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Abstract: Cognitive maps are a vital tool that can be used for knowledge representation and 

reasoning. Fuzzy Cognitive Maps (FCMs) are popular soft computing techniques used to model large 

and complex systems, and they can aid in explainable artificial intelligence (AI). FCMs, however, 

cannot model the indeterminacy that arises in a system due to various uncertainties. Neutrosophic 

Cognitive Maps (NCMs), upgraded FCMs that could model indeterminacy, were introduced to 

address this issue. NCMs are a generalization of FCMs, a field of cognitive science firmly based on 

neural networks. NCMs have been used to solve a wide range of problems. NCMs were introduced 

in 2002, and even after 20 years, NCMs do not have any supportive software, package, toolbox, or 

visualization software like FCMs. The main reason for the absence of dedicated software is due to the 

indeterminacy concept 'I' and how it has to be handled. This paper presents the dedicated Python 

package created for handling the functioning of NCMs. The modelling software presented in this 

paper aids in visualizing the NCMs as a signed digraph with indeterminacy that is a directed signed 

neutrosophic graph. This package implements a sample case study using NCMs.  

Keywords: Neutrosophy; Neutrosophic Cognitive Maps; Python Package; Visualization of NCMs. 
 

 

1. Introduction 

Fuzzy theory is a branch of mathematics that deals with vagueness and uncertainty in decision-

making [1]. Fuzzy sets and logic model complex problems involving imprecise terms or partial truths. 

It has many applications in engineering fields, the healthcare sector, economics, and social science, 

which pertain to real-world problems. Fuzzy logic and its models have many applications in various 

fields, such as engineering, artificial intelligence, medicine, economics, and social problems. It can 

help model multifaceted problems that involve human knowledge, preferences, or emotions [2]. 

A fuzzy cognitive map (FCM) [3] represents a mental landscape within which the connections 

between the nodes (e.g., events, concepts, resources, or attributes) are used to compute the “strength 

of impact" of these elements. FCMs are signed fuzzy digraphs introduced by Bart Kosko [3]. 

FCMs have been used to analyze several socio-economic, healthcare, and decision-making 

problems. The applications and extensions of FCMs are vast and widely researched; a few are 

presented here. 

In [4], the authors explore using FCMs as an agency for collective decision-making and how 

FCMs can capture the cognitive models and group beliefs of different stakeholders. FCMs were used 

as a learning assessment tool in [5] to understand the planning of children by stimulating cognitive 

function. 
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In [6], the Multi-Agent Genetic Algorithm (MAGA) is proposed to optimize convergence error 

for learning FCMs. A GIS-dependent crisis management tool to predict earthquakes in Tehran using 

FCMs was proposed in [7]. 

An evolutionary algorithm, known as IBMTEA-FCM, was proposed in [8] for learning large-

scale FCMs. A qualitative analytical method using FCMs to specify causal-effect links between the 

interdependent SDGs by considering the long-term effect of COVID-19 was presented in [9]. 

In [10], the PRescriptiVe FCM (PRV-FCM) was introduced, based on FCMs and metaheuristic 

algorithms, to develop prescriptive models. In [11], three federated learning approaches were 

combined with FCMs for mortality prediction and treatment prescription in severe dengue cases. 

Iran’s population’s health was analyzed [12] using FCMs. Since the concept of health is a 

complex and comprehensive system, other sector policies profoundly affect health. Borrero-

Domínguez and Escobar-Rodríguez [13] proposed a decision support system for crowdfunding using 

FCMs. The various extensions of FCMs have been systemically reviewed by [14]. 

Several software packages are available for modelling FCMs. One such software, Mental 

Modeler, helps build FCMs intuitively and easily. After creating the models, decreasing or increasing 

the model’s elements allows us to examine various change tactics. FCMexpert is a software tool for 

FCM-based scenario analysis and pattern classification presented in [15]. Over 10 FCM extensions 

were handled by supporting interoperability in the FCM extensions in [16]. 

Python packages are also available for modelling FCMs. FCMpy [17] is a recently introduced 

open-source package for building and analyzing FCMs. Notably, FCMPy allows simulating system 

behaviour using qualitative data to create fuzzy causal weights, applying ML algorithms to modify 

the FCMs matrix to aid in classification, and executing scenario examination by simulating theoretical 

interventions. 

The package also helps apply ML algorithms (e.g., nonlinear and active Hebbian learning, 

deterministic learning, and genetic algorithms) to adjust the FCM weight matrix. 

Neutrosophy is a branch of philosophy investigating neutralities’ origin, nature, and scope and 

their interactions. Florentin Smarandache introduced neutrosophy in the 1990s [18]. Neutrosophy 

regards a proposition, hypothesis, concept, event, or entity depending on the modelling. 

Neutrosophy is the basis of the neutrosophic set, logic, probability, and statistics. Indeterminacy ("I") 

is a concept in neutrosophy that measures the degree of neutrality or uncertainty of a proposition, 

event, theory, entity, or concept. 

Neutrosophic Cognitive Maps (NCMs) are an extension of FCMs that can handle indeterminate 

relationships between two concepts, obtaining more significant and sensitive results. It was 

introduced in [19] to analyze diverse social issues. NCMs have been modelled considerably on the AI 

focus to mimic the thinking-humanly approach. Here, it is unsupervised data and has a limited set of 

features. 

Over the past two decades, many investigators have utilized NCMs to analyze diverse problems 

like situation analysis [20], pest analysis [21], transgressions against people experiencing 

homelessness [22], and imaginative play in children [23]. FCMs and NCMs on COVID variants were 

compared in [24]. SWOT analysis and NCMs were combined to analyze organic farming in India [25]. 

Al-Subhi et al. [26] proposed triangular NCMs and used them in multistage decision-making with a 

use case of evaluation. NCMs and cloud data were used in [27] to detect violence, and several datasets 

were used. NCMs and FCMs were compared in this analysis, and it clearly states that NCMs are 

better at handling indeterminacy than FCMs. 

Dynamic NCMs [28], enhanced cuckoo search, and ensemble classifiers were presented for 

acquiring the profile of gene expression and differentiating between the individuals affected by 

rheumatoid arthritis and possible control subjects. Bhutani et al. [29] proposed a technique combining 

pest analysis based on fuzzy and neutrosophic logic to analyze the food industry. 



Neutrosophic Systems with Applications, Vol. 13, 2024                                                 3 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Kandasamy et al., NCMPy: A Modelling Software for Neutrosophic Cognitive Maps based on Python Package 

In [30], the various factors impacting the paper-packaging industry are analyzed to provide a 

notional representation using NCMs since sustainable supply chains can be attained with repeated 

product use and recycling. 

In [31], NCMs were used to analyze the various causes and effects that lead to violent behaviour. 

NCMs were used to determine the elements that enable proper decision-making to confirm a precise 

diagnosis of conversion disorder [32]. The various factors that affect homeless people were analyzed 

using NCMs in [33]. A neutrosophic sociogram-based NCM approach was introduced in [34]. FCMs 

and NCMs have been used in health care to analyze dengue fever [35]. 

NCMs have been applied in various domains such as health, agriculture, engineering, social 

problems, business, law, environment, and medicine. The substantial advantage of NCMs over other 

cognitive maps is their capacity to capture data realistically and consistently represent expert 

opinions, making them a valuable tool for decision-making strategies where there is an advanced 

degree of indeterminacy or uncertainty. NCMs can be constructed either by a data-driven approach 

or experts’ opinions. 

NCMs have not been integrated with machine-learning algorithms like FCMs. So, little research 

combines various machine learning algorithms that have been utilized in adjusting weights in an 

NCM, like in FCM. Despite the various applications of NCMs, there is no dedicated software or 

Python package for NCMs. This paper presents a dedicated software and Python package for 

constructing, analyzing, and visualizing NCMs. 

The dedicated modules of our modelling software function in the following way: 

i. Generating the neutrosophic graph and the related connection matrix using expert opinion   

 From linguistic terms. 

 From edge weights. 

 From a file as input from the user.  

ii. Visualizing the NCMs as a neutrosophic digraph.  

iii. Simulating the NCMs using various state vectors.  

iv. Analysis of various case scenarios for given NCMs.  

 

The paper is organized as follows: Section 2 recalls the workings of NCMs and their construction. 

Section 3 provides the software-based visualization and simulation of NCM for a case study. The 

conclusions and results are presented in the last section, together with suggestions for future research. 

2. Working of Neutrosophic Cognitive Maps (NCMs)  

When data is unsupervised and the association between two concepts is indeterminate, the 

indeterminacy can be captured by using neutrosophy. [19] introduced the concept of indeterminacy 

in FCMs, called NCMs. The basic properties of NCM are recalled to make this section self-contained. 

NCM is a digraph with concepts as nodes and their causal relationships as edges. These concepts 

can be events, strategies, or policies as nodes of the graph and relationships as edges, where each 

concept is mathematically represented as a neutrosophic vector from the neutrosophic vector space. 

Every node, in its vector form, is represented by (𝑥1, , 𝑥𝑛); 𝑥𝑖 ∈ {0,1, 𝐼}, where 0 is off state, 1 is on 

state and 𝐼 is the indeterminate state. 
Consider two nodes 𝑁𝑎 and 𝑁𝑏 of the NCM; their relationship is given by the edge 𝑒𝑎𝑏. Every 

weighted edge 𝑒𝑎𝑏 is from {–1, 0, 1, I}, where 0 means no impact, positive value means increase in 

𝑁𝑎 implies increase in 𝑁𝑏, similarly decrease in 𝑁𝑎 implies decreases in 𝑁𝑏. If 𝑒𝑎𝑏 takes a negative 

value like −1, it implies that an increase in 𝑁𝑎 implies a decrease in 𝑁𝑏, or similarly, a decrease in 

𝑁𝑎 implies an increase in 𝑁𝑏. The edge weight is assigned a value 𝐼 if the effect from 𝑁𝑎 to 𝑁𝑏 can 

not be determined. The edge weights of simple NCMs are from {–1, 0, 1, I}. The NCM’s adjacency 

matrix is denoted by N(E) = (e 𝑎𝑏), 𝑒𝑎𝑏 ∈ {−1,0,1, 𝐼} . 
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NCMs are expert opinions constructed based on data obtained from the expert, where they 

identify the factors or concepts relevant to the domain and associated causal relationships in terms of 

numbers and indeterminacy or linguistic terms. 

Generally, the neutrosophic connection matrix is obtained directly from the digraph of the 

expert’s opinion. Here, we have introduced the concept of dealing with neutrosophic linguistic terms 

using the following logic. Algorithm 1 provides neutrosophic edge weights from the linguistic terms. 

 

 
 

In the case of linguistic terms, these edges can be considered as negative very high (-VH), 

negative high (-H), negative medium (-M), negative low (-L), and negative very low (-VL). It implies 

a negative influence when the decrease of the influence of the node 𝑁𝑎 results in the increase of the 

influence of the node 𝑁𝑏 or the increase of 𝑁𝑎 results in the decrease of 𝑁𝑏. Similarly, these edges 

can be considered as positive very high (+VH), positive high (+H), positive medium (+M), positive 

low (+L), and positive very low (+VL). It implies a positive influence when the decrease of 𝑁𝑎 results 

in the decrease of 𝑁𝑏 or the increase of 𝑁𝑎 results in the increase of 𝑁𝑏. If the linguistic term is no 

causality, 0 is used; if it is indeterminate, “NaN" (not a number) is used. These linguistic terms are 

converted to numerical values using simple assignments as follows: 
    • If 𝑡𝑒𝑟𝑚 = “-VH" then the element gets a random value from [-5, -2.75).  
    • If 𝑡𝑒𝑟𝑚 = “-H", then the element gets a random value from [-2.75, -2).  
    • If 𝑡𝑒𝑟𝑚 = “-M", then the element gets a random value from [-2, -1.5).  



Neutrosophic Systems with Applications, Vol. 13, 2024                                                 5 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Kandasamy et al., NCMPy: A Modelling Software for Neutrosophic Cognitive Maps based on Python Package 

    • If 𝑡𝑒𝑟𝑚 = “-L", then the element gets a random value from [-1.5, -1).  
    • If 𝑡𝑒𝑟𝑚 = “-VL", then the element gets a random value from [-1, 0).  
    • If 𝑡𝑒𝑟𝑚 = “-NC" then the element gets 0.  
    • If 𝑡𝑒𝑟𝑚 = “+VH" then the element gets a random value from (2.75,5].  
    • If 𝑡𝑒𝑟𝑚 = “+H", then the element gets a random value from (2, 2.75].  
    • If 𝑡𝑒𝑟𝑚 = “+M", then the element gets a random value from (1.5,2].  
    • If 𝑡𝑒𝑟𝑚 = “+L", then the element gets a random value from (1, 1.5].  
    • If 𝑡𝑒𝑟𝑚 = “+VL", then the element gets a random value from (0, 1].  
    • If 𝑡𝑒𝑟𝑚 = “NaN" then the element gets 𝐼.  
The values generated by the algorithm range from [-5, 5]; since the non-indeterminate edge 

weights of NCM are from [-1, 1], the edge weights are normalized before the NCM/neutrosophic 

digraph is constructed. 

The expert opinion obtained can be used to generate the neutrosophic adjacency matrix of the 

NCMs. Generation can be done by using linguistic terms. According to the linguistic terms, the 

neutrosophic matrix can be obtained using random values between the ranges. 

 

Example 1: Consider the graph of the NCM, using the seven concepts (or nodes or attributes) 

𝐿1, 𝐿2, … , 𝐿7 and the expert opinion is obtained in terms of linguistic terms, using Algorithm 1, the 

weights for the edges are provided. 
For illustration, assuming that the connection from 𝐿2 to 𝐿7 has a very high positive influence, 

and the connection between from 𝐿1 to 𝐿3 is indeterminate, and the connection from 𝐿4 to 𝐿7 is a 

very high negative influence. The edge weights generated by the algorithm using the linguistic terms 

are tabulated in the Table 1: 

Table 1. The edge weights assigned by the algorithm. 

   𝐿1   𝐿2   𝐿3   𝐿4   𝐿5   𝐿6   𝐿7  

 𝐿1   0 -2.5  I  1.5 0 3.5 0  

 𝐿2   0 0 0 0  1.5  0 5  

 𝐿3   0 0 0 0 5 2 0  

 𝐿4   0 I 0 0 0 0 -4.5  

 𝐿5   0 0 0 0 0 0 -1  

 𝐿6   0.5 0 0 0 0 0 I  

 𝐿7   0 0 0 0 0 0 0  

 

The NCM will be given in Figure 1. Each edge is weighted and directed. The dashed lines are used to 

represent indeterminate edges. The weight of each edge is given in the graph. 

 

Figure 1. An illustration of the neutrosophic directed graph. 
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It is then normalized to weigh between [−1, 1] and indeterminacy 𝐼. The connection matrix for the 

neutrosophic directed graph is given in Eq. (1). 

 

 𝐸𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

(

 
 
 
 
 

0 −0.5  𝐼 0.3 0  0.7 0
0 0 0 0  0.3 0 1
0 0 0 0 1 0.4 0
0 𝐼 0 0 0 0 −0.9
0 0 0 0 0 0 −0.2
0.1 0 0 0 0 0 𝐼
0 0 0 0 0 0 0

)

 
 
 
 
 

     (1) 

The edge weights can also be obtained from the expert. The edges of simple NCMs are from {–1, 0, 

1, I}.  

 
Example 2: Consider a simple NCM given by an expert with seven concepts 𝐿1, 𝐿2, … , 𝐿7 as the nodes 

of the directed neutrosophic graph. The expert opinion is obtained in terms of edge weights. 

 

 

Figure 2. Neutrosophic directed graph for simple NCM. 

The edge weights are from {−1, 0, 1, 𝐼}, and the indeterminate edges are represented by dotted lines. 

The NCM’s connection matrix is denoted by N(E) = (e 𝑎𝑏), where 𝑒𝑎𝑏 ∈ {0, 1, −1, 𝐼}. 

 

 𝑁(𝐸) =

(

 
 
 
 
 

 0 −1  𝐼  1  0  1  0 
0 0 0 0 1 0 1
0 0 0 0 1 1 0
0 𝐼 0 0 0 0 −1
0 0 0 0 0 0 −1
1 1 0 0 0 0 𝐼
0 0 1 0 0 0 0

)

 
 
 
 
 

      (2) 

 
The notion of state vector, dynamical system and its functioning are described. The neutrosophic 

state vector 𝑆 = (𝑠1, … , 𝑠𝑛); 𝑠𝑖 ∈ {0,1, 𝐼}; where 0 indicates the off state, 1 is in the on state, and 𝐼 

indicates the indeterminate state. Let 𝐿1𝐿2
 ⃖       ,  𝐿2𝐿3

 ⃖        ,  𝐿3𝐿4
 ⃖        , …   , 𝐿𝑎𝐿𝑏

 ⃖         be the NCM’s directed edges. 

Given the edges creating a cycle, the NCM becomes cyclic; otherwise, it is acyclic. Consider 𝐿1𝐿2
 ⃖       ,

𝐿2𝐿3
 ⃖        , … , 𝐿𝑛−1𝐿𝑛

 ⃖              to be cyclic, if node 𝐿𝑎  is on the influence will flow via the existing cycle and cause 

𝐿𝑎 to be on again. This state of equilibrium of the dynamical system is called as a hidden pattern. 
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Various state vectors with different nodes in on state are considered to activate the system 

Consider the NCM with feedback given in Figure 2; its neutrosophic adjacency matrix is N(E) given 

in Eq. (2). 
The state vector 𝑆1 = (1, 0, 0, , 0) where 𝐿1 is in on state is considered. The data needs to be 

transformed by N(E), so we multiply 𝑆1 by N(E). 
The state vector multiplied by the neutrosophic matrix 𝑁(𝐸) is given in Algorithm 3. In the 

given algorithm, 𝑆 is a 1-dimensional matrix (row vector) and the neutrosophic adjacency matrix 

𝑁(𝐸) is a 2-dimensional matrix denoted by 𝐵. The resultant vector Res of the multiplication of 𝑆 ×

𝑁(𝐸) is returned. 
An example illustrates this: Consider the graph in Figure 2 and its related connection matrix. 

Take the state vector 𝑆1 = (1 0 0 0 0 0 0). The state vector 𝑆1  is multiplied with the neutrosophic 

adjacency matrix 𝑁(𝐸). 

 𝑆1 × 𝑁(𝐸) = (1 0 0 0 0 0 0) ×

(

 
 
 
 
 

0 −1  𝐼  1  0  1 0
0 0 0 0 1 0 1
0 0 0 0 1 1 0
0  𝐼 0 0 0 0 −1
0 0 0 0 0 0 −1
 1 1 0 0 0 0 𝐼
0 0 1 0 0 0 0

)

 
 
 
 
 

    (3) 

       = (0 − 1 𝐼 1 0 1 0)        (4) 

 
After obtaining the resultant vector Res, it must undergo the threshold and update operations. By the 

definition of NCM, the threshold and update operation is denoted by the ↪ symbol. 

It is important to note here that working with 𝐼 (indeterminate) needs to be done carefully. As 

by the definition of 𝐼 

     𝐼 × 𝐼 = 𝐼2 = 𝐼         (5) 

 

Any power of 𝐼 gets mapped to 𝐼, as shown in Algorithm 3. 

 

Similarly, during the updating and threshold operation, any constant into 𝐼 is also mapped into 𝐼, 

as shown in Eq. (6)  
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    𝑛 × 𝐼 = 𝐼         (6) 

The resultant vector from the multiplication of the state vector with 𝑁(𝐸)  is thresholded and 

updated. 
Let X = S 1N(E) = (s 1, s 2, , s 𝑛) is thresholded by replacing 𝑠𝑖 accordingly to the Eq. (7). 

 𝑠𝑖 = {

1        i𝑓  𝑠𝑖 > 𝑡

0        i𝑓  𝑠𝑖 < 𝑡  (  𝑡  𝑖𝑠  𝑎  𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

𝐼        i𝑓  𝑠𝑖  n𝑜𝑡  𝑎𝑛  𝑖𝑛𝑡𝑒𝑔𝑒𝑟  
     (7) 

The resultant 𝑋 is updated to ensure that the state considered on in the initial state vector 𝑆1 is on 

in the resulting vector. Here, it is updated to make the concept N 1 as 1 in the resulting vector. 
The algorithm for thresholding and updating is given in Algorithm 4. 

 

 
Here, the Algorithm 4 illustrates where only one node is taken in the on state in the initial state vector. 

The thresholding and updating operation is mathematically denoted by ↪ . For example, 

consider the resultant vector of 𝑆1 × 𝑁(𝐸), the thresholding and updating result in 𝑆2. 

 

 𝑆1 × 𝑁(𝐸) = (0 − 1 𝐼 1 0 1 0) ↪ (1 0 𝐼 1 0 1 0) = 𝑆2      (8) 

Here, during the threshold operation, −1 is made 0, and during the update operation, the very 

first state is made on again. 
Generally, in any NCM, more than one concept/ node can be considered in the on state. This will 

deal with the combined effect of both states being on. The proposed model can handle more than one 

node in the on state, and it can work to analyse the effect of a combination of various nodes. The 

multiplication of resultant vectors with the neutrosophic adjacency matrix 𝑁(𝐸) will continue until 

the resultant vector yields a fixed point or limit cycle. 
If the NCM settles to a neutrosophic state vector repeating in the form 

 

 S 1 ↪ S 2 ↪ 𝑆𝑗 … ↪ S 𝑖 ↪ 𝑆𝑗,   

Then the dynamic system’s equilibrium is called NCM’s limit cycle. Suppose, S 1N(E) ↪ S 2 

(where ↪ denotes the resultant vector of 𝑆1𝑁(𝐸) which is thresholded and updated) and for S 2N(E) 

we repeat the same procedure until we attain the fixed point / limit cycle. 
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Two vectors are compared in Algorithm 5. 

 

 
 

A fixed point or limit cycle is attained when both the vectors under comparison are the same. 
For example, if we compare 𝑆1 with 𝑆2, we can see that 𝑆1 ≠ 𝑆2. 

 (1 0 0 0 0 0 0) ≠ (1 0 𝐼 1 0 1 0) = 𝑆2                (9) 

Since the fixed point nor limit cycle is reached, i.e., 𝑆1 ≠ 𝑆2, the process is continued. 

 𝑆2 × 𝑁(𝐸) = (1 𝐼 𝐼 1 𝐼 1 + 𝐼 − 1 + 𝐼) ↪ (1 𝐼 𝐼 1 𝐼 1 0) = 𝑆3          (10) 

 Since the fixed point still needs to be reached, i.e., 𝑆3 ≠ 𝑆2, the process is continued. 

 
𝑆3 × 𝑁(𝐸) = (1 + 𝐼  2𝐼  2𝐼  1  2𝐼  1 + 𝐼  − 1 + 2𝐼)

↪ (1 𝐼 𝐼 1 𝐼 1 0) = 𝑆4               (11) 

 Here 𝑆3 = 𝑆4. The fixed point has been reached. 
 

The Algorithm 6 is used to determine if a limit cycle is reached. It compares with the previous 

resultant vectors using the previously described in compare Algorithm 5 to check if the limit cycle is 

reached. In case it is reached, it returns a true or a false. 

 

 
 

To illustrate an example of limit cycle, consider the state vector 𝑃1 = (0 1 0 0 0 0 0), and the 

connection matrix 𝑁(𝐸) as given in Eq. (2), that is the related adjacency matrix for the NCM given in 

Figure 2. 

 𝑃1 × 𝑁(𝐸) = (0 0 0 0 1 0 1) ↪ (0 1 0 0 1 0 1) = 𝑃2 

𝑃2 × 𝑁(𝐸) = (0 0 1 0 1 0 0)  ↪ (0 1 1 0 1 0 0) = 𝑃3 

𝑃3 × 𝑁(𝐸) = (0 0 0 0 2 1 0) ↪ (0 1 0 0 1 1 0) = 𝑃4 

𝑃4 × 𝑁(𝐸) = (1 1 0 0 1 0 𝐼) ↪ (1 1 0 0 1 0 𝐼) = 𝑃5 
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𝑃5 × 𝑁(𝐸) = (0 − 1 2 ∗ 𝐼 1 1 1 0) 

↪ (0 1 𝐼 1 1 1 0) = 𝑃6 

𝑃6 × 𝑁(𝐸) = (1 𝐼 + 1 0 0 𝐼 + 1 𝐼 𝐼 − 1) 

↪ (1 1 0 0 1 𝐼 0) = 𝑃7 

𝑃7 × 𝑁(𝐸) = (𝐼 𝐼 − 1 𝐼 1 1 1 𝐼2) 

↪ (𝐼 1 𝐼 1 1 1 𝐼) = 𝑃8 

𝑃8 × 𝑁(𝐸) = (1 1 𝐼2 + 𝐼  𝐼  𝐼 + 1 2 ∗ 𝐼 𝐼 − 1) 

↪ (1 1 𝐼 𝐼 1 𝐼 0) = 𝑃9 

𝑃9 × 𝑁(𝐸) = (𝐼 𝐼2 + 𝐼 − 1  𝐼 1 𝐼 + 1 𝐼 + 1  𝐼2 − 𝐼) 

↪ (𝐼 1 𝐼 1 1 1 0) = 𝑃10 

𝑃10 × 𝑁(𝐸) = (1 1 𝐼2 𝐼 𝐼 + 1 2 ∗ 𝐼 𝐼 − 1) 

 ↪ (1 1 𝐼 𝐼 1 𝐼 0) = 𝑃11 = 𝑃9  (12) 

 

Since 𝑃11 = 𝑃9 , the iteration is stopped since a limit cycle has been achieved, enabling the 

determination of the hidden pattern. The limit cycle is as follows: 𝑃8  gives 𝑃9 , 𝑃9  gives 𝑃10 , 𝑃10 

gives 𝑃11; that is same as 𝑃9. 

The process of multiplication of the resultant vector with the matrix 𝑁(𝐸) is continued until a 

limit cycle / fixed point is reached. 

The Algorithm 7 takes an adjacency/connection matrix and state vector (an integer as input 

denoting the state to be activated) and an integer denoting the threshold values as parameters. 

 
The algorithm 7 continues multiplying the resultant vector with the N(E) until a fixed point or a 

limit cycle is reached. It is dependent on several previously described algorithms. Every concept must 

be made in the active state to capture the hidden pattern and understand the effect of the concept or 

node on others to analyse the NCM thoroughly. Only in NCMs can we signify that the clout of a node 

on different nodes can be indeterminate, and this vision needs to be revised in the case of FCMs. 

For the given example, the results have been tabulated in Table 2 for various state vectors. 
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Table 2. Determining the Hidden Pattern. 

  Input state vector   limit cycle / fixed point   Resultant vector  

 (1 0 0 0 0 0 0)   fixed point  (1 𝐼 𝐼 1 𝐼 𝐼 0)  

(0 1 0 0 0 0 0)   limit cycle   (𝐼 1 𝐼 1 1 1 0) 

    (1 1 𝐼 𝐼 1 𝐼 0)  

    (𝐼 1 𝐼 1 1 1 0)  

    (1 1 𝐼 𝐼 1 𝐼 0)  

(0 0 1 0 0 0 0)   fixed point  (1 𝐼 1 1 1 1 0)  

(0 0 0 1 0 0 0)  fixed point  (0 𝐼 0 1 𝐼  0 0)  

(0 0 0 0 1 0 0)  fixed point  (0 0 0 0 1 0 0)  

(0 0 0 0 0 1 0)   fixed point  (1 𝐼 𝐼 1 𝐼 1 0)  

(0 0 0 0 0 0 1)   fixed point   (1 𝐼 1 1 1 1 1)  

 
It is seen that only the active state of concept 𝐿2 results in a limit cycle—the rest results in a fixed 

point. 
The conclusions that can be drawn from the equilibrium state of the dynamic system are as 

follows: When node 𝐿1 is active, all nodes are either indeterminate or on state. When 𝐿2 is in the on 

state, it results in a limited cycle, which affects all nodes other than 𝐿7 . Similarly, when nodes 

𝐿3, 𝐿4, 𝐿6 or 𝐿7 alone are in the on state, other nodes are either indeterminate or on state. Whereas 

when node 𝐿5 is in on state, no other node is affected; all of them remain in the off state.  

3. Description of the modelling package  

The overall flow of the modelling software is as given in Figure 3. The first module is for the 

input module, which can either be linguistic term-based or edge-weight-based. 
 

 

Figure 3. Various modules of NCM modelling software. 

1.  Input module: There are two methods in which the model can be created using expert opinion. 

They can enter by either method as described below:   
    - Linguistic terms: The user can enter the linguistic terms to describe the relationship between 

two concepts in NCM as very negative or positive. According to the previously discussed 

algorithm, the edge weights are assigned based on the linguistic term.  
    - Edge weights: The user can instead directly enter the edge weight to denote the causality 

between two nodes.  
2.  Neutrosophic digraph: The neutrosophic digraph is generated and visualised using the edge 

weights obtained from the user.  
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3.  Connection matrix: The related connection matrix 𝑁(𝐸) is obtained from the neutrosophic 

digraph of the NCM.  
4.  Dynamical system: Using various state vectors, the dynamical system is simulated to analyse 

the effect of the on state of the various nodes.  
5.  Results: The effect of the on state of various nodes and combination of various states is 

consolidated.  
The NCMpy python package performs a simulation of the dynamic system—a detailed description 

of the package is given in the next subsection. 

3.1  Description of the NCMPy Python Package 

The flowchart of the NCMpy package is given in the following Figure 4. 

 

Figure 4. Flowchart of the NCM package. 

The SymPy library has been used to handle indeterminate values in modelling the NCMs in this 

proposed package. In SymPy package, the names E, I, O, S, N, and Q collide with names already 

defined in the package. Hence, 𝐼 can not be used to represent indeterminacy, so 𝐽 is used instead of 

𝐼. Throughout the coding snippets, 𝐽 is used instead of 𝐼. 
The various functions/modules are described here. 
 

1. compare(x, y): This function takes two vectors as input and checks for their equality; it is 

dependent on Algorithm 6. The code snippet is as follows: 

  

Assume that compare function takes 𝑆7 = (𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 0) and 𝑆8 = (𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 0) as 𝑥  and 𝑦. In 

that case, compare(x, y) will return True, in case it was 𝑆5 = (1 𝐼 𝐼 1 𝐼 𝐼 𝐼)  and 𝑆6 = (𝐼 𝐼 𝐼 1 𝐼 𝐼 0) 

under consideration, then it would return False. 
 

2. check_cycle(b): This function is dependent on Algorithm 6; it is used to check if the resultant 

vector is a fixed point or limit cycle. 
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The fixed point is achieved when the resultant vector is the same as the previous resultant vector, 

that is 𝑃𝑖𝑁(𝐸) ↪ 𝑃𝑖 . The limit cycle is achieved when the recently calculated state vector is the same 

as any one of the previously calculated resultant vector, which results in a cycle.  

 𝑃𝑖𝑁(𝐸) ↪ 𝑃𝑖+1; 𝑃𝑖+1𝑁(𝐸) ↪ 𝑃𝑖+2; … 𝑃𝑥𝑁(𝐸) ↪ 𝑃𝑖; 

In Example 2, considering the active state 𝑃1 = (0 1 0 0 0 0 0) results in a limit cycle. 
 

3. updateIPower(x): This function takes a 1D vector as input and converts the indeterminate 

quadratic polynomial to a linear polynomial. This function is based on Algorithm 3. This function is 

used by the threshold and update function. 

  

Consider the resultant vector;  

 𝑅1 = (𝐽 ∗∗ 2 𝐽 𝐽 + 1 1 0 𝐽 ∗∗ 2 2𝐽) 

For a sample scenario. The updateIPower(R_1) will change this vector 𝑃1 into 

 𝑅1 = (𝐽 𝐽 𝐽 + 1 1 0 𝐽 2𝐽) 

4. thresholdAndUpdate(X,threshold_value,state) : This function takes a 1D vector and a 

threshold value as a parameter and updates each vector value according to the defined thresholding 

operation. Also, the updation operation must see to it that the node which was on in the initial state 

is on in the next state and so on in the resultant state also; if not, it is set to 1 again.  

  
  

 

 𝑋10 × 𝑁(𝐸) = (𝐼 + 1 𝐼 + 1 𝐼 𝐼 𝐼 + 1 2 ∗ 𝐼 𝐼 − 1) ↪ (1 1 𝐼 𝐼 1 𝐼 0) = 𝑋11 

5. iteration(E,state,threshold_value) : This function takes an adjacency/connection matrix, an 

integer denoting the state to be activated and an integer denoting the threshold values as parameters. 

This function is based on the Algorithm 7 .  
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Consider Example 2, where the working out is done with active state 𝑃1 = (0 1 0 0 0 0 0); it 

iterates until the limit cycle is achieved. 

3.2  Modelling NCMs for sample case study 

The opening page for the modelling software is given in Figure 5. Here, the user can select the 

option of working with linguistic terms or directly entering the neutrosophic edge weights given by 

the expert as shown in Figure 6. 

 

Figure 5. Homepage. 

 

Figure 6. Option selection. 

3.3  NCMs using Linguistic Terms  

The neutrosophic linguistic terms are obtained from the user, as shown in Figure 7. 
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Figure 7. Sample input page for the linguistic terms related to the neutrosophic directed graph. 

The NCMpy package runs through the Alogrithm GenerateNCM 2 and creates the necessary 

edge weights and normalises them as shown in Table 3, providing the neutrosophic bigraphs. The 

neutrosophic-directed graph of the NCM is given in Figure 8. 

Table 3. The edge weights assigned. 

 𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 𝐿7 

𝐿1 0 4.88 I 3.58 1.91 -2.39 -2.81 

𝐿2 4.22 0 I 2.13 I -2.74 -4.68 

𝐿3 I I 0 -4.77 I 3.23 1.93 

𝐿4 2.98 1.58 -2.41 0 2.41 1.81 3.11 

𝐿5 1.22 I I 4.2 0 -2.12 I 

𝐿6 -1.20 -4.36 4.03 1.71 -2.40 0 2.85 

𝐿7 -2.03 -4.77 1.34 3.89 I 4.44 0 

 
The resultant neutrosophic connection matrix of the graph is  
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Figure 8. Neutrosophic directed graph. 

To show the plotting capacity of the visualizing module, we have taken a matrix with all connections 

for the sample. The threshold value is obtained from the user. According to the threshold value set 

by the user, the thresholding and updating of state vectors are done. 

 

 

     Figure 9. Insert the threshold value and state vector. 

The threshold value of 1 was taken here, and the following results were obtained for various state 

vectors. The working out for the first state vector 𝑆1 = (1 0 0 0 0 0 0), where the concept 𝐶1 is on is 

shown here: 
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Similarly, the working out for each and every state vector is carried out. For state vector 𝐵1 =

(0 1 0 0 0 0 0), where the concept 𝐶2 is on, the resultant vectors will be: 

  

For state vector 𝐺1 = (0 0 1 0 0 0 0), where the concept 𝐶3 is on, the resultant vectors will be: 

  
For state vector 𝑋1 = (0 0 0 1 0 0 0), where the concept 𝐶4 is on, the resultant vectors will be: 

  
For state vector 𝑌1 = (0 0 0 0 1 0 0), where the concept 𝐶5 is on, the resultant vectors will be: 

  

For state vector 𝑍1 = (0 0 0 0 0 1 0), where the concept 𝐶6 is on, the resultant vectors will be: 
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For state vector 𝐴1 = (0 0 0 0 0 0 1), where the concept 𝐶7 is on, the resultant vectors will be: 
The result vector in each case has been shown. Results regarding the resultant vectors that can 

be discussed   
    1.  Maximum Influence: The nodes 𝐶2, 𝐶3 and 𝐶5 are the most influential since they do 

affect many other nodes and turn to an indeterminate state.  
    2.  Least Influential nodes: The nodes 𝐶4 and 𝐶6 are the least influential since they do not 

affect any other node than itself.  

3.4  NCMs using Edge Weights  

The edge weights are obtained from the expert, as shown in Figure 10.  

 

Figure 10. Input screen. 

Using the edge weights obtained, the NCM is created. It is the visualization of the same represented 

as a NCMs digraph as shown in Figure 11. 

 

Figure 11. Visualization of the neutrosophic graph. 

The related neutrosophic connection matrix 𝑁(𝐸) is given in Eq. (2). The obtained matrix is 
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The threshold value of 1 was taken here, and the following results were obtained for various 

state vectors. The working out for the first state vector 𝑆1 = (1 0 0 0 0 0 0), where the concept 𝐶1 is 

on is shown here:  

  

 

The resultant vectors for all active states are given in the snippet below: 

  

The combination of two concepts being in the on state is also handled by the package done there. 

Similarly, several other combinations can be done, according to the user’s choice. A sample of the 

combinations of various concepts begins in on state, and the working is given in the snippet. 

  
The complete NCMPy python package will be made available online. 

4. Conclusions and discussions 

As the world moves towards no code or less coding paradigms, a Python package for NCM will 

aid and help mathematicians, social scientists, economists, strategists, and other policymakers 

analyze real-world problems without worrying about the mathematical background or 

computational complexities of NCM. A visualization tool and a Python package to help in the 

working of NCM were presented in this paper. The NCMpy package and modelling software provide 
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the functions essential to studying problems involving indeterminacy, which can be done using 

NCMs. 

This package and modelling tool are open-source, written in Python, straightforward to 

implement, and provide the required functionality for handling models with indeterminacy. 

This tool implementation is a collaboration with the founding and leading experts in the field of 

NCMs. This tool will facilitate research and enable new researchers and scientists to apply NCMs to 

their projects that involve indeterminacy. We plan to update our library and constantly welcome all 

scientific community contributions. 
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Abstract: The concepts of open sets, closed sets, the interior of a set, and the exterior of a set are the 

most basic concepts in the study of topological spaces in any setting. When we turn our attention to 

the concept of anti-topological spaces, we encounter analogous fundamental concepts, such as the 

definition of anti-open sets, anti-closed sets, anti-interior, anti-exterior, etc. These concepts have 

already been introduced and studied by mathematicians worldwide. In this article, we introduce and 

study the concepts of b-anti-open set, b-anti-closed set, anti-b-interior, and anti-b-closure in the 

context of anti-topological spaces and investigate some of their basic properties. 

Keywords: b-anti-Open Set; b-anti-Closed Set; b-anti-Interior; b-anti-Closure. 
  

 

1. Introduction 

In the age of artificial intelligence (AI), decision-making assumes a pivotal role within this 

technological landscape. AI technologies like cognitive computing and machine learning have the 

capacity to enhance the decision-making process by scrutinizing extensive data sets, identifying 

patterns, and suggesting the most advantageous solutions. These capabilities prove invaluable for 

decision-makers grappling with intricate situations, be it in the realm of medical diagnosis or strategic 

planning. 

Many mathematicians from around the world are actively engaged in the development of 

decision-making theories utilizing the concept of neutrosophic logic. Haque et al. [13, 16] have 

adeptly employed neutrosophic logic in the formulation of decision-making theories. Furthermore, 

recent research by Banik et al. [14, 15, 17] has leveraged both fuzzy logic and neutrosophic logic in 

various modeling applications within the field of agriculture science. Neutrosophic logic also proves 

valuable in medical science, as exemplified by its application in [17] and several other studies. 

