosophic matrix [6] 

 Let Mnxm = {(aij) / aij ∈ K(I) }, where K(I), is a neutrosophic field. We call Mnxm to be the neutrosophic 

matrix. 

 

3. Pura Vida Neutrosophic Algebra 

The Pura Vida Neutrosophic Algebra, PV, is an extension of the Tropical algebra and Max-Plus 

Algebra.  

Pura Vida Neutrosophic Algebra is included in a Neutrosophic semiring, i.e., it has both 

associative binary operations, addition ⊕ and multiplication ⊗ where ⊗ is distributive over ⊕, 

and S is semiring with respect to ⊕ and ⊗ and I is the neutrosophic element (I = I2) and < S∪I> =   

{ a = bI; a, b ∈ S}. The addition operation can use either the min function, ⊕, or the max function, 

⊕ ′, depending on the situation. 

PV = (S∪I { - ∞, + ∞ }, ⊕, ⊕ ′, ⊗) 

Pura Vida Neutrosophic Algebra operations addition (⊕, or, ⊕ ′) and multiplication (⊗) are 

given: 

 

3.1 Addition operation⊕, or, ⊕ ′ 

Depending on the real-life applications, the addition operation can use the min or max function. 

Given two neutrosophic numbers x = a + bI, and z = c + dI ∈ S, the addition of x and z: 

3.1.1.      x ⊕ z = ( a ⊕ c ) + ( b ⊕ d )I = min(a, c) + min(b, d)I 
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or, 

3.1.2.      x ⊕ ′ z = ( a ⊕ ′ c ) + ( b ⊕ ′ d )I = max(a, c) + max(b, d)I 

 

3.2 Multiplication operation ⊗ 

Given two neutrosophic numbers x = a + bI, and z = c + dI ∈ S, the multiplication of x and z: 

x ⊗ z = a⊗c + ( b⊗d )I = (a + c) + (b + d)I 

 

3.3 Identities 

In Pura Vida Neutrosophic Algebra, PV, the identities of the operators ⊕, ⊕ ′ and ⊗ are, 

respectively, ∞, -∞ and 0. 

 

3.4 Properties 

Next, we show that the PV attends the closure property and distributive and associative laws. 

We use min for the addition operation, but, one could use the max function to show that PV verifies 

the mentioned properties. 

3.4.1 Closure property:  

Let (a + bI) and (c + dI) ∈ S∪I then, 

(a + bI) ⊕ (c + dI) = (a ⊕ c) + ( b ⊕ d )I = min(a, b) + min(c, d)I, ∈ S∪I. The addition operation 

verifies the closure property. 

(a + bI) ⊗ (c + dI) = a⊗c + (b⊗d)I = (a + c) + (b + d)I ∈ S∪I. Which shows that the closure 

property is satisfied for the multiplication operation. 

3.4.2 Distributive law: 

Let (a + bI), (c + dI) and (e + fI) ∈ S∪I, then: 

(a + bI) ⊗ [ (c + dI) ⊕ (e + fI)] = (a + bI) ⊗ [ min(c, e) + min(d, f)I] = 

= [ a + min(c, e) ] + [ b + min(d, f) ]I. 

And [ (a + bI) ⊗ (c + dI) ] ⊕ [ (a + bI) ⊗ (e + f)I] =  

= [ (a + c) + (b + d)I ] ⊕ [ (a + e) + (b + f)I ] =  

= min {(a + c), (a + e)} + min {(b + d) + (b + f)}I = 

= [ a + min(c, e) ] + [ b + min(d, f) ]I. 

3.4.3 Associative law: 

Let (a + bI), (c + dI) and (e + fI) ∈ S∪I, then: 

[(a + bI) ⊕ (c + dI)] ⊕ (e + fI) = 

[ min(a, c) + min(b, d)I ] ⊕ (e + fI) = min[min(a, c), e] + min[min(b, d), f]I = 

= (a ⊕ c ⊕ e) + (b ⊕ d ⊕ f)I. 

(a + bI) ⊕ [ (c + dI) ⊕ (e + fI) ] =  

(a + bI) ⊕ [ min(c, e) + min(d, f)I ] = min[a, min(c, e)] + min[b, min(d, f)]I = 

= (a ⊕ c ⊕ e) + (b ⊕ d ⊕ f)I.   

