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Abstract: This paper aims to develop a MAGDM model using single-valued neutrosophic credibility 

matrix (SVNCM) energy in a SVNCM scenario. To do it, first, SVNCM energy and its score function 

are presented as a conceptual extension of existing single-valued neutrosophic matrix (SVNM) 

energy. Then, a MAGDM model is developed in terms of SVNCM energy and its score function in 

a SVNCM scenario and also its decision algorithm is provided to solve MAGDM problems with 

SVNCMs. Finally, the developed MAGDM model is applied in the school site selection problem as 

an actual example, then the comparative investigation of the decision results in the SVNM and 

SVNCM scenarios indicates the superiority of the developed model over existing MAGDM model. 

Keywords: Single-Valued Neutrosophic Credibility Matrix; Single-Valued Neutrosophic Credibility 

Matrix Energy; Score Function; Group Decision Making. 

 

1. Introduction 

Matrix energy (ME) is one of important mathematical tools in the representation and processing 

of collective data, it is usually used in group decision making (GDM) applications. Bravo et al. [1] 

introduced ME as a generalization of graph energy and provided the upper and lower bounds of ME. 

Donbosco et al. [2] introduced rough neutrosophic ME as a generalization of ME and established its 

MAGDM method for handling multiple attribute group decision making (MAGDM) problems with 

rough neutrosophic matrix information, and then applied it to the optimal choice of building sites. 

After that, Li and Ye [3] proposed intuitionistic fuzzy matrix (IFM) energy and its MAGDM model 

for the best selection of hospital sites in a complete IFM scenario. Yong et al. [4] further presented the 

linguistic neutrosophic ME and its MAGDM model to solve the MAGDM problems in the scenario 

of full linguistic neutrosophic matrices. Jeni Seles Martina and Deepa [5] gave the concepts of multi-

valued neutrosophic ME and neutrosophic hesitant ME and used them for MAGDM problems. 

However, the aforementioned neutrosophic ME lacks the credibility measures of true, false, and 

uncertain membership values in inconsistent and uncertain scenarios so that it is difficult to guarantee 

its decision credibility level in uncertain and ambiguous MAGDM environments.  

In general, neutrosophic sets (NSs) [6] are not only the extended form of fuzzy sets (FSs) [7] and 

intuitionistic FSs [8], but also independently depict inconsistent, uncertain, and incomplete 

information though the true, false, and uncertain membership values, which FSs and intuitionistic 

FSs cannot do. Although existing fuzzy, intuitionistic fuzzy, and neutrosophic decision making 

methods and applications [9-20] have contained a lot of studies in existing literature, but they do not 

consider the credibility measures of various evaluation values in uncertain and ambiguous setting. 

To guarantee the credibility degrees of fuzzy values in uncertain and ambiguous environments, Ye 

et al. [21] first proposed fuzzy credibility values and their aggregation operators to perform the 

multiple attribute decision making (MADM) application in the selection of slope design schemes. 

Then, Ye et al. [22] further introduced intuitionistic fuzzy credibility sets and their similarity 

https://doi.org/10.61356/j.nswa.2024.17243
https://sciencesforce.com/index.php/nswa/index
https://orcid.org/0000-0003-2841-6529
https://orcid.org/0000-0003-4703-848X
https://orcid.org/0009-0003-8165-6967
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measures and applied them to the performance assessment of industrial robots. Ye et al. [23] also 

proposed single-valued neutrosophic credibility sets/values (SVNCSs/SVNCVs) to ensure the 

credibility degrees of true, false and uncertain membership values, and then developed their 

trigonometric aggregation operators and their MADM application in the selection of slope design 

schemes, but the MADM model [23] cannot tackle MAGDM problems in the scenario of full single-

valued neutrosophic credibility matrices (SVNCMs). In this case, the existing MADM model [23] 

implies its obvious insufficiency and research gap in full SVNCM setting. Therefore, it is necessary 

to develop a MAGDM model using the SVNCM energy and score function in a SVNCM scenario to 

fill the research gap. 

In general, this study mainly contains the following original contributions: 

 SVNCM energy is defined as a generalization of neutrosophic ME. 

 A score function for the SVNCM energy is presented to rank the SVNCM energy. 