Since the introduction of neutrosophic logic in 1995 by Florentin Smarandache [18], along with 

the subsequent development of neutrosophic topological spaces, various applications of 

neutrosophic theories have emerged in the literature. Similarly, with the theoretical advancement of 

anti-topological spaces and anti-algebra, we anticipate similar applications in the near future. Thus, 

we are also motivated to delve into the study of anti-topological spaces and their associated concepts 

with the aim of yielding future benefits. 

In the year 2021, Şahin et al. [11] introduced the notion of anti-topological spaces. Subsequently, 

Witczak [12] conducted a comprehensive study on anti-topological spaces, providing valuable 

insights into the emerging field. In that work, the author introduced the concepts of anti-interior and 

anti-closure of a set, accompanied by a thorough examination of various properties associated with 

these notions. Furthermore, the author defined anti-dense sets and anti-nowhere-dense sets, 

shedding light on their essential properties. Additionally, the concept of anti-continuity was explored 

within this framework. 

https://doi.org/10.61356/j.nswa.2024.79
https://orcid.org/0000-0002-7427-9839
https://orcid.org/0009-0003-6725-7871
https://orcid.org/0000-0001-7482-0595
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Over the years, researchers have introduced and investigated a multitude of open and closed 

sets [1, 2, 3, 4, 5, 7, 8, 9, 10] within various settings. Witczak [12] extended this line of research by 

introducing anti-semi-open sets, pseudo-anti-open sets, and anti-genuine sets. More recently, 

Khaklary and Ray [6] introduced and studied a diverse range of open sets, including anti-pre-open 

sets, anti-pre-closed sets, regular open sets, regular closed sets, α-open sets, α-closed sets, and more, 

in the context of anti-topological spaces. 

In this article, we further advance the field by introducing the novel concepts of b-anti-open sets 

and b-anti-closed sets within the realm of anti-topological spaces. We delve into a comprehensive 

study of their properties, offering fresh insights into this intriguing domain. Figure 1 presents the 

flowchart of the proposed work. 

 
Figure 1. Flowchart of the proposed work. 

 

2. Preliminaries 

Definition 2.1: [11] Let 𝑋 be a non-empty universe and 𝜏 be a collection of subsets of 𝑋. Then 𝜏 is 

called an anti-topology on X and (𝑋, 𝜏) is called an anti-topological space if the following three 

conditions are satisfied. 

(i) 𝜑, 𝑋 ∉ 𝜏 

(ii) For all 𝑞1,𝑞2, … 𝑞𝑛 ∈ 𝜏, then ⋂ 𝑞𝑖 ∉ 𝜏𝑛
𝑖=1  when any 𝑛 is finite.  

(iii) For all 𝑞1,𝑞2, … 𝑞𝑛 ∈ 𝜏, ⋃ 𝑞𝑖𝑖∈𝐼 ∉ 𝜏. 

Definition 2.2: [12] Let 𝑋 be a non-empty universe and 𝜏 be a collection of subsets of 𝑋. We say 

(𝑋, 𝜏) is an anti-topological space if the following conditions are satisfied. 

(i) 𝜑, 𝑋 ∉ 𝜏 

(ii) For any 𝑛 ∈ ℕ, if 𝐴1,𝐴2, … 𝐴𝑛 ∈ 𝜏 , then ⋂ 𝐴𝑖 ∉ 𝜏𝑛
𝑖=1  (with the assumption that the sets in 

question are not all identical, i.e. the intersection is non-trivial). 

(iii) For any collection {𝐴𝑖}𝑖∈𝐽≠𝜑 such that 𝐴𝑖 ∈  𝜏 for each 𝑖 ∈ 𝐽, ⋃ 𝐴𝑖𝑖∈𝐽 ∉ 𝜏(with the assumption 

that the sets in question are not all identical, i.e. the union is non-trivial). 

The elements of 𝜏 are called anti-open sets, while their complements are anti-closed sets. The 

set of all anti-closed sets will be denoted by 𝜏𝐶𝑙 . We say that every anti-topology is anti-closed under 

finite intersections and arbitrary unions (this refers respectively to condition (ii) and condition (iii) 

above). It is assumed that the property of being anti-closed refers only to non-trivial unions or 

intersections. The notion of non-trivial family is used to speak about those families of sets which 

contain at least two (different) sets. 



Neutrosophic Systems with Applications, Vol. 13, 2024                                                 25 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Sudeep Dey, Priyanka Paul and Gautam Chandra Ray, On b-anti-Open Sets: A Formal Definition, Proofs, and Examples 

Definition 2.3: [12] Let (𝑋, 𝜏)  be an anti-topological space and 𝐴 ⊆ 𝑋 . Then anti-interior of 𝐴 , 

denoted by 𝑎𝐼𝑛𝑡(𝐴), is defined as 𝑎𝐼𝑛𝑡(𝐴) = ⋃{𝑈: 𝑈 ⊆ 𝐴 𝑎𝑛𝑑 𝑈 ∈ 𝜏}. 

Definition 2.4: [12] Let (𝑋, 𝜏)  be an anti-topological space and 𝐴 ⊆ 𝑋 . Then anti-closure of 𝐴 , 

denoted by 𝑎𝐶𝑙(𝐴), is defined as 𝑎𝐶𝑙(𝐴) = ⋂{𝐹: 𝐴 ⊆ 𝐹 𝑎𝑛𝑑 𝐴 ∈ 𝜏𝐶𝑙}. 

Theorem 2.1: Let (𝑋, 𝜏) be an anti-topological space and 𝐴, 𝐵 ⊆ 𝑋. Then the following hold: 

(i) 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝐴 

(ii) If 𝐴 ∈ 𝜏 then 𝑎𝐼𝑛𝑡(𝐴) = 𝐴 

(iii) 𝐴 ⊆ 𝐵 then 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝑎𝐼𝑛𝑡(𝐵) 

(iv) 𝑎𝐼𝑛𝑡(𝑎𝐼𝑛𝑡(𝐴)) = 𝑎𝐼𝑛𝑡(𝐴) 

(v) 𝐴 ⊆ 𝑎𝐶𝑙(𝐴) 

(vi) If 𝐴 is an anti-closed set then 𝑎𝐶𝑙(𝐴) = 𝐴 

(vii) 𝐴 ⊆ 𝐵 then 𝑎𝐶𝑙(𝐴) ⊆ 𝑎𝐶𝑙(𝐵) 

(viii) 𝑎𝐶𝑙(𝑎𝐶𝑙(𝐴)) = 𝑎𝐶𝑙(𝐴) 

Definition 2.5: [6] Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋. Then 𝐴 will be called an anti-

pre-open set if 𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)). 

Definition 2.6: [12] Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋. Then 𝐴 will be called an anti-

semi-open set if 𝐴 ⊆ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)). 

3. b-anti-open sets 

Definition 3.1: Let (𝑋, 𝜏) be an anti-topological space. A subset 𝐴 of 𝑋 will be called a b-anti-open 

set iff 𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴))  ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)). 

Example 3.2:  

(i) Let 𝑋 = {1,3,5,7,9} , 𝜏 = {{3}, {1,5,7}, {7,9}}. Clearly (X, τ) is an anti-topological space and𝜏𝐶𝑙 =

{{1,5,7,9}, {3,9}, {1,3,5}}. Let us take 𝐴 = {1,5,7} ⊆ 𝑋 . Now, 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) =

𝑎𝐼𝑛𝑡({1,5,7,9}) ∪ 𝑎𝐶𝑙({1,5,7})  = {1,5,7,9} ∪ {1,5,7,9}  = {1,5,7,9}. Therefore, 𝐴 ⊆

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴))  ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)), i.e., 𝐴 is a 𝑏-anti-open set. 

(ii) Let 𝑋 = {1,3,5,7,9} , 𝜏 = {{3}, {1,5,7}, {7,9}} . Clearly, (X, τ) is an anti-topological space 

and 𝜏𝐶𝑙 = {{1,5,7,9}, {3,9}, {1,3,5}}.Let 𝐴 = {1,3,5}} ⊆ 𝑋. Then 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) =

 𝑎𝐼𝑛𝑡({1,3,5}) ∪ 𝑎𝐶𝑙({3}) = {3} ∪ {3} = {3}.Clearly, 𝐴 ⊈ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)).So,𝐴 is 

not a 𝑏-anti-open set. 

Proposition 3.1: In an anti-topological space, every anti-open set is a 𝑏-anti-open set. 

Proof: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋 such that 𝐴 is anti-open. Since 𝐴 is anti-

open, so we have, 𝐴 ∈ 𝜏 ⇒ 𝑎𝐼𝑛𝑡(𝐴) = 𝐴 . Now, we have 𝐴 ⊆ 𝑎𝐶𝑙(𝐴) ⇒ 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ⇒

𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ⇒ 𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪  𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ⇒ 𝐴 is a 𝑏 -anti-open set. Thus, every anti-

open set is a 𝑏-anti-open set. 

Remark 3.1: Converse of the prop. 3.1 is not true. We establish it by the following counterexample. 

Let 𝑋 = {1,2,3,4,5}, 𝜏 = {{1}, {4}, {2,3}, {3,5}}. Clearly (X, τ) is an anti-topological space and the anti-

closed sets of 𝑋 are {2,3,4,5}, {1,2,3,5}, {1,4,5}, {1,2,4}. Let us take 𝐴 = {2,3,4} ⊆ 𝑋. Clearly, 𝐴 is not 

an anti-open set. Now 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) =  𝑎𝐼𝑛𝑡({2,3,4,5}) ∪ 𝑎𝐶𝑙({2,3,4})  = {2,3,4,5} ∪

{2,3,4,5} = {2,3,4,5}. Clearly, 𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴))  ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) and so, 𝐴 is a 𝑏-anti-open set. Thus 𝐴 

is not a b-anti-open set but not an anti-open set. 

Proposition 3.2: In an anti-topological space, union of an arbitrary number of 𝑏-anti-open sets is a 𝑏-

anti-open set. 
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Proof: Let (𝑋, 𝜏) be an anti-topological space and {𝐴𝑖: 𝑖 ∈ ∆} be an arbitrary collection of 𝑏-anti-open 

sets in 𝑋 where ∆ is an index set. Let 𝑥 ∈ ⋃ 𝐴𝑖𝑖∈∆ ⇒𝑥 ∈ 𝐴𝑘, for some 𝑘 ∈ ∆. Since 𝐴𝑘 is a b-anti-open 

set, so 𝐴𝑘 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴𝑘)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴𝑘)) and so, 𝑥 ∈ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴𝑘)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴𝑘)). Now 𝐴𝑘 ⊆

⋃ 𝐴𝑖𝑖∈∆ ⇒ 𝑎𝐶𝑙(𝐴𝑘) ⊆ 𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈∆ ) ⇒ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴𝑘)) ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈∆ )) . Similarly, 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴𝑘)) ⊆

𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(⋃ 𝐴𝑖𝑖∈∆ )) . Therefore, 𝐴𝑘 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴𝑘)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴𝑘)) ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈∆ )) ∪

𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(⋃ 𝐴𝑖𝑖∈∆ )) ⇒ 𝑥 ∈ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈∆ )) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(⋃ 𝐴𝑖𝑖∈∆ )) . This gives ⋃ 𝐴𝑖𝑖∈∆ ⊆

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(⋃ 𝐴𝑖𝑖∈∆ )) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(⋃ 𝐴𝑖𝑖∈∆ )), i.e., ⋃ 𝐴𝑖𝑖∈∆ is a 𝑏-anti-open set. Hence proved. 

Remark 3.2: In an anti-topological space, intersection of two 𝑏-anti-open sets may not be a 𝑏-anti-

open set.  

Let 𝑋 = {1, 2, 3, 4, 5}, 𝜏 = {{1}, {4}, {2, 3}, {3, 5}}. Clearly (X, τ) is an anti-topological space and the anti-

closed sets of 𝑋  are {2, 3, 4, 5}, {1, 2, 3, 5}, {1, 4, 5}, {1, 2, 4}. Let us consider the subsets 𝐴 = {2, 3, 4} 

and 𝐵 = {2, 4, 5} of 𝑋 . Obviously  𝐴 and 𝐵  are 𝑏 -anti-open sets. Now 𝐴 ∩ 𝐵 = {2,4}  and 

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴 ∩ 𝐵)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴 ∩ 𝐵)) =  𝑎𝐼𝑛𝑡({2,4}) ∪ 𝑎𝐶𝑙({4}) = {4} ∪ {4} = {4}. Therefore, 𝐴 ∩ 𝐵 ⊈

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴 ∩ 𝐵)) ∪ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴 ∩ 𝐵)), i.e., 𝐴 ∩ 𝐵is not a 𝑏-anti-open set. 

Proposition 3.3: In an anti-topological space, 

(i) Every anti-pre-open set is a 𝑏-anti-open set. 

(ii) Every anti-semi-open set is a 𝑏-anti-open set. 

Proof:  

(i) Let (𝑋, 𝜏) be an anti-topological space and let 𝐴 be an anti-pre-open subset of 𝑋. Then 𝐴 ⊆

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ⇒  𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪  𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ⇒ 𝐴 is a 𝑏-anti-openset. 

(ii) Let(𝑋, 𝜏) be an anti-topological space and let 𝐴 be an anti-semi-open subset of 𝑋. Then 𝐴 ⊆

𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ⇒  𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪  𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ⇒ 𝐴 is a 𝑏-anti-open set. 

 

Definition3.2: Let (𝑋, 𝜏) be an anti-topological space. A subset 𝐴 of 𝑋 will be called a b-anti-closed 

set if 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∩ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ⊆ 𝐴. 

Example 3.1:  

(i) Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Clearly, 𝜏 = {{𝑎}, {𝑏, 𝑐}, {𝑐, 𝑑, 𝑒}} is an anti-topology for 𝑋  and 𝜏𝐶𝑙 =

{{𝑏, 𝑐, 𝑑, 𝑒}, {𝑎, 𝑑, 𝑒}, {𝑎, 𝑏}} . Let us take 𝐴 = {𝑎, 𝑏} ⊆ 𝑋 . Then𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∩ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) =

{𝑎} ⊆ 𝐴. Therefore, 𝐴 is a 𝑏-anti-closed set. 

(ii) Let 𝑋 = {1,2,3,4,5}. Clearly, 𝜏 = {{1}, {4}, {2, 3}, {3, 5}} is an anti-topology for 𝑋  and 𝜏𝐶𝑙 =

{{1, 2, 3, 5}, {1, 4, 5}, {1, 2, 4}} . Let us take 𝐵 = {1, 3, 5} ⊆ 𝑋 . Then 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐵)) ∩

𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐵)) = {1, 2, 3, 5} ⊈ 𝐵. Therefore, 𝐵 is not a 𝑏-anti-closed set.  

Proposition 3.4: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋. Then 𝐴 is a 𝑏-anti-open set iff 

𝐴𝑐 is a 𝑏-anti-closed set.  

Proof: 𝐴 is a 𝑏-anti-open set 

⇔  𝐴 ⊆ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪  𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) 

⇔  𝐴𝑐  ⊇  [𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∪  𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴))]
𝑐
 

⇔  𝐴𝑐  ⊇  [𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴))]
𝑐
⋂[𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴))]

𝑐
 

⇔ 𝐴𝑐 ⊇ [𝑎𝐶𝑙(𝑎𝐶𝑙(𝐴))
𝑐
]⋂[𝑎𝐼𝑛𝑡(𝑎𝐼𝑛𝑡(𝐴))

𝑐
] 

⇔  𝐴𝑐  ⊇ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴𝑐))⋂𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴𝑐)) 

⇔ 𝐴𝑐 is a 𝑏-anti-closed set. Hence proved. 

Proposition 3.5: In an anti-topological space, every anti-closed set is a 𝑏-anti-closed set.  
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Proof: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋 such that 𝐴 is anti-closed. Then 𝐴𝑐 is anti-

open set and from the proposition 3.1, it follows that 𝐴𝑐  is a 𝑏-anti-open set. Therefore, by the 

proposition 3.4, 𝐴 is a 𝑏-anti-closed set. Hence proved. 

 

Remark 3.3: Converse of the prop. 3.5 is not true. We establish it by the following counterexample. 

Let 𝑋 = {1, 2, 3, 4, 5} . Clearly, 𝜏 = {{1}, {4}, {2, 3}, {3, 5}}  is an anti-topology for 𝑋  and 𝜏𝐶𝑙 =

{{1, 2, 3, 5}, {1, 4, 5}, {1, 2, 4}}. Let us take 𝐴 = {1,5} ⊆ 𝑋. Obviously 𝐴 is not an anti-closed set. Now 

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∩ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) = {1} ⊆ 𝐴. Therefore, 𝐴 is a b-anti-closed set. Thus 𝐴 is a 𝑏-anti-closed 

set but not an anti-closed set. 

 

Proposition 3.6: In an anti-topological space, 

(i) Every anti-pre-closed set is a 𝑏-anti-closed set. 

(ii) Every anti-semi-closed set is 𝑏-anti-closed set. 

Proof: 

(i) Let 𝐴  be an anti-pre-closed subset of 𝑋 . Then 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ⊆ 𝐴 ⇒ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴)) ∩

𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ⊆ 𝐴 ⇒ 𝐴 is a 𝑏-anti-closed set. 

(ii) Let 𝐴  be an anti-semi-closed subset of 𝑋 . Then 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ⊆ 𝐴 ⇒ 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ∩

 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴)) ⊆ 𝐴 ⇒ 𝐴 is a 𝑏-anti-closed set. 

Proposition 3.7: In an anti-topological space, intersection of arbitrary number of 𝑏-anti-closed sets is 

𝑏-anti-closed. 

Proof: Let (𝑋, 𝜏) be an anti-topological space and {𝐴𝑖: 𝑖 ∈ ∆} be an arbitrary collection of 𝑏-anti-

closed sets in 𝑋 where ∆ is an index set. Then 𝐴𝑖
𝑐 is a 𝑏-anti-open set for each 𝑖 ∈ ∆ ⇒⋃ 𝐴𝑖

𝑐
𝑖∈∆  is a 

𝑏-anti-open set [by prop.3.2] ⇒(⋂ 𝐴𝑖𝑖∈∆ )𝑐 is a 𝑏-anti-open set ⇒⋂ 𝐴𝑖𝑖∈∆  is an𝑏-anti-closed set. Hence 

proved. 

Remark 3.4: In an anti-topological space, union of two 𝑏-anti-closed sets may not be a 𝑏-anti-closed 

set. We establish it by the following counterexample: 

Let 𝑋 = {1,2,3,4,5} . Clearly, 𝜏 = {{1}, {4}, {2, 3}, {3, 5}}  is an anti-topology for 𝑋  and 𝜏𝐶𝑙 =

{{1, 2, 3, 5}, {1, 4, 5}, {1, 2, 4}}. Let us take 𝐴 = {1, 5}and 𝐵 = {1, 3} ⊆ 𝑋. Clearly, 𝐴 and 𝐵 are two b-

anti-closed sets in 𝑋. Now 𝐴 ∪ 𝐵 = {1, 3, 5} and 𝑎𝐼𝑛𝑡(𝑎𝐶𝑙(𝐴 ∪ 𝐵)) ∩ 𝑎𝐶𝑙(𝑎𝐼𝑛𝑡(𝐴 ∪ 𝐵)) = {1, 2, 3, 5} ⊈

𝐴 ∪ 𝐵. Therefore, 𝐴 ∪ 𝐵 is not a 𝑏-anti-closed set. Thus, the union of two 𝑏-anti-closed sets may not 

be a 𝑏-anti-closed set. 

Definition 3.3: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋 . Then the 𝑏-anti-interior of 𝐴 , 

denoted by 𝑏 − 𝑎𝐼𝑛𝑡(𝐴), is defined as 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) = ⋃{𝐺: 𝐺 is 𝑏 − anti − open set in 𝑋 and 𝐺 ⊆ 𝐴}. 

Proposition 3.8: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋. Then the following hold:  

(i) 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) is a 𝑏-anti-open set. 

(ii) 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝐴. 

(iii) 𝐴 is 𝑏-anti-open set iff 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) = 𝐴. 

(iv) 𝑏 − 𝑎𝐼𝑛𝑡(𝑏 − 𝑎𝐼𝑛𝑡(𝐴)) =  𝑏 − 𝑎𝐼𝑛𝑡(𝐴). 

Proof:  

(i) Since 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) = ⋃{𝐺: 𝐺 is 𝑏 − anti − open set in 𝑋 and 𝐺 ⊆ 𝐴}  and union of arbitrary 

number of 𝑏-anti-open sets is a 𝑏-open set, so 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) is a 𝑏-anti-open set. 

(ii) Since 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) is the union of all 𝑏-anti-open sets contained in 𝐴, so 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝐴. 

(iii) Let 𝐴 be a 𝑏-anti-open set. Since 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) is the union of all 𝑏-anti-open sets which are 

contained in 𝐴 and since, 𝐴 is a 𝑏-anti-open set contained in 𝐴, so 𝐴 ⊆  𝑏 − 𝑎𝐼𝑛𝑡(𝐴). Also 

from (ii), 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝐴. Therefore, 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) = 𝐴 . Conversely let 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) = 𝐴. 

Since 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) is a 𝑏-anti-open set, so 𝐴 is also a 𝑏-anti-open set. 
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(iv) Since 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) is a 𝑏-anti-open set, so by (iii), 𝑏 − 𝑎𝐼𝑛𝑡(𝑏 − 𝑎𝐼𝑛𝑡(𝐴)) =  𝑏 − 𝑎𝐼𝑛𝑡(𝐴). 

Proposition 3.9: Let (𝑋, 𝜏) be an anti-topological space and 𝐴, 𝐵 be subsets of 𝑋. Then the following 

hold: 

(i) 𝐴 ⊆ 𝐵⇒ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵). 

(ii) 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ∪ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵). 

(iii) 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ∩ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵). 

Proof:  

(i) We have 𝑥 ∈ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ⇒ 𝑥 ∈ ⋃{𝐺: 𝐺 is 𝑏 − anti − open set in 𝑋 and 𝐺 ⊆ 𝐴} ⇒ 𝑥 ∈

⋃{𝐺: 𝐺 is 𝑏 − anti − open set in 𝑋 and 𝐺 ⊆ 𝐵} (∵ 𝐴 ⊆ 𝐵) ⇒ 𝑥 ∈ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵). 

(ii) 𝐴 ⊆ 𝐴 ∪ 𝐵 ⇒ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∪ 𝐵) . Similarly, 𝑏 − 𝑎𝐼𝑛𝑡(𝐵) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∪ 𝐵) . 

Therefore, 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ∪ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵). 

(iii) 𝐴 ∩ 𝐵 ⊆ 𝐴 ⇒ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) . Similarly, 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵) . 

Therefore, 𝑏 − 𝑎𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴) ∩ 𝑏 − 𝑎𝐼𝑛𝑡(𝐵). 

Definition 3.4: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋 . Then the 𝑏-anti-closure of 𝐴 , 

denoted by 𝑏 − 𝑎𝐶𝑙(𝐴), is defined as 𝑏 − 𝑎𝐶𝑙(𝐴) = ⋂{𝐺: 𝐺 isa 𝑏 − anti − closed set in 𝑋 and 𝐴 ⊆ 𝐺}. 

Proposition 3.10: Let (𝑋, 𝜏) be an anti-topological space and 𝐴 ⊆ 𝑋. Then the following hold:  

(i) 𝑏 − 𝑎𝐶𝑙(𝐴)is a 𝑏 − anti − closed set. 

(ii) 𝐴 ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴). 

(iii) 𝐴 is 𝑏-anti-closed set iff 𝑏 − 𝑎𝐶𝑙(𝐴) = 𝐴. 

(iv) 𝑏 − 𝑎𝐶𝑙(𝑏 − 𝑎𝐶𝑙(𝐴))= 𝑏 − 𝑎𝐶𝑙(𝐴). 

Proof:  

(i) Since 𝑏 − 𝑎𝐶𝑙(𝐴) = ⋂{𝐺: 𝐺 is a 𝑏 − anti − closed set in 𝑋 and 𝐴 ⊆ 𝐺}  and intersection of 

arbitrary number of 𝑏 -anti-closed sets  is a 𝑏 -anti-closed, so 𝑏 − 𝑎𝐶𝑙(𝐴)  is a 𝑏 -anti-

closed set. 

(ii) Since 𝑏 − 𝑎𝐶𝑙(𝐴) is the intersection of all 𝑏-anti-closed sets containing𝐴, so 𝐴 ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴). 

(iii) Let 𝐴  be a 𝑏 -anti-closed set. Since 𝑏 − 𝑎𝐶𝑙(𝐴) = ⋂{𝐺: 𝐺 is a 𝑏 − anti −

closed set in 𝑋 and 𝐴 ⊆ 𝐺} and since 𝐴 is also a 𝑏-anti-closed set so, 𝐴 ∈ {𝐺: 𝐺 is a 𝑏 − anti −

closed set in 𝑋 and 𝐴 ⊆ 𝐺}  and therefore, 𝑏 − 𝑎𝐶𝑙(𝐴) ⊆ 𝐴.  Also from (ii), 𝐴 ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴) . 

Hence, 𝑏 − 𝑎𝐶𝑙(𝐴) = 𝐴. Conversely, suppose that 𝑏 − 𝑎𝐶𝑙(𝐴) = 𝐴. Since 𝑏 − 𝑎𝐶𝑙(𝐴) is a 𝑏-

anti-closed set, so 𝐴 is also a 𝑏-anti-closed set. 

(iv) Since 𝑏 − 𝑎𝐶𝑙(𝐴) is a 𝑏-anti-closed, so by (iii), 𝑏 − 𝑎𝐶𝑙(𝑏 − 𝑎𝐶𝑙(𝐴))= 𝑏 − 𝑎𝐶𝑙(𝐴). 

 

Proposition 3.11: Let (𝑋, 𝜏)  be an anti-topological space and 𝐴, 𝐵  be subsets of 𝑋 . Then the 

following hold. 

(i) 𝐴 ⊆ 𝐵⇒𝑏 − 𝑎𝐶𝑙(𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴). 

(ii) 𝑏 − 𝑎𝐶𝑙(𝐴 ∪ 𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴) ∪ 𝑏 − 𝑎𝐶𝑙(𝐵). 

(iii) 𝑏 − 𝑎𝐶𝑙(𝐴 ∩ 𝐵) ⊇ 𝑏 − 𝑎𝐶𝑙(𝐴) ∩ 𝑏 − 𝑎𝐶𝑙(𝐵) 

Proof:  

(i) We have 𝑥 ∈ 𝑏 − 𝑎𝐶𝑙(𝐵) ⇒ 𝑥 ∈ ⋂{𝐺: 𝐺 is 𝑏 − anti − closed set in 𝑋 and 𝐵 ⊆ 𝐺} ⇒ 𝑥 ∈

⋂{𝐺: 𝐺 is 𝑏 − anti − closed set in 𝑋 and 𝐴 ⊆ 𝐺} ( ∵ 𝐴 ⊆ 𝐵 ) ⇒ 𝑥 ∈ 𝑏 − 𝑎𝐶𝑙(𝐴) . Hence 𝑏 −

𝑎𝐶𝑙(𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴). 

(ii) 𝐴 ⊆ 𝐴 ∪ 𝐵⇒ 𝑏 − 𝑎𝐶𝑙(𝐴 ∪ 𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴). Similarly,𝑏 − 𝑎𝐶𝑙(𝐴 ∪ 𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐵). Therefore, 

 𝑏 − 𝑎𝐶𝑙(𝐴 ∪ 𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴) ∪ 𝑏 − 𝑎𝐶𝑙(𝐵). 

(iii) 𝐴 ∩ 𝐵 ⊆ 𝐴⇒𝑏 − 𝑎𝐶𝑙(𝐴) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴 ∩ 𝐵). Similarly, 𝑏 − 𝑎𝐶𝑙(𝐵) ⊆ 𝑏 − 𝑎𝐶𝑙(𝐴 ∩ 𝐵). Therefore, 

𝑏 − 𝑎𝐶𝑙(𝐴 ∩ 𝐵) ⊇ 𝑏 − 𝑎𝐶𝑙(𝐴) ∩ 𝑏 − 𝑎𝐶𝑙(𝐵). 
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Proposition 3.12: Let (𝑋, 𝜏) be an anti-topological space and 𝐴, 𝐵 be two subsets of 𝑋. Then the 

following hold: 

(i) (𝑏 − 𝑎𝐶𝑙(𝐴))
𝑐

= 𝑏 − 𝑎𝐼𝑛𝑡(𝐴𝑐). 

(ii)  𝑏 − 𝑎𝐶𝑙(𝐴𝑐) = (𝑏 − 𝑎𝐼𝑛𝑡(𝐴))
𝑐
 

Proof:  

(i) We have 𝑥 ∈ (𝑏 − 𝑎𝐶𝑙(𝐴))
𝑐
 

⇒𝑥 ∈ (⋂{𝐺: 𝐺 is a 𝑏 − anti − closed set in 𝑋 and 𝐴 ⊆ 𝐺})𝑐 

⇒𝑥 ∈ ⋃{𝐺𝑐 ∶ 𝐺𝑐  is a 𝑏 − anti − open set in 𝑋 and 𝐺𝑐 ⊆ 𝐴𝑐} 

⇒𝑥 ∈ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴𝑐).  

Hence, (𝑏 − 𝑎𝐶𝑙(𝐴))
𝑐

⊆ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴𝑐).  

Again, let 𝑥 ∈ 𝑏 − 𝑎𝐼𝑛𝑡(𝐴𝑐) 

⇒𝑥 ∈ ⋃{𝐺: 𝐺 is 𝑏 − anti − open set in 𝑋 and 𝐺 ⊆ 𝐴𝑐} 

⇒𝑥 ∈ (⋂{𝐺𝑐 ∶ 𝐺𝑐  is 𝑏 − anti − closed set in 𝑋 and 𝐴 ⊆ 𝐺𝑐})𝑐  

⇒𝑥 ∈ (𝑏 − 𝑎𝐶𝑙(𝐴))
𝑐
.  

Therefore, 𝑏 − 𝑎𝐼𝑛𝑡(𝐴𝑐) ⊆ (𝑏 − 𝑎𝐶𝑙(𝐴))
𝑐
. 

and so, 𝑏 − 𝑎𝐼𝑛𝑡(𝐴𝑐) = (𝑏 − 𝑎𝐶𝑙(𝐴))
𝑐
. 

(ii) Replacing 𝐴 by 𝐴𝑐 in (i), we get (𝑏 − 𝑎𝐶𝑙(𝐴𝑐))
𝑐
=𝑏 − 𝑎𝐼𝑛𝑡((𝐴𝑐)𝑐) 

⇒(𝑏 − 𝑎𝐶𝑙(𝐴𝑐))
𝑐
=𝑏 − 𝑎𝐼𝑛𝑡(𝐴)⇒𝑏 − 𝑎𝐶𝑙(𝐴𝑐) = (𝑏 − 𝑎𝐼𝑛𝑡(𝐴))

𝑐
. 

4. Discussion 

In this study, we explored the intricate relationships within anti-topological spaces, shedding 

light on the properties of b-anti-open sets and b-anti-closed sets. Notably, the observation that every 

anti-open (resp. anti-closed) set is a b-anti-open (resp. b-anti-closed) set suggests a broader 

characterization of b-anti-open sets (b-anti-closed sets). The exploration also uncovered nuanced 

aspects, such as the non-preservation of the b-anti-open property under the intersection of two b-anti-

open sets, challenging conventional notions. Counterexamples, particularly the non-closure of unions 

of b-anti-closed sets, highlighted the counterintuitive nature of these spaces, prompting careful 

consideration in their analysis. The study further revealed intriguing properties regarding closure 

and interior operations. The observed reversal of conventional inclusions in the closure operation 

introduces a noteworthy departure from typical topological expectations. Unlike the standard 

relationship where the closure of a subset is contained within the closure of its superset, our findings 

reveal a reversal: if A is a subset of B then the b-anti-closure of B is a subset of the b-anti-closure of A. 

This counterintuitive result challenges the conventional understanding of closure operations and 

prompts a reevaluation of the underlying principles governing these relationships. Similarly, the 

outcomes concerning the closure of unions and intersections add another layer of complexity. These 

findings deepen our understanding of anti-topological spaces, revealing their complexities and 

inviting further exploration into their properties and applications. 

5. Conclusion 

In this article, we have introduced the concepts of b-anti-open sets and b-anti-closed sets in 

connection with anti-topological spaces and then explored their fundamental properties. 

Furthermore, we have defined the b-anti-interior and b-anti-closure of a set, delving into an in-depth 

analysis of their associated properties. From the above discussion, we have found that classes of b-

anti-open sets and b-anti-closed sets in anti-topological spaces are finer than classes of anti-open sets 

and anti-closed sets, respectively. Also, the deviations from standard topological expectations signify 

the unique characteristics of the anti-topological space under consideration. 
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As we move forward, our future research endeavors will aim to investigate novel concepts and 

ideas related to anti-topological spaces. We anticipate that the insights presented in this article will 

contribute to the advancement of various facets within the field of anti-topological spaces, aiding 

researchers in their exploration and development of this intriguing domain. 
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Abstract: In this research, we created notions of a refined neutrosophic prime (completely prime, 

semiprime, and completely semiprime) ideal in a refined neutrosophic ring. If 𝑅(𝐼1, 𝐼2)  is a refined 

neutrosophic ring, then each ideal of 𝑅(𝐼1, 𝐼2) has the form 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 , where 𝐽 ⊆ 𝐿 ⊆ 𝐾   are 

ideals of the classical ring 𝑅 . The objective of this work is to find the necessary and sufficient 

condition on classical ideals 𝐽, 𝐿, 𝑎𝑛𝑑 𝐾  that makes 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  a prime (completely prime, 

semiprime, and completely semiprime) ideal in 𝑅(𝐼1, 𝐼2) . We studied some of the elementary 

properties of these concepts and the most important properties that link them.  

We reached several results, the most important of which are as follows:  

 If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), then 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) ⇔ 𝐽,𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝑆℘𝑅. 

 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), then 𝐽, 𝐾, 𝐿 ∈ ℘𝑅. 

 Assuming that 𝑅(𝐼1, 𝐼2) is a finite unity commutation, then 𝑅𝑁ℳ𝑅(𝐼1,𝐼2) = 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

 𝑅(𝐼1, 𝐼2)  is a refined neutrosophic field ⇔  {0}, 𝑅𝐼1 + 𝑅𝐼2, 𝑅𝐼1 , 𝑅(𝐼1, 𝐼2)  are only refined 

neutrosophic ideals in 𝑅(𝐼1, 𝐼2). 

 We call 𝑅(𝐼1 , 𝐼2)  a refined neutrosophic prime ring if 𝑅𝐼1 + 𝑅𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2)  and a fully 

prime ring if 𝑅𝑁𝔗𝑅(𝐼1,𝐼2)\{0} = 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Keywords: Refined Neutrosophic Ring; Refined Neutrosophic Ideal; Completely Semiprime; Fully 

Prime; Fully Semiprime. 
  

 

1. Introduction 

Neutrosophy is a broad view of intuitionistic fuzzy logic that represents a new development of 

fuzzy notions. This strategy has a fascinating impact on applied science [1, 2, 3, 4, 5]. Neutrosophy 

can be applied to algebraic structures as a new branch of philosophy, leading to a better 

understanding and evolution of these structures. Kandasamy and Smarandache presented the 

concept of neutrosophic groups, rings, and fields [6], which has been widely investigated [7, 8, 9, 10] 

and is still being studied. Numerous intriguing discoveries about neutrosophic rings have recently 

been discussed [11, 12, 13]. 

Adeleke et al. [14, 15] generalized neutrosophic sets by dividing the degree of indeterminacy I 

into two degrees of indeterminacyI1, and I2. This concept has been widely employed in algebra by 

analyzing refined neutrosophic rings [14, 15] and n-refined neutrosophic rings and modules [16, 17, 

18], and many intriguing findings have been established [19]. Abobala [20] characterized the maximal 

and minimal ideals in a refined neutrosophic ring. 

We present a characterization of refined neutrosophic prime (completely prime, semiprime, and 

completely semiprime) ideals by depending on the properties of classical ideals. This study aims to 

describe the structure and properties of prime, completely prime, semiprime, and completely 

semiprime ideals of refined neutrosophic rings. 

https://doi.org/10.61356/j.nswa.2024.96
https://orcid.org/0000-0003-1590-4232
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Our motivation is to close an important research gap by determining all prime, completely 

prime, semiprime, and completely semiprime ideals and their properties in refined neutrosophic 

rings. This paper continues the work begun in "On Neutrosophic Prime, Completely Prime, 

Semiprime, and Completely Semiprime Ideals in Neutrosophic Ring." 

2. Definitions and notations 

Since most academics interested in the subject are already familiar with classical rings and their 

ideals, this section will focus on numerous definitions and major results relevant to refined 

neutrosophic rings and their ideals.  

Definition 2.1: [14, 15] Let 𝑅 be a ring, the collection 𝑅(𝐼1, 𝐼2) = {𝑎 + 𝑏𝐼 ; 𝑎, 𝑏, 𝑐 ∈ 𝑅 and 𝐼1
2 = 𝐼1, 𝐼2

2 =

𝐼2, 𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1}  is called a refined neutrosophic ring. 𝑅(𝐼1, 𝐼2)  is referred to as a refined 

neutrosophic field when R is a field. 

Properties 2.2: [14, 15] 

(i) R is a unity commutative ring iff 𝑅(𝐼1, 𝐼2) is a unity commutative refined neutrosophic ring.  

(ii) (𝐼1)
𝑛 = 𝐼1 𝑎𝑛𝑑 (𝐼2)

𝑛 = 𝐼2 for each 𝑛 ∈ ℤ+. 

(iii) 𝑎𝐼1 = 𝐼1𝑎  𝑎𝑛𝑑 𝑎𝐼2 = 𝐼2𝑎  ∀𝑎 ∈ 𝑅. 

(iv) 0𝐼1 = 0 = 0𝐼2 ,  𝐼1 + 𝐼1 +⋯+ 𝐼1⏟          
𝑛 𝑡𝑖𝑚𝑒

= 𝑛𝐼1  𝑎𝑛𝑑 𝐼2 + 𝐼2 +⋯+ 𝐼2⏟          
𝑛 𝑡𝑖𝑚𝑒

= 𝑛𝐼2

         

. 

Theorem 2.3: [20] If 𝑅(𝐼1, 𝐼2) is a refined neutrosophic ring, and 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⊆ 𝑅(𝐼1, 𝐼2), then 𝐽 +

𝐾𝐼1 + 𝐿𝐼2 is a neutrosophic ideal iff 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 are ideals of 𝑅, where 𝐽 ⊆ 𝐿 ⊆ 𝐾. 

Theorem 2.4: [20] If 𝑅(𝐼1, 𝐼2) is a refined neutrosophic ring, and 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 is an ideal of 𝑅(𝐼1, 𝐼2), 

then 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 is a neutrosophic maximal ideal iff 𝐽 is a maximal of 𝑅, where 𝐿 = 𝐾 = 𝑅 𝑜𝑟 𝐽 +

𝐾𝐼1 + 𝐿𝐼2 = 𝑅(𝐼1, 𝐼2). 

3. Results 

In a refined neutrosophic ring 𝑅(𝐼1, 𝐼2) , we indicate by 𝑅𝑁𝔗𝑅(𝐼1,𝐼2)  is the set of  refined 

neutrosophic ideals, 𝑅𝑁℘𝑅(𝐼1,𝐼2) the set of refined neutrosophic prime ideals, 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2) the set of 

refined neutrosophic completely prime ideals,  𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2)  the set of refined neutrosophic 

semiprime ideals,  𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2) the collection of refined neutrosophic completely semiprime ideals, 

and  𝑅𝑁ℳ𝑅(𝐼1,𝐼2)
 the collection of refined neutrosophic maximal ideals. In addition, in classical ring 

𝑅, we indicate by  𝔗𝑅 the collection of ideals, ℘𝑅 the collection of prime ideals, 𝐶℘𝑅 the collection 

of completely prime ideals, 𝑆℘𝑅  the collection of semiprime ideals, 𝑆𝐶℘𝑅  the collection of 

completely semiprime ideals, and ℳ𝑅 the collection of maximal ideals. 