Again: 

[(a + bI) ⊗ (c + dI)] ⊗ (e + fI) = [ a⊗c + (b⊗d)I ] ⊗ (e + fI) =  

[ (a + c) + (b + d)I ] ⊗ (e + fI) =  (a + c) ⊗e + [(b + d) ⊗f]I = 

(a + c + e) + (b + d + f)I. 

(a + bI) ⊗ [(c + dI)] ⊗ (e + fI)] = (a + bI) ⊗ [(c + e) + (d + f)I] = 

= a⊗(c + e) + b⊗(d + f)I = (a + c + e) + (b + d + f)I. 

 

3.5 Pura Vida Neutrosophic Algebra on Matrices 

In Pura Vida Neutrosophic Algebra the pairs of operations (⊕, ⊕ ′, ⊗) is extended to matrices 

and vectors similarly as in linear algebra. That is if A = (aij ), B = ( bij ) and C = ( cij ) are matrices with 

elements from R of compatible sizes, we write: 

C = A ⊕ ′ B if cij = aij ⊕ ′ bij for all i, j 

C = A ⊗ B if cij =∑  ⊕′
𝑘 aik ⊕ bkj = maxk (aik + bkj) for all i, j 
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α ⊗ A = A ⊗ α = ( α ⊗ aij ) for all α ∈ R. 

3.5.1 Matrices Addition using ⊕ operator 

Given P and Q, both square neutrosophic matrices 2x2, their sum is D = P⊕Q. 

 

P =        and    Q =  

 

 

 

D =  

Min(-8,3)+Min(1,2)I = -8+I Min(5,13)+Min(-1,3)I = 5-I 

Min(3,7)+Min(8,9)I = 3+8I Min(23,3)+Min(-2,5)I = -2+3I 

 

3.5.2 Matrices Addition using ⊕ ′ operator 

Given X and Z, both square neutrosophic matrices 2x2, their sum is W = X⊕ ′Z. 

 

X =        and    Z =  

 

 

W =  

Max(-8,3)+Max(1,2)I = 3+2I Max(5,13)+Max(-1,3)I = 13+3I 

Max(3,7)+Max(8,9)I = 7+9I Max(23,3)+Max(-2,5)I = 23+5I 

 

3.5.3 Matrices Multiplication using ⊗ operator 

Given A and B, both rectangular neutrosophic matrices, their multiplication is C = A⊗B. 

 

A =         and   B =  

 

 

 

 

C = A ⊗ B =  

C11 C12 C13 C14  

C21 C22 C23 C24  

 

Where, 

C11 = ( -1  2  -I ) ⊗ ( I  1  5 ) =  ( -1⊗I  + 2⊗1 + -I⊗5 ) = ( -1+I + 2+1 + -I+5 ) = 7 

C21 = ( 3 I 0 ) ⊗ ( I 1 5 ) = ( 3⊗I + I⊗1 + 0⊗5 ) = ( 3 + I + 1+ I + 5 ) =  9 + 2I. 

C12 = ( -1  2  -I ) ⊗ ( 1 I  -2 ) =  ( -1⊗1 + 2⊗I + -I⊗-2 ) = ( 0 + 2 + I -I -2 ) = 0. 

C22 = ( 3 I 0 ) ⊗ ( 1 I  -2 ) =  3 + 1 + I + I -2 = 2 + 2I. 

C13 = ( -1  2  -I ) ⊗ (2  0  3I ) = 1 + 2 + 2I = 3 + 2I. 

C23 = ( 3 I 0 ) ⊗ (2  0  3I ) = 5 + I + 3I = 5 + 4I. 

C14 = ( -1  2  -I ) ⊗ ( 4 2 -I ) = 3 + 4 -2I = 7 – 2I. 

C24 = ( 3 I 0 ) ⊗ ( 4 2 -I ) = 7 + I + 2 -I = 9. 

C = A ⊗ B =  

7 0 3 + 2I 7 – 2I 

9+2I 2 + 2I 5 + 4I 9 

 

4. Conclusion 

We introduced Pura Vida Neutrosophic Algebra through neutrosophic numbers and explored 

some its properties and applied to neutrosophic matrices. 

-1 2 -I 

3 I 0 

 

I 1 2 4 

1 I 0 2 

5 -2 3I -I 

 

-8+I 5-I 

3+8I 23-2I 

 

 3+ 2I 13+3I 

7+9I 3+5I 

 

-8+I 5-I 

3+8I 23-2I 

 

 3+ 2I 13+3I 

7+9I 3+5I 
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