 A MAGDM model using the SVNCM energy and score function is developed to solve 

MAGDM problems in the full SVNCM scenario. 

 The developed MAGDM model is applied in the actual example on the selection of primary 

school sites in Shaoxing, China. 

The rest of the paper includes the following content. Section 2 introduces some concepts of 

SVNCSs, SVNCVs, and single-valued neutrosophic matrix (SVNM) energy as the preliminaries of 

this study. Section 3 proposes SVNCM energy and the score function and ranking rules of SVNCM 

energy. In Section 4, we develop a MAGDM model based on the SVNCM energy and score function. 

A MAGDM example on the selection of primary school sites and a comparative investigation are 

provided in Section 5. Section 6 remarks conclusions and future work. 

2. Preliminaries 

2.1 Some Concepts of SVNCSs and SVNCVs 

Wang et al. [8] introduced the SVNS NS = {<y, VT(y), VU(y), VF(y)>｜y  Y} in a universe set Y, 

where VT(y), VU(y), VF(y)  [0, 1] for y  Y are the true, uncertain, and false membership values. Then, 

each element <y, VT(y), VU(y), VF(y)> in Ns can be simply denoted by the single-valued neutrosophic 

value (SVNV) nS = <VT, VU, VF>. 

To measure the credibility level of SVNV, Ye et al. [23] proposed a SVNCS in Y, which is 

represented by 

               , , , , , , |C T T U U F FN y V y C y V y C y V y C y y Y  ,                (1) 

where (VT(y), CT(y)), (VU(y), CU(y)) and (VF(y), CF(y)) are the true, false and uncertain fuzzy credibility 

values, then their true, false and uncertain membership values and their corresponding credibility 

values are VT(y)，VU(y)，VF(y)  [0, 1] and CT (y)，CU(y)，CF(y)  [0, 1]，respectively, such that 0  

VT(y) + VU(y) + VF(y)  3 and 0  CT(y) + CU(y) + CF(y)  3 for y  Y. For ease of expression, any element 

<y, (VT(y), CT(y)), (VU(y), CU(y)), (VF(y), CF(y))> in NC can be expressed as a simplified form of the 

SVNCV nc = <(VT, CT), (VU, CU), (VF, CF)>. 

It is worth noting that when one does not consider the credibility values in the SVNCV nc, nC 

becomes SVNV. Therefore, the credibility values contained in the SVNCV nC can guarantee the 

credibility degree of SVNV. 

For any two SVNCVs nC1 = <(VT1, CT1), (VU1, CU1), (VF1, CF1)> and nC2 = <(VT2, CT2), (VU2, CU2), (VF2, 

CF2)>, their operation laws are presented as follows: 

(1) 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , ,C C T T T T U U U U F F F Fn n V V C C V V C C V V C C        ； 
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(2) 1 2 1 2 2 1,C C C C C Cn n n n n n    ； 

(3)      1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , ,C C T T T T U U U U F F F Fn n V V C C V V C C V V C C        ； 

(4)      1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , ,C C T T T T U U U U F F F Fn n V V C C V V C C V V C C        ； 

(5)        1 1 1 1 1 1 1, , 1 ,1 , ,
c

C F F U U T Tn V C V C V C   (Complement of nC1)； 

(6) 
 

   

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

, ,

, , ,

T T T T T T T T

C C

U U U I F F F F

V V V V C C C C
n n

V V C C V V C C

   
  ； 

(7) 
   

 

1 2 1 2 1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

, , , ,

,

T T T T U U U U U U U U

C C

F F F F F F F F

V V C C V V V V C C C C
n n

V V V V C C C C

  
 

   
；  

(8) 
    

   

1 1

1

1 1 1 1

1 1 ,1 1 ,
, 0

, , ,

T T

C

U U F F

V C
n

V C V C

 

   
 

   
  ; 

(9) 
      

    

1 1 1 1

1

1 1

, , 1 1 ,1 1 ,
, 0

1 1 ,1 1

T T U U

C

F F

V C V C
n

V C

  



 


   
 

   

. 