Definition 3.1: If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2);  𝐽 ⊆ 𝐿 ⊆ 𝐾, then  

(i) 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 is a refined neutrosophic semiprime ideal if the following condition is satisfied: 
∀ 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2);  𝐽1 ⊆ 𝐿1 ⊆ 𝐾1;   ( 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)

2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⇒   𝐽1 +

𝐾1𝐼1 + 𝐿1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

(ii) 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 is a refined neutrosophic completely semiprime ideal if the following condition 

is satisfied: ∀𝑎 + 𝑏𝐼1 + 𝑐𝐼2 ∈ 𝑅(𝐼1, 𝐼2);  (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)
2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⇒ 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 ∈ 𝐽 +

𝐾𝐼1 + 𝐿𝐼2 . 

(iii) 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 is a refined neutrosophic prime ideal if the following condition is satisfied: 
∀𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2, 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2);  𝐽1 ⊆ 𝐿1 ⊆ 𝐾1 𝑎𝑛𝑑 𝐽2 ⊆ 𝐿2 ⊆ 𝐾2;  

(𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)(𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

⇒  𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  𝑜𝑟 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

(iv) 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 is a refined neutrosophic completely prime ideal if the following condition is 

satisfied:∀𝑎 + 𝑏𝐼1 + 𝑐𝐼2 𝑎𝑛𝑑  𝑒 + 𝑓𝐼1 + 𝑔𝐼2 ∈ 𝑅(𝐼1, 𝐼2);  (𝑎 + 𝑏𝐼1 + 𝑐𝐼2)(𝑒 + 𝑓𝐼1 + 𝑔𝐼2) ∈ 𝐽 + 𝐾𝐼  

⇒  𝑎 + 𝑏𝐼1 + 𝑐𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  ˅  𝑒 + 𝑓𝐼1 + 𝑔𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 
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Theorem 3.2: If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), then  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) ⇔ 𝐽,𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝑆℘𝑅.  

Proof.  

Firstly, ∀𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) . Now, suppose that  𝐽1, 𝐾1, 𝐿1 ∈ 𝔗𝑅  , where 𝐽12 ⊆ 𝐽, 𝐾12 ⊆
𝐾, 𝑎𝑛𝑑 𝐿1

2 ⊆ 𝐿. Subsequently,  𝐽1
2 ⊆ 𝐿 ⊆ 𝐾 𝑎𝑛𝑑 𝐿1

2 ⊆ 𝐾. 

We have 𝐽1 + 𝐽1𝐼1 + 𝐽1𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2), and we note 

(𝐽1 + 𝐽1𝐼1 + 𝐽1𝐼2)
2 = 𝐽1

2 + (𝐽1
2 + 𝐽1

2 + 𝐽1
2 + 𝐽1

2 + 𝐽1
2)𝐼1 + (𝐽1

2 + 𝐽1
2 + 𝐽1

2)𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 
Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2), so 𝐽1 + 𝐽1𝐼1 + 𝐽1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 and from which 𝐽1 ⊆ 𝐽. 

Therefore, 𝐽 ∈ 𝑆℘𝑅. 

On the other hand, {0} + 𝐿1 𝐼1 + 𝐿1 𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2), and we note ({0} + 𝐿1 𝐼1 + 𝐿1 𝐼2)
2 = {0}2 +

({0}. 𝐿1 + 𝐿1. {0} + 𝐿1
2 + 𝐿1

2 + 𝐿1
2)𝐼2 + ({0}. 𝐿1 + 𝐿1. {0} + 𝐿1

2)𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) , so {0} + 𝐿1 𝐼1 + 𝐿1 𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2   and from which 𝐿1 ⊆ 𝐿 . 

Therefore, 𝐿 ∈ 𝑆℘𝑅. 

And on the other hand, {0} + 𝐾1𝐼1 + {0}𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2), and we note  

({0} + 𝐾1𝐼1 + {0}𝐼2)
2 = {0}2 + ({0}. 𝐾1 + 𝐾1. {0} + 𝐾1

2 + 𝐾1. {0} + {0}. 𝐾1)𝐼2 + ({0}
2 + {0}2 + {0}2)𝐼2

⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) ,  {0} + 𝐾1𝐼1 + {0}𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2   and from which 𝐾1 ⊆ 𝐾 . 

Therefore, 𝐾 ∈ 𝑆℘𝑅. 

Conversely, suppose that  𝐽, 𝐾, 𝐿 ∈ 𝑆℘𝑅. 

Now, if 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2);  𝐽1 ⊆ 𝐿1 ⊆ 𝐾1, where  

(𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)
2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⇒ 𝐽1

2 + (𝐽1𝐾1 + 𝐾1𝐽1 + 𝐾1
2 + 𝐾1𝐿1 + 𝐿1𝐾1)𝐼1 + (𝐽1𝐿1 + 𝐿1𝐽1 + 𝐿1

2)𝐼2

⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  

Therefore, 𝐽1
2 ⊆ 𝐽 𝑎𝑛𝑑 𝐽1𝐾1 + 𝐾1𝐽1 + 𝐾1

2 + 𝐾1𝐿1 + 𝐿1𝐾1 ⊆ 𝐾 𝑎𝑛𝑑 𝐽1𝐿1 + 𝐿1𝐽1 + 𝐿1
2 ⊆ 𝐿 

Since 𝐽1
2 ⊆ 𝐽 ⊆ 𝐿 𝑎𝑛𝑑 𝐽1𝐿1 + 𝐿1𝐽1 + 𝐿1

2 ⊆ 𝐿 ⊆ 𝐾 , so 𝐽1
2 + 𝐽1𝐿1 + 𝐿1𝐽1 + 𝐿1

2 = (𝐽1 + 𝐿1)
2 ⊆ 𝐿 𝑎𝑛𝑑 𝐽1

2 +

𝐽1𝐾1 +𝐾1𝐽1 + 𝐾1
2 + 𝐾1𝐿1 + 𝐿1𝐾1 + 𝐽1𝐿1 + 𝐿1𝐽1 + 𝐿1

2 = (𝐽1 + 𝐾1 + 𝐿1)
2 ⊆ 𝐾. 

Since 𝐽, 𝐾 𝑎𝑛𝑑 𝐿 ∈ 𝑆℘𝑅, so 𝐽1 ⊆ 𝐽 𝑎𝑛𝑑  𝐽1 + 𝐿1 ⊆ 𝐿 ⊆ 𝐾 𝑎𝑛𝑑 𝐽1 + 𝐾1 + 𝐿1 ⊆ 𝐾. 

Since 𝐽1 ⊆ 𝐽 ⊆ 𝐿, so 𝐿1 ⊆ 𝐿 ⊆ 𝐾 𝑎𝑛𝑑 𝐾1 ⊆ 𝐾.  

Therefore, 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2). 

Theorem 3.3: If  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), then 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2) ⇔ 𝐽,𝐾, 𝐿 ∈ 𝐶𝑆℘𝑅. 

Proof.  

Firstly, ∀ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2).  

Now, if  𝑗, 𝑘, 𝑙 ∈ 𝑅, where 𝑗2 ∈ 𝐽 ⊆ 𝐿 𝑎𝑛𝑑  𝑙2 ∈ 𝐿 ⊆ 𝐾 𝑎𝑛𝑑 𝑘2 ∈ 𝐾 .  

We have  𝑗 + 𝑗𝐼1 + 𝑗𝐼2 ∈ 𝑅(𝐼1 , 𝐼2)  and we note 

(𝑗 + 𝑗𝐼1 + 𝑗𝐼2)
2 = 𝑗2 + (𝑗2 + 𝑗2 + 𝑗2 + 𝑗2 + 𝑗2)𝐼1 + (𝑗

2 + 𝑗2 + 𝑗2)𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2), so 𝑗 + 𝑗𝐼1 + 𝑗𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 and from which 𝑗 ∈ 𝐽. 

Therefore, 𝐽 ∈ 𝐶𝑆℘𝑅. 

On the other hand, we have 0 + 𝑙 𝐼1 + 𝑙 𝐼2 ∈ 𝑅(𝐼1, 𝐼2), and we note 

(0 + 𝑙 𝐼1 + 𝑙 𝐼2)
2 = 02 + (0. 𝑙 + 𝑙. 0 + 𝑙2 + 𝑙2 + 𝑙2)𝐼1 + (0. 𝑙 + 𝑙. 0 + 𝑙

2)𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 
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Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2) , so 0 + 𝑙 𝐼1 + 𝑙 𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2   and from which 𝑙 ∈ 𝐿 . 

Therefore, 𝐿 ∈ 𝐶𝑆℘𝑅.  

And on the other hand, we have 0 + 𝑘𝐼1 + 0𝐼2 ∈ 𝑅(𝐼1, 𝐼2), and we note 

(0 + 𝑘𝐼1 + 0𝐼2)
2 = 02 + (0. 𝑘 + 𝑘. 0 + 𝑘2 + 𝑘. 0 + 0. 𝑘)𝐼1 + (0

2 + 02 + 02)𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2) , so 0 + 𝑘𝐼1 + 0𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2   and from which 𝑘 ∈ 𝐾 . 

Therefore, 𝐾 ∈ 𝐶𝑆℘𝑅. 

Conversely, suppose that 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝐶𝑆℘𝑅. 

Now, if  𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2 ∈ 𝑅(𝐼1, 𝐼2), where (𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2)
2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⇒ 𝑗1

2 + (𝑗1𝑘1 + 𝑘1𝑗1 +

𝑘1
2 + 𝑘1𝑙1 + 𝑙1𝑘1)𝐼1 + (𝑗1𝑙1 + 𝑙1𝑗1 + 𝑙1

2)𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  

Therefore, 𝑗1
2 ∈ 𝐽 𝑎𝑛𝑑 𝑗1𝑘1 + 𝑘1𝑗1 + 𝑘1

2 + 𝑘1𝑙1 + 𝑙1𝑘1 ∈ 𝐾 𝑎𝑛𝑑 𝑗1𝑙1 + 𝑙1𝑗1 + 𝑙1
2 ∈ 𝐿 

Since 𝑗1
2 ∈ 𝐽 ⊆ 𝐿 𝑎𝑛𝑑 𝑗1𝑙1 + 𝑙1𝑗1 + 𝑙1

2 ∈ 𝐿 ⊆ 𝐾 , so 𝑗1
2 + 𝑗1𝑙1 + 𝑙1𝑗1 + 𝑙1

2 = (𝑗1 + 𝑙1)
2 ∈ 𝐿 𝑎𝑛𝑑 𝑗1

2 + 𝑗1𝑘1 +

𝑘1𝑗1 + 𝑘1
2 + 𝑘1𝑙1 + 𝑙1𝑘1 + 𝑗1𝑙1 + 𝑙1𝑗1 + 𝑙1

2 = (𝑗1 + 𝑘1 + 𝑙1)
2 ∈ 𝐾. 

Since 𝐽, 𝐿, 𝑎𝑛𝑑 𝐾 ∈ 𝐶𝑆℘𝑅, so 𝐽1 ∈ 𝐽 𝑎𝑛𝑑  𝐽1 + 𝐿1 ∈ 𝐿 ⊆ 𝐾 𝑎𝑛𝑑 𝑗1 + 𝑘1 + 𝑙1 ∈ 𝐾. 

Since 𝑗1 ∈ 𝐽 ⊆ 𝐿, so 𝑙1 ∈ 𝐿 ⊆ 𝐾 𝑎𝑛𝑑 𝑘1 ∈ 𝐾.  Subsequently, 𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 +

𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2). 

Theorem 3.4: If  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), then  𝐽, 𝐾, 𝐿 ∈ ℘𝑅. 

Proof.  

Suppose that 𝐽1, 𝐽2, 𝐾1, 𝐾2, 𝐿1, 𝐿2 ∈ 𝔗𝑅, where 𝐽1 𝐽2 ⊆ 𝐽, 𝐾1𝐾2 ⊆ 𝐾, 𝑎𝑛𝑑 𝐿1𝐿2 ⊆ 𝐿. 
Firstly, we have 𝐽1 + 𝐽1𝐼1 + 𝐽1𝐼2 𝑎𝑛𝑑 𝐽2 + 𝐽2𝐼1 + 𝐽2𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), and we note 

(𝐽1 + 𝐽1𝐼1 + 𝐽1𝐼2)(𝐽2 + 𝐽2𝐼1 + 𝐽2𝐼2) = 𝐽1𝐽2 + (𝐽1𝐽2 + 𝐽1𝐽2 + 𝐽1𝐽2 + 𝐽1𝐽2 + 𝐽1𝐽2)𝐼1 + (𝐽1𝐽2 + 𝐽1𝐽2 + 𝐽1𝐽2)𝐼2

⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), so 𝐽1 + 𝐽1𝐼1 + 𝐽1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 𝐽2 + 𝐽2𝐼1 + 𝐽2𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

Subsequently,  𝐽1 ⊆ 𝐽 𝑜𝑟  𝐽2 ⊆ 𝐽. Thus 𝐽 ∈ ℘𝑅. 

On the other hand, we have {0} + 𝐿1𝐼1 + 𝐿1𝐼2𝑎𝑛𝑑 {0} + 𝐿2𝐼1 + 𝐿2𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2), and we note 

({0} + 𝐿1𝐼1 + 𝐿1𝐼2)({0} + 𝐿2𝐼1 + 𝐿2𝐼2) = {0}
2 + ({0}. 𝐿2 + 𝐿1. {0} + 𝐿1𝐿2 + 𝐿1𝐿2 + 𝐿1𝐿2)𝐼1 + ({0}. 𝐿2 +

𝐿1. {0} + 𝐿1𝐿2)𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), so {0} + 𝐿1𝐼1 + 𝐿1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 {0} + 𝐿2𝐼1 + 𝐿2𝐼2 ⊆ 𝐽 +

𝐾𝐼1 + 𝐿𝐼2. Subsequently,  𝐿1 ⊆ 𝐿 𝑜𝑟  𝐿2 ⊆ 𝐿. Thus 𝐿 ∈ ℘𝑅. 

Also, we have  {0} + 𝐾1𝐼1 + {0}𝐼2 𝑎𝑛𝑑 {0} + 𝐾2𝐼1 + {0}𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2), and we note 

({0} + 𝐾1𝐼1 + {0}𝐼2)({0} + 𝐾2𝐼1 + {0}𝐼2)

= {0}2 + ({0}. 𝐾2 + 𝐾1. {0} + 𝐾1𝐾2 + 𝐾1. {0} + {0}. 𝐾2)𝐼1 + ({0}
2 + {0}2 + {0}2)𝐼2

⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), so {0} + 𝐾1𝐼1 + {0}𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟  {0} + 𝐾2𝐼1 + {0}𝐼2 ⊆  𝐽 +

𝐾𝐼1 + 𝐿𝐼2  and from which 𝐾1 ⊆ 𝐾 𝑜𝑟 𝐾2 ⊆ 𝐾. Thus 𝐾 ∈ ℘𝑅. 

Corollary 3.5: If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), and 𝐽, 𝐾, 𝐿 ∈ ℘𝑅, then not necessarily   𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈

𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Because.  
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Suppose that 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ ℘𝑅. Now, if  𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2, 𝑎𝑛𝑑 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), where,  

(𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)( 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2) ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2

⇒ 𝐽1𝐽2 + (𝐽1𝐾2 + 𝐾1𝐽2 + 𝐾1𝐾2 + 𝐾1𝐿2 + 𝐿1𝐾2)𝐼1 + (𝐽1𝐿2 + 𝐿1𝐽2 + 𝐿1𝐿2)𝐼2

⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2, 𝑠𝑜 

𝐽1𝐽2 ⊆ 𝐽, 𝐽1𝐿2 + 𝐿1𝐽2 + 𝐿1𝐿2 ⊆ 𝐿, 𝑎𝑛𝑑  𝐽1𝐾2 + 𝐾1𝐽2 + 𝐾1𝐾2 + 𝐾1𝐿2 + 𝐿1𝐾2 ⊆ 𝐾 

Since 𝐽1𝐽2 ⊆ 𝐽 ⊆ 𝐿, so 𝐽1𝐽2 + 𝐽1𝐿2 + 𝐿1𝐽2 + 𝐿1𝐿2 = (𝐽1 + 𝐿1)(𝐽2 + 𝐿2) ⊆ 𝐿 ⊆ 𝐾  

𝑎𝑛𝑑 𝐽1𝐽2 + 𝐽1𝐾2 + 𝐾1𝐽2 + 𝐾1𝐾2 + 𝐾1𝐿2 + 𝐿1𝐾2 + 𝐽1𝐿2 + 𝐿1𝐽2 + 𝐿1𝐿2 = (𝐽1 + 𝐾1 + 𝐿1)(𝐽2 + 𝐾2 + 𝐿2) ⊆ 𝐾 

Since  𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ ℘𝑅, so  

 (𝐽1 ⊆ 𝐽 𝑜𝑟 𝐽2 ⊆ 𝐽), (𝐽1 + 𝐿1 ⊆ 𝐿 𝑜𝑟 𝐽2 + 𝐿2 ⊆ 𝐿), 𝑎𝑛𝑑 (𝐽1 + 𝐾1 + 𝐿1 ⊆ 𝐾 𝑜𝑟 𝐽2 + 𝐾2 + 𝐿2 ⊆ 𝐾 ). Thus     

not necessarily 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2  𝑜𝑟 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Subsequently, not necessarily  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Theorem 3.6: If  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2), then 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝐶℘𝑅. 

Proof. 

If 𝑗1, 𝑗2, 𝑘1, 𝑘2, 𝑙1, 𝑙2 ∈ 𝑅, where 𝑗1𝑗2 ∈ 𝐽, 𝑘1𝑘2 ∈ 𝐾, 𝑎𝑛𝑑 𝑙1𝑙2 ∈ 𝐿. 
Firstly, 𝑗1 + 𝑗1𝐼1 + 𝑗1𝐼2 𝑎𝑛𝑑 𝑗2 + 𝑗2𝐼1 + 𝑗2𝐼2 ∈ 𝑅(𝐼1, 𝐼2) and we note 

(𝑗1 + 𝑗1𝐼1 + 𝑗1𝐼2)(𝑗2 + 𝑗2𝐼1 + 𝑗2𝐼2) = 𝑗1𝑗2 + (𝑗1𝑗2 + 𝑗1𝑗2 + 𝑗1𝑗2 + 𝑗1𝑗2 + 𝑗1𝑗2)𝐼1 + (𝑗1𝑗2 + 𝑗1𝑗2 + 𝑗1𝑗2)𝐼2

∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2), so  

 𝑗1 + 𝑗1𝐼1 + 𝑗1𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 𝑗2 + 𝑗2𝐼1 + 𝑗2𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

Therefore, 𝑗1 ∈ 𝐽 𝑜𝑟  𝑗2 ∈ 𝐽. Thus 𝐽 ∈ 𝐶℘𝑅. 

On the other hand, 0 + 𝑙1𝐼1 + 𝑙1𝐼2𝑎𝑛𝑑 0 + 𝑙2𝐼1 + 𝑙2𝐼2 ∈ 𝑅(𝐼1 , 𝐼2), and we note 

(0 + 𝑙1𝐼1 + 𝑙1𝐼2)(0 + 𝑙2𝐼1 + 𝑙2𝐼2) = 0
2 + (0. 𝑙2 + 𝑙1. 0 + 𝑙1𝑙2 + 𝑙1𝑙2 + 𝑙1𝑙2)𝐼1 + (0. 𝑙2 + 𝑙1. 0 + 𝑙1𝑙2)𝐼2

∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2), so 0 + 𝑙1𝐼1 + 𝑙1𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 0 + 𝑙2𝐼1 + 𝑙2𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

Therefore, 𝑙1 ∈ 𝐿 𝑜𝑟  𝑙2 ∈ 𝐿. Thus 𝐿 ∈ 𝐶℘𝑅. 

Also, we have  0 + 𝑘1𝐼1 + 0𝐼2𝑎𝑛𝑑 0 + 𝑘2𝐼1 + 0𝐼2 ∈ 𝑅(𝐼1, 𝐼2), and we note 

(0 + 𝑘1𝐼1 + 0𝐼2)(0 + 𝑘2𝐼1 + 0𝐼2) = 0
2 + (0. 𝑘2 + 𝑘1. 0 + 𝑘1𝑘2 + 𝑘1. 0 + {0}. 𝑘2)𝐼1 + (0

2 + 02 + 02)𝐼2

∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑁𝐶℘𝑅(𝐼1,𝐼2), so 0 + 𝑘1𝐼1 + 0𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟  0 + 𝑘1𝐼1 + 0𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2  

and from which 𝑘1 ∈ 𝐾 𝑜𝑟 𝑘2 ∈ 𝐾. Thus 𝐾 ∈ 𝐶℘𝑅. 

Corollary 3.7: If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2)  and 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝐶℘𝑅 , then not necessarily  𝐽 + 𝐾𝐼1 +

𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2). 

Because.  

Suppose that  𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2, 𝑗2 + 𝑘2𝐼1 + 𝑙2𝐼2 ∈ 𝑅(𝐼1, 𝐼2), where,  

 (𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2)( 𝑗2 + 𝑘2𝐼1 + 𝑙2𝐼2) ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

⇒ 𝑗1𝑗2 + (𝑗1𝑘2 + 𝑘1𝑗2 + 𝑘1𝑘2 + 𝑘1𝑙2 + 𝑙1𝑘2)𝐼1 + (𝑗1𝑙2 + 𝑙1𝑗2 + 𝑙1𝑙2)𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2, 𝑠𝑜 

𝑗1𝑗2 ∈ 𝐽 𝑎𝑛𝑑 𝑗1𝑙2 + 𝑙1𝑗2 + 𝑙1𝑙2 ∈ 𝐿 𝑎𝑛𝑑 𝑗1𝑘2 + 𝑘1𝑗2 + 𝑘1𝑘2 + 𝑘1𝑙2 + 𝑙1𝑘2 ∈ 𝐾 

Since 𝑗1𝑗2 ∈ 𝐽 ⊆ 𝐿, so 𝑗1𝑗2 + 𝑗1𝑙2 + 𝑙1𝑗2 + 𝑙1𝑙2 = (𝑗1 + 𝑙1)(𝑗2 + 𝑙2) ∈ 𝐿 ⊆ 𝐾  
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𝑎𝑛𝑑 𝑗1𝑗2 + 𝑗1𝑘2 + 𝑘1𝑗2 + 𝑘1𝑘2 + 𝑘1𝑙2 + 𝑙1𝑘2 + 𝑗1𝑙2 + 𝑙1𝑗2 + 𝑙1𝑙2 = (𝑗1 + 𝑘1 + 𝑙1)(𝑗2 + 𝑘2 + 𝑙2) ∈ 𝐾 

Since  𝐽, 𝐾, 𝐿 ∈ 𝐶℘𝑅 , so (𝑗1 ∈ 𝐽 𝑜𝑟 𝑗2 ∈ 𝐽), (𝑗1 + 𝑙1 ∈ 𝐿 𝑜𝑟 𝑗2 + 𝑙2 ∈ 𝐿), 𝑎𝑛𝑑 (𝑗1 + 𝑘1 + 𝑙1 ∈ 𝐾 𝑜𝑟 𝑗2 +

𝑘2 + 𝑙2 ∈ 𝐾 ) . So not necessarily 

  𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2  𝑜𝑟 𝑗2 + 𝑘2𝐼1 + 𝑙2𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2.  Therefore, not necessarily 

  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2).  

Theorem 3.8: If  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(I), then 

(i) 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2)  ⇒ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2). 

(ii) 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2)  ⇒ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Proof.  

(i) Since  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2), so 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝐶𝑆℘𝑅 according to Theorem.3.3. 

Therefore,  𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝑆℘𝑅. Thus  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) according to Theorem.3.2. 

(ii) Suppose that   𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2). Now, if  𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 𝑎𝑛𝑑 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ∈

𝑅𝑁𝔗𝑅(𝐼1,𝐼2) in which (𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)(𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2) ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2.  

Firstly, suppose that 

 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⊈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑎𝑛𝑑 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ⊈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Therefore, 

 ∃𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2 ∈ 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 𝑎𝑛𝑑 𝑗2 + 𝑘2𝐼1 + 𝑙2𝐼2 ∈ 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2, 𝑤ℎ𝑒𝑟𝑒  

𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2 ∉  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑎𝑛𝑑 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ∉  𝐽 + 𝐾𝐼1 + 𝐿𝐼2.  

On the other hand, we have  (𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2)(𝑗2 + 𝑘2𝐼1 + 𝑙2𝐼2) ∈ (𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)(𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2) 

                                                                                     ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2), so  

 𝑗1 + 𝑘1𝐼1 + 𝑙1𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟𝑗2 + 𝑘2𝐼1 + 𝑙2𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2. This is a contradiction. Therefore, 

𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 𝐽2 + 𝐾2𝐼1 + 𝐿2𝐼2 ⊆  𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Remark 3.9: Figure 1 shows the resulting relationship between the prime (completely prime, 

semiprime, and completely semiprime) ideals in any refined neutrosophic and classical ring, as 

follows: 

 

Figure 1. The relationship between the ideals of the refined neutrosophic and classical ring. 
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Theorem 3.10: If  𝑅(𝐼1 , 𝐼2)  is a unity, and 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2) , then 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈

𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2) ⇔ ∀𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝑅(𝐼1, 𝐼2); (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2) ⊆ 𝐽 + 𝐾𝐼1 +

𝐿𝐼2 ⇒ 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  

Proof.  

Firstly, suppose that  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2), and we will prove that the condition is satisfied. 

∀𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝑅(𝐼1, 𝐼2); (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

⇒ (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2) ⊆ (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)𝑅(𝐼1, 𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

⇒ [(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)]
2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2), so  (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

On the other hand, we have 

𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 = (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2). 1 ∈ (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⇒ 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2

∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Conversely, suppose that the condition is true and we will prove that 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2). 

Suppose that 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), where, 

 [𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2]
2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

If we assume the argument 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⊈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Therefore, there is an element 𝑟1 + 𝑟2𝐼1 +

𝑟3𝐼2 ∈ 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 𝑎𝑛𝑑 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∉ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

On the other hand, we have 

𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⇒ (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2) ⊆ 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 

⇒ (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2) ⊆ (𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)

⊆ (𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2)(𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2) = [𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2]
2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Therefore, 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈  𝐽 + 𝐾𝐼1 + 𝐿𝐼2, which is a contradiction. 

So 𝐽1 + 𝐾1𝐼1 + 𝐿1𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2).  

Theorem.3.11 If 𝑅(𝐼1, 𝐼2) is a unity, and  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), then 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈

𝑅𝑁℘𝑅(𝐼1,𝐼2) iff the condition is satisfied: 
∀𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 𝑎𝑛𝑑 𝑟1

′ + 𝑟2
′𝐼1 + 𝑟3

′𝐼2 ∈ 𝑅(𝐼1, 𝐼2); 
(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)(𝑟1

′ + 𝑟2
′𝐼1 + 𝑟3

′𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

⇒ 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2  

Proof. In a similar way to proof of the theorem.3.10. 

Corollary 3.12: Let 𝑅(𝐼1, 𝐼2) be a unity commutation.  

(i) If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), 𝑡ℎ𝑒𝑛 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2). 

(ii) If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2), 𝑡ℎ𝑒𝑛 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2). 

Proof. 

1. Suppose that 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), and 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2, 𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2 ∈ 𝑅(𝐼1, 𝐼2), where, 

(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 )(𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2) ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

⇒ (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 )(𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2)𝑅(𝐼1, 𝐼2) ⊆ (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)𝑅(𝐼1, 𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 
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Since 𝑅(𝐼1, 𝐼2) is a commutative, so 

(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 )𝑅(𝐼1, 𝐼2)(𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

And since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑁℘𝑅(𝐼1,𝐼2), and according to theorem.3.11, so  

𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 𝑜𝑟 𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2 ∈ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝐶℘𝑅(𝐼1,𝐼2). 

2. In a similar way to proof.1. Or in another way, since 𝑅(𝐼1, 𝐼2) is a unity commutative, so 𝑅 is a 

unity commutative ring. 

We have 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2), therefore, 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝑆℘𝑅 according to Theorem.3.2.   

Since 𝑅 is a unity commutative ring, so 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ 𝐶𝑆℘𝑅. Using the Theorem.3.3, 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈

𝑅𝑁𝐶𝑆℘𝑅(𝐼1,𝐼2). 

Theorem 3.13: Assuming that 𝑅(𝐼1, 𝐼2) is a unity.  𝐼𝑓 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁ℳ𝑅(𝐼1,𝐼2)
, 𝑡ℎ𝑒𝑛 𝐽 + 𝐾𝐼1 +

𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Proof. 

Since 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁ℳ𝑅(𝐼1,𝐼2)
, so (𝐽 ∈ ℳ𝑅 𝑎𝑛𝑑 𝐾 = 𝐿 = 𝑅) 𝑜𝑟 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 = 𝑅(𝐼1, 𝐼2) according 

to theorem.2.4. If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 = 𝑅(𝐼1, 𝐼2), then the desired is achieved. Now, suppose that 𝐽 +

𝐾𝐼1 + 𝐿𝐼2 ≠ 𝑅(𝐼1, 𝐼2).  

We have 𝑅(𝐼1, 𝐼2) is a unity, therefore, we may apply the condition specified in the theorem.3.11. 

∀𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 𝑎𝑛𝑑 𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2 ∈ 𝑅(𝐼1, 𝐼2); 

(𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)𝑅(𝐼1, 𝐼2)(𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2) ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 

Now, we will prove that 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝐽 + 𝑅𝐼1 + 𝑅𝐼2 𝑜𝑟 𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2 ∈ 𝐽 + 𝑅𝐼1 + 𝑅𝐼2 . 

In fact, it suffices to demonstrate that  𝑟1 ∈ 𝐽  𝑜𝑟 𝑟1
′ ∈ 𝐽. 

Firstly,  (𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2)(𝑅 + 𝑅𝐼1 + 𝑅𝐼2)(𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2) ⊆ 𝐽 + 𝑅𝐼1 + 𝑅𝐼2 

⇒ 𝑟1𝑅𝑟1
′ + [𝑟1𝑅𝑟1

′ + 𝑟2𝑅𝑟1
′ + 𝑟2𝑅𝑟1

′ + 𝑟2𝑅𝑟1
′ + 𝑟3𝑅𝑟1

′ + 𝑟1𝑅𝑟2
′ + 𝑟1𝑅𝑟2

′ + 𝑟2𝑅𝑟2
′ + 𝑟2𝑅𝑟2

′ + 𝑟2𝑅𝑟2
′ + 𝑟3𝑅𝑟2

′

+ 𝑟1𝑅𝑟2
′ + 𝑟3𝑅𝑟2

′ + 𝑟3𝑅𝑟2
′ + 𝑟1𝑅𝑟3

′ + 𝑟2𝑅𝑟3
′ + 𝑟2𝑅𝑟3

′ + 𝑟2𝑅𝑟3
′ + 𝑟3𝑅𝑟3

′]𝐼1 + [𝑟1𝑅𝑟1
′ + 𝑟3𝑅𝑟1

′

+ 𝑟3𝑅𝑟1
′ + 𝑟1𝑅𝑟3

′ + 𝑟1𝑅𝑟3
′ + 𝑟3𝑅𝑟3

′ + 𝑟3𝑅𝑟3
′]𝐼2 ⊆ 𝐽 + 𝑅𝐼1 + 𝑅𝐼2 

Therefore, 𝑟1𝑅𝑟1
′ ⊆ 𝐽.   

Suppose that 𝑟1 ∉ 𝐽. Since 𝐽 ∈ ℳ𝑅, so 𝐽 +  𝑟1𝑅 = 𝑅 ⇒ 𝐽𝑟1
′ + 𝑟1𝑅𝑟1

′ = 𝑅𝑟1
′ 

On the other hand, we have 𝐽𝑟1
′ ⊆ 𝐽 𝑎𝑛𝑑 𝑟1𝑅𝑟1

′ ⊆ 𝐽. Therefore, 𝑟1
′ = 1. 𝑟1

′ ∈ 𝑅𝑟1
′ ⊆ 𝐽.  

Subsequently, 𝑟1
′ + 𝑟2

′𝐼1 + 𝑟3
′𝐼2 ∈  𝐽 + 𝑅𝐼1 + 𝑅𝐼2. Thus  𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑁℘𝑅(𝐼1,𝐼2). 

Remark 3.14: Figure 2 shows the resulting relationship between the prime (completely prime, 

semiprime, completely semiprime, and maximal) ideals in the unity refined neutrosophic and classical 

rings, as follows: 
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Figure 2. The relationship between the ideals of the unity refined neutrosophic and classical ring. 

 

Theorem 3.15: Assuming that 𝑅(𝐼1, 𝐼2) is a finite unity commutation, then 𝑅𝑁ℳ𝑅(𝐼1,𝐼2) = 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

Proof. 

Since  𝑅(𝐼1, 𝐼2) is a unity, so 𝑅𝑁ℳ𝑅(𝐼1,𝐼2) ⊆ 𝑅𝑁℘𝑅(𝐼1,𝐼2) according to theorem.3.13. 

Now, if 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2) , then 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 ∈ ℘𝑅  according to theorem.3.4. Since 𝐽 ∈ ℘𝑅 , 

and 𝑅  is a finite unity commutation, so 𝐽 ∈ ℳ𝑅 . Since  𝐽 ⊆ 𝐿 ⊆ 𝐾 , so 𝐾 = 𝐿 = 𝑅 . Thus 𝐽 + 𝐾𝐼1 +

𝐿𝐼2 ∈ 𝑅𝑁ℳ𝑅(𝐼1,𝐼2). 

Examples and Notes 3.16: 

(1)  In 𝑍(𝐼), we have 10𝑍 + 10𝑍𝐼1 + 10𝑍𝐼2 ∈ 𝑅𝑁𝑆℘𝑍(𝐼1,𝐼2), because ∀ 𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 𝑍(𝐼1, 𝐼2);  ( 𝑟1 +

𝑟2𝐼1 + 𝑟3𝐼2)
2 ∈ 10𝑍 + 10𝑍𝐼1 + 10𝑍𝐼2 , then 𝑟1

2 ∈ 10𝑍 𝑎𝑛𝑑 ( 𝑟1 + 𝑟3)
2 ∈ 10𝑍 𝑎𝑛𝑑 ( 𝑟1 + 𝑟2 + 𝑟3)

2 ∈ 10𝑍 . 

Since 10𝑍 ∈ 𝑆℘𝑍 , so 𝑟1 ∈ 10𝑍, 𝑟1 + 𝑟3 ∈ 10𝑍, 𝑎𝑛𝑑 𝑟1 + 𝑟2 + 𝑟3 ∈ 10𝑍 . Therefore 𝑟1, 𝑟2, 𝑟3 ∈ 10𝑍 . Thus 

𝑟1 + 𝑟2𝐼1 + 𝑟3𝐼2 ∈ 10𝑍 + 10𝑍𝐼1 + 10𝑍𝐼2 ∈ 𝑅𝑁𝑆℘𝑍. 

By the same way we find that < 0 > +< 0 > 𝐼1+< 0 > 𝐼2 = {0} ∈ 𝑅𝑁𝑆℘𝑍(𝐼1,𝐼2).       

(2) By the same way we find that < 2 > +< 2 > 𝐼1+< 2 > 𝐼2 ∈ 𝑅𝑁𝑆℘𝑍4(𝐼1,𝐼2).  

(3) In 𝑍4(𝐼1, 𝐼2) , we have < 2 >= {0,2} ∈ ℘𝑍4 , but  < 2 > +< 2 > 𝐼1+< 2 > 𝐼2 = {0,2𝐼2, 2𝐼1, 2𝐼1 +

2𝐼2, 2, 2 + 2𝐼2, 2 + 2𝐼1, 2 + 2𝐼1 + 2𝐼2} ∉ 𝑅𝑁℘𝑍4(𝐼1,𝐼2) , because we have (𝐼1 + 𝐼2)(2 + 𝐼1) = 2𝐼2 ∈< 2 >

+< 2 > 𝐼1+< 2 > 𝐼2, 

 but  𝐼1 + 𝐼2 𝑎𝑛𝑑 2 + 𝐼1 ∉< 2 > +< 2 > 𝐼1+< 2 > 𝐼2.  

(4) In 𝑍(𝐼1, 𝐼2) , we have < 0 >  𝑎𝑛𝑑 < 3 >∈ ℘𝑍 , but  < 0 > +< 3 > 𝐼1+ < 0 > 𝐼2 =< 3 > 𝐼1 ∉

𝑅𝑁℘𝑍(𝐼1,𝐼2), because we have (0 + 2𝐼1)(3 + 𝐼1) = 9𝐼1 ∈< 3 > 𝐼1, but  3 + 𝐼1 𝑎𝑛𝑑 2𝐼1 ∉< 3 > 𝐼1. By the 

same way, we find < 3 > 𝐼1+< 3 > 𝐼2 ∉ 𝑅𝑁℘𝑍(𝐼1,𝐼2). 

(5) In 𝑍6(𝐼1, 𝐼2), we have < 3 > + 𝑍6𝐼1+ < 3 > 𝐼2 ∉ 𝑅𝑁℘𝑍6(𝐼1,𝐼2), because we have (0 + 𝐼2)(2 + 𝐼2) =

3𝐼2 ∈< 3 > + 𝑍6𝐼1+ < 3 > 𝐼2, but 𝐼2 𝑎𝑛𝑑 2 + 𝐼2 ∉< 3 > + 𝑍6𝐼1+ < 3 > 𝐼2. 

(6) We note < 2 > + 𝑍6𝐼1 + 𝑍6𝐼2 = {0,2} + 𝑍6𝐼1 + 𝑍6𝐼2 ∈ 𝑁℘𝑍6(𝐼1,𝐼2), because < 2 > ∈ ℳ𝑍6 , so < 2 >

+ 𝑍6𝐼1 + 𝑍6𝐼2 ∈ 𝑅𝑁ℳ𝑍6(𝐼1,𝐼2)  according to theorem.2.7.  Therefore, < 2 > + 𝑍6𝐼1 + 𝑍6𝐼2 ∈

𝑅𝑁℘𝑍6(𝐼1,𝐼2) according to Theorem.3.13.   