2.1 Matrix Energy 

Set M(djl) for djl   (all real numbers) (j, l = 1, 2, …, b) as a b × b matrix, which is represented as 

11 12 1

21 22 2

1 2

( )

b

b

jl

b b bb

d d d

d d d
d

d d

M

d

 
 
 
 
 
 

.                             (2) 

Then, ME of M(djl) is introduced below [1]: 

 
1 1

1
)( ( )

b b

jl j j

j j

M d δ δE
b 

   , (3) 

where j (j = 1, 2, …, b) are the eigenvalues of M(djl). 

 (4) 

Set the SVNM M(nSjl) (j, l = 1, 2, …, b) as a b × b matrix [5]:  

11 12 1

21 22 2

1 2

( )

S S S b

S S S b

Sjl

Sb Sb Sbb

n n n

n n n
M n

n n n

 
 
 
 
 
 

,                              (5) 

where nSjl is the SVNV nSjl = <VTjl, VUjl, VFjl> (j, l = 1, 2, …, b) that consists of the true, uncertain, and 

false membership values VTjl, VUjl, VFjl  [0, 1]. Then, the SVNM M(nSjl) can be divided into the true 
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matrix M(VTjl), the uncertain matrix M(VUjl), and the false matrix M(VFjl), which is also represented as 

the following SVNM form: 

11 12 1 11 12 1 11 12 1

21 22 2 21 22 2 21 22 2

1 2 1 2 1 2

( ) ( ), ( ), ( )

, ,

Sjl Tjl Ujl Fjl

T T T b U U U b F F F b

T T T b U U U b F F F b

Tb Tb Tbb Ub Ub Ubb Fb Tb Fbb

n V V V

V V V V V V V V V

V V V V V V V V V

V V V V V V V

M

V

M

V

M M

     
     
     
     
     
     

.         (6) 

In terms of the concepts of true, uncertain and false ME, the energy of the SVNM M(nSjk) is 

introduced below [5]: 

1 1 1

( )) ( )], ( )], ( )[ ][ ,( [ ,
b b b

Sjl Tjl Ujl Fjl Tj MT Uj MU Fj MF

j j j

M n M V M V M V μ μ μ μE E E E μ μ
  

       , (7) 

where Tj, Uj, and Fj (j  1, 2, ..., b) are the eigenvalues corresponding to the three matrices M(VTjl), 

M(VUjl), and M(VFjl) and MT, MU, and MF are the average values corresponding to the eigenvalues 

Tj, Uj, and Fj (j  1, 2, ..., b). Then, there are the following equations [5]: 

(1) 
1 1

( ) ( ) 0
b b

Tj MT Tjj MT

j j

μ μ V μ
 

     ; 

(2) 
1 1

( ) ( ) 0
b b

Uj MU Ujj MU

j j

μ μ V μ
 

     ; 

(3) 
1 1

( ) ( ) 0
b b

Fj MF Fjj MF

j j

μ μ V μ
 

     ; 

(4) 2 2 2

1 1 1

( ) 2
b b

Tj MT Tjj MTTjl Tlj

j j j l b

μ μ V V V bμ
    

      ; 

(5) 2 2 2

1 1 1

( ) 2
b b

Uj MU MUUjl Ujl Ulj

j j j l b

μ μ V V V bμ
    

      ; 

(6) 2 2 2

1 1 1

( ) 2
b b

Fj MF Fjj MFFjl Flj

j j j l b

μ μ V V V bμ
    

      . 

The lower and upper bounds of the true, uncertain, and false MEs and the true, uncertain, and 

false credibility MEs are implied below [5]: 

(1) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Tj MT Tj MT MT Tjl MT TjlTl

j j l b

b

Tj MT Tj MT MTTl

j j l b

μ μ μ μ μ μ b b M V μ E M V

b μ μ μ μ μ μ

   

   

 
        

 

  
      
   

 

 

; 
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(2) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Uj MU Uj MU MU Ujl MU UjlUl

j j l b

b

Uj MU Uj MU MUUl

j j l b

μ μ μ μ μ μ b b M V μ E M V

b μ μ μ μ μ μ

   

   

 
        

 

  
      
   

 

 

; 

(3) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Fj MF Fj MF MF Fjl MF FjlFl

j j l b

b

Fj MF Fj MF MFFl

j j l b

μ μ μ μ μ μ b b M V μ E M V

b μ μ μ μ μ μ

   

   

 
        

 

  
      
   

 

 

. 