(7) In 𝑍7(𝐼1, 𝐼2), we have < 0 > +< 0 > 𝐼1+ < 0 > 𝐼2 = {0} ∉ 𝑅𝑁℘𝑍7(𝐼1,𝐼2), because we have 

(6 + 𝐼2)(𝐼1 + 𝐼2) = 0 ∈ 𝑍7(𝐼1, 𝐼2), but 6 + 𝐼2 𝑎𝑛𝑑 𝐼1 + 𝐼2 ∉< 0 > +< 0 > 𝐼1+ < 0 > 𝐼2. 
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(8) In any refined neutrosophic field 𝑅(𝐼1, 𝐼2), 𝑅𝐼1 + 𝑅𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2), because 𝑅𝐼1 + 𝑅𝐼2 =< 0 >

+𝑅𝐼1 + 𝑅𝐼2, where < 0 >∈ 𝑁ℳ𝑅. Using theorem.3.13, we find 𝑅𝐼1 + 𝑅𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

It can be proven in another way: 

If 𝑎 + 𝑏𝐼1 + 𝑐𝐼2 𝑎𝑛𝑑 𝑑 + 𝑒𝐼1 + 𝑓𝐼2 ∈ 𝑅(𝐼1, 𝐼2) where ( 𝑎 + 𝑏𝐼1 + 𝑐𝐼2)(𝑑 + 𝑒𝐼1 + 𝑓𝐼2) ∈ 𝑅𝐼1 + 𝑅𝐼2 ⇒ ∃𝑟,

𝑟′ ∈ 𝑅 𝑖𝑛𝑤ℎ𝑖𝑐ℎ  ( 𝑎 + 𝑏𝐼1 + 𝑐𝐼2)(𝑑 + 𝑒𝐼1 + 𝑓𝐼2) = 𝑟𝐼1 + 𝑟
′𝐼2    

So 𝑎𝑑 + [𝑎𝑒 + 𝑏𝑑 + 𝑏𝑒 + 𝑏𝑓 + 𝑐𝑒]𝐼1 + [𝑎𝑓 + 𝑐𝑑 + 𝑐𝑓]𝐼2 = 0 + 𝑟𝐼1 + 𝑟
′𝐼2  

Therefore, 𝑎𝑑 = 0. So 𝑎 = 0  𝑜𝑟 𝑑 = 0 

𝑖𝑓 𝑎 = 0 𝑡ℎ𝑒𝑛   𝑎 + 𝑏𝐼1 + 𝑐𝐼2 ∈ 𝑅𝐼1 + 𝑅𝐼2 

𝑖𝑓 𝑑 = 0 𝑡ℎ𝑒𝑛  𝑑 + 𝑒𝐼1 + 𝑓𝐼2 ∈ 𝑅𝐼1 + 𝑅𝐼2 

(9) Generally, in refined neutrosophic rings, 𝑅𝐼1 + 𝑅𝐼2 is not necessarily belongs to 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

(10) 𝑍9𝐼1 + 𝑍9𝐼2 ∉ 𝑅𝑁℘𝑍9(𝐼1,𝐼2), because we have (3 + 𝐼1 + 2𝐼2)
2 = 2𝐼1 + 4𝐼2 ∈ 𝑍9𝐼1 + 𝑍9𝐼2, but 3 +

𝐼1 + 2𝐼2 ∉ 𝑍9𝐼1 + 𝑍9𝐼2. 

(11) In 𝑍(𝐼1, 𝐼2), we have < 0 > +𝑍𝐼1 + 𝑍𝐼2 𝑎𝑛𝑑 < 𝑝 > +𝑍𝐼1 + 𝑍𝐼2 ∈ 𝑅𝑁℘𝑍(𝐼1,𝐼2), where 𝑝 is prime. 

Theorem 3.17: Assuming that 𝑅(𝐼1, 𝐼2) is a unity. Then 𝑅(𝐼1, 𝐼2) is a refined neutrosophic field ⇔ 

{0}, 𝑅𝐼1 + 𝑅𝐼2, 𝑅𝐼1 , 𝑅(𝐼1, 𝐼2) are only refined neutrosophic ideals in 𝑅(𝐼1, 𝐼2). 

Proof.  

Firstly, suppose that 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2). Since 𝑅(𝐼1, 𝐼2) is a refined neutrosophic field, so 𝑅 

is a field. Therefore, 𝑅 contains only two ideals {0} 𝑎𝑛𝑑 𝑅. Thus  

𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 = {0} 𝑜𝑟 𝑅  

We have 𝐽 ⊆ 𝐿 ⊆ 𝐾and we note  

𝑖𝑓 𝐽 = 𝐿 = 𝐾 = {0}, 𝑡ℎ𝑒𝑛  𝐽 + 𝐾𝐼1 + 𝐿𝐼2  = {0}  
𝑖𝑓 𝐽 = {0}  ⋀  𝐾 = 𝐿 = 𝑅, 𝑡ℎ𝑒𝑛 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 = 𝑅𝐼1 + 𝑅𝐼2 

𝑖𝑓 𝐽 = 𝐿 = {0}  ⋀  𝐾 = 𝑅, 𝑡ℎ𝑒𝑛 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 = 𝑅𝐼1 

𝑖𝑓 𝐽 = 𝐿 = 𝐾 = 𝑅, 𝑡ℎ𝑒𝑛 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 = 𝑅 + 𝑅𝐼1 + 𝑅𝐼2 

Subsequently, 𝑅𝑁𝔗𝑅(𝐼1,𝐼2) = {{0}, 𝑅𝐼1 + 𝑅𝐼2, 𝑅𝐼1 , 𝑅(𝐼1, 𝐼2)}.  

Conversely, suppose that 𝑅𝑁𝔗𝑅(𝐼1,𝐼2) = {{0}, 𝑅𝐼1 + 𝑅𝐼2, 𝑅𝐼1 , 𝑅(𝐼1, 𝐼2)}. 

Now, If 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2), then  

𝐽 + 𝐾𝐼1 + 𝐿𝐼2 = 𝑅 + 𝑅𝐼1 + 𝑅𝐼2 ⋁  {0} + 𝑅𝐼1 + {0}𝐼2 ⋁ {0} + 𝑅𝐼1 + 𝑅𝐼2 ⋁  {0} + {0}𝐼1 + {0}𝐼2   

In every case, we see that 𝐽, 𝐾, 𝑎𝑛𝑑 𝐿 = {0} ⋁ 𝑅 . Therefore, 𝑅 contains only two ideals {0} 𝑎𝑛𝑑 𝑅. 

Subsequently, 𝑅 is a field. Thus 𝑅(𝐼1, 𝐼2) is a refined neutrosophic field. 

 

Definition 3.18: Assuming that 𝑅(𝐼1, 𝐼2) is a refined neutrosophic ring. 

(i) We call 𝑅(𝐼1 , 𝐼2)  a refined neutrosophic semiprime ring if {0} ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2)  and a fully 

semiprime ring if 𝑅𝑁𝔗𝑅(𝐼1,𝐼2) = 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2). 

(ii) We call 𝑅(𝐼1 , 𝐼2)  a refined neutrosophic prime ring if 𝑅𝐼1 + 𝑅𝐼2 ∈ 𝑅𝑁℘𝑅(𝐼1,𝐼2)  and a fully 

prime ring if  𝑅𝑁𝔗𝑅(𝐼1,𝐼2)\{0} = 𝑅𝑁℘𝑅(𝐼1,𝐼2). 

(iii) We call 𝑅(𝐼1 , 𝐼2) a refined neutrosophic fully idempotent if all its neutrosophic ideals are 

idempotent. 

Examples 3.19: 

(1) 𝑍(𝐼1, 𝐼2)  is a refined neutrosophic semiprime ring. 
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(2) 𝑅(𝐼1, 𝐼2) is a refined neutrosophic semiprime (fully semiprime) ring, where 𝑅 is a field.  

(3) 𝑅(𝐼1, 𝐼2) is a refined neutrosophic prime (fully prime) ring, where 𝑅 is a field. 

Theorem 3.20: Assuming that 𝑅(𝐼1, 𝐼2) is a refined neutrosophic ring, 

𝑅(𝐼1, 𝐼2) is a refined neutrosophic fully semiprime ⇔  𝑅(𝐼1, 𝐼2) is a refined neutrosophic fully 

idempotent. 

Proof. 

Firstly, suppose that 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2). Now, we have  (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)
2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2). 

Therefore, it belongs to 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2).  

Also, we have (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)
2 ⊆ (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)

2 ⇒⏟
(𝐽+𝐾𝐼1+𝐿𝐼2)

2∈𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2).

 

𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ⊆ (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)
2 

On the other hand, (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)
2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. So (𝐽 + 𝐾𝐼1 + 𝐿𝐼2)

2 = 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 +

𝐾𝐼1 + 𝐿𝐼2 is a refined neutrosophic idempotent ideal. 

Conversely, suppose that 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝔗𝑅(𝐼1,𝐼2). 

Now, let's prove that 

∀𝑃 + 𝑄𝐼1 + 𝑆𝐼2 ∈ 𝑁𝔗𝑅(𝐼1,𝐼2), 𝑤ℎ𝑒𝑟𝑒,  (𝑃 + 𝑄𝐼1 + 𝑆𝐼2)
2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2, 

then 𝑃 + 𝑄𝐼1 + 𝑆𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. 

Since (𝑃 + 𝑄𝐼1 + 𝑆𝐼2)
2 = 𝑃 + 𝑄𝐼1 + 𝑆𝐼2 (because it is idempotent), then 

 𝑃 + 𝑄𝐼1 + 𝑆𝐼2 ⊆ 𝐽 + 𝐾𝐼1 + 𝐿𝐼2. Thus 𝐽 + 𝐾𝐼1 + 𝐿𝐼2 ∈ 𝑅𝑁𝑆℘𝑅(𝐼1,𝐼2).  

Example.3.21 According to the theorem 3.17, in ℤ3(𝐼1, 𝐼2) , we have  {0} , ℤ3𝐼1 + ℤ3𝐼2 , ℤ3𝐼1 , and 

ℤ3(𝐼1, 𝐼2) are the only neutrosophic ideals. Now we note {0}, ℤ3𝐼1 + ℤ3𝐼2 , ℤ3𝐼1 , and ℤ3(𝐼1, 𝐼2) are 

refined neutrosophic idempotent ideals. According to definition.3.18, ℤ3(𝐼1, 𝐼2)  is a refined 

neutrosophic semiprime ideals. Conversely, according to the theorem.3.20, ℤ3(𝐼1, 𝐼2)  is a refined 

neutrosophic fully semiprime.  

Finally, Table 1 depicts the key distinctions between the classical and refined neutrosophic rings. 

 

Table 1. Key distinctions between the classical and refined neutrosophic rings. 

  

4. Conclusion and future works 

In this study, the structure and properties of all prime, completely prime, semiprime, and 

completely semiprime ideals in refined neutrosophic rings were determined. Herein, we present the 

𝐑(𝐈𝟏, 𝐈𝟐) 𝐑 

𝐑(𝐈𝟏, 𝐈𝟐) is a refined neutrosophic field 

⇔ {𝟎}, 𝐑𝐈𝟏 + 𝐑𝐈𝟐, 𝐑𝐈𝟏 , 𝐑(𝐈𝟏, 𝐈𝟐) are only 

refined neutrosophic ideals. 

R is a field ⇔ {0}, R are only ideals in R. 

𝐑(𝐈𝟏, 𝐈𝟐) is a refined neutrosophic prime 

ring if 𝐑𝐈𝟏 + 𝐑𝐈𝟐 ∈ 𝐑𝐍℘𝐑(𝐈𝟏,𝐈𝟐) 

R is a prime ring if {0} ∈ ℘R 

𝐑(𝐈𝟏, 𝐈𝟐) is a fully prime ring if 

𝐑𝐍𝕿𝐑(𝐈𝟏,𝐈𝟐)\{𝟎} = 𝐑𝐍℘𝐑(𝐈𝟏,𝐈𝟐). 

R(I1, I2) is a fully prime ring if  𝔗R = ℘R. 
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concept of fully prime (fully prime) and fully semiprime (fully semiprime) refined neutrosophic 

rings. In addition, many examples were built to clarify the validity of this work. Certainly, these ideals 

will find applications in all places where they find their applications, with some indeterminacy. In 

the future, we plan to generalize the prime (completely prime, semiprime, and completely 

semiprime) ideals of the n-refined neutrosophic rings. 
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Abstract: We now found nine new topologies, such as: NonStandard Topology, Largest Extended 

NonStandard Real Topology, Neutrosophic Triplet Weak/Strong Topologies, Neutrosophic Extended 

Triplet Weak/Strong Topologies, Neutrosophic Duplet Topology, Neutrosophic Extended Duplet 

Topology, Neutrosophic MultiSet Topology, and recall and improve the seven previously founded 

topologies in the years (2019-2023), namely: NonStandard Neutrosophic Topology, NeutroTopology, 

AntiTopology, Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, 

SuperHyperTopology, and Neutrosophic SuperHyperTopology. They are called avantgarde 

topologies because of their innovative forms. 

Keywords: Classical Topology; Topological Space; NeutroSophication; AntiSophication; 

NeutroTopology; AntiTopology; Refined Neutrosophic Topology; Refined Neutrosophic Crisp 

Topology; SuperHyperTopology; Neutrosophic SuperHyperTopology; Extended NonStandard Real 

Set; NonStandard Topology; NonStandard Neutrosophic Topology; Largest Extended NonStandard 

Real Topology; left monad; Right Monad; Pierced Binad; Left Monad Closed to the Right; Right 

Monad Closed to the Left, Unpierced Binad; Neutrosophic OverTopology; Neutrosophic 

UnderTopology; Neutrosophic OffTopology; (Fuzzy & Fuzzy-Extensions) Over/Under/Off-

Topologies; Neutrosophic MultiSet Topology. 

 

1. Introduction 

The foundation of new topologies raised from development of other fields such as 

NeutroAlgebra and AntiAlgebra (that gave birth to NeutroTopology and AntiTopology), 

SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra (that gave birth to SuperHyperTopology 

and Neutrosophic SuperHyperTopology), Refined Crisp Set (that gave birth to the Refined Crisp 

Topology), and Refined Neutrosophic Set (that gave birth to refined Neutrosophic Topology), and 

NonStandard Set (that gives birth to NonStandard Topology and NonStandard Neutrosophic 

Topology), Neutrosophic Triplet Set, Neutrosophic Extended Triplet Set, Neutrosophic Dual Set, 

Neutrosophic Extended Dual Set, and Neutrosophic MultiSet. 

This is almost a virgin territory of research since little research has been done, mostly about the 

AntiTopology [8]. Nevertheless, it is a promising field to study in the future, since it better reflects 

our real world, where the laws (axioms) do not apply in the same degree to all people (powerful 

people are above the law, others immune to the law, and many feel the full hardship of the law); since 

the world as a dynamic system is formed by sub-systems, and each sub-system by sub-sub-systems 

and so on (whence the necessity to introduce the SuperHyperStructure based on the n-th PowerSet 

of a Set, whose particular cases are the SuperHyperAlgebra and SuperHyperTopology), etc. 

https://doi.org/10.61356/j.nswa.2024.125
https://orcid.org/0000-0002-5560-5926
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We recall the classical definition of Topology, then the procedures of NeutroSophication and 

respectively AntiSophication of it, that result in adding in two new types of topologies: 

NeutroTopology and respectively AntiTopology. 

Then we define topology on Refined Neutrosophic Set (2013), Refined Neutrosophic Crisp Set 

[3]. Afterwards, we extend the topology on the framework of SuperHyperAlgebra [6], then the 

NonStandard Neutrosophic Set to NonStandard Topology and NonStandard Neutrosophic Topology 

(never defined before). 

The corresponding neutrosophic topological spaces are presented. 

This research is an improvement of paper [7] and book [12, sections 4.8 and 4.9]. 

  

2. Classical Topology 

Let 𝒰 be a non-empty set, and P(𝒰) the power set of 𝒰. 

Let 𝜏 ⊆ 𝑃(𝒰) be a family of subsets of 𝒰. 

Then 𝜏 is called a Classical Topology on 𝒰  if it satisfies the following axioms: (CT-1) 𝜙  and 𝒰 

belong to 𝜏. 

(CT-2) The intersection of any finite number of elements in 𝜏 is in 𝜏. 

(CT-3) The union of any finite or infinite number of elements in 𝜏 is in 𝜏.  

All three axioms are totally (100%) true (or T = 1, I = 0, F = 0). We simply call them (classical) Axioms. 

Then (𝒰, 𝜏) is called a Classical Topological Space on 𝒰. 

3. NeutroSophication of the Topological Axioms 

NeutroSophication of the topological axioms means that the axioms become partially true, 

partially indeterminate, and partially false. They are called NeutroAxioms. 

(NCT-1) Either {𝜙 ∉ 𝜏 and 𝒰 ∈ 𝜏}, or {𝜙 ∈ 𝜏 and 𝒰 ∉ 𝜏}. 

(NCT-2) There exist a finite number of elements in 𝜏 whose intersection belong to 𝜏 (degree of 

truth T); and a finite number of elements in 𝜏  whose intersection is indeterminate (degree of 

indeterminacy I); and a finite number of elements in 𝜏 whose intersection does not belong to 𝜏 

(degree of falsehood F); where (T, I, F) ∉  {(1, 0, 0), (0, 0, 1)}  since (1, 0, 0) represents the above 

Classical Topology, while (0, 0, 1) the below AntiTopology. 

(NCT-3) There exist a finite or infinite number of elements in 𝜏  whose union belongs to 𝜏 

(degree of truth T); and a finite or infinite number of elements in 𝜏 whose union is indeterminate 

(degree of indeterminacy I); and a finite or infinite number of elements in 𝜏 whose union does not 

belong to 𝜏 (degree of falsehood F); where of course (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 

4. AntiSophication of the Classical Topological Axioms 

AntiSophication of the topological axioms means to negate (anti) the axioms, the axioms become 

totally (100%) false (or T = 0, I = 0, F = 1). They are called AntiAxioms. 

(ACT-1) 𝜙 ∉ 𝜏 and 𝒰 ∉ 𝜏. 

(ACT-2) The intersection of any finite number (𝑛 ≥ 2) of elements in 𝜏 is not in 𝜏. 

(ACT-3) The union of any finite or infinite number (𝑛 ≥ 2) of elements in 𝜏 is not in 𝜏. 

5. <Topology, NeutroTopology, AntiTopology> 

As such, we have a neutrosophic triplet of the form: 

<Axiom(1, 0, 0), NeutroAxiom(T, I, F), AntiAxiom(0, 0, 1)>, 

where (T, I, F) ≠ (1, 0, 0) and (T, I, F) ≠ (0, 0, 1). 

Correspondingly, one has:  

<Topology, NeutroTopology, AntiTopology>. 
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Therefore, in general:  

(Classical) Topology is a topology that has all axioms totally true. We simply call them Axioms. 

NeutroTopology is a topology that has at least one NeutroAxiom and the others are all classical Axioms 

[therefore, no AntiAxiom]. 

AntiTopology is a topology that has one or more AntiAxioms, no matter what the others are (classical 

Axioms, or NeutroAxioms). 

6. Theorem on the number of Structures/NeutroStructures/AntiStructures 

If a Structure has m axioms, with m ≥ 1, then after NeutroSophication and AntiSophication one obtains 

3m types of structures, categorized as follows: 

1Classical Structure  +  (2m – 1)NeutroStructures  +  (3m – 2m)AntiStructures = 3m Structures. 

7. Consequence on the number of Topologies/NeutroTopologies/AntiTopologies 

As a particular case of the previous theorem, from a Topology which has m = 3 axioms, one makes, 

after NeutrosSophication and AntiSophication, 33 = 27 types of structures, as follows:  1 classical 

Topology,  23 – 1 = 7 NeutroTopologies,  and 33 – 22 = 19 AntiTopologies. 

1Classical Topology + 7NeutroTopologies + 19AntiTopologies = 33 Topologies are presented below: 

There is 1 (one) type of Classical Topology, whose axioms are listed below: 

1 Classical Topology 

(
𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

) 

8. Definition of NeutroTopology [4, 5] 

It is a topology that has at least one topological axiom which is partially true, partially 

indeterminate, and partially false, or (T, I, F), where T = True, I = Indeterminacy, F = False, and no 

topological axiom is totally false, in other words: ( , , ) {(1,0,0), (0,0,1)}T I F  , where (1, 0, 0) 

represents the classical Topology, while (0, 0, 1) represents the below AntiTopology. 

Therefore, the NeutroTopology is a topology in between the classical Topology and the 

AntiTopology. 

There are 7 types of different NeutroTopologies, whose axioms, for each type, are listed below: 

7 NeutroTopologies 

(
𝑁𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝑁𝐶𝑇 − 2
𝐶𝑇 − 3

) , (
𝐶𝑇 − 1
𝐶𝑇 − 2

𝑁𝐶𝑇 − 3
), 

(
𝑁𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝑁𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

) , (
𝑁𝐶𝑇 − 1
𝐶𝑇 − 2

𝑁𝐶𝑇 − 3
), 

(
𝑁𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

). 

9. Definition of AntiTopology [4, 5] 

It is a topology that has at least one topological axiom that is 100% false (T, I, F) = (0, 0, 1). The 

NeutroTopology and AntiTopology are particular cases of NeutroAlgebra and AntiAlgebra [4] and, 

in general, they all are particular cases of the NeutroStructure and AntiStructure respectively, since 

we consider "Structure" in any field of knowledge [5]. 
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There are 19 types of different AntiTopologies, whose axioms, for each type, are listed below: 

19 AntiTopologies 

(
𝐴𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

), (𝐴
𝐶𝑇 − 1
𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1
𝐶𝑇 − 2

𝐴𝐶𝑇 − 3
), 

 

(
𝐴𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝐴𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), (
𝐴𝐶𝑇 − 1
𝐶𝑇 − 2

𝐴𝐶𝑇 − 3
), 

(
𝐴𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), 

 

(
𝐴𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), (
𝐴𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), 

(
𝐴𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐶𝑇 − 3

), (
𝐶𝑇 − 1

𝐴𝐶𝑇 − 2
𝑁𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐶𝑇 − 2

𝐴𝐶𝑇 − 3
), 

 

(
𝐴𝐶𝑇 − 1
𝐶𝑇 − 2

𝑁𝐶𝑇 − 3
), (

𝐶𝑇 − 1
𝑁𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

), (
𝑁𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐶𝑇 − 3

), 

 

(
𝐴𝐶𝑇 − 1
𝐴𝐶𝑇 − 2
𝐴𝐶𝑇 − 3

). 

 

10. Refined Neutrosophic Set 

Let 𝑈 be a universe of discourse, and a non-empty subset R of it,  

𝑅 = {

𝑥 (𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑝(𝑥)) ;

(𝐼1(𝑥), 𝐼2(𝑥), … , 𝐼𝑟(𝑥));

(𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑠(𝑥));

} 

with all , , [0,1],j k lT I F  1 ,1 ,1 ,j p k r l s      and no restriction on their sums

0 3m m mT I F    , with 1 max{ , , }m p r s  , where p, r, s ≥ 0 are fixed integers, and at least 

one of them is ≥ 2, in order to ensure the refinement (sub-parts) or multiplicity (multi-parts) – 

depending on the application, of at least one neutrosophic component amongst T (truth), I 

(indeterminacy), F (falsehood); and of course 𝑥 ∈ 𝒰. 

By notation we consider that index zero means the empty-set, i.e. 0 0 0T I F     (or zero), 

and the same for the missing sub-parts (or multi-parts). 

For example, the below (2,3,1)-Refined Neutrosophic Set is identical to a (3,3,3)-Refined Neutrosophic 

Set: 1 2 1 2 3 1 1 2 1 2 3 1( , ; , , ; ) ( , ,0; , , ; ,0,0)T T I I I F T T I I I F , where the missing components T3, and F2, F3 

were replaced each of them by 0 (zero) R is called a (p, r, s)-refined neutrosophic set { or (p, r, s)-RNT }. 

The neutrosophic set has been extended to the Refined Neutrosophic Set (Logic, and Probability) 

by Smarandache [1] in 2013, where there are multiple parts of the neutrosophic components, as such 

T was split into subcomponents T1, T2, ..., Tp, and I into I1, I2, ..., Ir, and F into F1, F2, ...,Fs, with p + r + s 
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= n ≥ 2 and integers p, r, s ≥ 0 and at least one of them is ≥ 2 in order to ensure the refinement (or 

multiplicity) of at least one neutrosophic component amongst T, I, and F.   

Even more: the subcomponents Tj, Ik, and/or Fl can be countable or uncountable infinite subsets 

of [0, 1]. 

This definition also includes the Refined Fuzzy Set, when r = s = 0 and p ≥ 2;  

and the definition of the Refined Intuitionistic Fuzzy Set, when r = 0, and either p ≥ 2 and s ≥ 1, or p ≥ 1 

and s ≥ 2. 

All other fuzzy extension sets (Pythagorean Fuzzy Set, Spherical Fuzzy Set, Fermatean Fuzzy Set, q-

Rung Orthopair Fuzzy Set, etc.) can be refined/multiplicated in a similar way. 

11. Definition of Refined Neutrosophic Topology 

Let 𝒰 be a universe of discourse, and 𝒫(𝒰) be the family of all (p, r, s)-refined neutrosophic subsets 

of 𝒰. 

Let 𝜏𝑅𝑁𝑇 ⊆ 𝒫(𝒰)  be a family of (p, r, s)-refined neutrosophic subsets of 𝒰.  

Then 𝜏𝑅𝑁𝑇  is called a Refined Neutrosophic Topology (RNT) if it satisfies the axioms: 

(RNT-1) 𝜙 and 𝒰 belong to 𝜏𝑅𝑁𝑇 ; 

(RNT-2) The intersection of any finite number of elements in 𝜏𝑅𝑁𝑇  is in 𝜏𝑅𝑁𝑇 ; 

(RNT-3) The union of any finite or infinite number of elements in 𝜏𝑅𝑁𝑇  is in 𝜏𝑅𝑁𝑇 ; 

Then (𝒰, 𝜏𝑅𝑁𝑇) is called a Refined Neutrosophic Topological Space on 𝒰. 

 

The Refined Neutrosophic Topology is a topology defined on a Refined Neutrosophic Set.  

{Similarly, the Refined Fuzzy Topology is defined on a Refined Fuzzy Set, while the Refined 

Intuitionistic Fuzzy Topology is defined on a Refined Intuitionistic Fuzzy Set, etc. 

And, as a generalization, on any type of fuzzy extension set [such as: Pythagorean Fuzzy Set, 

Spherical Fuzzy Set, Fermatean Fuzzy Set, q-Rung Orthopair Fuzzy Set, etc.] one can define a 

corresponding fuzzy extension topology}.  

12. Neutrosophic Crisp Set 

The Neutrosophic Crisp Set was defined by Salama and Smarandache in 2014 and 2015. 

Let X be a non-empty fixed space. And let D be a Neutrosophic Crisp Set [2],  

where D = <A, B, C>, with A, B, C as subsets of X. 

Depending on the intersections and unions between these three sets A, B, C one gets several: 

Types of Neutrosophic Crisp Sets [2, 3]. 

The object having the form D = <A, B, C> is called: 

(a) A neutrosophic crisp set of Type 1 (NCS-Type1) if it satisfies:  

A∩ B = B∩ C = C∩ A =   (empty set). 

(b) A neutrosophic crisp set of Type 2 (NCS-Type2) if it satisfies:  

A∩ B = B∩ C = C∩ A =   and A∪ B ∪ C = X. 

(c) A neutrosophic crisp set of Type 3 (NCS-Type3) if it satisfies:  

A∩ B ∩ C =  and A∪ B ∪ C = X. 

Of course, more types of Neutrosophic Crisp Sets may be defined by modifying the intersections and 

unions of the subsets A, B, and C. 
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13. Refined Neutrosophic Crisp Set 

The Refined Neutrosophic Crisp Set [3] was introduced by Smarandache in 2019, by 

refining/multiplication of D (and denoting it by RD = Refined D) by refining/multiplication of its sets 

A, B, C into sub-subsets/multi-sets as follows: 

RD = (A1, ..., Ap; B1, ..., Br; C1, ..., Cs), with p, r, s ≥ 1 be positive integers and at least one of them be ≥ 2 

in order to ensure the refinement/multiplication of at least one component amongs A, B, C, where 

1 1 1
, ,

p r s

i j k
i j k

A A B B C C
  

       

and many types of Refined Neutrosophic Crisp Sets may be defined by modifying the intersections 

or unions of the subsets/multisets , , ,1 ,1 ,1i j kA B C i p j r k s      , depending on each 

application. 

14. Definition of Refined Neutrosophic Crisp Topology 

Let 𝒰 be a universe of discourse, and 𝒫(𝒰) be the family of all (p, r, s)-refined neutrosophic crisp 

subsets of 𝒰. 

Let 𝜏𝑅𝑁𝐶𝑇 ⊆ 𝒫(𝒰)  be a family of (p, r, s)-refined neutrosophic crisp subsets of 𝒰.  

Then 𝜏𝑅𝑁𝐶𝑇  is called a Refined Neutrosophic Crisp Topology (RNCT) if it satisfies the axioms: 

(RNCT-1) 𝜙 and 𝒰 belong to 𝜏𝑅𝑁𝐶𝑇 ; 

(RNCT-2) The intersection of any finite number of elements in 𝜏𝑅𝑁𝐶𝑇  is in 𝜏𝑅𝑁𝐶𝑇 ; 

(RNCT-3) The union of any finite or infinite number of elements in 𝜏𝑅𝑁𝐶𝑇  is in 𝜏𝑅𝑁𝐶𝑇 . 

Then (𝒰, 𝜏𝑅𝑁𝐶𝑇) is called a Refined Neutrosophic Crisp Topological Space on 𝒰. 

Therefore, the Refined Neutrosophic Crisp Topology is a topology defined on the Refined Neutrosophic 

Crisp Set. 

15. Definition of the nth-PowerSets ( )nP H and
* ( )nP H . 

The nth-PowerSets ( )nP H and
* ( )nP H  of the set H, that the SuperHyperTopology and respectively 

Neutrosophic SuperHyperTopology are based on, better describe our real world, since a system H 

(that may be a set, company, institution, country, region, etc.) is organized in sub-systems, which in 

their turn are organized each of them in sub-sub-systems, and so on.  

The nth-PowerSet ( )nP H  is defined recursively: 

0

1

2

3 2

1

( )

( ) ( )

( ) ( ( ))

( ) ( ( )) ( ( ( )))

.................................................................

( ) ( ( )) ( (... ( )...))

def

n n

n

P H H

P H P H

P H P P H

P H P P H P P P H

P H P P H P P P H







 

 

 

where P is repeated n times into the last formula, and the empty-set   (that represents 

indeterminacy, uncertainty) is allowed in all sequence terms:  

2 3, ( ), ( ), ( ),..., ( )nH P H P H P H P H . 
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Similarly, 

The nth-PowerSet
* ( )nP H  is defined recursively: 

0

*

1

* *

2

* * *

3 2

* * * * * *

1
* * * * * *

( )

( ) ( )

( ) ( ( ))

( ) ( ( )) ( ( ( )))

.................................................................

( ) ( ( )) ( (... ( )...))

def

n n

n

P H H

P H P H

P H P P H

P H P P H P P P H

P H P P H P P P H







 

 

 

where P is repeated n times into the last formula, and the empty-set   (that represents 

indeterminacy, uncertainty) is not allowed in none of the sequence terms: 

2 3

* * * *, ( ), ( ), ( ),..., ( )nH P H P H P H P H . 

16. SuperHyperOperation 

We recall our 2016 concepts of SuperHyperOperation, SuperHyperAxiom, SuperHyperAlgebra, 

and their corresponding Neutrosophic SuperHyperOperation Neutrosophic SuperHyperAxiom and 

Neutrosophic SuperHyperAlgebra [6]. 

Let 𝑃∗
𝑛(𝐻) be the nth-powerset of the set H such that none of P(H), P2(H), …, Pn(H) contain the 

empty set . 

Also, let 𝑃𝑛(𝐻) be the nth-powerset of the set H such that at least one of the P(H), P2(H), …, Pn(H) 

contain the empty set . For any subset A, we identify {A} with A. 

The SuperHyperOperations are operations whose codomain is either 𝑃∗
𝑛(𝐻) and in this case one 

has classical-type SuperHyperOperations, or 𝑃𝑛(𝐻)  and in this case one has Neutrosophic 

SuperHyperOperations, for integer 2n  . 

17. The nth-PowerSet better describe our real world 

The nth-PowerSets ( )nP H and
* ( )nP H , that the SuperHyperTopology and respectively 

Neutrosophic SuperHyperTopology are based on, better describe our real world, since a system H 

(that may be a set, company, institution, country, region, etc.) is organized in sub-systems, which in 

their turn are organized each in sub-sub-systems, and so on. 

18. SuperHyperAxiom 

A classical-type SuperHyperAxiom or more accurately a (m, n)-SuperHyperAxiom is an axiom 

based on classical-type SuperHyperOperations. 

Similarly, a Neutrosophic SuperHyperAxiom {or Neutrosphic (m, n)-SuperHyperAxiom} is an 

axiom based on Neutrosophic SuperHyperOperations. 

There are: 

 Strong SuperHyperAxioms, when the left-hand side is equal to the right-hand side as in non-

hyper axioms. 

 And Week SuperHyperAxioms, when the intersection between the left-hand side and the 

right-hand side is non-empty. 
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19. SuperHyperAlgebra and SuperHyperStructure 

A SuperHyperAlgebra or more accurately (m-n)-SuperHyperAlgebra is an algebra dealing with 

SuperHyperOperations and SuperHyperAxioms. 

Again, a Neutrosophic SuperHyperAlgebra {or Neutrosphic (m, n)-SuperHyperAlgebra} is an 

algebra dealing with Neutrosophic SuperHyperOperations and Neutrosophic 

SuperHyperOperations. 

In general, we have SuperHyperStructures {or (m-n)-SuperHyperStructures}, and corresponding 

Neutrosophic SuperHyperStructures. 

For example, there are SuperHyperGrupoid, SuperHyperSemigroup, SuperHyperGroup, 

SuperHyperRing, SuperHyperVectorSpace, etc. 

20. Distinction between SuperHyperAlgebra vs. Neutrosophic SuperHyperAlgebra 

 If none of the power sets 𝑃𝑘(𝐻), 1 ≤ 𝑘 ≤ 𝑛, do not include the empty set  , then one has a 

classical-type SuperHyperAlgebra; 

 If at least one power set, 𝑃𝑘(𝐻) , 1 ≤ 𝑘 ≤ 𝑛 , includes the empty set  , then one has a 

Neutrosophic SuperHyperAlgebra. 

21. Definition of SuperHyperTopology (SHT) [6] 

It is a topology designed on the nth-PowerSet of a given non-empty set 𝐻, that excludes the 

empty-set, denoted as 
* ( )nP H , built as follows: 

*( )P H is the first powerset of the set H, and the index *  means without the empty-set (Ø); 

2

* * *( ) ( ( ))P H P P H is the second powerset of H (or the powerset of the powerset of H), without 

the empty-sets; and so on, the n-th powerset of H, 
1

* * * * * *( ) ( ( )) ( (... ( )...))n n

n

P H P P H P P P H  , where *P  is repeated n time ( n ≥ 2 ), and 

without the empty-sets. 

Let consider 𝜏𝑆𝐻𝑇 be a family of subsets of 
* ( )nP H .  

Then 𝜏𝑆𝐻𝑇  is called a Neutrosophic SuperHyperTopology on 
* ( )nP H , if it satisfies the 

following axioms: 

(SHT-1) 𝜙 and
* ( )nP H  belong to SHT . 

(SHT-2) The intersection of any finite number of elements in SHT  is in SHT . 

(SHT-3) The union of any finite or infinite number of elements in SHT is in SHT . 

Then
*( ( ), )n

SHTP H   is called a SuperHyperTopological Space on 
* ( )nP H . 

22. Definition of Neutrosophic SuperHyperTopology (NSHT) [6] 

It is, similarly, a topology designed on the n-th PowerSet of a given non-empty set H, but 

includes the empty-sets [that represent indeterminacies] too. 

As such, in the above formulas, *( )P H  that excludes the empty-set, is replaced by ( )P H that 

includes the empty-set. 

( )P H  is the first powerset of the set H, including the empty-set (Ø); 
2 ( ) ( ( ))P H P P H is the second powerset of H (or the powerset of the powerset of H), that includes 

the empty-sets; and so on, the n-th powerset of H, 
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1( ) ( ( )) ( (... ( )...))n n

n

P H P P H P P P H   

where P is repeated n times ( n ≥ 2 ), and includes the empty-sets (Ø). 

Let consider 𝜏𝑁𝑆𝐻𝑇  be a family of subsets of ( )nP H .  

Then 𝜏𝑁𝑆𝐻𝑇 is called a Neutrosophic SuperHyperTopology on ( )nP H , if it satisfies the following 

axioms: 

(NSHT-1) 𝜙 and ( )nP H  belong to NSHT . 

(NSHT-2) The intersection of any finite number of elements in NSHT  is in NSHT . 

(NSHT-3) The union of any finite or infinite number of elements in NSHT is in NSHT . 

Then ( ( ), )n

NSHTP H  is called a Neutrosophic SuperHyperTopological Space on ( )nP H . 

23. Introduction to NonStandard Analysis [9-12] 

An infinitesimal [or infinitesimal number] ( ) is a number   such that | | 1 / n  , for any non-

null positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.  

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero. 

Infinitesimals are used in calculus. 

An infinite [or infinite number] ( ω ) is a number greater than anything:  

1 + 1 + 1 + … + 1 (for any finite number terms)    

The infinites are reciprocals of infinitesimals. 

The set of hyperreals (or non-standard reals), denoted as R*, is the extension of set of the real numbers, 

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the 

hyperreal number line  

1/ε = ω/1.            

The set of hyperreals satisfies the transfer principle, which states that the statements of first order 

in R are valid in R* as well. 

A monad (halo) of an element a ∊ R*, denoted by μ(a), is a subset of numbers infinitesimally close 

to a. 

24. First Extension of NonStandard Analysis [13] 

Let’s denote by R+* the set of positive nonzero hyperreal numbers. 

We consider the left monad and right monad, and the (pierced) binad that we have introduced as 

extension in 1998 [5]: 

Left Monad { that we denote, for simplicity, by (-a) or only –a } is defined as: 

μ(-a) = (-a) = –a = a


= {a - x, x ∊ R+* | x is infinitesimal}.   

Right Monad { that we denote, for simplicity, by (a+) or only by a+ } is defined as: 

μ(a+) = (a+) = a+ = a


= {a + x, x ∊ R+* | x is infinitesimal}.   

Pierced Binad { that we denote, for simplicity, by (-a+) or only –a+ } is defined as: 

μ(-a+) = (-a+) = -a+ = a


= 
 = {a - x, x ∊ R+* | x is infinitesimal} {a + x, x ∊ R+* | x is infinitesimal} 

= { a x , x ∊ R+* | x is infinitesimal}.    

The left monad, right monad, and the pierced binad are subsets of R*. 

25. Second Extension of NonStandard Analysis 
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For necessity of doing calculations that will be used in NonStandard neutrosophic logic in order 

to calculate the NonStandard neutrosophic logic operators (conjunction, disjunction, negation, 

implication, equivalence) and in order to have the NonStandard Real MoBiNad Set closed under 

arithmetic operations, Smarandache extended in 2019: the left monad to the Left Monad Closed to 

the Right, the right monad to the Right Monad Closed to the Left; and the Pierced Binad to the 

Unpierced Binad, defined as follows: 

Left Monad Closed to the Right 
0 0 0

a a a
     

     
   

{a – x | x = 0, or x ∊ R+*  

and x is infinitesimal} = μ(-a)  {a} = (-a)  {a}  

= –a  {a}. 

Right Monad Closed to the Left 
0 0 0

a a a
     
     

   
{a + x | x = 0, or x ∊ R+*  

and x is infinitesimal} = μ(a+)  {a} = (a+)  {a}  

= a+  {a}.  

Unpierced Binad 
0 0 0

a a a
        

     
   

{a – x | x ∊ R+* and x is infinitesimal} 

 {a + x | x ∊ R+* and x is infinitesimal} {a} =  

= { a x  | x = 0, or x ∊ R+* and  x is infinitesimal}  

= μ(-a+) {a} = (-a+) {a} = -a+  {a} 

The element {a} has been included into the left monad, right monad, and pierced binad 

respectively. 