To compare SVNM energy magnitudes, the ranking values are given by a SVNME score function 

[5]: 

        2Sjk Tjk Ujk FjkH E M n E M V E M V E M V         
        .          (8) 

In view of the score values of Eq. (8), the ranking rules between E[M(nS2l)] and E[M(nS1l)] are 

presented below: 

(a) If H{E[M(nS1k)]} > H{E[M(nS2k)]}, then E[M(nS1k)] > E[M(nS2k)]; 

(b) If H{E[M(nSj1)]} < H{E[M(nSj2)]}, then E[M(nSj1)] < E[M(nSj2)]; 

(c) If H{E[M(nSj1)]} = H{E[M(nSj2)]}, then E[M(nSj1)] = E[M(nSj2)]. 

3. SVNCM Energy  

This section presents the concepts of SVNCM and SVNCM energy based on the energy of the 

true, false, and uncertain fuzzy credibility matrices in the setting of SVNCMs. 

Definition 1. Set the SVNCM M(nCjl) (j, l = 1, 2, …, b) as a b × b matrix:  

11 12 1

21 22 2

1 2

( ) ,

C C C b

C C C b

Cjl

Cb Cb Cbb

n n n

n n n
M n

n n n

 
 
 
 
 
 

                              (9) 

where nCjl is the SVNCV nCjl = <(VTjl, CTjl), (VUjl, CUjl), (VFjl, CFjl)> (j, l = 1, 2, …, b) that consists of the true, 

uncertain, and false membership values VTjl, VUjl, VFjl  [0, 1] and the true, uncertain, and false 

credibility values CTjl, CUjl, CFjl  [0, 1]. Then, the SVNCM M(nSjl) can be divided into the true matrix 

M(VTjl), the uncertain matrix M(VUjl), and the false matrix M(VFjl) and the true credibility matrix 

M(CTjl), the uncertain credibility matrix M(CUjl), and the false credibility matrix M(CFjl), which is also 

represented as the following SVNCM form: 
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     

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

11 12 1

21

( ) ( ), ( ) , ( ), ( ) , ( ), ( )

, ,

Cjl Tjl Tjl Ujl Ujl Fjl Fjl

T T T b T T T b

T T T b T T T b

Tb Tb Tbb Tb Tb Tbb

U U U b

U

n V C V C V C

V V V C C C

V V V C C C

V V V C C C

V V

M M M M M M

V

V

M

V



    
    
    
    
     
    



11 12 1

22 2 21 22 2

1 2 1 2

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1

, ,

,

U U U b

U U b U U U b

Ub Ub Ubb Ub Ub Ubb

F F F b F F F b

F F F b F F F b

Fb Tb Fbb Fb T

C C C

V C C C

V V V C C C

V V V C C C

V V V C C C

V V V C C

    
    
    
    
     
    

 
 
 
 
 
  2b FbbC

  
  
  
  
   

  

.          (10) 

Definition 2. Let the SVNCM M(nCjl) (j, l = 1, 2, ..., b) be a bb matrix, which can be expressed as M(nCjl) 

 (M(VTjl), M(CTjl)), (M(VUjl), M(CUjl)), (M(VFjl), M(CFjl)), including the true, uncertain and false 

matrices M(VTjl), M(VUjl) and M(VFjl) and the true, uncertain and false credibility matrices M(CTjl), 

M(CUjl) and M(CFjl). Then ME of M(nCjl) can be represented below: 

 

    
    
    

1 1 1 1

1 1 1 1

1 1

, ,

, ,

,

1 1
, ,

1 1
, ,

1 1
,

Tjk Tjk

Cjk Ujk Ujk

Fjk Fjk

b b b b

Tj Tj Tj Tj

j j j j

b b b b

Uj Uj Uj Uj

j j j i

b

Fj Fj Fj Fj

j i

E M V E M C

E M n E M V E M C

E M V E M C

b b

b b

b b

   

   

   

   

   

 

   
   

     
     

   
   

 
   

 

 
    

 

 

   

   



1 1

1 1

1 11 1

, ,

, ,

,

b b

Tj MT Tj MT

j j

b b

Uj MU Uj MU

j j

b bb b b

Fj MF Fj MF

j jj j

   

   

   

 

 

  

 
  

 

 
   

 

  
       

 

 

   

, (11) 

where Tj, Uj, and Fj (j  1, 2, ..., b) are the eigenvalues corresponding to the three matrices M(VTjl)，

M(VUjl), M(VFjl); Tj, Uj and Fj (j  1, 2, ..., b) are the eigenvalues corresponding to the three credibility 

matrices M(CTjl), M(CUjl), M(CFjl); MT, MU, and MF are the average values corresponding to the 

eigenvalues Tj, Uj, and Fj (j  1, 2, ..., b) and MT, MU and MF are the average values corresponding 

to the eigenvalues Tj, Uj and Fj (j  1, 2, ..., b). 

Especially when one does not consider the credibility values in the SVNCM M(nCjl), E[M(nCjl)] is 

reduced to the SVNM energy of Eq. (3). 

In terms of similar properties corresponding to SVNM [5], the SVNCM M(nCjl) (j, l = 1, 2, ..., b) 

also contains the following equations: 
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(1) 
1 1

( ) ( ) 0
b b

Tj MT Tjj MT

j j

μ μ V μ
 

     ; 

(2) 
1 1

( ) ( ) 0
b b

Uj MU Ujj MU

j j

μ μ V μ
 

     ; 

(3) 
1 1

( ) ( ) 0
b b

Fj MF Fjj MF

j j

μ μ V μ
 

     ; 

(4) 2 2 2

1 1 1

( ) 2
b b

Tj MT Tjj MTTjl Tlj

j j j l b

μ μ V V V bμ
    

      ; 

(5) 2 2 2

1 1 1

( ) 2
b b

Uj MU MUUjl Ujl Ulj

j j j l b

μ μ V V V bμ
    

      ; 

(6) 2 2 2

1 1 1

( ) 2
b b

Fj MF Fjj MFFjl Flj

j j j l b

μ μ V V V bμ
    

      ; 

(7) 
1 1

( ) ( ) 0
b b

Tj MT Tjj MT

j j

ρ ρ C ρ
 

     ; 

(8) 
1 1

( ) ( ) 0
b b

Uj MU Ujj MU

j j

ρ ρ C ρ
 

     ; 

(9) 
1 1

( ) ( ) 0
b b

Fj MF Fjj MF

j j

ρ ρ C ρ
 

     ; 

(10) 2 2 2

1 1 1

( ) 2
b b

Tj MT Tjj MTTjl Tlj

j j j l b

ρ ρ C C C bρ
    

      ; 

(11) 2 2 2

1 1 1

( ) 2
e b

Uj MU MUUjl Ujl Ulj

μ j j l b

ρ ρ C C C bρ
    

      ; 

(12) 2 2 2

1 1 1

( ) 2
b b

Fj MF Fjj MFFjl Flj

j j j l b

ρ ρ C C C bρ
    

      . 

Furthermore, the lower and upper bounds of the true, uncertain, and false MEs are introduced 

below: 

(1) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Tj MT Tj MT MT Tjl MT TjlTl

j j l b

b

Tj MT Tj MT MTTl

j j l b

μ μ μ μ μ μ b b M V μ E M V

b μ μ μ μ μ μ

   

   

 
        

 

  
      
   

 

 

; 

(2) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Uj MU Uj MU MU Ujl MU UjlUl

j j l b

b

Uj MU Uj MU MUUl

j j l b

μ μ μ μ μ μ b b M V μ E M V

b μ μ μ μ μ μ

   

   

 
        

 

  
      
   

 

 

; 
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(3) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Fj MF Fj MF MF Fjl MF FjlFl

j j l b

b

Fj MF Fj MF MFFl

j j l b

μ μ μ μ μ μ b b M V μ E M V

b μ μ μ μ μ μ

   

   

 
        

 

  
      
   

 

 

; 

(4) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Tj MT Tj MT MT Tjl MT TjlTl

j j l b

b

Tj MT Tj MT MTTl

j j l b

ρ ρ ρ ρ ρ ρ b b M C ρ E M C

b ρ ρ ρ ρ ρ ρ

   

   