26. NonStandard Neutrosophic Topology 

The previous two extensions of NonStandard Analysis, used in the construction of NonStandard 

Neutrosophic Logic, NonStandard Neutrosophic Set, and NonStandard Neutrosophic Probability, 

were defined on the NonStandard Unit Interval  

Inontandard = ] 0,1 [ 
,  

we have founded [13] since 1998, and we have previously [13-15] proposed it, where: 

Inontandard =
0 0 0 0

] 0,1 [ { ; , , , , , , ;0 , }x x x x x x x x x x R
      

      , where R is the set of real numbers. 

Let (] 0,1 [)P  
be the powerset of ] 0,1 [ 

. 

Let τ = (] 0,1 [)P  
, which means that τ is the family of all subsets of (] 0,1 [)P  

. Of course: 

(i). 


 and 
] 0,1 [ 

belong to τ. 

(ii). The intersection of any finite number of elements in τ is in τ. 

(iii). The union of any number of finite or infinite number of elements in τ is in τ. 

 

Therefore, τ is a NonStandard Neutrosophic Topology. 

Then ( ] 0,1 [ 
, τ) is called a NonStandard Neutrosophic Topological Space. 

27. NonStandard Topology 

As a generalization of NonStandard Neutrosophic Topology one propose now the NonStandard 

Topology. 
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Let’s consider the real numbers ,a b R and the real interval [ , ]a b . Let’s extend it to a non-

standard interval ] , [a b 
is the same way as for the NonStandard Neutrosophic Logic and Set. 

Let’s have by convention the same meaning of the following notations:  
0def

x x , and x x


  , also x x


   for any real number x. 

Then: 
0 0 0 0

] , [ { ; , , , , , , ; , }a b x x x x x x x x a x b x R
      

      , where R is the set of real numbers. 

Let UNonStandard = ] , [a b 
 be a NonStandard interval, for a < b, where a and b are real numbers, 

and P(UNonStandard) be the power set of UNonStandard. 

Then P(UNonStandard) is formed by the empty set ( ) and itself UNonStandard, together with all standard 

and NonStandard subsets of ] , [a b 
.  

The finite intersections, and finite or infinite unions of any standard and NonStandard subsets 

are still (standard or NonStandard) subsets of UNonStandard. 

Let  τNonStandard   P(UNonStandard) be a family of standard or NonStandard subsets of P(UNonStandard). 

Then τNonStandard is called a NonStandard Topology on UNonStandard if it satisfies the following axioms: 

(i). The empty set ( ) and UNonStandard belong to τNonStandard. 

(ii). The intersection of finite number of elements in τNonStandard is stil in τNonStandard. 

(iii). The union of any finite or infinite number of elements in τNonStandard is stil in τNonStandard. 

Then (UNonStandard, τNonStandard) is called a NonStandard Topological Space. 

28. Extended NonStandard Real Set ( 
0

ER
 

 ) 

We introduce it now for the first time: 
0 0 0 00

{ ; , , , , , , ; }x x x x x x x x x RER
       

  , actually: 

0 0 0 0 0

ER R R R R R R R
        

       , 

where one uses the notations:  

0 def

R R  

{ , }R x x R
 

   

{ , }R x x R
 

   

0 0

{ , }R x x R
 

   

0 0

{ , }R x x R
 

   

{ , }R x x R
 

   

0 0

{ , }R x x R
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29. Largest Extended NonStandard Real Topology 

0

P ER
  

 
 

, which is the powerset of 
0

ER
 

, generates the Largest Extended NonStandard Real Topology 

on the whole Extended NonStandard Real Set 
0

ER
 

. 

 

30. Over/Under/Off-Sets and Logics and Probabilities 

The Neutrosophic Set was extended [Smarandache, 2007] to Neutrosophic Overset (when some 

Neutrosophic component is > 1), since we observed that, for example, an employee working overtime 

deserves a degree of membership > 1, with respect to an employee that only works regular full-time 

and whose degree of membership = 1; 

and to Neutrosophic Underset (when some Neutrosophic component is < 0), since, for example, 

an employee making more damage than benefit to his company deserves a degree of membership < 

0, with respect to an employee that produces benefit to the company and has the degree of 

membership > 0; 

and to and to Neutrosophic Offset (when some Neutrosophic components are off the interval [0, 

1], i.e. some Neutrosophic component > 1 and some Neutrosophic component < 0).  

Similarly for Over/Under/Off-Logic and respectively Over/Under/Off-Topology [16 - 19]. 

Since these ideas look counter-intuitive and totally different from the mainstream framework, we 

present below elementary examples from our real world of such degrees that are outside the box {we 

mean outside the interval [0, 1]}. 

31. Real Example of OverMembership and UnderMembership 

In a company a full-time employer works 40 hours per week. Let’s consider the last week period. 

Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; 

hence, her membership degree was 30/40 = 0.75 < 1. 

John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this 

company. 

But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 

1.  

Thus, we need to make distinction between employees who work overtime, and those who 

work full-time or part-time. That’s why we need to associate a degree of membership strictly greater 

than 1 to the overtime workers. 

Now, another employee, Jane, was absent without pay for the whole week, so her degree of 

membership was 0/40 = 0. 

Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 

worked hours), but he produced, by accidentally starting a devastating fire, much damage to the 

company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 

20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced 

no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = 

- 0.50 < 0. 

Consequently, we need to make distinction between employees who produce damage, and those 

who produce profit, or produce neither damage no profit to the company. 

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them 

into consideration. 
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Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to 

respectively Neutrosophic Over-/Unde-r/Off-Logic, -Measure, -Probability, - Statistics etc. (Smarandache, 

2007). 

32. Definition of the Single-Valued Neutrosophic OverSet 

Let overU  be an OverUniverse of Discourse {i.e. there exist some elements in overU  whose 

degrees of membership are > 1 }, and the Neutrosophic OverSet over overA U . 

Let T(x), I(x), F(x) be the functions that describe the degrees of membership, indeterminate-

membership, and nonmembership respectively, of a generic element x ∈ overU , with respect to the 

Neutrosophic OverSet overA : 

( ), ( ), ( ) : [0, ]overT x I x F x U   where 0 1  , and   is called OverLimit, 

( ), ( ), ( ) [0, ]T x I x F x   , for all overx U . 

A Single-Valued Neutrosophic OverSet overA  is defined as:  

overA  = {(x, <T(x), I(x), F(x)>), x ∈ Uover}, such that there exist some elements in overA  that have at 

least one neutrosophic component that is > 1. 

33. Definition of the Single-Valued Neutrosophic OverTopology 

Let overU  be an OverUniverse of Discourse, and ( )overP U the powerset of overU . 

Let ( )overover P U  be a family of Single-Valued Neutrosophic OverSets of overU . 

Then over is called a Single-Valued Neutrosophic OverTopology on overU if it satisfies the 

following axioms: 

(i).   and overU belong to over . 

(ii). The intersection of any finite number of single-valued Neutrosophic OverSets in over is 

in over . 

(iii). The union of any finite or infinite number of single-valued Neutrosophic OverSets in 

over is in over . 

Then ( overU , over ) is called a Neutrosophic OverTopological Space. 

34. Definition of the Single-Valued Neutrosophic UnderSet 

The previous two extensions of NonStandard Analysis, used in the construction of NonStandard 

Neutrosophic Logic, NonStandard Neutrosophic Set, and NonStandard Neutrosophic Probability, 

were defined on the NonStandard Unit Interval. 

Let underU  be an UnderUniverse of Discourse { i.e. there exist some elements in underU  whose 

degrees of membership are < 0 }, and the Neutrosophic UnderSet underunderA U . 

Let T(x), I(x), F(x) be the functions that describe the degrees of membership, indeterminate-

membership, and nonmembership respectively, of a generic element x ∈ underU , with respect to the 

Neutrosophic UnderSet underA : 

( ), ( ), ( ) : [ ,1]underT x I x F x U    

where 0 1  , and  is called UnderLimit, 

( ), ( ), ( ) [ ,1]T x I x F x   , for all underx U . 

A Single-Valued Neutrosophic UnderSet underA is defined as:  
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underA  = {(x, <T(x), I(x), F(x)>), x ∈ Uunder}, such that there exist some elements in underA  that have 

at least one neutrosophic component that is < 0. 

35. Definition of the Single-Valued Neutrosophic UnderTopology 

Let underU  be an UnderUniverse of Discourse, and ( )underP U the powerset of underU . 

Let ( )under underP U  be a family of Single-Valued Neutrosophic UnderSets of underU . 

Then under is called a Single-Valued Neutrosophic UnderTopology on underU if it satisfies the 

following axioms: 

(i).   and underU
belong to under

. 

(ii). The intersection of any finite number of single-valued neutrosophic undersets in under

is in under . 

(iii). The union of any finite or infinite number of single-valued neutrosophic undersets in 

under is in under . 

Then ( underU , under ) is called a Neutrosophic UnderTopological Space. 

36. Definition of the Single-Valued Neutrosophic OffSet 

Let 
offU  be an OffUniverse of Discourse {i.e. there exist elements of 

offU  whose degrees of 

membership are outside the interval [0, 1], some < 0 and others > 1}, and the Neutrosophic OffSet 

offA U . 

Let T(x), I(x), F(x) be the functions that describe the degrees of membership, indeterminate-

membership, and nonmembership respectively, of a generic element x ∈ 
offU , with respect to the 

neutrosophic offset 
offA : 

( ), ( ), ( ) : [ , ]offT x I x F x U     

where 0 1   , and   is called UnderLimit, while   is called OverLimit, 

( ), ( ), ( ) [ , ]T x I x F x    , for all 
offx U . 

A Single-Valued Neutrosophic Offset 
offA  is defined as:  

offA  = {(x, <T(x), I(x), F(x)>), x ∈ Uoff}, such that there exist some elements in 
offA  that have at 

least one neutrosophic component that is > 1, and at least one neutrosophic component that is < 0. 

37. Definition of the Single-Valued Neutrosophic OffTopology 

The previous two extensions of NonStandard Analysis, used in the construction of NonStandard 

Neutrosophic Logic, NonStandard Neutrosophic Set, and NonStandard Neutrosophic Probability, 

were defined on the NonStandard Unit Interval. 

Let 
offU  be an OffUniverse of Discourse, and ( )offP U the powerset of 

offU . 

Let ( )off offP U  be a family of Single-Valued Neutrosophic OffSets of 
offU . 

Then 
off  is called a Single-Valued Neutrosophic OffTopology on 

offU if it satisfies the 

following axioms: 

(i).   and offU
belong to off

. 
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(ii). The intersection of any finite number of single-valued neutrosophic offsets in 
off is in 

off . 

(iii). The union of any finite or infinite number of single-valued neutrosophic offsets in 
off

is in 
off . 

Then (
offU , 

off ) is called a Neutrosophic OffTopological Space. 

38. Neutrosophic Triplet Weak/Strong Set (N) 

Let (N, *) be a groupoid, or non-empty set endowed with a well-defined binary operation *. 

A Neutrosophic Triplet is an object of the form <x, neut(x), anti(x)>, for x ∈ N,  

where neut(x) ∈ N is the neutral of x, different from the classical algebraic unitary element if any, such 

that: 

x * neut(x) = neut(x) * x = x 

and anti(x) ∈ N is the opposite of x such that: 

x * anti(x) = anti(x) * x = neut(x). 

In general, an element x may have more neutrals (neut's) and more opposites (anti's). 

The neutrosophic triplets and their neutrosophic triplet algebraic structures were first introduced by 

Florentin Smarandache and Mumtaz Ali [20 - 23] in 2014 - 2016. 

39. Definition of the Neutrosophic Triplet Weak Set (NTS, *) is a set such that each element 

a NTS is part of a neutrosophic triplet <b, neut(b), anti(b)>, i.e. a = b, or a = neut(b), or a = anti(b). 

40. Definition of the Single-Valued Neutrosophic Triplet Weak Topology 

Let 
Triplet WeakU 

 be a Universe of Discourse which has the structure of a Neutrosophic Triplet Weak 

Set, and ( )Triplet WeakP U 
the powerset of 

Triplet WeakU 
. 

Let ( )Triplet Weak Triplet WeakP U    be a family of Single-Valued Neutrosophic Triplet Weak Sets of 

Triplet WeakU 
. 

Then 
Triplet Weak 

 is called a Single-Valued Neutrosophic Triplet Weak Topology on 
Triplet WeakU 

if it 

satisfies the following axioms: 

(i).   and Triplet WeakU  belong to Triplet Weak  . 

(i). The intersection of any finite number of single-valued neutrosophic triplet weak sets in 

Triplet Weak 
is in 

Triplet Weak 
. 

(ii). The union of any finite or infinite number of single-valued neutrosophic triplet weak sets in 

Triplet Weak 
is in 

Triplet Weak 
. 

Then (
Triplet WeakU 

, 
Triplet Weak 

) is called a Neutrosophic Triplet Weak Topological Space. 

41. Definition of Neutrosophic Triplet Strong Set (or Neutrosophic Triplet Set) 

The groupoid (N, *) is called a neutrosophic triplet strong set if for any a ∈ N there exist some 

neutral of a, denoted neut(a) ∈ N, different from the classical algebraic unitary element (if any), and 

some opposite of a, called anti(a) ∈ N. 
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Table 1. Example of Neutrosophic Triplet Strong Set. 

* 1 2 

1 2 1 

2 1 1 

 

The set ({1,2}, * ) is a groupoid, without classical unit element.  

Then <1, 2, 1> and <2, 1, 2> and are neutrosophic triplets. 

The neutrosophic triplet strong set is N = {1, 2}. 

42. Theorem on the Neutrosophic Triplet Strong and Weak Sets 

Any neutrosophic triplet strong set is a neutrosophic triplet weak set, but not conversely. 

Proof. 

Let (N, *) be a neutrosophic triplet strong set. If a ∈ N, then is also included in N, therefore there 

exists a neutrosophic triplet in N that includes a, whence N is a neutrosophic triplet weak set. 

Conversely, we prove by using a counterexample.  

Let Z3 = {0, 1, 2}, embedded with the multiplication  modulo 3, which is a well-defined law. The 

classical unitary element in Z3 is 1. 

(Z3,  ) is a neutrosophic triplet weak set, since the neutrosophic triplets formed in Z3 with respect 

to the law  contain all elements 0, 1, 2, 

i.e. <0, 0, 0>, <0, 0, 1>, and <0, 0, 2>.  

But (Z3,  ) is not a neutrosophic triplet strong set, since, for example, for 2 ∈ Z3 there is no neut(2)  1 

and no anti(2). 

43. Definition of the Single-Valued Neutrosophic Triplet Strong Topology 

Let 
Triplet StrongU 

 be a Universe of Discourse which has the structure of a Neutrosophic Triplet 

Strong Set, and ( )Triplet StrongP U 
the powerset of 

Triplet StrongU 
. 

Let ( )Triplet Strong Triplet StrongP U    be a family of Single-Valued Neutrosophic Triplet Strong Sets 

of 
Triplet StrongU 

. 

Then 
Triplet Strong 

 is called a Single-Valued Neutrosophic Triplet Strong Topology on

Triplet StrongU 
 if it satisfies the following axioms: 

(i).   and Triplet StrongU  belong to Triplet Strong  . 

(ii). The intersection of any finite number of single-valued neutrosophic triplet strong sets in 

Triplet Strong 
is in 

Triplet Strong 
. 

(iii). The union of any finite or infinite number of single-valued neutrosophic triplet strong 

sets in 
Triplet Strong 

is in 
Triplet Strong 

. 

Then (
Triplet StrongU 

, 
Triplet Strong 

) is called a Neutrosophic Triplet Strong Topological Space. 

44. Neutrosophic Extended Triplet 

A neutrosophic extended triplet is a neutrosophic triplet, defined as above, but where the neutral 

of x {denoted by eneut(x) and called "extended neutral", where “e” in front stands for ‘extended’} is 
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allowed to be equal to the classical algebraic unitary element (if any) of the law * defined on the set. 

Therefore, the restriction "different from the classical algebraic unitary element if any" is released. 

Thus, a neutrosophic extended triplet is an object of the 

form <x, eneut(x), eanti(x)>, for x∈N, where eneut(x)∈N is the extended neutral of x, which can be equal 

or different from the classical algebraic unitary element if any, such that: 

X * eneut(x) = eneut(x) * x = x 

and anti(x)∈N is the extended opposite of x such that: 

x*eanti(x) = eanti(x) * x = eneut(x). 

In general, for each x ∈ N there are exist many eneut's (extended neutrals) and eanti's (extended 

opposites). The neutrosophic extended triplets were introduced by Smarandache in 2016. 

45. Definition of Neutrosophic Extended Triplet Weak Set 

The set N is called a neutrosophic extended triplet weak set if for any x∈N there exist a 

neutrosophic extended triplet <y, eneut(y), eanti(y)> included in N, such that x = y or x = eneut(y) or x 

= eanti(y). 

46. Definition of the Single-Valued Neutrosophic Extended Triplet Weak Topology 

Let 
Extended Triplet WeakU  

 be a Universe of Discourse which has the structure of a Neutrosophic 

Extended Triplet Weak Set, and ( )Extended Triplet WeakP U  
the powerset of 

Extended Triplet WeakU  
. 

Let ( )Extended Triplet Weak Extended Triplet WeakP U      be a family of Single-Valued Neutrosophic 

Extended Triplet Weak Sets of 
Extended Triplet WeakU  

. 

Then 
Extended Triplet Weak  

 is called a Single-Valued Neutrosophic Extended Triplet Weak 

Topology on 
Extended Triplet WeakU  

if it satisfies the following axioms: 

(i).   and Extended Triplet WeakU   belong to Extended Triplet Weak   . 

(ii). The intersection of any finite number of single-valued neutrosophic extended triplet 

weak sets in 
Extended Triplet Weak  

is in 
Extended Triplet Weak  

. 

(iii). The union of any finite or infinite number of single-valued neutrosophic extended triplet 

weak sets in 
Extended Triplet Weak  

is in 
Extended Triplet Weak  

. 

Then (
Extended Triplet WeakU  

, 
Extended Triplet Weak  

) is called a Neutrosophic Extended Triplet Weak 

Topological Space. 

47. Definition of Neutrosophic Extended Triplet Strong Set 

The set N is called a neutrosophic extended triplet strong set if for any x ∈  N there exist eneut(x) 

∈  N and eanti(x) ∈  N. 

48. Definition of the Single-Valued Neutrosophic Extended Triplet Strong Topology 

Let
Extended Triplet StrongU  

 be a Universe of Discourse which has the structure of a Neutrosophic 

Extended Triplet Strong Set, and ( )Extended Triplet StrongP U  
the powerset of 

Extended Triplet StrongU  
. 

Let ( )Extended Triplet Strong Extended Triplet StrongP U      be a family of Single-Valued Neutrosophic 

Extended Triplet Strong Sets of 
Extended Triplet StrongU  

. 
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Then
Extended Triplet Strong  

 is called a Single-Valued Neutrosophic Extended Triplet Strong 

Topology on 
Extended Triplet StrongU  

if it satisfies the following axioms: 

(i).   and Extended Triplet StrongU   belong to Extended Triplet Strong   . 

(ii). The intersection of any finite number of single-valued neutrosophic extended triplet 

strong sets in 
Extended Triplet Strong  

is in 
Extended Triplet Strong  

. 

(iii). The union of any finite or infinite number of single-valued neutrosophic extended triplet 

strong sets in 
Extended Triplet Strong  

is in 
Extended Triplet Strong  

. 

Then (
Extended Triplet StrongU  

, 
Extended Triplet Strong  

) is called a Neutrosophic Extended Triplet Strong 

Topological Space. 

49. Neutrosophic Duplets 

The Neutrosophic Duplets and the Neutrosophic Duplet Algebraic Structures were introduced 

by Florentin Smarandache in 2016. 

Let U be a universe of discourse, and a set D included in U, endowed with a well-defined law #. 

50. Definition of the Neutrosophic Duplet 

We say that <a, neut(a)>, where a, and its neutral neut(a) belong to D, is a neutrosophic duplet if: 

(i). neut(a) is different from the unitary element of D with respect to the law # (if any); 

(ii). a # neut(a) = neut(a) # a = a; 

(iii).  there is no opposite anti(a) belonging to D for which  

a # anti(a) = anti(a) # a = neut(a). 

51. Example of Neutrosophic Duplets 

In (Z8, #), the set of integers with respect to the regular multiplication modulo 8, one has the 

following neutrosophic duplets: 

<2, 5 >, <4, 3>, <4, 5>, <4, 7>, and <6, 5>. 

 Proof: 

Let Z8 = {0, 1, 2, 3, 4, 5, 6, 7}, having the unitary element 1 with respect to the 

multiplication # modulo 8. 

2 # 5 = 5 # 2 = 10 = 2 (mod 8), so neut(2) = 5 ≠ 1. 

There is no anti(2) ∈ Z₈, because: 

2 # anti(2) = 5 (mod 8), or 2y = 5 (mod 8) by denoting anti(2) = y, is equivalent to: 

2y - 5 = M8 {multiple of 8}, or 2y - 5 = 8k, where k is an integer, or 2(y - 4k) = 5, where 

both y and k are integers, or: even number = odd number, which is impossible. 

 

Therefore, we proved that <2, 5> is a neutrosophic duplet. 

Similarly for <4, 5>, <4, 3>, <4, 7>, and <6, 5>. 

A counter-example: <0, 0> is not a neutrosophic duplet, because it is a neutrosophic triplet: <0, 0, 

0>, where there exists an anti(0) = 0. 

52. Definition of the Single-Valued Neutrosophic Duplet Topology 

Let 
DupletU  be a Universe of Discourse which has the structure of a Neutrosophic Duplet Set, 

and ( )DupletP U  the powerset of 
DupletU . 

Let ( )Duplet DupletP U   be a family of Single-Valued Neutrosophic Duplet Sets of 
DupletU . 
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Then 
Duplet  is called a Single-Valued Neutrosophic Duplet Topology on 

DupletU if it satisfies the 

following axioms: 

(i).   and DupletU
belong to Duplet

. 

(ii). The intersection of any finite number of single-valued neutrosophic duplet sets in 
Duplet

is in 
Duplet . 

(iii). The union of any finite or infinite number of single-valued neutrosophic duplet sets in 

Duplet is in 
Duplet . 

Then (
DupletU , 

Duplet ) is called a Neutrosophic Duplet Topological Space. 

53. Definition of the Neutrosophic Extended Duplet 

Let U be a universe of discourse, and a set D included in U, endowed with a well-defined law #. 

We say that <a, eneut(a)>, where a, and its extended neutral eneut(a) belong to D, such that: 

(i). eneut(a) may be equal or different from the unitary element of D with respect to the 

law # (if any); 

(ii). a # eneut(a) = eneut(a) # a = a; 

(iii). There is no extended opposite eanti(a) belonging to D for which  

a # eanti(a) = eanti(a) # a = eneut(a). 

54. Definition of the Single-Valued Neutrosophic Extended Duplet Topology 

Let 
Extended DupletU 

 be a Universe of Discourse which has the structure of a Neutrosophic 

Extended Duplet Set, and ( )Extended DupletP U 
 the powerset of 

Extended DupletU 
. 

Let ( )Extended Duplet Extended DupletP U    be a family of Single-Valued Neutrosophic Duplet Sets of 

Extended DupletU 
. 

Then 
Extended Duplet 

 is called a Single-Valued Neutrosophic Duplet Topology on  
E x t e n d e d D u p l e tU 

 

if  it satisfies the following axioms: 

(i).   and Extended DupletU  belong to Extended Duplet  . 

(ii). The intersection of any finite number of single-valued neutrosophic extended duplet sets 

in 
Extended Duplet 

is in 
Extended Duplet 

. 

(iii). The union of any finite or infinite number of single-valued neutrosophic extended duplet 

sets in 
Extended Duplet 

is in 
Extended Duplet 

. 

Then (
Extended DupletU 

,
Extended Duplet 

) is called a Neutrosophic Extended Duplet Topological Space. 

55. Definition of Neutrosophic MultiSet 

The Neutrosophic MultiSet and the Neutrosophic Multiset Algebraic Structures were introduced 

by Florentin Smarandache [23] in 2016. 

Let 𝒰 be a universe of discourse, and a set M U .  

A Neutrosophic Multiset 𝑀 is a neutrosophic set where one or more elements are repeated with the 

same neutrosophic components, or with different neutrosophic components.  

It is an extension of the classical multiset, fuzzy multiset, intuitionistic fuzzy multiset, etc. 

56. Examples of Neutrosophic MultiSets 



Neutrosophic Systems with Applications, Vol. 13, 2024                                                 64 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Florentin Smarandache, Foundation of Revolutionary Topologies: An Overview, Examples, Trend Analysis, Research 

Issues, Challenges, and Future Directions 

𝐴 = {(0.6, 0.3, 0.1), (0.8, 0.4, 0.2), 𝑐(0.5, 0.1, 0.3)} is a neutrosophic set (not multiset).  

But 𝐵 = {(0.6, 0.3, 0.1),(0.6, 0.3, 0.1),𝑏(0.8, 0.4, 0.2)} is a neutrosophic multiset, since the element a is 

repeated; we say that the element a has the neutrosophic multiplicity 2 with the same neutrosophic 

components.  

While 𝐶 = {(0.6, 0.3, 0.1), (0.7, 0.1, 0.2), 𝑎(0.5, 0.4, 0.3), 𝑐(0.5, 0.1, 0.3)} is also a neutrosophic multiset, 

because the element a is repeated (it has the neutrosophic multiplicity 3), but with different 

neutrosophic components, since, for example, during the time, the neutrosophic membership of an 

element may change.  

If the element 𝑎 is repeated 𝑘 times, keeping the same neutrosophic components (𝑡𝑎,,𝑓𝑎), we say 

that a has multiplicity 𝑘.  

But if there is some change in the neutrosophic components of a, we say that a has the neutrosophic 

multiplicity 𝑘.  

Therefore, we define in general the Neutrosophic Multiplicity Function (nm):  

𝑛𝑚: 𝒰 → ℕ = {1, 2, 3, …, ∞}, and for any 𝑎 ∈ 𝐴 one has  

             (𝑎) = {(𝑘1, 〈𝑡1, 𝑖1, 𝑓1〉), (𝑘2, 〈𝑡2, 𝑖2, 𝑓2〉), …, (𝑘𝑗, 〈𝑡𝑗, 𝑖𝑗, 𝑓𝑗〉), …} which means that  

a is repeated 𝑘1 times with the neutrosophic components 〈𝑡1, 𝑖1, 𝑓1〉;  

a is repeated 𝑘2 times with the neutrosophic components 〈𝑡2, 𝑖2, 𝑓2〉, ...,  

a is repeated 𝑘𝑗 times with the neutrosophic components 〈𝑡𝑗, 𝑖𝑗, 𝑓𝑗〉, ..., and so on.  

 

Then, a neutrosophic multiset A can be written as:  

A = {(𝑎, (𝑎)), for 𝑎 ∈𝐴)}. 

57. Examples of operations with neutrosophic multisets 

Let's have:  

𝐴 = {5〈0.6, 0.3, 0.2〉, 5〈0.6, 0.3, 0.2〉, 5〈0.4, 0.1, 0.3〉, 6〈0.2, 0.7, 0.0〉};  

𝐵 = {5〈0.6, 0.3, 0.2〉, 5〈0.8, 0.1, 0.1〉, 6〈0.9, 0.0, 0.0〉};  

𝐶 = {5〈0.6, 0.3, 0.2〉, 5〈0.6, 0.3, 0.2〉}.  

Then:  

Intersection of Neutrosophic Multisets.  

𝐴 ∩ 𝐵 = {5〈0.6, 0.3, 0.2〉}.  

Union of Neutrosophic Multisets  

𝐴 ∪ 𝐵 ={5〈0.6, 0.3, 0.2〉, 5〈0.6, 0.3, 0.2〉, 5〈0.4, 0.1, 0.3〉, 5〈0.8, 0.1, 0.1〉, 6〈0.2, 0.7, 0.0〉, 6〈0.9, 0.0, 0.0〉}. 

Inclusion of Neutrosophic Multisets  

𝐶 ⊂ 𝐴, but 𝐶 ⊄ 𝐵. 

58. Definition of the Single-Valued Neutrosophic MultiSet Topology 

Let MultiSetU  be a Universe of Discourse which has the structure of a Neutrosophic MultiSet, and 

( )MultiSetP U  the powerset of MultiSetU . 

Let ( )MultiSet MultiSetP U   be a family of Single-Valued Neutrosophic MultiSets of MultiSetU . 

Then MultiSet  is called a Single-Valued Neutrosophic MultiSet Topology on MultiSetU if it satisfies the 

following axioms: 

(i).   and MultiSetU
belong to MultiSet

. 

(ii). The intersection of any finite number of single-valued neutrosophic multisets in MultiSet

is in MultiSet . 
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(iii). The union of any finite or infinite number of single-valued neutrosophic multisets in 

MultiSet is in MultiSet . 

 Then ( MultiSetU , MultiSet ) is called a Neutrosophic MultiSet Topological Space. 

59. Conclusion 

These eight new avantgarde topologies, together with the previous six new topologies and their 

corresponding topological space, were introduced by Smarandache in 2019-2023, but they have not 

yet been much studied and applied, except the NeutroTopologies and AntiTopologies [8] which got 

some attention from researchers. While NonStandard Neutrosophic Topology, Neutrosophic Triplet 

Weak/Strong Topologies, Neutrosophic Extended Triplet Weak/Strong Topologies, Neutrosophic 

Duplet topology, Neutrosophic Extended Duplet Topology, Neutrosophic MultiSet Topology are 

proposed now for the first time. As future research would be to study their large applications in our 

real world. 
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Abstract: Graph structure is a developing field with many real-world applications and 

advancements, particularly effective frameworks for integrative problem-solving in computer 

networks and artificial intelligence systems. To define the idea of an Interval-Valued Complex 

Neutrosophic Graph Structure (IVCNGS), the concept of an Interval-Valued Complex Neutrosophic 

Set (IVCNS) is applied to the graph structure. Using the adjacency matrix to calculate the degree of 

vertex, we have defined some findings about the IVCNGS. Further, we compute the energy and 

Laplacian energy of IVCNGS. Moreover, we derive the lower and upper bounds for the energy and 

Laplacian energy of IVCNGS, and we have discussed their application in IVCNGS. Finally, we 

develop an algorithm that clarifies the fundamental processes of the application. 

Keywords: Graph Structure; Interval-Valued Complex Neutrosophic Graph Structure; Energy and 

Laplacian Energy; Applications. 

 

1. Introduction 

Real-world problems with uncertainty and ambiguity are not always amenable to the standard 

techniques of classical mathematics. The concept of a fuzzy set (FS) was first proposed by Zadeh [1] 

in 1965 as an extension of the conventional notion of sets. A gradual determination of an element's 

membership in a set is allowed by the fuzzy set theory, as represented by a membership function 

with a value in the real unit interval [0, 1]. Since then, numerous scholars have investigated the 

concept of fuzzy logic and fuzzy sets to resolve a range of ambiguous and uncertain real-world 

problems. Interval-valued fuzzy sets are the development that the author initiated in Turksen [2] in 

1986. As a result of using numbers as the membership function, it also takes into account the values 

of number intervals to account for uncertainty. Usually, it is indicated by the symbol [𝜇𝐴𝐿
− (𝑥), 𝜇𝐴𝑈

+ (𝑥)]. 

Use the equation 0 ≤ 𝜇𝐴𝐿
− (𝑥) + 𝜇𝐴𝑈

+ (𝑥) ≤  1 to represent the degree of membership of the fuzzy set 

𝐴. 

Likewise, the membership function is single-valued and it is not always possible to use it to 

capture both support and objection evidence. The intuitionistic fuzzy set (IFS) was developed by 

Atanassov [3] as a generalization of Zadeh's fuzzy set. IFS, which has both a membership and a non-

membership function, can be created by deriving a new component, the degree of membership and 

non-membership, from the fuzzy set's properties. When defining intuitionistic fuzzy sets, he also 

included interval-valued intuitionistic fuzzy sets [4] for representing uncertainty, interval-valued 

intuitionistic fuzzy sets instead of traditional fuzzy sets are preferred. Defuzzification, a technique 

employed in fuzzy control in many ways, is the phase of the process that needs the most processing. 

https://doi.org/10.61356/j.nswa.2024.106
https://orcid.org/0000-0002-1147-2391
https://orcid.org/0009-0008-5694-084X
https://orcid.org/0000-0003-0712-5351
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To interpret the degree of true and false membership functions, it is defined as a pair of intervals 

[𝜇−, 𝜇+], 0 ≤ 𝜇− + 𝜇+ ≤  1 and [𝜆−, 𝜆+], 0 ≤ 𝜆− + 𝜆+ ≤  1 with 0 ≤ 𝜇+ + 𝜆+ ≤ 1.     

On the other hand, erroneous, inconsistent, and incomplete periodic information cannot be 

handled by FSs, IFSs, or IVIFSs. Although these theories have applications in many different scientific 

domains, they are all hampered by the inability to accurately describe two-dimensional events. Ramot 

[5] proposed the concept of a complex fuzzy set (CFS) in 2012 to address this problem. A helpful 

generalization of FS is the membership grade of this concept, which is expressed as reiθ, where 𝑟 

stands for the amplitude term and 𝜃 for the phase term. Values are restricted to only derived from 

the complex plane's unit circle. The phase term of CFS is significant since it is better equipped to 

control cyclical difficulties or recurrent troublesome phenomena. There will undoubtedly be 

circumstances where the second dimension is required because the phase term is present in CFS. This 

phrase distinguishes CFS from every other kind of information that is currently available. This use 

best exemplifies the original notion with a CF representation of solar activity. The concepts of 

complex intuitionistic fuzzy sets (CIFSs), which they translated to complex intuitionistic fuzzy sets 

using the degree of complex-valued non-membership functions, were initially described by Alkouri 

and Salleh [6] in 2012. Complex Interval-Valued Intuitionistic Fuzzy Sets (CIVIFSs) and its associated 

Aggregation Operator are novel concepts introduced by Harish Garg and Dimple Rani [9]. It is 

defined as a pair of intervals [𝜇−𝑒𝑖𝛼−
, 𝜇+𝑒𝑖𝛼+

], 0 ≤ 𝜇− + 𝜇+ ≤ 1,0 ≤ 𝛼− + 𝛼+ ≤ 2𝜋  and 

[𝜆−𝑒𝑖𝛽−
, 𝜆+𝑒𝑖𝛽−

], 0 ≤ 𝜆− + 𝜆+ ≤ 1,0 ≤ 𝛽− + 𝛽+ ≤ 2𝜋  with 0 ≤ 𝜇+ + 𝜆+ ≤ 1  and 0 ≤ 𝛼+ + 𝛽+ ≤ 1  to 

interpret the complex degree of true and false membership functions. 

Unfortunately, it is limited to processing incomplete and ambiguous data; it is unable to process 

inconsistent and ambiguous data, which is common in situations in the real world. It cannot handle 

the kind of ambiguous and indeterminate information that frequently arises in real-life situations; it 

can only handle partial and ambiguous information. Thus, Florentin Smarandache introduces the 

terms neutrosophic set, a unifying field in logics, and A Generalization of the intuitionistic fuzzy sets 

[7-11] and they are used in many domains to handle contradictory and ambiguous data. Truth 

membership, indeterminacy membership, and false membership are defined completely 

independently if the sum of these values in the neutrosophic set lies between 0 and 3. This is known 

as the indeterminacy value. Neutrosophy: Neutral Logic, Neutral Set, and Neutral Probability Give 

a more thorough explanation of the ideas of neutrosophy, set, logic, and neutrosophic probability. 

The neutrosophic set has quickly attracted the attention of many scholars because of the wide range 

of descriptive situations it covers. Additionally, this new set aids in controlling the ambiguity 

resulting from the neutrosophic scope. A comprehensive bibliometric examination of the 

neutrosophic collection is showcased, encompassing the years from 1998 to 2017. Mumtaz Ali and 

Florentin Smarandache developed the idea of a Complex neutrosophic set in 2016 [12]. When a set of 

real-valued amplitude terms for truth, indeterminacy, and falsehood are combined with their 

corresponding phase terms, we have a complex neutrosophic set. This set has a complex-valued truth 

membership function, complex-valued indeterminacy membership function, and complex-valued 

falsehood membership function. The complex neutrosophic set extends the neutrosophic set. 

Moreover, Atiqe U. R., Muhammad.S, Florentin Smarandache, and Muhammad R. A. [13] present the 

development of hybrids of hypersoft sets with complex fuzzy sets, complex intuitionistic fuzzy sets, 

and complex neutrosophic sets in 2020. 

Figure 1 presents the development of IVCNS, including the CS Crisp Set, FS Fuzzy Set, IFS 

Intuitionistic Fuzzy Set, IVFS Interval-Valued Fuzzy Set, CFS Complex Fuzzy Set, NS Neutrosophic 

Set, CIFS Complex Intuitionistic Fuzzy Set, CIVFS Complex Interval-Valued Fuzzy Set, CNS Complex 

Neutrosophic Set, CIVIFS Complex Interval-Valued Intuitionistic Fuzzy Set, and IVCNS Interval-

Valued Complex Neutrosophic Set. 
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Figure 1. The development of IVNCNS. 

 

Ivan Gutman and Bo Zhou [14] introduced the idea of a graph's Laplacian energy in 2006. Its 

definition is the sum of the absolute values of the adjacency matrix's eigenvalues for the graph. The 

energy of a graph is used in quantum theory and many other applications in the context of energy, 

and it is defined as the sum of the absolute values of the differences of the average vertex degree of 

the graph to the Laplacian eigenvalues of the graph. This is done by connecting the edge of a graph 

to the electron energy of a particular type of molecule. Rosenfeld [15] created fuzzy graph theory in 

1975 and studied the fuzzy graphs that Kauffmann used to develop the basic idea in 1973. He 

explored some basic concepts in graph theory and established some of their characteristics. 

Bhattacharya [16] showed that the inferences from (crisp) graph theory are not always relevant to 

FGs in his remarks on FGs. Intuitionistic fuzzy relations and intuitionistic fuzzy graphs were 

introduced by Shannon and Atanassov in 1994. Fuzzy graphs with irregular interval values were 

examined by Rashmanlou [17]. Additionally, they defined fuzzy graphs [18] and various features of 

very irregular interval-valued fuzzy graphs. M.G. Karunambigai and K. Palanivel [19] first proposed 

the Edge Regular Intuitionistic Fuzzy Graph in 2015. 