 
        

 

  
      
   

 

 

; 

(5) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Uj MU Uj MU MU Ujl MU UjlUl

j j l b

b

Uj MU Uj MU MUUl

j j l b

ρ ρ ρ ρ ρ ρ b b M C ρ E M C

b ρ ρ ρ ρ ρ ρ

   

   

 
        

 

  
      
   

 

 

; 

(6) 

2

2/

1 1

2

1 1

2 ( 1) ( ) [ ( )]

2

b
b

Fj MF Fj MF MF Fjl MF FjlFl

j j l b

b

Fj MF Fj MF MFFl

j j l b

ρ ρ ρ ρ ρ ρ b b M C ρ E M C

b ρ ρ ρ ρ ρ ρ

   

   

 
        

 

  
      
   

 

 

. 

To compare two SVNCM energy magnitudes, we present the score function of the SVNCM 

energy E(M(nCijl)) (j, l  1, 2, ..., b; i = 1, 2): 

               2Cijk Tijk Tijk Uijk Uijk Fijk FijkZ E M n E M V E M C E M V E M C E M V E M C             
           

. (12) 

In view of the score values of Eq. (12), the ranking rules between E(M(nC1jl)) and E(M(nC2jl)) are 

presented below: 

(a) If Z{E[M(nC1jl)]} > Z{E[M(nC2jl)]}, then E[M(nC1jl)] > E[M(nC2jl)]; 

(b) If Z{E[M(nC1jl)]} < Z{E[M(nC2jl)]}, then E[M(nC1jl)] < E[M(nC2jl)]; 

(c) If Z{E[M(nC1jl)]} = Z{E[M(nC2jl)]}, then E[M(nC1jl)] = E[M(nC2jl)]. 

Example 1. Assume that there are two SVNCMs: 

1

(0.6,0.7) (0.3,0.7), (0.2,0.7) (0.5,0.6) (0.5,0.8), (0.3,0.6) (0.7,0.6) (0.1,0.5), (0.3,0.9)

( ) (0.8,0.7) (0.2,0.8), (0.1,0.8) (0.8,0.8) (0.2,0.8), (0.4,0.6) (0.3,0.8) (0.2,0.6), (0.1,0.6)

(0.7

C jlM n

     

      



, , ,

, , ,

,0.9) (0.1,0.9), (0.3,0.8) (0.7,0.5) (0.2,0.6), (0.1,0.9) (0.8,0.5) (0.3,0.6), (0.5,0.8)

 
 
 
      , , ,

, 

2

(0.5,0.6) (0.2,0.8), (0.3,0.8) (0.6,0.7) (0.6,0.8), (0.2,0.8) (0.6,0.6) (0.1,0.7), (0.2,0.8)

( ) (0.7,0.7) (0.2,0.7), (0.2,0.9) (0.7,0.7) (0.1,0.8), (0.3,0.7) (0.2,0.7) (0.4,0.7), (0.3,0.7)

(0.6

C jlM n

     

      



, , ,

, , ,

,0.8) (0.1,0.7), (0.1,0.8) (0.6,0.6) (0.1,0.6), (0.1,0.7) (0.7,0.6) (0.2,0.8), (0.4,0.5)

 
 
 
      , , ,

. 

Then, their SVNCM energy and ranking order are given by the following results: 



Neutrosophic Systems with Applications, Vol. 17, 2024                                                 9 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Jun Ye, Rui Yong and Wanlu Du, MAGDM Model Using Single-Valued Neutrosophic Credibility Matrix Energy and Its 

Decision-Making Application 

Using Eq. (11), there are E[M(nC1jl)] = <(2.4559, 2.7161), (0.8413, 2.8041), (0.8193, 3.1193)> and 

E[M(nC2jl)] = (2.1708, 2.7372), (0.9355, 2.8000), (0.6916, 3.1601)>. 

Using Eq. (12), since Z{E[M(nC1jl)]} = 13.1444 > Z{E[M(nC2jl)]} = 12.3177, there is E[M(nC1jl)] > 

E[M(nC2jl)]. 

4. MAGDM Model 

This section establishes a MAGDM model based on the SVNCM energy and score function in 

the setting of SVNCMs. 