Thirunavukarasu et al. [20] created complex fuzzy graphs (CFGs) to handle uncertain and 

ambiguous relationships that have a periodic nature. According to Yaqoob et al. [21], complex 

intuitionistic fuzzy graphs (CIFGs) were defined. They looked into the homomorphisms of CIFG and 

demonstrated a CIFG application in cellular network provider companies to test their proposed 

approach. To broaden the concept of neutrosophic graphs and CIFGs, Yaqoob and Akram introduced 

complex neutrosophic graphs (CNGs) [22]. They covered several basic CNG functions and provided 

examples to illustrate them. They also presented the energy of CNGs. The concept of Complex 

Neutrosophic Hypergraphs: New Social Network Models was expounded upon in 2019 by Anam 

Luqman, Muhammad Akram, and Florentin Smarandache [23]. The best examples and motivation 

for CNS derive from two voting procedures, and they use this example to support the applicability 

of their proposed model in their introduction. Laplacian energy of fuzzy graphs is a concept 

introduced by Sharbaf and Fayazi [24], and some results on Laplacian energy bounds extend to fuzzy 

graphs. For more details, see the research papers by Soumitra Poulik and Ganesh Ghorai [25–28] on 

detour g-interior nodes and Detour g-boundary nodes in bipolar fuzzy graphs with applications, 

pragmatic results in Taiwan education system-based IVFG & IVNG, and empirical results on 

operations of Bipolar fuzzy graphs with their degree. Further, a note on "Bipolar fuzzy graphs with 

applications" was proposed in 2020. A graph structure can be produced by enlarging an undirected 

graph; this structure can then be used to investigate other sorts of structures, such as graphs and 

signed graphs. The concept of graph structures was first proposed by Sampath Kumar in his essay 



Neutrosophic Systems with Applications, Vol. 13, 2024                                                70 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

S.N. Suber Bathusha, Sowndharya Jayakumar and S. Angelin Kavitha Raj, The Energy of Interval-Valued Complex 

Neutrosophic Graph Structures: Framework, Application and Future Research Directions 

from 2006 [29]. The concept of a fuzzy graph structure was first proposed by T. Dinesh and T. V. 

Ramakrishnan in 2011 [30]. To use this model in IVCNGS, it can be rewritten in an abstract form. 

Muhammad Akram recently proposed the idea of Operations on Intuitionistic Fuzzy Graph 

Structures [31]. 

 

1.1 The framework of this research 

This idea can be applied in IVCNGS after being restated abstractly. This work is structured as 

shown in Figure 2 and as follows: 

 The concept of Interval-Valued Complex Neutrosophic Graph Structures (IVCNGS) is 

introduced in this work. Some results that we can share are that the IVCNGS adjacency 

matrix and the degree of vertex presence are being further examined. 

 Further, the energy and Laplacian energy of IVCNGS are calculated. Also, we determine 

IVCNGS's energy and Laplacian energy upper and lower bounds. 

 Moreover, IVCNGS applications and algorithm explanations were provided. Finally, an 

explanation of all these studies is provided in conclusion and future works. 

In order for researchers to further investigate this theory using analysis of the energy and Laplacian 

energies of IVCNGS, we recommended readers to read this article. 

 

 
Figure 2. The development of IVNCNS. 

 

2. Preliminaries 

The development of the research work will be helped by the deliberation of some fundamental 

concepts and attributes in this field. 

Definition 1. Let’s say that conversation is the universe 𝑌. Interval-Valued Complex Neutrosophic 

Set (IVCNS) 𝐴 defined on 𝑌 is the object of the form. 

𝐴 =

{(𝑎, [𝜇𝐴1
− (𝑎)𝑒𝑖𝛼𝐴1

− (𝑎), 𝜇𝐴1
+ (𝑎)𝑒𝑖𝛼𝐴1

+ (𝑎)
] , [𝜇𝐴2

− (𝑎)𝑒𝑖𝛼𝐴2
− (𝑎), 𝜇𝐴2

+ (𝑎)𝑒𝑖𝛼𝐴2
+ (𝑎)

] , [𝜇𝐴3
− (𝑎)𝑒𝑖𝛼𝐴3

− (𝑎)
, 𝜇𝐴3

+ (𝑎)𝑒𝑖𝛼𝐴3
+ (𝑎)

] : 𝑎 ∈

𝑌} , where  

Developing 
Neutrosophic
Set Theory

The Interval-Valued Complex Neutrosophic 
Set (IVCNS), an extension of the Interval-
Valued Neutrosophic Set (IVNS) and 
Complex Neutrosophic Set (CNS), offers a 
more accurate description of uncertainty than 
conventional fuzzy sets. 

Interval-
Valued 

Complex 
Neutosophic 

Graph 
Structure 
(IVCNGS)

The concept of the Interval-
Valued Complex Neutrosophic 
Set (IVCNS) is applied to the 
graph structure in order to define 
the idea of the Interval-Valued 
Complex Neutosophic Graph 
Structure (IVCNGS).

Analysis, IVCNGS adjacency 
matrix, characteristics, and 
constraints for the energy and 
Laplacian energy of IVCNGS

Application 
and future 

Development

According to the findings, the 
framework may handle 
ambiguity and uncertainty well 
enough to be applied in 
IVCNGS.

Some limitations and ideas for 
future work are discussed.
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i = √−1,  μA1

− (a), μA1

+ (a), μA2

− (a), μA2

+ (a), μA3

− (a), μA3

+ (a) ∈ [0,1] , 

αA1

− (a), αA1

+ (a), αA2

− (a), αA2

+ (a), αA3

− (a), αA3

+ (a) ∈ [0,2π], 0 ≤ ((μA1

+ (a)) + (μA2

+ (a)) + (μA3

+ (a))) ≤ 3. 

 

Definition 2.  Let A = {(a, [μA1

− (a)eiαA1
− (a), μA1

+ (a)eiαA1
+ (a)] , [μA2

− (a)eiαA2
− (a), μA2

+ (a)eiαA2
+ (a)

], 

[μA3

− (a)eiαA3
− (a)

, μA3

+ (a)eiαA3
+ (a)

] : a ∈ Y}  and B = {(a, [μB1

− (a)eiαB1
− (a), μB1

+ (a)eiαB1
+ (a)] 

, [μB2

− (a)eiαB2
− (a), μB2

+ (a)eiαB2
+ (a)] , [μB3

− (a)eiαB3
− (a), μB3

+ (a)eiαB3
+ (a)

] : a ∈ Y} be the two IVCNSs in Y, then 

• A ⊆ B if and only if μA1

− (a) ≤ μB1

− (a),  μA1

+ (a) ≤ μB1

+ (a), μA2

− (a) ≤ μB2

− (a),  μA2

+ (a) ≤ μB2

+ (a) and 

μA3

− (a) ≤ μB3

− (a),  μA3

+ (a) ≤ μB3

+ (a) for amplitude terms and αA1

− (a) ≤ αB1

− (a),  αA1

+ (a) ≤ αA1

+ (a), 

αA2

− (a) ≤ αB2

− (a),  αA2

+ (a) ≤ αA2

+ (a) and αA3

− (a) ≤ αB3

− (a),  αA3

+ (a) ≤ αA3

+ (a) for phase terms, for 

all a ∈ Y; 

• A = B if and only if μA1

− (a) = μB1

− (a),  μA1

+ (a) = μB1

+ (a), μA2

− (a) = μB2

− (a),  μA2

+ (a) = μB2

+ (a) and 

μA3

− (a) = μB3

− (a),  μA3

+ (a) = μB3

+ (a) for amplitude terms and αA1

− (a) = αB1

− (a),  αA1

+ (a) = αA1

+ (a), 

αA2

− (a) = αB2

− (a),  αA2

+ (a) = αA2

+ (a) and αA3

− (a) = αB3

− (a),  αA3

+ (a) = αA3

+ (a) for phase terms, for 

all a ∈ Y; 

For simplicity, the 

([𝜇𝐴1
− (𝑎)𝑒𝑖𝛼𝐴1

− (𝑎), 𝜇𝐴1
+ (𝑎)𝑒𝑖𝛼𝐴1

+ (𝑎)
] , [𝜇𝐴2

− (𝑎)𝑒𝑖𝛼𝐴2
− (𝑎), 𝜇𝐴2

+ (𝑎)𝑒𝑖𝛼𝐴2
+ (𝑎)

] , [𝜇𝐴3
− (𝑎)𝑒𝑖𝛼𝐴3

− (𝑎)
, 𝜇𝐴3

+ (𝑎)𝑒𝑖𝛼𝐴3
+ (𝑎)

]) is 

called the IVCNS, where, 𝜇𝐴1
+ , 𝜇𝐴2

+ , 𝜇𝐴3
+ ∈ [0,1] such that 𝜇𝐴1

+ + 𝜇𝐴2
+ + 𝜇𝐴3

+ ≤ 3 . 

 

Definition 3. A Interval-valued complex Neutrosophic relation in Y is described as a IVCNS X in Y ×

Y and is characterised by: 

𝑋 = {(𝑎𝑏, [𝜇𝑋1
− (𝑎𝑏)𝑒𝑖𝛼𝑋1

− (𝑎𝑏), 𝜇𝑋1
+ (𝑎𝑏)𝑒𝑖𝛼𝑋1

+ (𝑎𝑏)] , [𝜇𝑋2
− (𝑎𝑏)𝑒𝑖𝛼𝑋2

− (𝑎𝑏), 𝜇𝑋2
+ (𝑎𝑏)𝑒𝑖𝛼𝑋2

+ (𝑎𝑏)], 

[𝜇𝑋3
− (𝑎𝑏)𝑒𝑖𝛼𝑋3

− (𝑎𝑏), 𝜇𝑋3
+ (𝑎𝑏)𝑒𝑖𝛼𝑋3

+ (𝑎𝑏)
])/𝑎𝑏 ∈ 𝑌 × 𝑌}  where the Inter-valued complex Neutrosophic truth-

membership, complex indeterminate-membership and complex false-membership functions of X are mapping to 

[0,1], such that 0 ≤ 𝜇𝑋1
+ (𝑟𝑠) + 𝜇𝑋2

+ (𝑟𝑠) + 𝜇𝑋3
+ (𝑟𝑠) ≤ 3 for all 𝑟𝑠 ∈ 𝑌 × 𝑌. 

 

Definition 4. On a non-empty set X, a Interval-valued complex Neutrosophic graph is a pair G =

(A, B) , where A and B are complex Neutrosophic sets on X and a Interval-valued complex 

Neutrosophic relation on X, respectively, such that: 

(𝑖)𝜇𝐵1
− (𝑟𝑠)𝑒𝑖𝛼𝐵1

− (𝑟𝑠) ≤ 𝑚𝑖𝑛{𝜇𝐴1
− (𝑟), 𝜇𝐴1

− (𝑠)}𝑒𝑖𝑚𝑖𝑛{𝛼𝐴1
− (𝑟),𝛼𝐴1

− (𝑠)}

(𝑖𝑖)𝜇𝐵1
+ (𝑟𝑠)𝑒𝑖𝛼𝐵1

+ (𝑟𝑠) ≤ 𝑚𝑖𝑛{𝜇𝐴1
+ (𝑟), 𝜇𝐴1

+ (𝑠)}𝑒𝑖𝑚𝑖𝑛{𝛼𝐴1
+ (𝑟),𝛼𝐴1

+ (𝑠)}

(𝑖𝑖𝑖)𝜇𝐵2
− (𝑟𝑠)𝑒𝑖𝛼𝐵2

− (𝑟𝑠) ≤ 𝑚𝑎𝑥{𝜇𝐴2
− (𝑟), 𝜇𝐴2

− (𝑠)}𝑒𝑖𝑚𝑎𝑥{𝛼𝐴2
− (𝑟),𝛼𝐴2

− (𝑠)}

(𝑖𝑣)𝜇𝐵2
+ (𝑟𝑠)𝑒𝑖𝛼𝐵2

+ (𝑟𝑠) ≤ 𝑚𝑎𝑥{𝜇𝐴2
+ (𝑟), 𝜇𝐴2

+ (𝑠)}𝑒𝑖𝑚𝑎𝑥{𝛼𝐴2
+ (𝑟),𝛼𝐴2

+ (𝑠)}

(𝑣)𝜇𝐵3
− (𝑟𝑠)𝑒𝑖𝛼𝐵3

− (𝑟𝑠) ≤ 𝑚𝑎𝑥{𝜇𝐴3
− (𝑟), 𝜇𝐴3

− (𝑠)}𝑒𝑖𝑚𝑎𝑥{𝛼𝐴3
− (𝑟),𝛼𝐴3

− (𝑠)}

(𝑣𝑖)𝜇𝐵3
+ (𝑟𝑠)𝑒𝑖𝛼𝐵3

+ (𝑟𝑠) ≤ 𝑚𝑎𝑥{𝜇𝐴3
+ (𝑟), 𝜇𝐴3

+ (𝑠)}𝑒𝑖𝑚𝑎𝑥{𝛼𝐴3
+ (𝑟),𝛼𝐴3

+ (𝑠)}

 

0 ≤ 𝜇𝐵1
+ (𝑟𝑠) + 𝜇𝐵2

+ (𝑟𝑠) + 𝜇𝐵3
+ (𝑟𝑠) ≤ 3 for all 𝑟𝑠 ∈ 𝑌 × 𝑌. 

3. Energy of IVCNGS 

In this part, the concept of routine IVCNGS is introduced. To further explain some of the 

fundamental IVCNGS features, examples are also provided. 



Neutrosophic Systems with Applications, Vol. 13, 2024                                                72 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

S.N. Suber Bathusha, Sowndharya Jayakumar and S. Angelin Kavitha Raj, The Energy of Interval-Valued Complex 

Neutrosophic Graph Structures: Framework, Application and Future Research Directions 

Definition 5. Let ζ = {η, δ1, δ2, … , δk}  is referred to as an IVCNGS of graph structure (GS) ζ∗ =

{Q, R1, R2, … , Rk} if η = (η1, η2, η3) = ([η1
−eiα1

−
, η1

+eiα1
+
], [η2

−eiα2
−
, η2

+eiα2
+
] [η3

−eiα3
−
, η3

+eiα3
+
]) is an IVCNS 

on Q andδJ = (δ1J, δ2J, δ3J) = ([δ1J
− eiβ1J

−
, δ1J

+ eiβ1J
+
] , [δ2J

− eiβ2J
−
, δ2J

+ eiβ2J
+
] , [δ3J

− eiβ3J
−
, δ3J

+ eiβ3J
+
]) are IVCNSs on Q 

and RJ such that 

(𝑖)𝛿1𝐽
− (𝑎, 𝑏)𝑒𝑖𝛽1𝐽

− (𝑎,𝑏) ≤ min{𝜂1
−(𝑎), 𝜂1

−(𝑏)}𝑒𝑖min{𝛼1
−(𝑎),𝛼1

−(𝑏)}, 

(𝑖𝑖)𝛿1𝐽
+ (𝑎, 𝑏)𝑒𝑖𝛽1𝐽

+ (𝑎,𝑏) ≤ min{𝜂1
+(𝑎), 𝜂1

+(𝑏)}𝑒𝑖min{𝛼1
+(𝑎),𝛼1

+(𝑏)}, 

(𝑖𝑖𝑖)𝛿2𝐽
− (𝑎, 𝑏)𝑒𝑖𝛽2𝐽

− (𝑎,𝑏) ≤ max{𝜂2
−(𝑎), 𝜂2

−(𝑏)}𝑒𝑖max{𝛼2
−(𝑎),𝛼2

−(𝑏)}, 

(𝑖𝑣)𝛿2𝐽
+ (𝑎, 𝑏)𝑒𝑖𝛽2𝐽

+ (𝑎,𝑏) ≤ max{𝜂2
+(𝑎), 𝜂2

+(𝑏)}𝑒𝑖max{𝛼2
+(𝑎),𝛼2

+(𝑏)}, 

(𝑖𝑣)𝛿3𝐽
− (𝑎, 𝑏)𝑒𝑖𝛽3𝐽

− (𝑎,𝑏) ≤ max{𝜂3
−(𝑎), 𝜂3

−(𝑏)}𝑒𝑖max{𝛼3
−(𝑎),𝛼3

−(𝑏)}, 

(𝑖𝑣)𝛿3𝐽
+ (𝑎, 𝑏)𝑒𝑖𝛽3𝐽

+ (𝑎,𝑏) ≤ max{𝜂3
+(𝑎), 𝜂3

+(𝑏)}𝑒𝑖max{𝛼3
+(𝑎),𝛼3

+(𝑏)}, 

0 ≤ (δ1J
+ (a, b)) + (δ2J

+ (a, b)) + (δ3J
+ (a, b)) ≤ 3  and (β1J

+ (ab)) , (β2J
+ (ab)) , (β3J

+ (ab)) ∈ [0,2π] ∀ ab ∈

RJ, J = 1,2, . . . , k. 

 

Note : δ1J
− ,  δ1J

+ ,  δ2J
−  ,  δ2J

+  and δ3J
−  ,  δ3J

+  are function from RJ  to [0,1] such that δ1J
− (a, b) ≤

δ1J
+ (a, b) , δ2J

− (a, b) ≤ δ2J
+ (a, b) , δ3J

− (a, b) ≤ δ3J
+ (a, b) , β1J

− (a, b) ≤ β1J
+ (a, b)  , β2J

− (a, b) ≤ β2J
+ (a, b)  and 

β3J
− (a, b) ≤ β3J

+ (a, b) for all (a, b) ∈ RJ, J = 1,2, . . . , k. 

 

Definition 6. The adjacency matrix Aζ = {Aδ1, Aδ2, … , Aδk} of a IVCNGS ζ = {η, δ1, δ2, … , δk}, where 

AδJ, (J = 1,2, . . . , k)  is a square matrix as [ujk]  in which ujk = 

([δ1J
− (ujuk)e

iβ1J
− (ujuk), δ1J

+ (ujuk)e
iβ1J

+ (ujuk)], [δ2J
− (ujuk)e

iβ2J
− (ujuk), δ2J

+ (ujuk)e
iβ2J

+ (ujuk)], 

[δ3J
− (ujuk)e

iβ3J
− (ujuk), δ3J

+ (ujuk)e
iβ3J

+ (ujuk)]),  where δ1J
− (ujuk), δ1J

+ (ujuk)  is represent the strength of 

interval-valued truth membership amplitude term and δ2J
− (ujuk), δ2J

+ (ujuk) is represent the strength 

of interval-valued indeterminate membership amplitude term between uj  and uk  and 

δ3J
− (ujuk), δ3J

+ (ujuk) is represent the strength of interval-valued false membership amplitude term 

between uj  and uk  and β1J
− (ujuk), β1J

+ (ujuk)  is represent the strength of interval-valued truth 

membership phase term and β2J
− (ujuk), β2J

+ (ujuk)  is represent the strength of interval-valued 

indeterminate membership phase term between uj and uk and β3J
− (ujuk), β3J

+ (ujuk) is represent the 

strength of interval-valued false membership phase term between uj and uk. 

Definition 7. The adjacency matrix Aζ = {Aδ1, Aδ2, … , Aδk} of a IVCNGS ζ = {η, δ1, δ2, … , δk}. Then 

the δJ - degree of vertex u  in A(ζ)  is defined as  AdδJ
(u)e

iAdβJ
(u)

=

  ([Adδ1J
− (u)e

iAdβ1J
− (u)

, Adδ1J
+ (u)e

iAd
β1J
+ (u)

], 

[𝐴𝑑𝛿2𝐽
− (𝑢)𝑒

𝑖𝐴𝑑𝛽2𝐽
− (𝑢)

, 𝐴𝑑𝛿2𝐽
+ (𝑢)𝑒

𝑖𝐴𝑑
𝛽2𝐽

+ (𝑢)
] , [𝐴𝑑𝛿3𝐽

− (𝑢)𝑒
𝑖𝐴𝑑𝛽3𝐽

− (𝑢)
, 𝐴𝑑𝛿3𝐽

+ (𝑢)𝑒
𝑖𝐴𝑑

𝛽3𝐽
+ (𝑢)

]), 
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𝐴𝑑𝛿1𝐽
− (𝑢)𝑒

𝑖𝐴𝑑𝛽1𝐽
− (𝑢)

= (∑𝛿1𝐽
−

𝑘

𝑧=1

(𝑢𝑗𝑧)) 𝑒∑ 𝛽1𝐽
−𝑘

𝑧=1 (𝑢𝑗𝑧), 𝐴𝑑𝛿1𝐽
+ (𝑢)𝑒

𝑖𝐴𝑑
𝛽1𝐽

+ (𝑢)
= (∑𝛿1𝐽

+

𝑘

𝑧=1

(𝑢𝑗𝑧)) 𝑒∑ 𝛽1𝐽
+𝑘

𝑧=1 (𝑢𝑗𝑧), 

𝐴𝑑𝛿2𝐽
− (𝑢)𝑒

𝑖𝐴𝑑𝛽2𝐽
− (𝑢)

= (∑𝛿2𝐽
−

𝑘

𝑧=1

(𝑢𝑗𝑧)) 𝑒∑ 𝛽2𝐽
−𝑘

𝑧=1 (𝑢𝑗𝑧), 𝐴𝑑𝛿2𝐽
+ (𝑢)𝑒

𝑖𝐴𝑑
𝛽2𝐽

+ (𝑢)
= (∑𝛿2𝐽

∓

𝑘

𝑧=1

(𝑢𝑗𝑧)) 𝑒∑ 𝛽2𝐽
+𝑘

𝑧=1 (𝑢𝑗𝑧), 

𝐴𝑑𝛿3𝐽
− (𝑢)𝑒

𝑖𝐴𝑑𝛽3𝐽
− (𝑢)

= (∑𝛿3𝐽
−

𝑘

𝑧=1

(𝑢𝑗𝑧)) 𝑒∑ 𝛽3𝐽
−𝑘

𝑧=1 (𝑢𝑗𝑧), 𝐴𝑑𝛿3𝐽
+ (𝑢)𝑒

𝑖𝐴𝑑
𝛽3𝐽

+ (𝑢)
= (∑𝛿3𝐽

+

𝑘

𝑧=1

(𝑢𝑗𝑧)) 𝑒∑ 𝛽3𝐽
+𝑘

𝑧=1 (𝑢𝑗𝑧), 

 ∀𝐽 = 1,2, . . . , 𝑘. 

Example 1. An IVCNGS ζ = (η, δ1, δ2)  of a GS ζ∗ = (Q, R1, R2)  given Figure 3 is a IVCNGS ζ =

(η, δ1, δ2) such that  η = {u1([.4ei.3π , .7ei.4π], [.3ei.1π, .6ei.3π], [.2ei.1π, .4ei.3π]),   

𝑢2([.4𝑒𝑖.2𝜋 , .6𝑒𝑖.4𝜋], [.3𝑒𝑖..5𝜋, .5𝑒𝑖.5𝜋], [.4𝑒𝑖.3𝜋, .6𝑒𝑖.4𝜋]), 𝑢3([.5𝑒𝑖.3𝜋 , .6𝑒𝑖.4𝜋], [.5𝑒𝑖.1𝜋, .7𝑒𝑖.2𝜋], [.3𝑒𝑖.4𝜋, .4𝑒𝑖.5𝜋]), 

𝑢4([. 3𝑒𝑖.6𝜋 , .6𝑒𝑖.7𝜋], [. 4𝑒𝑖.4𝜋, .5𝑒𝑖.5𝜋], [. 2𝑒𝑖.3𝜋, .5𝑒𝑖.5𝜋]).  

 

Figure 3. The adjacency matrix of the amplitude term of an IVCNGS. 
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The adjacency matrix of the amplitude term of an IVCNGS given in Figure 3 is: 

𝐴𝛿1 =

[
 
 
 
 
 
 
 
 
 
 
 (

0 0
0 0
0 0

) (
. 4 . 6
. 3 . 6
. 4 . 6

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
. 4 . 6
. 3 . 6
. 4 . 6

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 6
. 4 . 5
. 4 . 6

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 6
. 5 . 7
. 3 . 5

)

(
0 0
0 0
0 0

) (
. 3 . 6
. 4 . 5
. 4 . 6

) (
. 3 . 6
. 5 . 7
. 3 . 5

) (
0 0
0 0
0 0

)
]
 
 
 
 
 
 
 
 
 
 
 

 

The adjacency matrix of the amplitude term of an IVCNGS given in Figure 3 is 

The δ1 − degree of vertex ui in A(ζ) is (i=1, 2, 3, 4). 

Adδ1
(u1) = ([Adδ11

− (u1), Adδ11
+ (u1)], [Adδ21

− (u1), Adδ21
+ (u1)] , [Adδ31

− (u1), Adδ31
+ (u1)]) 

Adδ1
(u1)=([. 4ei.2π, .6ei.4π], [. 3ei.5π, .6ei.5π], [. 4ei.3π, .6ei.4π]), 

Adδ1
(u2) = ([. 7ei.4π, 1.2ei.8π], [. 7ei1.0π, 1.1ei1.0π], [. 8ei.6π, 1.2ei1.0π]), 

Adδ1
(u3) = ([. 3ei.3π, .6ei.4π], [. 5ei.4π, .7ei.5π], [. 3ei.4π, .5ei.5π]), 

The adjacency matrix of the phase term of an IVCNGS given in Figure 3 is: 

𝐴𝛽1 =

[
 
 
 
 
 
 
 
 
 
 
 (

0 0
0 0
0 0

) (
. 2 . 4
. 5 . 5
. 3 . 4

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
. 2 . 4
. 5 . 5
. 3 . 4

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 2 . 4
. 5 . 5
. 3 . 6

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 4
. 4 . 5
. 4 . 5

)

(
0 0
0 0
0 0

) (
. 2 . 4
. 5 . 5
. 3 . 6

) (
. 3 . 4
. 4 . 5
. 4 . 5

) (
0 0
0 0
0 0

)
]
 
 
 
 
 
 
 
 
 
 
 

 

𝐴𝑑𝛿1
(𝑢4) = ([. 6𝑒𝑖.5𝜋, 1.2𝑒𝑖.8𝜋], [. 9𝑒𝑖.9𝜋 , 1.2𝑒𝑖1.0𝜋], [. 7𝑒𝑖.7𝜋, 1.1𝑒𝑖1.1𝜋]). 

Similarly, we calculate, the adjacency matrix of adjacency matrix of amplitude term of an IVCNGS 

given in Figure 3 is: 

𝐴𝛿2 =

[
 
 
 
 
 
 
 
 
 
 
 (

0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 6
. 4 . 6
. 2 . 5

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 4 . 6
. 5 . 7
. 4 . 6

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
. 4 . 6
. 5 . 7
. 4 . 6

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
. 3 . 6
. 4 . 6
. 2 . 5

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)
]
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The adjacency matrix of the phase term of an IVCNGS given in Figure 3 is: 

𝐴𝛽2 =

[
 
 
 
 
 
 
 
 
 
 
 (

0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 4
. 4 . 5
. 3 . 5

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 2 . 4
. 5 . 5
. 4 . 5

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
. 2 . 4
. 5 . 5
. 4 . 5

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
. 3 . 4
. 4 . 5
. 3 . 5

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)
]
 
 
 
 
 
 
 
 
 
 
 

 

The δ2 − degree of vertex ui in A(ζ) is (i=1, 2, 3, 4). 

𝐴𝑑𝛿2
(𝑢1) = ([𝐴𝑑𝛿12

− (𝑢1), 𝐴𝑑𝛿12
+ (𝑢1)] , [𝐴𝑑𝛿22

− (𝑢1), 𝐴𝑑𝛿22
+ (𝑢1)] , [𝐴𝑑𝛿32

− (𝑢1), 𝐴𝑑𝛿32
+ (𝑢1)]) 

𝐴𝑑𝛿2
(𝑢1)=([. 3𝑒𝑖.3𝜋, .6𝑒𝑖.4𝜋], [. 4𝑒𝑖.4𝜋, .6𝑒𝑖.5𝜋], [. 2𝑒𝑖.3𝜋, .5𝑒𝑖.5𝜋]), 

𝐴𝑑𝛿2
(𝑢2) = ([. 4𝑒𝑖.2𝜋, .6𝑒𝑖.4𝜋], [. 5𝑒𝑖.5𝜋, .7𝑒𝑖.5𝜋], [. 4𝑒𝑖.4𝜋, .6𝑒𝑖.5𝜋]), 

𝐴𝑑𝛿2
(𝑢3) = ([. 4𝑒𝑖.2𝜋, .6𝑒𝑖.4𝜋], [. 5𝑒𝑖.5𝜋, .7𝑒𝑖.5𝜋], [. 4𝑒𝑖.4𝜋, .6𝑒𝑖.5𝜋]), 

𝐴𝑑𝛿2
(𝑢4) = ([. 3𝑒𝑖.3𝜋, .6𝑒𝑖.4𝜋], [. 4𝑒𝑖.4𝜋, .6𝑒𝑖.5𝜋], [. 2𝑒𝑖.3𝜋, .5𝑒𝑖.5𝜋]). 

Definition 8. The spectrum of an adjacency matrix of an IVCNGS is defined as ⟨P1, Q1, P2, Q2, P3, Q3⟩, 

where P1, Q1, P2, Q2, P3, Q3  is the amplitude term of the set eigenvalues of A(ζ)  and 

⟨P1
′, Q1

′ , P2
′, Q2

′ , P3
′, Q3

′ ⟩ , where P1
′, Q1

′ , P2
′, Q2

′ , P3
′, Q3

′  is the phase term of the set eigenvalues of A(ζ) 

respectively. 

Example 2. The spectrum of IVCPFGS, given in Figure 3 follows. 

𝑆𝑝𝑒𝑐 (𝐴𝛿11
− (𝑢𝑗 , 𝑢𝑘)) =   {−0.5389, −0.2227,0.2227,0.5389}, 

𝑆𝑝𝑒𝑐 (𝐴𝛿11
+ (𝑢𝑗, 𝑢𝑘)) =  {−0.9708, −0.3708,0.3708,0.9708}, 

𝑆𝑝𝑒𝑐 (𝐴𝛿21
− (𝑢𝑗 , 𝑢𝑘)) =  {−0.6708, −0.2236,0.2236,0.6708}, 

𝑆𝑝𝑒𝑐 (𝐴𝛿21
+ (𝑢𝑗 , 𝑢𝑘)) =  {−0.9514, −0.4415,0.4415,0.9514}, 

𝑆𝑝𝑒𝑐 (𝐴𝛿31
− (𝑢𝑗, 𝑢𝑘)) = {−0.6093, −0.1970,0.1970,0.6093}, 

𝑆𝑝𝑒𝑐 (𝐴𝛿31
+ (𝑢𝑗 , 𝑢𝑘)) =  {−0.9306, −0.3224,0.3224,0.9306},  

𝑆𝑝𝑒𝑐 (𝐴𝛽11
− (𝑢𝑗, 𝑢𝑘)) =  {−0.3811, −0.1575,0.1575,0.3811}, 

𝑆𝑝𝑒𝑐 (𝐴𝛽11
+ (𝑢𝑗, 𝑢𝑘)) =  {−0.6472, −0.2472,0.2472,0.6472}, 

𝑆𝑝𝑒𝑐 (𝐴𝛽21
− (𝑢𝑗, 𝑢𝑘)) = {−0.7697, −0.2598,0.2598,0.7697}, 

𝑆𝑝𝑒𝑐 (𝐴𝛽21
+ (𝑢𝑗, 𝑢𝑘)) =  {−0.8090, −0.3090,0.3090,0.8090}, 

𝑆𝑝𝑒𝑐 (𝐴𝛽31
− (𝑢𝑗, 𝑢𝑘)) = {−0.5389, −0.2227,0.2227,0.5389}, 

𝑆𝑝𝑒𝑐 (𝐴𝛽31
+ (𝑢𝑗, 𝑢𝑘)) =  {−0.8450, −0.2367,0.2367,0.8450}. 

Therefore, the spectrum of amplitude term is 

𝑆𝑝𝑒𝑐(𝐴(𝛿1)) = {〈 −0.5389, −0.9708, −0.6708, −0.9514, −0.6093, −0.9306 〉, 
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 〈 −0.2227, −0.3708, −0.2236, 0.4415, −0.1970, −0.3224 〉,  

〈 0.2227, 0.3708, 0.2236, 0.4415, 0.1970, 0.3224 〉, 

〈 0.5389, 0.9708, 0.6708, 0.9514, 0.6093, 0.9306 〉}  

The spectrum of phase terms is 

𝑆𝑝𝑒𝑐(𝐴(𝛽1)) = {〈−0.3811, −0.6472, −0.7697, −0.8090, −0.5389, −0.8450 〉, 

〈 −0.1575, −0.2472, −0.2598, 0.3090, −0.2227, −0.2367〉, 

〈 0.1575, 0.2472, 0.2598, 0.3090, 0.2227, 0.2367 〉, 

〈 0.3811, 0.6472, 0.7697, 0.8090, 0.5389, 0.8450〉}  

Similarly, we calculate 

The spectrum of amplitude term is 

𝑆𝑝𝑒𝑐(𝐴(𝛿2)) = {〈 −0.4000, −0.6000, −0.5000, −0.7000, −0.4000, −0.6000 〉, 

 〈−0.3000, −0.6000,−0.4000, −0.6000, −0.2000, −0.5000〉,  

〈0.3000, 0.6000, 0.4000, 0.6000, 0.2000, 0.5000〉, 

〈 0.4000, 0.6000, 0.5000, 0.6000, 0.4000, 0.6000 〉}  

The spectrum of phase terms is 

𝑆𝑝𝑒𝑐(𝐴(𝛽2)) = {〈 −0.3000, −0.4000, −0.5000, −0.5000, −0.5000,−0.5000 〉, 

〈 −0.2000, −0.4000, −0.4000, −0.5000, −0.3000, −0.5000〉, 

〈 0.2000, 0.4000, 0.4000, 0.5000, 0.3000, 0.5000 〉, 

〈0.3000, 0.4000, 0.5000, 0.5000, 0.5000, 0.5000〉}  

 

Definition 9. The energy of amplitude term of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} is defined as the 

following; 

𝜖(𝜁) =< 𝜖(𝐴𝛿1), 𝜖(𝐴𝛿2), … , 𝜖(𝐴𝛿𝑘) > 

𝜖(𝐴𝛿𝐽) = (∑(𝜇𝑖
−)𝛿𝐽

𝑛

𝑖=1

,∑(𝜇𝑖
+)𝛿𝐽

𝑛

𝑖=1

,∑(𝜆𝑖
−)𝛿𝐽

𝑛

𝑖=1

,∑(𝜆𝑖
+)𝛿𝐽

𝑛

𝑖=1

,∑(𝜒𝑖
−)𝛿𝐽

𝑛

𝑖=1

,∑(𝜒𝑖
+)𝛿𝐽

𝑛

𝑖=1

) , ∀ 𝐽 = 1,2, … , 𝑘, 

and the energy of phase term of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} is defined as the following; 

𝜖(𝜁) =< 𝜖(𝐴𝛽1), 𝜖(𝐴𝛽2), … , 𝜖(𝐴𝛽𝑘) > 

𝜖(𝐴𝛽𝐽) = (∑(𝜗𝑖
−)𝛽𝐽

𝑛

𝑖=1

,∑(𝜗𝑖
+)𝛽𝐽

𝑛

𝑖=1

,∑(𝜌𝑖
−)𝛽𝐽

𝑛

𝑖=1

,∑(𝜌𝑖
+)𝛽𝐽

𝑛

𝑖=1

,∑(𝛾𝑖
−)𝛽𝐽

𝑛

𝑖=1

,∑(𝛾𝑖
+)𝛽𝐽

𝑛

𝑖=1

) , ∀𝐽 = 1,2, … , 𝑘. 

 

Example 3. The energy of amplitude term of an IVCNGS ζ given in Figure 3 are as follows: 

𝜖(𝜁) = < 𝜖(𝐴𝛿1), 𝜖(𝐴𝛿2) > 

𝜖(𝐴𝛿1) =< 1.5232,2.6833,1.7889,2.7857,1.6125,2.5060 > 

𝜖(𝐴𝛿2) =< 1.4000,2.4000,1.8000,2.6000,1.2000,2.2000 >  

The energy of phase term of an IVCNGS ζ given in Figure 3 are as follows: 

𝜖(𝜁) = < 𝜖(𝐴𝛽1), 𝜖(𝐴𝛽2) > 

𝜖(𝐴𝛽1) =< 1.0770,1.7889,2.0591,2.2361,1.5232,2.1633 > 

𝜖(𝐴𝛽2) =< 1.0000,1.6000,1.8000,2.0000,1.6000,2.0000 >  

 

Theorem 10. Let A(ζ) = {Aδ1, Aδ2, . . . , Aδk} be an adjacency matrix of an IVCNGS ζ = {η, δ1, δ2, . . . , δk}. 

If (μ1
−)δJ

≥ (μ2
−)δJ

≥. . . ≥ (μn
−)δJ

, (μ1
+)δJ

≥ (μ2
+)δJ

≥. . . ≥ (μn
+)δJ

 and (λ1
−)δJ

≥ (λ2
−)δJ

≥. . . ≥ (λn
−)δJ

, 

(λ1
+)δJ

≥ (λ2
+)δJ

≥. . . ≥ (λn
+)δJ

 and (χ1
−)δJ

≥ (χ2
−)δJ

≥. . . ≥ (χn
−)δJ

, (χ1
+)δJ

≥ (χ2
+)δJ

≥. . . ≥ (χn
+)δJ

 are the 

eigenvalues of the amplitude terms, (ϑ1
−)βJ

≥ (ϑ2
−)βJ

≥. . . ≥ (ϑn
−)βJ

, (ϑ1
+)βJ

≥ (ϑ2
+)βJ

≥. . . ≥ (ϑn
+)βJ

 and 

(ρ1
−)βJ

≥ (ρ2
−)βJ

≥. . . ≥ (ρn
−)βJ

, (ρ1
+)βJ

≥ (ρ2
+)βJ

≥. . . ≥ (ρn
+)βJ

 and (γ1
−)βJ

≥ (γ2
−)βJ

≥. . . ≥ (γn
−)βJ

, 

(γ1
+)βJ

≥ (γ2
+)βJ

≥. . . ≥ (γn
+)βJ

 are the eigenvalues of the phase terms. Then 
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(i). ∑ (𝜇𝑖
−)𝛿𝐽

𝑛
𝑖=1 = ∑ (𝜇𝑖

+)𝛿𝐽
𝑛
𝑖=1 = ∑ (𝜆𝑖

−)𝛿𝐽
𝑛
𝑖=1 = ∑ (𝜆𝑖

+)𝛿𝐽
𝑛
𝑖=1 = ∑ (𝜒𝑖

−)𝛿𝐽
𝑛
𝑖=1 = ∑ (𝜒𝑖

+)𝛿𝐽
𝑛
𝑖=1 = 0  and 

∑ (𝜗𝑖
−)𝛽𝐽

𝑛
𝑖=1 = ∑ (𝜗𝑖

+)𝛽𝐽
𝑛
𝑖=1 = ∑ (𝜌𝑖

−)𝛽𝐽
𝑛
𝑖=1 = ∑ (𝜌𝑖

+)𝛽𝐽
𝑛
𝑖=1 = 

∑(𝛾𝑖
−)𝛽𝐽

𝑛

𝑖=1

= ∑(𝛾𝑖
+)𝛽𝐽

𝑛

𝑖=1

= 0 

(ii). ∑ (𝜇𝑖
−)𝛿𝐽

2𝑛
𝑖=1 = 2∑ (𝛿1𝐽

− (𝑢𝑗 , 𝑢𝑘))
2

1≤𝑗<𝑘≤𝑛 , ∑ (𝜇𝑖
+)𝛿𝐽

2𝑛
𝑖=1 = 2∑ (𝛿1𝐽

+ (𝑢𝑗 , 𝑢𝑘))
2

1≤𝑗<𝑘≤𝑛 , 

∑(𝜆𝑖
−)𝛿𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛿2𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝜆𝑖
+)𝛿𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛿2𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

, 

∑(𝜒𝑖
−)𝛿𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛿2𝐽
− (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝜒𝑖
+)𝛿𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛿2𝐽
+ (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

, 𝑎𝑛𝑑 

∑(𝜗𝑖
−)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽1𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝜗𝑖
+)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽1𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

, 

∑(𝜌𝑖
−)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽2𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝜌𝑖
+)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽2𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

, 

∑(𝛾𝑖
−)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽2𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝛾𝑖
+)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽2𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,  

∀ 𝐽 = 1,2, … , 𝑘. 

Proof (i) since 𝐴(𝜁) is a symmetric matrix with zero trace, its eigenvalues are real and have a total 

value of zero. (ii) By the trace properties of the matrix, we have: 

𝑡𝑟 ((𝐴 (𝛿1𝐽
𝑆 (𝑢𝑗𝑢𝑘)))

2

) =  ∑(𝜇𝑖
𝑆)𝛿𝐽

2

𝑛

𝑖=1

, where 

𝑡𝑟 ((𝐴 (𝛿1𝐽
𝑆 (𝑢𝑗𝑢𝑘)))

2

) =  (0 + (𝛿1𝐽
𝑆 (𝑢1𝑢2))

2

+ ⋯+ (𝛿1𝐽
𝑆 (𝑢1𝑢𝑛))

2

, 

+(𝛿1𝐽
𝑆 (𝑢2𝑢1))

2

+ ⋯+ (𝛿1𝐽
𝑆 (𝑢1𝑢𝑛))

2

,  

⋮ 

+ (𝛿1𝐽
𝑆 (𝑢𝑛𝑢1))

2

+ (𝛿1𝐽
𝑆 (𝑢𝑛𝑢2))

2

+ ⋯+ 0) 

=  2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

 

Similarly, we prove that 

∑(𝜆𝑖
𝑆)𝛿𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝜒𝑖
𝑆)𝛿𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

 

and ∑(𝜗𝑖
𝑆)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

,∑(𝜌𝑖
𝑆)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

, 

∑(𝛾𝑖
𝑆)𝛽𝐽

2

𝑛

𝑖=1

= 2 ∑ (𝛽3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

, ∀ 𝑆 = −,+ and 𝐽 = 1,2, … , 𝑘. 

 

Example 4. Next, we show the example of the above Theorem 10. Let us consider A(ζ) = {Aδ1, Aδ2} 

be an adjacency matrix of an IVCNGS ζ = (η, δ1, δ2) as shown in Figure 3 in Example 1. Then: 

(i). ∑ (𝜇𝑖
𝑆)𝛿𝐽

𝑛
𝑖=1 = 0,∑ (𝜆𝑖

𝑆)𝛿𝐽
𝑛
𝑖=1 = 0,∑ (𝜒𝑖

𝑆)𝛿𝐽
𝑛
𝑖=1 = 0 and 
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∑(𝜗𝑖
𝑆)𝛽𝐽

𝑛

𝑖=1

= 0,∑(𝜌𝑖
𝑆)𝛽𝐽

𝑛

𝑖=1

= 0,∑(𝛾𝑖
𝑆)𝛽𝐽

𝑛

𝑖=1

= 0, ∀ 𝑆 = −,+ and 𝐽 = 1,2. 

(ii). ∑ (𝜇𝑖
−)𝛿1

2
𝑢𝑗𝑢𝑘∈𝑅1

= 0.6800 = 2(0.34) = 2∑ (𝛿11
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1
, 

∑ (𝜇𝑖
+)𝛿1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 2.1600 = 2(1.08) = 2 ∑ (𝛿11
+ (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜆𝑖
−)𝛿1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 1.0000 = 2(0.5) = 2 ∑ (𝛿21
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜆𝑖
+)𝛿1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 2.2000 = 2(1.1) = 2 ∑ (𝛿21
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜒𝑖
−)𝛿1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 0.8200 = 2(0.41) = 2 ∑ (𝛿31
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜒𝑖
+)𝛿1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 1.9400 = 2(0.97) = 2 ∑ (𝛿31
+ (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

,and 

∑ (𝜗𝑖
−)𝛽1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 3.4000 = 2(0.17) = 2 ∑ (𝛽11
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜗𝑖
+)𝛽1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 0.9600 = 2(0.48) = 2 ∑ (𝛽11
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜌𝑖
−)𝛽1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 1.3200 = 2(0.66) = 2 ∑ (𝛽21
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝜌𝑖
+)𝛽1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 1.5000 = 2(0.75) = 2 ∑ (𝛽21
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝛾𝑖
−)𝛽1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 0.6800 = 2(0.34) = 2 ∑ (𝛽31
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

, 

∑ (𝛾𝑖
+)𝛽1

2

𝑢𝑗𝑢𝑘∈𝑅1

= 1.3200 = 2(0.66) = 2 ∑ (𝛽31
+ (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅1

 

Similarly, we calculate J = 2. 

 

Theorem 11. Let A(ζ) = {Aδ1, Aδ2, . . . , Aδk}  be an adjacency matrix of an IVCPFGS ζ =

{η, δ1, δ2, . . . , δk}. Then: 

(i). √2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))))

2

𝑛

≤ 𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤ 

√2𝑛 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
, 

(ii). √2 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛿2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))))

2

𝑛

≤ 𝜖 (𝛿2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤ 

√2𝑛 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
, 

(iii). √2 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛿3𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))))

2

𝑛

≤ 𝜖 (𝛿3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤ 

√2𝑛 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
, 
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(iv). √2 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛽1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))))

2

𝑛

≤ 𝜖 (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤ 

√2𝑛 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
, 

(v). √2 ∑ (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛽2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))))

2

𝑛

≤ 𝜖 (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤ 

√2𝑛 ∑ (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
, 

(vi). √2 ∑ (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛽3𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))))

2

𝑛

≤ 𝜖 (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤

√2𝑛 ∑ (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
, ∀𝑆 = −,+ and 𝐽 = 1,2, … , 𝑘. 

 

Proof. (i) Upper bound: 

The following results are obtained by applying the Cauchy-Schwarz inequality to the vectors 

(1,1, . . . ,1) and ( mod (μ1
S),  mod (μ2

S), . . . ,  mod (μn
S)) with n entries, we get: 

∑  mod (𝜇𝑖
𝑆)

𝑛

𝑖=1

≤ √𝑛√∑ mod (𝜇𝑖
𝑆)2

𝑛

𝑖=1

                             (1) 

(∑𝜇𝑖
𝑆

𝑛

𝑖=1

)

2

= ∑ mod (𝜇𝑖
𝑆)2

𝑛

𝑖=1

+ 2 ∑ 𝜇𝑖
𝑆𝜇𝑗

𝑆

1≤𝑖<𝑗≤𝑛

             (2) 

By comparing the coefficients of (𝜇𝑆)𝑛−2 in the characteristic polynomial: 

∏(𝜇𝑆 − 𝜇𝑖
𝑆)

𝑛

𝑖=1

=  mod (𝐴(𝜁) − 𝜇𝑆𝐼),  we have: 

∑ 𝜇𝑖
𝑆𝜇𝑗

𝑆

1≤𝑖≤𝑗≤𝑛

= − ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

                      (3) 

Substituting 3 in 2, we obtain: 

∑ mod (𝜇𝑖
𝑆)2

𝑛

𝑖=1

= 2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

                (4) 

Substituting 4 in 1, we obtain: 

∑ mod (𝜇𝑖
𝑆)

𝑛

𝑖=1

= √𝑛√2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

= √2𝑛 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

 

Therefore, 𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤ √2𝑛 ∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

1≤𝑗<𝑘≤𝑛

 

Lower bound: 

(𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)))

2

= (∑𝜇𝑖
𝑆

𝑛

𝑖=1

)

2

= ∑ mod (𝜇𝑖
𝑆)2

𝑛

𝑖=1

+ 2 ∑  mod (𝜇𝑖
𝑆𝜇𝑗

𝑆)

1≤𝑖<𝑗≤𝑛

 

2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

1≤𝑗<𝑘≤𝑛

+
2𝑛(𝑛 − 1)

2
𝐴𝑀{ mod (𝜇𝑖

𝑆𝜇𝑗
𝑆)} 

Since,  𝐴𝑀{ mod (𝜇𝑖
𝑆𝜇𝑗

𝑆)} ≥ 𝐺𝑀{ mod (𝜇𝑖
𝑆𝜇𝑗

𝑆)},  1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, 
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So, 𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≥ √2 ∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))
2

1≤𝑗<𝑘≤𝑛

+ 𝑛(𝑛 − 1)𝐺𝑀{ mod (𝜇𝑖
𝑆𝜇𝑗

𝑆)} 

Also since: 

𝐺𝑀{ mod (𝜇𝑖
𝑆𝜇𝑗

𝑆)} =  ( ∏  mod (𝜇𝑖
𝑆𝜇𝑗

𝑆)

1≤𝑖<𝑗≤𝑛

)

2
𝑛(𝑛−1)

= (∏ mod (𝜇𝑖
𝑆)𝑛−1

𝑛

𝑖=1

)

2
𝑛(𝑛−1)

 

(∏  mod (𝜇𝑖
𝑆)

𝑛

𝑖=1

)

2
𝑛

=  mod (𝑑𝑒𝑡 (𝐴 (𝛿1𝐽
𝑆 (𝑢𝑗𝑢𝑘))))

2
𝑛

 

Therefore  𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≥ √2 ∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))
2

1≤𝑗<𝑘≤𝑛

+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛿1𝐽
𝑆 (𝑢𝑗𝑢𝑘))))

2
𝑛

 

Thus, √2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗,𝑢𝑘∈𝑅𝐽

+ 𝑛(𝑛 − 1) mod (𝑑𝑒𝑡 (𝐴 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))))

2
𝑛

≤ 

𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤ √2𝑛 ∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗,𝑢𝑘∈𝑅𝐽

, ∀ 𝑆 = −,+ and 𝐽 = 1,2, … , 𝑘. 

Likewise, we can demonstrate that (ii), (iii), (iv), (v), and (vi). 

 

Theorem 12. Let A(ζ) = {Aδ1, Aδ2, … , Aδk} be an adjacency matrix of an IVCNGS ζ = {η, δ1, δ2, … , δk}. 

If n ≤ 2∑ (δ1J
S (uj, uk))

2

ujuk∈RJ
,  n ≤ 2∑ (δ2J

S (uj, uk))
2

ujuk∈RJ
,  n ≤ 2∑ (δ3J

S (uj, uk))
2

ujuk∈RJ
, and n ≤

2∑ (β1J
S (uj, uk))

2

ujuk∈RJ
, n ≤ 2∑ (β2J

S (uj, uk))
2

ujuk∈RJ
,  n ≤  2∑ (β3J

S (uj, uk))
2

ujuk∈RJ
, Then: 

(i). 𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+

√(𝑛 − 1) {2∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
− (

2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} 

(ii). 𝜖 (𝛿2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

2 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+

√(𝑛 − 1) {2∑ (𝛿2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
− (

2 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} 

(iii). 𝜖 (𝛿3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

2 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+

√(𝑛 − 1) {2∑ (𝛿3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
− (

2 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} 

(iv). 𝜖 (𝛽1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

2 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+

√(𝑛 − 1) {2∑ (𝛽1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
− (

2 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} 
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(v). 𝜖 (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤

2 ∑ (𝛽2𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+

√(𝑛 − 1) {2∑ (𝛽2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
− (

2∑ (𝛽2𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} 

(vi). 𝜖 (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤

2 ∑ (𝛽3𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+

√(𝑛 − 1) {2∑ (𝛽3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
− (

2∑ (𝛽3𝐽
𝑆 (𝑢𝑗,𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} 

∀ 𝑆 = −,+ and 𝐽 = 1,2, … , 𝑘. 

 

Proof. If A = [ajk]n×n
 is a symmetric matrix with zero trace, then μmax

S ≥
2 ∑ ajkujuk∈RJ

n
, where μmax

S  is 

the maximum eigenvalue of A. If A(ζ)  is the adjacency matrix of an IVCNGS ζ , then μ1
S ≥

2∑ δ1J
S (uj,uk)ujuk∈RJ

n
, where μ1

S ≥ μ2
S ≥. . . ≥ μn

S . 

Moreover, since ∑(𝜇𝑖
𝑆)2

𝑛

𝑖=1

= 2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

 

 ∑(𝜇𝑖
𝑆)2

𝑛

𝑖=2

= 2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝜇1
𝑆)2                    (5) 

With the vectors (1,1, . . . ,1)  and ( mod (𝜂1
𝑆),  mod (𝜂2

𝑆), . . . ,  mod (𝜂𝑛
𝑆))  with 𝑛 − 1  entries, the 

Cauchy-Schwarz inequality is applied, and the following result is obtained: 

𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) − 𝜇1

𝑆 = ∑  mod (𝜇𝑖
𝑆)

𝑛

𝑖=2

≤ √(𝑛 − 1)∑  mod (𝜇1
𝑆)2

𝑛

𝑖=2

        (6) 

Substituting 5 in 6, we must have: 

𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) − 𝜇1

𝑆 ≤ √(𝑛 − 1)(2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝜇1
𝑆)2) 

𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤ 𝜇1

𝑆 + √(𝑛 − 1)(2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝜇1
𝑆)2)        (7) 

Now, since the function: 

𝐹(𝑢) = 𝑢 + √(𝑛 − 1)(2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

− 𝑢2)  

decreases on the interval: 

(
√2∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛 √2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

) , 
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𝐴𝑙𝑠𝑜, 𝑛 ≤ 2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 1 ≤
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
. 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 

√2∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
≤  

2∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
 ≤  

2∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
 

≤  𝜇1
𝑆 ≤ √2 ∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

. 

Therefore, Eq. (7) implies: 

𝜖 (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

2∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
+ 

√(𝑛 − 1){2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

} , ∀ 𝑆 = −,+ and 𝐽 = 1,2, … , 𝑘. 

Likewise, we can demonstrate that (ii), (iii), (iv), (v), and (vi). 

 

Theorem 13. Let A(ζ) = {Aδ1, Aδ2, . . . , Aδk}  be an adjacency matrix of an IVCNGS ζ =

{η, δ1, δ2, . . . , δk}. Then, ϵ(ζ) ≤
n

2
(1 + √n). 

Proof. Let 𝐴(𝜁) = {𝐴𝛿1, 𝐴𝛿2, . . . , 𝐴𝛿𝑘} be an adjacency matrix of an IVCNGS 𝜁 = {𝜂, 𝛿1, 𝛿2, . . . , 𝛿𝑘}. If 

𝑛 ≤ 2∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
= 2𝑧, it is simple to demonstrate using standard calculus that 𝑓(𝑧) =

2𝑦

𝑛
+ √(𝑛 − 1)(2𝑧 − (

2𝑧

𝑛
)

2

 is maximized when 𝑧 =
𝑛2+𝑛√𝑛

4
. We must have 𝜖 (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘)) ≤
𝑛

2
(1 + √𝑛) 

if we replace this value of 𝑧 with 𝑧 = ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
 in Theorem 12. Similarly, to that, it is 

simple to demonstrate that 𝜖 (𝛿2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

𝑛

2
(1 + √𝑛),  𝜖 (𝛿3𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤
𝑛

2
(1 +

√𝑛), 𝜖 (𝛽1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘)) ≤

𝑛

2
(1 + √𝑛),  𝜖 (𝛽2𝐽

𝑆 (𝑢𝑗, 𝑢𝑘)) ≤
𝑛

2
(1 + √𝑛),  𝜖 (𝛽3𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘)) ≤
𝑛

2
(1 + √𝑛),  ∀ 𝑆 =

−,+ and 𝐽 = 1,2, … , 𝑘. Hence, 𝜖(𝜁) ≤
𝑛

2
(1 + √𝑛). 

4. Laplacian Energy of IVCNGS 

The Laplacian energy of an IVCNGS is defined and examined, and its specific properties are 

given in this section. 

Definition 14. Let ζ = {η, δ1, δ2, … , δk} be an IVCNGS on n vertices. The degree matrix in amplitude 

term DδJ(ζ) =  ([Dδ1J
− (uiuj), Dδ1J

+ (uiuj)], [Dδ2J
− (uiuj), Dδ2J

+ (uiuj)], [Dδ3J
− (uiuj), Dδ3J

+ (uiuj)]) =  DδJ(ij) 

The degree matrix in amplitude term 

𝐷𝛽𝐽(𝜁) =  ([𝐷𝛽1𝐽
− (𝑢𝑖𝑢𝑗), 𝐷𝛽1𝐽

+ (𝑢𝑖𝑢𝑗)], [𝐷𝛽2𝐽
− (𝑢𝑖𝑢𝑗), 𝐷𝛽2𝐽

+ (𝑢𝑖𝑢𝑗)], [𝐷𝛽3𝐽
− (𝑢𝑖𝑢𝑗), 𝐷𝛽3𝐽

+ (𝑢𝑖𝑢𝑗)]) =  𝐷𝛽𝐽(𝑖𝑗) 

𝜁 is an 𝑛 × 𝑛 diagonal matrix of amplitude term, which is defined as 𝐷𝛿𝐽(𝑖𝑗) = {
𝑑𝛿𝐽

(𝑢𝑖),         𝑖 = 𝑗

0,        𝑖 ≠ 𝑗
 

𝜁 is an 𝑛 × 𝑛 diagonal matrix of phase term, which is defined as 𝐷𝛽𝐽(𝑖𝑗) = {
𝑑𝛽𝐽

(𝑢𝑖),         𝑖 = 𝑗

0,        𝑖 ≠ 𝑗
 

Definition 15. The Laplacian matrix of an IVCNGS ζ = {η, δ1, δ2, … , δk}  is defined as L(ζ) =

(Lδ1, Lδ2, . . . , Lδk), where LδJ = DδJ − AδJ, and DδJ is a degree matrix of an IVCNGS ζ and AδJ is 

an adjacency matrix for all J = 1,2, … , k. 
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Example 5. The Laplacian matrix of IVCNGS is shown in Figure 3 in Example 1. The Dλ1 degree 

matrix of amplitude term of an IVCNGS 

𝐷𝛿1 =

[
 
 
 
 
 
 
 
 
 
 
 (

. 4 . 6

. 3 . 6

. 4 . 6
) (

0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
. 7 1.2
. 7 1.1
. 8 1.2

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 6
. 5 . 7
. 3 . 5

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 6 1.2
. 9 1.2
. 7 1.1

)
]
 
 
 
 
 
 
 
 
 
 
 

 

The Dλ1 degree matrix of phase term of an IVCNGS 

𝐷𝛽1 =

[
 
 
 
 
 
 
 
 
 
 
 (

. 2 . 4

. 5 . 5

. 3 . 4
) (

0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
. 4 . 8
1 1
. 6 . 9

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 4
. 4 . 5
. 4 . 5

) (
0 0
0 0
0 0

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 5 . 8
. 9 1
. 7 1

)
]
 
 
 
 
 
 
 
 
 
 
 

 

The Laplacian matrix of amplitude term of an IVCNGS is  

𝐿𝛿1 =

[
 
 
 
 
 
 
 
 
 
 
 (

. 4 . 6

. 3 . 6

. 4 . 6
) (

−.4 −.6
−.3 −.6
−.4 −.6

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
−.4 −.6
−.3 −.6
−.4 −.6

) (
. 7 1.2
. 7 1.1
. 8 1.2

) (
0 0
0 0
0 0

) (
−.3 −.6
−.4 −.5
−.4 −.6

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 6
. 5 . 7
. 3 . 5

) (
−.3 −.6
−.5 −.7
−.3 −.5

)

(
0 0
0 0
0 0

) (
−.3 −.6
−.4 −.5
−.4 −.6

) (
−.3 −.6
−.5 −.7
−.3 −.5

) (
. 6 1.2
. 9 1.2
. 7 1.1

)
]
 
 
 
 
 
 
 
 
 
 
 

  

Laplacian matrix of phase term of an IVCNGS is 
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𝐿𝛽1 =

[
 
 
 
 
 
 
 
 
 
 
 (

. 2 . 4

. 5 . 5

. 3 . 4
) (

−.2 −.4
−.5 −.5
−.3 −.4

) (
0 0
0 0
0 0

) (
0 0
0 0
0 0

)

(
−.2 −.4
−.5 −.5
−.3 −.4

) (
. 4 . 8
1 1
. 6 . 9

) (
0 0
0 0
0 0

) (
−.2 −.4
−.5 −.5
−.3 −.6

)

(
0 0
0 0
0 0

) (
0 0
0 0
0 0

) (
. 3 . 4
. 4 . 5
. 4 . 5

) (
−.3 −.4
−.4 −.5
−.4 −.5

)

(
0 0
0 0
0 0

) (
−.2 −.4
−.5 −.5
−.3 −.6

) (
−.3 −.4
−.4 −.5
−.4 −.5

) (
. 5 . 8
. 9 1
. 7 1

)
]
 
 
 
 
 
 
 
 
 
 
 

 

Similarly, we can calculate Lδ2 and Lβ2 Laplacian matrix 

Definition 16. The spectrum of the Laplacian matrix of an IVCNGS is defined as 

⟨P1L, Q1L, P2L, Q2L, P3L, Q3L, ⟩ , where P1L, Q1L, P2L, Q2L, P3L, Q3L  is the amplitude term of the set 

eigenvalues of L(ζ) and ⟨P1L
′ , Q1L

′ , P2L
′ , Q2L

′ , P3L
′ , Q3L

′ ⟩, where P1L
′ , Q1L

′ , P2L
′ , Q2L

′ , P3L
′ , Q3L

′  is the phase term 

of the set eigenvalues of L(ζ) respectively. 

Example 6. The Laplacian spectrum of an IVCNGS shown in Figure 3 in Example 1 are as follows: 

Laplacian Spectrum (L(δ11
− )) = (0.0000,0.1866,0.6819,1.1314), 

Laplacian Spectrum (L(δ11
+ )) = (−0.0000,0.3515,1.2000,2.0485), 

Laplacian Spectrum (L(δ21
− )) = (−0.0000,0.2236,0.7553,1.4211), 

Laplacian Spectrum (L(δ21
+ )) = (−0.0000,0.3289,1.2879,1.9832), 

Laplacian Spectrum (L(δ31
− )) = (−0.0000,0.2149,0.6896,1.2955), 

Laplacian Spectrum (L(δ31
+ )) = (−0.0000,0.3339,1.0925,1.9735), 

Laplacian Spectrum (L(β11
− )) = (0.0000,0.1268,0.4732,0.8000), 

Laplacian Spectrum (L(β11
+ )) = (0.0000,0.2343,0.8000,1.3657), 

Laplacian Spectrum (L(β21
− )) = (0.0000,0.2746,0.8913,1.6341), 

Laplacian Spectrum (L(β21
+ )) = (0.0000,0.2929,1.0000,1.7071) 

Laplacian Spectrum (L(β31
− )) = (0.0000,0.1866,0.6819,1.1314), 

Laplacian Spectrum (L(β31
+ )) = (−0.0528,0.2861,0.8466,1.7200) 

Therefore, the Laplacian spectrum of amplitude term is Laplacian 

spec(Lλ1) =  {(0, −0,−0,−0,−0,−0), (0.1866,0.3515,0.2236,0.3289,0.2149,0.3339), 

(0.6819,1.2000,0.7553,1.2879, 0.6896,1.0925), (1.1314,2.0485,1.4211,1.9832, 1.2955, 1.9735)}   

And the Laplacian spectrum of phase term is 

spec(Lβ1) =  {(0,0,0,0,0, −0.0528), (0.1268,0.2343,0.2746,0.2929,0.1866,0.2861), 

(0.4732,0.8000,0.8913,1.0000,0.6819,0.8466), (0.8000,1.3657,1.6341,1.7071,1.1314,1.7200)} 

Similarly, we can calculate Laplacian spec(Lδ2) and spec(Lβ2) 

Example 7. The Laplacian energy of amplitude term of an IVCNGS ζ given Figure 3 are as follows: 

𝜖(𝜁) =< 𝜖(𝐿𝛿1), 𝜖(𝐿𝛿2) > 

𝜖(𝐿𝛿1) = < 1.6267,2.8971,1.9528,2.9423,1.7702,2.7321 > 

The Laplacian energy of phase term of an IVCNGS ζ given Figure 3 are as follows: 
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𝜖(𝜁) =< 𝜖(𝐿𝛿1), 𝜖(𝐿𝛿2) > 

𝜖(𝐿𝛿1) = < 1.1464,1.9314,2.2507,2.4142,1.6267,2.3334 > 

Similarly, we can calculate Laplacian 𝜖(𝐿𝛿2) and 𝜖(𝐿𝛽2) 

Theorem 17. Let L(ζ) = {Lδ1, Lδ2, . . . , Lδk}  be the Laplacian matrix of an IVCNGS ζ =

{η, δ1, δ2, . . . , δk}. If (μ1
−)δJ

≥ (μ2
−)δJ

≥. . . ≥ (μn
−)δJ

, (μ1
+)δJ

≥ (μ2
+)δJ

≥. . . ≥ (μn
+)δJ

 and (λ1
−)δJ

≥ (λ2
−)δJ

≥

. . . ≥ (λn
−)δJ

, (λ1
+)δJ

≥ (λ2
+)δJ

≥. . . ≥ (λn
+)δJ

 and (χ1
−)δJ

≥ (χ2
−)δJ

≥. . . ≥ (χn
−)δJ

, (χ1
+)δJ

≥ (χ2
+)δJ

≥. . . ≥

(χn
+)δJ

 are the eigenvalues of the amplitude terms, (ϑ1
−)βJ

≥ (ϑ2
−)βJ

≥. . . ≥ (ϑn
−)βJ

, (ϑ1
+)βJ

≥ (ϑ2
+)βJ

≥

. . . ≥ (ϑn
+)βJ

 and (ρ1
−)βJ

≥ (ρ2
−)βJ

≥. . . ≥ (ρn
−)βJ

, (ρ1
+)βJ

≥ (ρ2
+)βJ

≥. . . ≥ (ρn
+)βJ

 and (γ1
−)βJ

≥ (γ2
−)βJ

≥

. . . ≥ (γn
−)βJ

, (γ1
+)βJ

≥ (γ2
+)βJ

≥. . . ≥ (γn
+)βJ

 are the eigenvalues of the phase terms. Then 

(i)  ∑ (𝜇𝑖
−)𝛿𝐽

𝑛

𝑖=1,(𝜇𝑖
−)

𝛿𝐽
∈𝑃1𝐿

= 2 ∑ (𝛿1𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝜇𝑖
+)𝛿𝐽

𝑛

𝑖=1,(𝜇𝑖
+)

𝛿𝐽
∈𝑄1𝐿

= 2 ∑ (𝛿1𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

   ∑ (𝜆𝑖
−)𝛿𝐽

𝑛

𝑖=1,(𝜆𝑖
−)

𝛿𝐽
∈𝑅𝐿

= 2 ∑ (𝛿2𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝜆𝑖
+)𝛿𝐽

𝑛

𝑖=1,(𝜆𝑖
+)

𝛿𝐽
∈𝑆𝐿

= 2 ∑ (𝛿2𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

 ∑ (𝜒𝑖
−)𝛿𝐽

𝑛

𝑖=1,(𝜒𝑖
−)

𝛿𝐽
∈𝑅𝐿

= 2 ∑ (𝛿3𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝜒𝑖
+)𝛿𝐽

𝑛

𝑖=1,(𝜒𝑖
+)

𝛿𝐽
∈𝑆𝐿

= 2 ∑ (𝛿3𝐽
+ (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 𝑎𝑛𝑑 

 ∑ (𝜗𝑖
−)𝛽𝐽

𝑛

𝑖=1,(𝜗𝑖
−)

𝛽𝐽
∈𝑃1𝐿

′

= 2 ∑ (𝛽1𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝜗𝑖
+)𝛽𝐽

𝑛

𝑖=1,(𝜗𝑖
+)

𝛽𝐽
∈𝑄1𝐿

′

= 2 ∑ (𝛽1𝐽
+ (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝜌𝑖
−)𝛽𝐽

𝑛

𝑖=1,(𝜌𝑖
−)

𝛽𝐽
∈𝑃2𝐿

′

= 2 ∑ (𝛽2𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝜌𝑖
+)𝛽𝐽

𝑛

𝑖=1,(𝜌𝑖
+)

𝛽𝐽
∈𝑄2𝐿

′

= 2 ∑ (𝛽2𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝛾𝑖
−)𝛽𝐽

𝑛

𝑖=1,(𝛾𝑖
−)

𝛽𝐽
∈𝑃3𝐿

′

= 2 ∑ (𝛽3𝐽
− (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝛾𝑖
+)𝛽𝐽

𝑛

𝑖=1,(𝛾𝑖
+)

𝛽𝐽
∈𝑄3𝐿

′

= 2 ∑ (𝛽3𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

 

(ii) ∑ (𝜇𝑖
−)𝛿𝐽

2

𝑛

𝑖=1,(𝜇𝑖
−)

𝛿𝐽
∈𝑃1𝐿

= 2 ∑ (𝛿1𝐽
− (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿1𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜇𝑖
+)𝛿𝐽

2

𝑛

𝑖=1,(𝜇𝑖
+)

𝛿𝐽
∈𝑄1𝐿

= 2 ∑ (𝛿1𝐽
+ (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑ 𝑑𝛿1𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜆𝑖
−)𝛿𝐽

2

𝑛

𝑖=1,(𝜆𝑖
−)

𝛿𝐽
∈𝑃2𝐿

= 2 ∑ (𝛿2𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿2𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜆𝑖
+)𝛿𝐽

2

𝑛

𝑖=1,(𝜆𝑖
+)

𝛿𝐽
∈𝑄2𝐿

= 2 ∑ (𝛿2𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿2𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, 
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∑ (𝜒𝑖
−)𝛿𝐽

2

𝑛

𝑖=1,(𝜒𝑖
−)

𝛿𝐽
∈𝑃3𝐿

= 2 ∑ (𝛿3𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿3𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜒𝑖
+)𝛿𝐽

2

𝑛

𝑖=1,(𝜒𝑖
+)

𝛿𝐽
∈𝑄3𝐿

= 2 ∑ (𝛿3𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿3𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, and 

∑ (𝜗𝑖
−)𝛽𝐽

2

𝑛

𝑖=1,(𝜗𝑖
−)

𝛽𝐽
∈𝑃1𝐿

′

= 2 ∑ (𝛽1𝐽
− (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛽1𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜗𝑖
+)𝛽𝐽

2

𝑛

𝑖=1,(𝜗𝑖
+)

𝛽𝐽
∈𝑄1𝐿

′

= 2 ∑ (𝛽1𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛽1𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜌𝑖
−)𝛽𝐽

2

𝑛

𝑖=1,(𝜌𝑖
−)

𝛽𝐽
∈𝑃2𝐿

′

= 2 ∑ (𝛽2𝐽
− (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛽2𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

Proof. (i) Given that L(ζ) is a symmetric matrix with positive Laplacian eigenvalues, the following 

is true: 

(𝑖) ∑ (𝜇𝑖
−)𝛿𝐽

𝑛

𝑖=1,(𝜇𝑖
−)

𝛿𝐽
∈𝑃𝐿

= 𝑡𝑟(𝐿𝛿1𝐽
− ) = ∑ 𝑑𝛿1𝐽

− (𝑢𝑗)

𝑛

𝑗=1

= 2 ∑ (𝛿1𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

 

Likewise, we can demonstrate that 

∑ (𝜇𝑖
+)𝛿𝐽

𝑛

𝑖=1,(𝜇𝑖
+)

𝛿𝐽
∈𝑄1𝐿

= 2 ∑ (𝛿1𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, ∑ (𝜆𝑖
−)𝛿𝐽

𝑛

𝑖=1,(𝜆𝑖
−)

𝛿𝐽
∈𝑅𝐿

= 2 ∑ (𝛿2𝐽
− (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝜆𝑖
+)𝛿𝐽

𝑛

𝑖=1,(𝜆𝑖
+)

𝛿𝐽
∈𝑆𝐿

= 2 ∑ (𝛿2𝐽
+ (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

∑ (𝜒𝑖
−)𝛿𝐽

𝑛

𝑖=1,(𝜒𝑖
−)

𝛿𝐽
∈𝑅𝐿

= 2 ∑ (𝛿3𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝜒𝑖
+)𝛿𝐽

𝑛

𝑖=1,(𝜒𝑖
+)

𝛿𝐽
∈𝑆𝐿

= 2 ∑ (𝛿3𝐽
+ (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

∑ (𝜗𝑖
−)𝛽𝐽

𝑛

𝑖=1,(𝜗𝑖
−)

𝛽𝐽
∈𝑃1𝐿

′

= 2 ∑ (𝛽1𝐽
− (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝜗𝑖
+)𝛽𝐽

𝑛

𝑖=1,(𝜗𝑖
+)

𝛽𝐽
∈𝑄1𝐿

′

= 2 ∑ (𝛽1𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

∑ (𝜌𝑖
−)𝛽𝐽

𝑛

𝑖=1,(𝜌𝑖
−)

𝛽𝐽
∈𝑃2𝐿

′

= 2 ∑ (𝛽2𝐽
− (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝜌𝑖
+)𝛽𝐽

𝑛

𝑖=1,(𝜌𝑖
+)

𝛽𝐽
∈𝑄2𝐿

′

= 2 ∑ (𝛽2𝐽
+ (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

∑ (𝛾𝑖
−)𝛽𝐽

𝑛

𝑖=1,(𝛾𝑖
−)

𝛽𝐽
∈𝑃3𝐿

′

= 2 ∑ (𝛽3𝐽
− (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

, 

∑ (𝛾𝑖
+)𝛽𝐽

𝑛

𝑖=1,(𝛾𝑖
+)

𝛽𝐽
∈𝑄3𝐿

′

= 2 ∑ (𝛽3𝐽
+ (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽
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(ii) By the Definition 15 of Laplacian matrix, we have: 

𝐿𝛿1𝐽
− =

[
 
 
 
 

𝑑𝛿1𝐽
− (𝑢1) −𝛿1𝐽

− (𝑢1𝑢2) ⋯ −𝛿1𝐽
− (𝑧1𝑧𝑛)

−𝛿1𝐽
− (𝑢2𝑢1) 𝑑𝛿1𝐽

− (𝑢2) ⋯ −𝛿1𝐽
− (𝑧2𝑧𝑛)

⋮ ⋮ ⋱ ⋮
−𝛿1𝐽

− (𝑢𝑛𝑢1) −𝛿1𝐽
− (𝑢𝑛𝑢2) ⋯ 𝑑𝛿1𝐽

− (𝑢𝑛) ]
 
 
 
 

 

By the trace properties of a matrix, we have: 

𝑡𝑟 ((𝐿(𝛿1𝐽
− ))

2

) = ∑ (𝜇𝑖
−)𝛿𝐽

2

𝑛

𝑖=1,(𝜇𝑖
−)

𝛿𝐽
∈𝑃1𝐿

 

𝑡𝑟 ((𝐿(𝛿1𝐽
− ))

2

) = (𝑑𝛿1𝐽
−

2 (𝑢1) + (𝛿1𝐽
− (𝑢1𝑢2))

2

+ ⋯+ (𝛿1𝐽
− (𝑧1𝑧𝑛))

2

+ 

(𝛿1𝐽
− (𝑢2𝑢1))

2

+ 𝑑𝛿1𝐽
−

2 (𝑢2) + ⋯+ (𝛿1𝐽
− (𝑧2𝑧𝑛))

2

+ ⋯ + 

(𝛿1𝐽
− (𝑢𝑛𝑢1))

2

+ (𝛿1𝐽
− (𝑢𝑛𝑢2))

2

+ ⋯+ 𝑑𝛿1𝐽
−

2 (𝑢𝑛) 

=  2 ∑ (𝛿1𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿1𝐽
− (𝑢𝑗)

𝑛

𝑗=1

 

Therefore, ∑ (𝜇𝑖
−)𝛿𝐽

2𝑛
𝑖=1,(𝜇𝑖

−)
𝛿𝐽

∈𝑃1𝐿
= 2∑ (𝛿1𝐽

− (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ ∑ 𝑑𝛿1𝐽

− (𝑢𝑗)
𝑛
𝑗=1  

Likewise, we can demonstrate that 

∑ (𝜇𝑖
+)𝛿𝐽

2

𝑛

𝑖=1,(𝜇𝑖
+)

𝛿𝐽
∈𝑄1𝐿

= 2 ∑ (𝛿1𝐽
+ (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿1𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜆𝑖
−)𝛿𝐽

2

𝑛

𝑖=1,(𝜆𝑖
−)

𝛿𝐽
∈𝑃2𝐿

= 2 ∑ (𝛿2𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿2𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜆𝑖
+)𝛿𝐽

2

𝑛

𝑖=1,(𝜆𝑖
+)

𝛿𝐽
∈𝑄2𝐿

= 2 ∑ (𝛿2𝐽
+ (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿2𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜒𝑖
−)𝛿𝐽

2

𝑛

𝑖=1,(𝜒𝑖
−)

𝛿𝐽
∈𝑃3𝐿

= 2 ∑ (𝛿3𝐽
− (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿3𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 
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∑ (𝜒𝑖
+)𝛿𝐽

2

𝑛

𝑖=1,(𝜒𝑖
+)

𝛿𝐽
∈𝑄3𝐿

= 2 ∑ (𝛿3𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛿3𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, and 

∑ (𝜗𝑖
−)𝛽𝐽

2

𝑛

𝑖=1,(𝜗𝑖
−)

𝛽𝐽
∈𝑃1𝐿

′

= 2 ∑ (𝛽1𝐽
− (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛽1𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜗𝑖
+)𝛽𝐽

2

𝑛

𝑖=1,(𝜗𝑖
+)

𝛽𝐽
∈𝑄1𝐿

′

= 2 ∑ (𝛽1𝐽
+ (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑𝑑𝛽1𝐽
+ (𝑢𝑗)

𝑛

𝑗=1

, 

∑ (𝜌𝑖
−)𝛽𝐽

2

𝑛

𝑖=1,(𝜌𝑖
−)

𝛽𝐽
∈𝑃2𝐿

′

= 2 ∑ (𝛽2𝐽
− (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ ∑ 𝑑𝛽2𝐽
− (𝑢𝑗)

𝑛

𝑗=1

, ∀ 𝐽 = 1,2, . . . , 𝑘. 