Considering a MADM problem, there are a group of alternatives and a group of attributes, 

denoted respectively by Gs = {Gs1, Gs2, …, Gsa} and Cs = {Cs1, Cs2, …, Csb}. A group of decision 

makers/experts, denoted as Es = {Es1, Es2, …, Esr}, is invited to assess the satisfiability levels of each 

alternative over the attributes and the weight vector of the decision makers/experts is specified as Cj 

 <(Tj, CTj), (Uj, CUj), (Fj, CFj)> (j  1, 2, …, r). 

In this MADM problem, the SVNCM energy can be used to build a MADM model in the 

following steps: 

Step 1: The decision makers/experts specify the SVNCV weights of the attributes by Cjk  <(Tjk, CTjk), 

(Ujk, CUjk), (Fjk, CFjk)> (j  1, 2, …, r; k  1, 2, …, b) for Tjk, CTjk, Ujk, CUjk, Fjk, CFjk  [0, 1], and then 

they are constructed as the weight matrix of the attributes: 

1 2

1 12 1

2 21 22 2

1 2

11

( )

b

C C b

Cjk C C C b

Cr Cr Crb

C

r

Cs Cs Cs

Es λ λ

λ Es λ λ λ

λ λ λ

λ

M

Es

 
 
 
 
 
 

.                           (13) 

Step 2: Decision makers/experts evaluate their satisfiability levels of each alternative Gsi over 

attributes Csk by providing the SVNCVs nCijk = <(VTijk, CTijk), (VUijk, CUijk), (VFijk, CFijk)> (i = 1, 2, …, a; j  1, 

2, …, r; k  1, 2, …, b), and then the i-th SVNCM for Gsi can be built below: 

 

11 12 1

21 22 2

1 2

...

...

...

Ci Ci Ci b

Ci Ci Ci b

Cijk

Cir Cir Cirb

n n n

n n n

n n n

M n

 
 
 
 
 
 

.                          (14) 

Step 3: In view of the influence of the decision makers/experts’ weights Cj on the i-th SVNCM for Gsi, 

the weighted SVNCM can be obtained below: 
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Step 4: In view of the influence of the attribute weights Cjk on the i-th SVNCM for Gsi, the weighted 

SVNCM can be obtained below: 



Neutrosophic Systems with Applications, Vol. 17, 2024                                                 11 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Jun Ye, Rui Yong and Wanlu Du, MAGDM Model Using Single-Valued Neutrosophic Credibility Matrix Energy and Its 

Decision-Making Application 

 

 

 

 

 

 

11 11 11 11 12 12 12 12

11 11 11 11 11 11 11 11 12 12 12 12 12 12 1 12

11 11 1 11 11 11 11 11 12 12 12

, , , ,

, , , ,

,

C Cjk Cijk

T Ti CT Ti T Ti CT Ti

U Ui U Ui CU Ui CU Ui U Ui U Ui CU Ui CU Ui

F Fi F Fi CF Fi CF Fi F Fi F

M n

V C V C

V V C C V V C C

V V C C V V



   

       

     

 

       

      

 

 

 

 

 

12 12 12 12 12

21 21 2 21 22 22 22 22

21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22

21 21 21 21 21 21 21 21

,

, , , ,

, , , ,

,

Fi CF Fi CF Fi

T Ti CT Ti T Ti CT Ti

U Ui U Ui CU Ui CU Ui U Ui U Ui CU Ui CU Ui

F Fi F Fi CF Fi CF Fi

C C

V C V C

V V C C V V C C

V V C C

 

   

       

    

 

       

     

 

 

 

 

22 22 22 22 22 22 22 22

1 1 1 1 2 2 2 2

1 1 1 1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 1

,

, , , ,

, , ,

,

F Fi F Fi CF Fi CF Fi

Tr Tir CTr Tir Tr Tir CTr Tir

Ur Uir Ur Uir CUr Uir CUr Uir Ur Uir Ur Uir CUr

Fr Fir Fr Fir CFr Fir CFr Fir

V V C C

V C V C

V N C C V V

V N C C

  

   

      

   

   

      

   

 

 

 

 

 