Definition 18. The Laplacian energy of amplitude term of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} is defined 

as: Lϵ(ζ) =< Lϵ(δ1), Lϵ(δ2), . . . , Lϵ(δk) > 

𝐿𝜖(𝛿𝐽) = (∑ mod ((𝐿𝜇𝑖
−)𝛿𝐽

)

𝑛

𝑖=1

,∑  mod ((𝐿𝜇𝑖
+)𝛿𝐽

)

𝑛

𝑖=1

, 

∑  mod ((𝐿𝜆𝑖
−)𝛿𝐽

)

𝑛

𝑖=1

,∑  mod ((𝐿𝜆𝑖
+)𝛿𝐽

)

𝑛

𝑖=1

),∑  mod ((𝐿𝜒𝑖
−)𝛿𝐽

)

𝑛

𝑖=1

∑ mod ((𝐿𝜒𝑖
+)𝛿𝐽

)

𝑛

𝑖=1

), where 

(𝐿𝜇𝑖
−)𝛿𝐽

= (𝜇𝑖
−)𝛿𝐽

−
2∑ (𝛿1𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, (𝐿𝜇𝑖

+)𝛿𝐽
= (𝜇𝑖

+)𝛿𝐽
−

2∑ (𝛿1𝐽
+ (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝜆𝑖
−)𝛿𝐽

= (𝜆𝑖
−)𝛿𝐽

−
2∑ (𝛿2𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, (𝐿𝜆𝑖

+)𝛿𝐽
= (𝜆𝑖

+)𝛿𝐽
−

2∑ (𝛿2𝐽
+ (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝜒𝑖
−)𝛿𝐽

= (𝜒𝑖
−)𝛿𝐽

−
2∑ (𝛿3𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, (𝐿𝜒𝑖

+)𝛿𝐽
= (𝜒𝑖

+)𝛿𝐽
−

2∑ (𝛿3𝐽
+ (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

For all J = 1,2, … , k. And the Laplacian energy of phase term of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} is 

defined as: 

 𝐿𝜖(𝜁) =< 𝐿𝜖(𝛽1), 𝐿𝜖(𝛽2), . . . , 𝐿𝜖(𝛽𝑘) > 

𝐿𝜖(𝛽𝐽) = (∑  mod ((𝐿𝜗𝑖
−)𝛽𝐽

)

𝑛

𝑖=1

,∑  mod (𝐿𝜗𝑖
+)𝛽𝐽

)

𝑛

𝑖=1

, 

∑ mod ((𝐿𝜌𝑖
−)𝛽𝐽

)

𝑛

𝑖=1

,∑  mod ((𝐿𝜌𝑖
+)𝛽𝐽

)

𝑛

𝑖=1

), 

∑ mod ((𝐿𝛾𝑖
−)𝛽𝐽

)

𝑛

𝑖=1

,∑  mod ((𝐿𝛾𝑖
+)𝛽𝐽

)

𝑛

𝑖=1

),  where 
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(𝐿𝜗𝑖
−)𝛽𝐽

= (𝜗𝑖
−)𝛽𝐽

−
2∑ (𝛽1𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, (𝐿𝜗𝑖

+)𝛽𝐽
= (𝜗𝑖

+)𝛽𝐽
−

2∑ (𝛽1𝐽
+ (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝜌𝑖
−)𝛽𝐽

= (𝜌𝑖
−)𝛽𝐽

−
2∑ (𝛽2𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, (𝐿𝜌𝑖

+)𝛽𝐽
= (𝜌𝑖

+)𝛽𝐽
−

2∑ (𝛽2𝐽
+ (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝛾𝑖
−)𝛽𝐽

= (𝛾𝑖
−)𝛽𝐽

−
2∑ (𝛽3𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, (𝐿𝛾𝑖

+)𝛽𝐽
= (𝛾𝑖

+)𝛽𝐽
−

2∑ (𝛽3𝐽
+ (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

∀𝐽 = 1,2, . . . , 𝑘. 

 

Example 8. In Example 6, the Laplacian spectrum is found. An IVCNGS is Laplacian energy is shown 

in Figure 3 as follows: 

(𝐿𝜇𝑖
−)𝛿1

=  mod (0 −
2(1.0)

4
) +  mod (0.1866 −

2(1.0)

4
) +  mod (0.6819 −

2(1.0)

4
)

+ mod (1.1314 −
2(1.0)

4
) = 1.6267 

(𝐿𝜇𝑖
+)𝛿1

=  mod (0 −
2(1.8)

4
) +  mod (0.3515 −

2(1.8)

4
) +  mod (1.2000 −

2(1.8)

4
)

+  mod (2.0485 −
2(1.8)

4
) = 2.897 

(𝐿𝜆𝑖
−)𝛿1

=  mod (0 −
2(1.2)

4
) +  mod (0.2236 −

2(1.2)

4
) +  mod (0.7553 −

2(1.2)

4
)

+ mod (1.4211 −
2(1.2)

4
) = 1.9528 

(𝐿𝜆𝑖
+)𝛿1

=  mod (0 −
2(1.8)

4
) +  mod (0.3289 −

2(1.8)

4
) +  mod (1.2879 −

2(1.8)

4
)

+  mod (1.9832 −
2(1.8)

4
) = 2.9422 

(𝐿𝜒𝑖
−)𝛿1

=  mod (0 −
2(1.1)

4
) +  mod (0.2149 −

2(1.1)

4
) +  mod (0.6896 −

2(1.1)

4
)

+ mod (1.2955 −
2(1.1)

4
) = 1.7702 

(𝐿𝜒𝑖
+)𝛿1

=  mod (0 −
2(1.7)

4
) +  mod (0.3339 −

2(1.7)

4
) +  mod (1.0925 −

2(1.7)

4
)

+ mod (1.9735 −
2(1.7)

4
) = 2.7321 

(𝐿𝜗𝑖
−)𝛽1

=  mod (0 −
2(. 7)

4
) +  mod (0.1268 −

2(. 7)

4
) +  mod (0.4732 −

2(. 7)

4
)

+ mod (0.8000 −
2(. 7)

4
) = 1.1464 
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(𝐿𝜗𝑖
+)𝛽1

=  mod (0 −
2(1.2)

4
) +  mod (0.2343 −

2(1.2)

4
) +  mod (0.8000 −

2(1.2)

4
)

+ mod (1.3657 −
2(1.2)

4
) = 1.9314 

(𝐿𝜌𝑖
−)𝛽1

=  mod (0 −
2(1.4)

4
) +  mod (0.2746 −

2(1.4)

4
) +  mod (0.8913 −

2(1.4)

4
) 

             + mod (1.6341 −
2(1.4)

4
) = 2.2508 

(𝐿𝜌𝑖
+)𝛽1

=  mod (0 −
2(1.5)

4
) +  mod (0.2929 −

2(1.5)

4
) +  mod (1.0000 −

2(1.5)

4
)

+ mod (1.7071 −
2(1.5)

4
) = 2.4142 

(𝐿𝛾𝑖
−)𝛽1

=  mod (0 −
2(1)

4
) +  mod (0.1866 −

2(1)

4
) +  mod (0.6819 −

2(1)

4
)

+  mod (1.1314 −
2(1)

4
) = 1.6267 

(𝐿𝛾𝑖
+)𝛽1

=  mod (−0.0528 −
2(1.4)

4
) +  mod (0.2861 −

2(1.4)

4
) + mod (0.8466 −

2(1.4)

4
)

+  mod (1.7200 −
2(1.4)

4
) = 2.2805 

Theorem 19. Let L(ζ) = {Lδ1, Lδ2, . . . , Lδk} be the Laplacian matrix of an IVCNGS ζ = {η, δ1, δ2, . . . , δk}. 

If (μ1
−)δJ

≥ (μ2
−)δJ

≥. . . ≥ (μn
−)δJ

, (μ1
+)δJ

≥ (μ2
+)δJ

≥. . . ≥ (μn
+)δJ

 and (λ1
−)δJ

≥ (λ2
−)δJ

≥. . . ≥ (λn
−)δJ

, 

(λ1
+)δJ

≥ (λ2
+)δJ

≥. . . ≥ (λn
+)δJ

 and (χ1
−)δJ

≥ (χ2
−)δJ

≥. . . ≥ (χn
−)δJ

, (χ1
+)δJ

≥ (χ2
+)δJ

≥. . . ≥ (χn
+)δJ

 are the 

eigenvalues of the amplitude terms Lδ1J
− (ujuk), Lδ1J

+ (ujuk), Lδ2J
− (ujuk) , Lδ2J

+ (ujuk)  and Lδ3J
− (ujuk) , 

Lδ3J
+ (ujuk)  respectively, and (ϑ1

−)βJ
≥ (ϑ2

−)βJ
≥. . . ≥ (ϑn

−)βJ
, (ϑ1

+)βJ
≥ (ϑ2

+)βJ
≥. . . ≥ (ϑn

+)βJ
 and 

(ρ1
−)βJ

≥ (ρ2
−)βJ

≥. . . ≥ (ρn
−)βJ

, (ρ1
+)βJ

≥ (ρ2
+)βJ

≥. . . ≥ (ρn
+)βJ

 and (γ1
−)βJ

≥ (γ2
−)βJ

≥. . . ≥ (γn
−)βJ

, 

(γ1
+)βJ

≥ (γ2
+)βJ

≥. . . ≥ (γn
+)βJ

 are the eigenvalues of the phase terms Lβ1J
− (ujuk), Lβ1J

+ (ujuk), Lβ2J
− (ujuk), 

Lβ2J
+ (ujuk) and Lβ3J

− (ujuk), Lβ3J
+ (ujuk) respectively, 

(𝐿𝜇𝑖
−)𝛿𝐽

= (𝜇𝑖
−)𝛿𝐽

−
2∑ (𝛿1𝐽

− (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
,  (𝐿𝜇𝑖

+)𝛿𝐽
= (𝜇𝑖

+)𝛿𝐽
−

2∑ (𝛿1𝐽
+ (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝜆𝑖
−)𝛿𝐽

= (𝜆𝑖
−)𝛿𝐽

−
2 ∑ (𝛿2𝐽

− (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
,  (𝐿𝜆𝑖

+)𝛿𝐽
= (𝜆𝑖

+)𝛿𝐽
− 

2∑ (𝛿2𝐽
+ (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝜒𝑖
−)𝛿𝐽

= (𝜒𝑖
−)𝛿𝐽

−
2∑ (𝛿3𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
,  (𝐿𝜒𝑖

+)𝛿𝐽
= (𝜒𝑖

+)𝛿𝐽
−

2∑ (𝛿3𝐽
+ (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
 

𝑎𝑛𝑑 (𝐿𝜗𝑖
−)𝛽𝐽

= s(𝜗𝑖
−)𝛽𝐽

−
2∑ (𝛽1𝐽

− (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
,  (𝐿𝜗𝑖

+)𝛽𝐽
(𝜗𝑖

+)𝛽𝐽
−

2∑ (𝛽1𝐽
+ (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 

(𝐿𝜌𝑖
−)𝛽𝐽

= (𝜌𝑖
−)𝛽𝐽

−
2∑ (𝛽2𝐽

− (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
,  (𝐿𝜌𝑖

+)𝛽𝐽
= (𝜌𝑖

+)𝛽𝐽
−

2∑ (𝛽2𝐽
+ (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
 

(𝐿𝛾𝑖
−)𝛽𝐽

= (𝛾𝑖
−)𝛽𝐽

−
2∑ (𝛽3𝐽

− (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
,  (𝐿𝛾𝑖

+)𝛽𝐽
= (𝛾𝑖

+)𝛽𝐽
−

2∑ (𝛽3𝐽
+ (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
, 
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then: ∑ (𝐿𝜇𝑖
𝑆)𝛿𝐽

𝑛
𝑖=1 = 0,∑ (𝐿𝜆𝑖

𝑆)𝛿𝐽
𝑛
𝑖=1 = 0, ∑ (𝐿𝜒𝑖

𝑆)𝛿𝐽
𝑛
𝑖=1 = 0,∑ (𝐿𝜗𝑖

𝑆)𝛽𝐽
𝑛
𝑖=1 = 0, 

∑(𝐿𝜌𝑖
𝑆)𝛽𝐽

𝑛

𝑖=1

= 0,∑(𝐿𝛾𝑖
𝑆)𝛽𝐽

𝑛

𝑖=1

= 0, 

∑(𝐿𝜇𝑖
𝑆)𝛿𝐽

2

𝑛

𝑖=1

= 2𝑀
𝛿1𝐽

𝑆 ,  ∑(𝐿𝜆𝑖
𝑆)𝛿𝐽

2

𝑛

𝑖=1

= 2𝑀
𝛿2𝐽

𝑆 ,∑(𝐿𝜒𝑖
𝑆)𝛿𝐽

2

𝑛

𝑖=1

= 2𝑀
𝛿3𝐽

𝑆  

∑(𝐿𝜗𝑖
𝑆)𝛽𝐽

2

𝑛

𝑖=1

= 2𝑀𝛽1𝐽
𝑆 ,  ∑(𝐿𝜌𝑖

𝑆)𝛽𝐽

2

𝑛

𝑖=1

= 2𝑀𝛽2𝐽
𝑆 ,∑(𝐿𝛾𝑖

𝑆)𝛽𝐽

2

𝑛

𝑖=1

= 2𝑀𝛽3𝐽
𝑆  

where: 

𝑀𝛿1𝐽
𝑆 = ∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

𝑀𝛿2𝐽
𝑆 = ∑ (𝛿2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛿2𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿2𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

𝑀𝛿3𝐽
𝑆 =  ∑ (𝛿3𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛿3𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿3𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

𝑀𝛽1𝐽
𝑆 = ∑ (𝛽1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛽1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛽1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

𝑀𝛽1𝐽
𝑆 = ∑ (𝛽1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛽1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛽1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

𝑀𝛽2𝐽
𝑆 = ∑ (𝛽2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛽2𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛽2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

𝑀
𝛽3𝐽

𝑆 = ∑ (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑

𝛽3𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2
𝑛

𝑖=1

, 

∀ 𝑆 = −,+ and 𝐽 = 1,2, . . . , 𝑘. 

 

Theorem 20. Let L(ζ) = {Lδ1, Lδ2, . . . , Lδk} be the Laplacian matrix of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} 

on n vertices. Then, 

(i)   (𝐿𝜇𝑖
𝑆)𝛿𝐽

≤ √2𝑛 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ 𝑛 ∑(𝑑𝛿1𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1
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(ii)   (𝐿𝜆𝑖
𝑆)𝛿𝐽

≤ √2𝑛 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ 𝑛 ∑ (𝑑𝛿2𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛿2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

  

(iii)   (𝐿𝜒𝑖
𝑆)𝛿𝐽

≤ √2𝑛 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ 𝑛 ∑ (𝑑𝛿3𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛿3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(iv)   (𝐿𝜗𝑖
𝑆)𝛽𝐽

≤ √2𝑛 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ 𝑛 ∑(𝑑𝛽1𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(v)   (𝐿𝜌𝑖
𝑆)𝛽𝐽

≤ √2𝑛 ∑ (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ 𝑛 ∑(𝑑𝛽2𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(vi)   (𝐿𝛾𝑖
𝑆)𝛽𝐽

≤ √2𝑛 ∑ (𝛽3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+ 𝑛 ∑ (𝑑𝛽3𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛽3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

∀ 𝑆 = −,+and 𝐽 = 1,2, . . . , 𝑘. 

Proof. (i) By applying Cauchy-Schwarz inequality to the n numbers 1,1, . . . ,1  and 

mod ((Lμ1
S)

δJ
) ,  mod ((Lμ2

S)
δJ

) , . . . ,  mod ((Lμn
S)δJ

), we have: 

∑  mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)

𝑛

𝑖=1

≤ √𝑛√∑ mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)
2

𝑛

𝑖=1

 

(𝐿𝜇𝑖
𝑆)𝛿𝐽

≤ √𝑛√2𝑀𝛿1𝐽
𝑆 = √2𝑛𝑀𝛿1𝐽

𝑆  

Since, 𝑀
𝛿1𝐽

𝑆 = ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+

1

2
∑ (𝑑

𝛿1𝐽
𝑆 (𝑢𝑗) −

2∑ (𝛿1𝐽
𝑆 (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

𝑛
𝑖=1 , 

Therefore,    

(𝐿𝜇𝑖
𝑆)𝛿𝐽

≤ √2𝑛 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+ 𝑛 ∑ (𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)𝑛

𝑖=1  for all 

𝑆 = −,+ and 𝐽 = 1,2, . . . , 𝑘. 

We can verify the other sections (ii), (iii), (iv), (v), and (vi) in a similar manner. 

Theorem 21. Let L(ζ) = {Lδ1, Lδ2, . . . , Lδk} be the Laplacian matrix of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} 

on n vertices. Then, 
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(i)    (𝐿𝜇𝑖
𝑆)𝛿𝐽

≥  2√ ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑ (𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(ii)   (𝐿𝜆𝑖
𝑆)𝛿𝐽

≥  2√ ∑ (𝛿2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛿2𝐽

𝑆 (𝑢𝑗) −
2 ∑ (𝛿2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(iii)    (𝐿𝜒𝑖
𝑆)𝛿𝐽

≥  2√ ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑ (𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(iv)    (𝐿𝜗𝑖
𝑆)𝛽𝐽

≥  2√ ∑ (𝛽1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛽1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛽1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(v)    (𝐿𝜌𝑖
𝑆)𝛽𝐽

≥  2√ ∑ (𝛽2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑(𝑑𝛽2𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛽2𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

(vi)    (𝐿𝛾𝑖
𝑆)𝛽𝐽

≥  2√ ∑ (𝛽3𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽

+
1

2
∑ (𝑑𝛽3𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛽3𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

𝑛

𝑖=1

 

 ∀ 𝑆 = −,+ and 𝐽 = 1,2, . . . , 𝑘. 

Proof. (i) 

(∑ mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)

𝑛

𝑖=1

)

2

= ∑  mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)
2

𝑛

𝑖=1

+ 2 ∑  mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

(𝐿𝜇𝑗
𝑆)

𝛿𝐽
)

𝑢𝑗𝑢𝑘∈𝑅𝐽

≥ 4𝑀𝛿1𝐽
𝑆  

(𝐿𝜇𝑖
𝑆)𝛿𝐽

≥ 2√𝑀𝛿1𝐽
𝑆  

Since, 𝑀𝛿1𝐽
𝑆 = ∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+

1

2
∑ (𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

𝑛
𝑖=1  

Therefore,    (𝐿𝜇𝑖
𝑆)𝛿𝐽

≥  2√∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+

1

2
∑ (𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2 ∑ (𝛿1𝐽

𝑆 (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)𝑛

𝑖=1  

for all 𝑆 = −,+ and 𝐽 = 1,2, . . . , 𝑘. We can verify the other section (ii),(iii),(iv),(v), 

and (vi) in a similar manner. 
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Theorem 22. Let L(ζ) = {Lδ1, Lδ2, . . . , Lδk} be the Laplacian matrix of an IVCNGS ζ = {η, δ1, δ2, . . . , δk} 

on n vertices. Then, 

(i)    (𝐿𝜇𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝜇1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2𝑀𝛿1𝐽
𝑆 −  mod ((𝐿𝜇1

𝑆)𝛿𝐽
)

2

) 

(ii)    (𝐿𝜆𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝛿1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2𝑀𝛿2𝐽
𝑆 −  mod ((𝐿𝜆1

𝑆)𝛿𝐽
)

2

) 

(iii)    (𝐿𝜒𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝛿1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2𝑀𝛿3𝐽
𝑆 −  mod ((𝐿𝜒1

𝑆)𝛿𝐽
)

2

) 

(iv)    (𝐿𝜗𝑖
𝑆)𝛽𝐽

≤  mod ((𝐿𝜗1
𝑆)𝛽𝐽

) + √(𝑛 − 1) (2𝑀𝛽1𝐽
𝑆 −  mod ((𝐿𝜗1

𝑆)𝛽𝐽
)

2

) 

(v)    (𝐿𝜌𝑖
𝑆)𝛽𝐽

≤  mod ((𝐿𝜌1
𝑆)𝛽𝐽

) + √(𝑛 − 1) (2𝑀𝛽2𝐽
𝑆 −  mod ((𝐿𝜌1

𝑆)𝛽𝐽
)

2

) 

(vi)    (𝐿𝛾𝑖
𝑆)𝛽𝐽

≤  mod ((𝐿𝛾1
𝑆)𝛽𝐽

) + √(𝑛 − 1) (2𝑀𝛽3𝐽
𝑆 −  mod ((𝐿𝜌1

𝑆)𝛽𝐽
)

2

) 

∀ 𝑆 = −,+ and 𝐽 = 1,2, . . . , 𝑘. 

Proof. (i) 

∑ mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)

𝑛

𝑖=1

≤ √𝑛 ∑ mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)
2

𝑛

𝑖=1

 

∑  mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)

𝑛

𝑖=1

≤ √(𝑛 − 1)∑  mod ((𝐿𝜇𝑖
𝑆)𝛿𝐽

)
2

𝑛

𝑖=1

 

(𝐿𝜇𝑖
𝑆)𝛿𝐽

−  mod ((𝐿𝜇1
𝑆)𝛿𝐽

) ≤  √(𝑛 − 1) (2𝑀𝛿1𝐽
𝑆 −  mod ((𝐿𝜇1

𝑆)𝛿𝐽
)

2

) 

That is 𝑀𝛿1𝐽
𝑆 = ∑ (𝛿1𝐽

𝑆 (𝑢𝑗 , 𝑢𝑘))
2

𝑢𝑗𝑢𝑘∈𝑅𝐽
+

1

2
∑ (𝑑𝛿1𝐽

𝑆 (𝑢𝑗) −
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗,𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
)

2

𝑛
𝑖=1 , 
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Therefore, (𝐿𝜇𝑖
𝑆)𝛿𝐽

−  mod ((𝐿𝜇1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2𝑀𝛿1𝐽
𝑆 ≤  mod ((𝐿𝜇1

𝑆)𝛿𝐽
)

2

) for all  𝑆 = −,+ and 𝐽 =

1,2, . . . , 𝑘. We can verify the other sections (ii), (iii), (iv), (v), and (vi) in a similar manner. 

Theorem 23. If the IVCNGS ζ = {η, δ1, δ2, . . . , δk} is regular, then: 

(i)     (𝐿𝜇𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝜇1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝜇1
𝑆)𝛿𝐽

2 ) ; 

(ii)     (𝐿𝜆𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝜆1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2 ∑ (𝛿2𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝜆1
𝑆)𝛿𝐽

2 ) ; 

(ii)     (𝐿𝜒𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝜒1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2 ∑ (𝛿3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝜒1
𝑆)𝛿𝐽

2 ) ; 

(iv)     (𝐿𝜗𝑖
𝑆)𝛽𝐽

≤  mod ((𝐿𝜗1
𝑆)𝛽𝐽

) + √(𝑛 − 1)(2 ∑ (𝛽1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝜗1
𝑆)𝛽𝐽

2 ) ; 

(v)    (𝐿𝜌𝑖
𝑆)𝛽𝐽

≤ mod ((𝐿𝜌1
𝑆)𝛽𝐽

) + √(𝑛 − 1) (2 ∑ (𝛽2𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝜌1
𝑆)𝛽𝐽

2 ) ; 

(vi)    (𝐿𝛾𝑖
𝑆)𝛽𝐽

≤ mod ((𝐿𝛾1
𝑆)𝛽𝐽

) + √(𝑛 − 1) (2∑ (𝛽3𝐽
𝑆 (𝑢𝑗 , 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝛾1
𝑆)𝛽𝐽

2 ) ; ∀ 𝑆 = −,+ and 𝐽 =

1,2, . . . , 𝑘. 

Proof. 

𝑑
𝛿1𝐽

𝑆 (𝑢𝑗) =
2∑ (𝛿1𝐽

𝑆 (𝑢𝑗, 𝑢𝑘))𝑢𝑗𝑢𝑘∈𝑅𝐽

𝑛
          (9) 

Substituting 9 in 8, we get 

(𝐿𝜇𝑖
𝑆)𝛿𝐽

≤  mod ((𝐿𝜇1
𝑆)𝛿𝐽

) + √(𝑛 − 1) (2 ∑ (𝛿1𝐽
𝑆 (𝑢𝑗, 𝑢𝑘))

𝑢𝑗𝑢𝑘∈𝑅𝐽

− (𝐿𝜇1
𝑆)𝛿𝐽

2 ) ; 

We can verify the other sections (ii), (iii), (iv), (v), and (vi) in a similar manner. 

5. Application 

We evaluate the effectiveness of the proposed IVCNGS policies with real-world examples of 

medicine resource analyses based on the clinical field. The modern human life is heavily reliant on 

medicine. In the present context, it is the most important essential in the world. In our daily lives, we 
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use a variety of medications, including herbal, homeopathic, and generic medications. Satisfying 

human demand and supplying a sufficient number of medicines at a reasonable cost to the market is 

extremely significant for the pharmaceutical industry. 

Let's investigate how our IVCNGS concepts are applied to the pharmaceutical industry, which 

encompasses generic, homeopathic, herbal, and allopathic products, to explain its exceptional 

performance. The vertices in this example represent generic (u1), homeopathic (𝑢2), herbal (𝑢3), 

and allopathic (𝑢4) . We examine the network analysis of best best-edition drugs in the 

pharmaceutical industry. The two intended relationships between the pharmaceutical effect of the 

introduced unit's impact on global demand 𝑅1and the damage to medications 𝑅2. According to the 

provided definition 5, impact on global demand 𝑅1 and the damage to medications 𝑅2. The offered 

definition 5 can be applied in any situation because it helps to take into account everything that has 

an uncertain value. In this case, a set of relations 𝑅𝐽 and a vertex set 𝑄 are considered. Examine 

𝑄 ={ generic (𝑢1), homeopathic (𝑢2), herbal (𝑢3), and allopathic(𝑢4)}, as well as the effects on global 

demand 𝑅1 and the relationships between components in the pharmaceutical industry that affect 

medication damage 𝑅2. We assume in Example 1 and Figure 3 𝜁 = (𝜂, 𝛿1, 𝛿2) is IVCNGS of a GS 𝜁∗ =

(𝑄, 𝑅1, 𝑅2). The greatest value of an IVCNGS amplitude term's energy 𝜁 is 𝑚𝑎𝑥(𝜖(𝜁)) =2.6833 and 

the greatest value of an IVCNGS phase term's energy 𝜁 is 𝑚𝑎𝑥(𝜖(𝜁)) = 2.2361. In this illustration, it 

is obvious that the components have a greater impact on each other when there is a greater quantity 

of energy present in their relationships. It is obvious that more energy exists in 𝑅1. As a result, generic, 

homeopathic, herbal, and allopathic all have a greater impact on one another. 

To assess each of these, we instructed two relation 𝑒𝑘(𝑘 = 1,2) Interval-valued complex 

Neutrosophic Preference Relations (IVCNPRs) [32] to increase the degree of components in the 

pharmaceutical industry. Following is a formula to determine each expert's weight:    

 

𝑤𝐽 = (
𝜖(𝐴𝛿1𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛿1𝐽

𝑆 )
𝑒

𝑖
𝜖(𝐴𝛽1𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛽1𝐽

𝑆 ),
𝜖(𝐴𝛿2𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛿2𝐽

𝑆 )
𝑒

𝑖
𝜖(𝐴𝛽2𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛽2𝐽

𝑆 ),
𝜖(𝐴𝛿3𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛿3𝐽

𝑆 )
𝑒

𝑖
𝜖(𝐴𝛽3𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛽3𝐽

𝑆 )), 

∀ 𝑆 = −,+ and 𝐽 = 1,2. 

Amplitude term of IVCNGS: 

𝑊1 = ((0.5210,0.5278), (0.4984,0.5172), (0.5733,0.5325)),

𝑊2 = ((0.4789,0.4721), (0.5015,0.4827), (0.4266,0.4674))
 

Phase term of IVCNGS: 

𝑊1 = ((0.5185,0.5278), (0.5335,0.5278), (0.4877,0.5196)),

𝑊2 = ((0.4814,0.4721), (0.4664,0.4721), (0.5122,0.4803))
 

By using the Interval-Valued Complex Neutrosophic Averaging (IVCNA) \label{0.1} operator, 

compute the averaged Interval-Valued Complex Neutrosophic element (IVCNE) 𝑢𝑖
𝑘 of the 

pharmaceutical industry 𝑢𝑖= {generic (𝑢1), homeopathic (𝑢2), herbal (𝑢3), and allopathic (𝑢4)} over 

all other testing venues for the experts 𝑒𝑘 (k=1,2): 

𝑢𝑖
𝑘 = 𝐼𝑉𝐶𝑁𝐴(𝑢𝑖1

𝑘 , 𝑢𝑖2
𝑘 , … , 𝑢𝑖𝑛

𝑘 ) = 

(√1 − (∏(1 − (𝛿1𝐽
− )

2

𝑖𝑗
)

𝑛

𝑖=1

)

1
𝑛

, (∏(𝛿1𝐽
+ )

𝑖𝑗

𝑛

𝑖=1

)

1
𝑛

𝑒
𝑖√1−(∏ (1−(𝛽1𝐽

− )
2

𝑖𝑗
)𝑛

𝑖=1 )

1
𝑛
,(∏ (𝛽1𝐽

+ )
𝑖𝑗

2𝑛
𝑖=1 )

1
𝑛

, 
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√1 − (∏ (1 − (𝛿2𝐽
− )

2

𝑖𝑗
)

𝑛

𝑖=1

)

1
𝑛

, (∏(𝛿2𝐽
+ )

𝑖𝑗

𝑛

𝑖=1

)

1
𝑛

𝑒
𝑖√1−(∏ (1−(𝛽2𝐽

− )
2

𝑖𝑗
)𝑛

𝑖=1 )

1
𝑛
,(∏ (𝛽2𝐽

+ )
𝑖𝑗

𝑛
𝑖=1 )

1
𝑛

, 

√1 − (∏ (1 − (𝛿3𝐽
− )

2

𝑖𝑗
)𝑛

𝑖=1 )

1

𝑛
, (∏ (𝛿3𝐽

+ )
𝑖𝑗

𝑛
𝑖=1 )

1

𝑛
𝑒

𝑖√1−(∏ (1−(𝛽3𝐽
− )

2

𝑖𝑗
)𝑛

𝑖=1 )

1
𝑛
,(∏ (𝛽3𝐽

+ )
𝑖𝑗

𝑛
𝑖=1 )

1
𝑛
)
for all 𝐽 = 1,2, … , 𝑘. 

Displays the findings as an aggregate Table 1 and 2. Calculate a collective IVCNE 𝑢𝑖 (𝑖 = 1,2,3,4) of 

the generic (𝑢1) , homeopathic (𝑢2) , herbal (𝑢3) , and allopathic (𝑢4)using the Interval-Valued 

Complex Neutrosophic Weighted Averaging (IVCNWA) Operator. 

𝑢𝑖
𝑘 = 𝐼𝑉𝐶𝑁𝐴(𝑢𝑖

1, 𝑢𝑖
2, … , 𝑢𝑖

𝑠) = 

(√1 − (∏ (1 − (𝛿1𝐽
− )

𝑘
)

𝑊1𝐽
−

2
𝑘=1 ) , (∏ (𝛿1𝐽

+ )
𝑘

𝑤1𝐽
+

2
𝑘=1 ) 𝑒

𝑖√1−(∏ (1−(𝛽1𝐽
− )

𝑘
)2

𝑘=1

𝑊1𝐽
−

),(∏ (𝛽1𝐽
+ )

𝑘

𝑤1𝐽
+

2
𝑘=1 )

, 

√1 − (∏ (1 − (𝛿2𝐽
− )

𝑘
)

𝑊2𝐽
−

2

𝑘=1

) , (∏(𝛿2𝐽
+ )

𝑘

𝑤2𝐽
+

2

𝑘=1

) 𝑒
𝑖√1−(∏ (1−(𝛽2𝐽

− )
𝑘
)2

𝑘=1

𝑊2𝐽
−

),(∏ (𝛽2𝐽
+ )

𝑘

𝑤2𝐽
+

2
𝑘=1 )

, 

√1 − (∏ (1 − (𝛿3𝐽
− )

𝑘
)

𝑊3𝐽
−

2
𝑘=1 ) , (∏ (𝛿3𝐽

+ )
𝑘

𝑤3𝐽
+

2
𝑘=1 ) 𝑒

𝑖√1−(∏ (1−(𝛽3𝐽
− )

𝑘
)2

𝑘=1

𝑊3𝐽
−

),(∏ (𝛽2𝐽
+ )

𝑘

𝑤3𝐽
+

2
𝑘=1 )

, ∀ J= 1,2, … , 𝑘. 

 

Therefore, generic (u1) ,  = (0.1828, 0.8801, 0.1817, 0.8801, 0.1700, 0.8615), homeopathic (𝑢2) ,  = 

(0.2330, 0.8226, 0.2591, 0.8200, 0.2574, 0.8222), herbal (𝑢3) = (0.1805, 0.8801, 0.2633, 0.9146, 0.1777, 

0.8589), and allopathic (𝑢4)  = (0.1876, 0.8226, 0.2762, 0.8208, 0.2047, 0.7858). Evaluate the score 
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function 𝑆(𝑢𝑘) = ((𝐴𝑑𝛿1𝐽

− )
2

− (𝐴𝑑𝛿1𝐽

+ )
2

) + ((𝐴𝑑𝛿2𝐽

− )
2

− (𝐴𝑑𝛿2𝐽

+ )
2

) + ((𝐴𝑑𝛿3𝐽

− )
2

− (𝐴𝑑𝛿3𝐽

+ )
2

)  \cite{A1} 

of 𝑢𝑘  (𝑘 = 1,2,3,4) and rated all the testing venues (𝑢𝑖), 𝑖 = 1,2,3,4. 

𝑆(𝑢1) = −2.1960,    𝑆(𝑢2) = −1.8374,   𝑆(𝑢3) = −2.2152,   𝑆(𝑢_4) = −1.8144. 

Then 𝑆(𝑢4) > 𝑆(𝑢2) > 𝑆(𝑢1) > 𝑆(𝑢3). Therefore, 𝑆(𝑢4) is the best test venue. 

Phase terms: Similarly, We can verify the phase terms. 

5.1 Algorithm 

We now explain our method's step-by-step computation process, which is used in the algorithm that 

follows. 

(i). Input the set 𝑄 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} use a variety of medications (vertices) and put the 

membership values 𝜂 = (𝜂1, 𝜂2, 𝜂3) = ([𝜂1
−𝑒𝑖𝛼1

−
, 𝜂1

+𝑒𝑖𝛼1
+
], [𝜂2

−𝑒𝑖𝛼2
−
, 𝜂2

+𝑒𝑖𝛼2
+
], [𝜂3

−𝑒𝑖𝛼3
−
, 𝜂3

+𝑒𝑖𝛼3
+
]) of 

the nodes 𝑎𝑖′s, 𝜂1
𝑆, 𝜂2

𝑆, 𝜂3
𝑆 ∈ [0,1] and 𝛼1

𝑆, 𝛼2
𝑆, 𝛼3

𝑆 ∈ [0,2𝜋] for all 𝑆 = −,+. 

(ii). Input the membership values 𝛿𝐽 = (𝛿1𝐽, 𝛿2𝐽, 𝛿3𝐽) = ([𝛿1𝐽
− 𝑒𝑖𝛽1

−
, 𝛿1𝐽

+ 𝑒𝑖𝛽1
+
], [𝛿2𝐽

− 𝑒𝑖𝛽2
−
, 𝛿2𝐽

+ 𝑒𝑖𝛽2
+
]) of 

the edges 𝑎𝑖𝑎𝑗 ∈ 𝑅𝐽 such that 

𝛿1𝐽
𝑆 (𝑎𝑖𝑎𝑗)𝑒

𝑖𝛽1𝐽
𝑆 (𝑎𝑖𝑎𝑗) ≤ 𝑚𝑖𝑛{𝜂1

𝑆(𝑎𝑖), 𝜂1
𝑆(𝑎𝑗)}𝑒

𝑖𝑚𝑖𝑛{𝛼1
𝑆(𝑎𝑖),𝛼1

𝑆(𝑎𝑗)}

𝛿2𝐽
𝑆 (𝑎𝑖𝑎𝑗)𝑒

𝑖𝛽2𝐽
𝑆 (𝑎𝑖𝑎𝑗) ≤ 𝑚𝑎𝑥{𝜂2

𝑆(𝑎𝑖), 𝜂2
𝑆(𝑎𝑗)}𝑒

𝑖𝑚𝑎𝑥{𝛼2
𝑆(𝑎𝑖),𝛼2

𝑆(𝑎𝑗)}

𝛿3𝐽
𝑆 (𝑎𝑖𝑎𝑗)𝑒

𝑖𝛽3𝐽
𝑆 (𝑎𝑖𝑎𝑗) ≤ 𝑚𝑎𝑥{𝜂3

𝑆(𝑎𝑖), 𝜂3
𝑆(𝑎𝑗)}𝑒

𝑖𝑚𝑎𝑥{𝛼3
𝑆(𝑎𝑖),𝛼3

𝑆(𝑎𝑗)}

 

  0 ≤ (𝛿1𝐽
𝑆 (𝑎𝑖𝑎𝑗)) + (𝛿2𝐽

𝑆 (𝑎𝑖𝑎𝑗)) + (𝛿3𝐽
𝑆 (𝑎𝑖𝑎𝑗)) ≤ 3 and (𝛽1𝐽

𝑆 (𝑎𝑖𝑎𝑗)) , (𝛽2𝐽
𝑆 (𝑎𝑖𝑎𝑗)) , (𝛽3𝐽

𝑆 (𝑎𝑖𝑎𝑗)) ∈

[0,2𝜋] ∀ 𝑆 = −,+ and 𝑎𝑖𝑎𝑗 ∈ 𝑅𝐽,  𝐽 = 1,2, . . . , 𝑘. 

(iii). On the set used variety of medications Q, develop mutually disjoint, irreflexive, symmetric 

relations 𝑅1, 𝑅2, . . . , 𝑅𝑘 . Give each relation an identity that reflects a particular stage of 

development between the two types of medications it represents. 

(iv). Construct a graph structure on a set of medications with relation, then calculate the energy 

of each 𝐴𝜂1, 𝐴𝜂2, . . . , 𝐴𝜂𝑘. 

(v). Input a calculation like IVCNPRs  

𝑤𝐽 = (
𝜖(𝐴𝛿1𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛿1𝐽

𝑆 )
𝑒

𝑖
𝜖(𝐴𝛽1𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛽1𝐽

𝑆 ),
𝜖(𝐴𝛿2𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛿2𝐽

𝑆 )
𝑒

𝑖
𝜖(𝐴𝛽2𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛽2𝐽

𝑆 ),
𝜖(𝐴𝛿3𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛿3𝐽

𝑆 )
𝑒

𝑖
𝜖(𝐴𝛽3𝐽

𝑆 )

∑ 𝜖2
𝐽=1 (𝐴𝛽3𝐽

𝑆 )), 

∀ 𝑆 = −,+ and 𝐽 = 1,2. 

(vi). Calculate IVCNA and IVCNWA  



Neutrosophic Systems with Applications, Vol. 13, 2024                                                99 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

S.N. Suber Bathusha, Sowndharya Jayakumar and S. Angelin Kavitha Raj, The Energy of Interval-Valued Complex 

Neutrosophic Graph Structures: Framework, Application and Future Research Directions 

(vii). Evaluate the score function 𝑆(𝑢𝑘) = ((𝐴𝑑𝛿1𝐽

− )
2

− (𝐴𝑑𝛿1𝐽

+ )
2

) + ((𝐴𝑑𝛿2𝐽

− )
2

− (𝐴𝑑𝛿2𝐽

+ )
2

) +

((𝐴𝑑𝛿3𝐽

− )
2

− (𝐴𝑑𝛿3𝐽

+ )
2

) 

(viii). Provide an optimal testing venue output. 

  

6. Conclusions and Future Works 

The idea of IVCNGS has been developed in this research article by the authors. A more realistic 

description of uncertainty is offered by the Set IVCNS, an extension of the CNS and IVNS, compared 

to conventional fuzzy sets. It can be applied in many different contexts through fuzzy control. Many 

of the mathematical properties of the energy graph have been studied. The integration of the 

adjacency matrix IVCNGS, the energy of IVCNGS, and Laplacian energy IVCNGS with their 

intriguing properties has been proposed in this paper. Using the adjacency matrix's eigenvalues, we 

computed the IVCNGS's spectrum and determined its energy. Moreover, we presented the 

application of the energy IVCNGS in decision-making, specifically in determining the optimal level 

of pharmaceutical sources. If the adjacency matrix IVCNGS is used, there are several possible 

directions for this field's further investigation. Extension of the graph Structures energy to Complex 

Bipolar Picture Fuzzy Graph Structures, Interval-Valued Spherical Fuzzy Graph Structures, and 

dominating Complex bipolar neutrosophic graph structures are recommended areas of future 

research. Some of the limitations of this work are as follows: 

 IVCNGS was the main focus of the study and related network systems. 

 This approach is only applicable when there are symmetric, irreflexive, and mutually disjoint 

relations on the IVCNGS. 

 The IVCNGS idea is not relevant if the membership values of the characters are provided in 

distinct environments. 

 Obtaining accurate data could sometimes not be possible. 
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