2 2 2

2 2 2 2 2 2 2 2

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 2

,

,

, ,

, ,

,

,

Uir CUr Uir

Fr Fir Fr Fir CFr Fir CFr Fir

T b Ti b CT b Ti b

U b Ui b U b Ui b CU b Ui b CU b Ui b

F b Fi b F b Fi b CF b Fi b CF b Fi b

T b Ti b C

C C

V V C C

V C

V V C C

V V C C

V



   

 

   

   

 















 

    

   

   

 

 

 

 

 

2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

,

, ,

,

, ,

, ,

,

T b Ti b

I b Ui b U b Ui b CU b Ui b CU b Ui b

F b Fi b F b Fi b CF b Fi b CF b Fi b

Trb Tirb CTrb Tirb

Urb Uirb Urb Uirb CUrb Uirb CUrb Uirb

Frb Firb Frb Firb CFrb Firb CF

C

V V C C

V V C C

V C

V V C C

V V C

   

   

 

   

   

   

   

   

    rb FirbC



















. (16) 

Step 5: Based on the above weighted SVNCMs, we obtain the collective SVNCMs M(nCijk)  

<(M(VTijl), M(CTijl), (M(VUijl), M(CUijl), (M(VFijl), M(CFijl)> (j, l = 1, 2, …, r; i = 1, 2, …, a) by calculating 

the true, false and uncertain squire matrices and the true, false and uncertain credibility squire 

matrices: 
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Step 6: The respective SVNCV matrix energy values for each alternative can be obtained by Eq. (11). 

Step 7: The SVNCM energy score values of for each alternative Gsi (i = 1, 2, …, a) are calculated by Eq. 

(12). 

Step 8: According to the score values, all alternatives are ranked in descending order and the 

alternative with the largest value is the best. 

5. MAGDM Application in Primary School Site Selection  

5.1 Actual Example of Primary School Site Selection 

In recent years, Shaoxing's level of economic development has risen in China, and as the city's 

framework has been further expanded, the city's population has dispersed to multiple centers. It is 

necessary to build a new primary school in a suitable position of Shaoxing City in China. In this 

section, the feasibility and validity of the MAGDM model in a SVNCM environment are verified 

through an actual example of primary school site selection in Shaoxing.  

By analyzing the city framework and population distribution in Shaoxing, the decision 

department provides four potential locations as a set of alternatives Gs  {Gs1, Gs2, Gs3, Gs4}. In the 

assessment issue of the alternatives, the four main requirements/attributes of the school site can be 

considered by construction cost (Cs1), regional population (Cs2), transport facilities (Cs3) and regional 

environment (Cs4). For this siting decision problem, a group of three experts Es = {Es1, Es2, Es3} is 

invited to evaluate the best alternative among them, and then the three experts' SVNCV weights are 

specified as C1  (0.8, 0.7), (0.1, 0.8), (0.2, 0.7)，C2  (0.7, 0.6), (0.2, 0.7), (0.3, 0.7), and C3  (0.6, 0.8), 

(0.2, 0.6), (0.1, 0.9). 

The MAGDM model based on the SVNCM energy proposed in the above section can be applied 

to the site selection problem of this school in the following steps: 

Step 1: The three experts specify the SVNCV weights of the attributes by Cjk  (Tjk, CTjk), (Ujk, CUjk), 

(Fjk, CFjk) (j  1, 2, 3; k  1, 2, 3, 4) for Tjk, CTjk, Ujk, CUjk, Fjk, CFjk  [0, 1], and then they are constructed 

as the weight matrix of the attributes: 
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           

           

           

           

0.8,0.8 , 0.1,0.7 , 0.3,0.8 0.6,0.9 , 0.2,0.8 , 0.1,0.7

( ) 0.7,0.7 , 0.2,0.6 , 0.1,0.7 0.6,0.8 , 0.2,0.7 , 0.2,0.6

0.8,0.7 , 0.3,0.7 , 0.2,0.6 0.7,0.9 , 0.2,0.7 , 0.2,0.7

0.8,0.6 , 0.4,0.9 , 0.3,0.8 0.7,0.7 , 0.1,0.7 , 0.2,0.6

0.

CjkM 




 



           

           

6,0.7 , 0.1,0.8 , 0.1,0.9 0.9,0.6 , 0.1,0.8 , 0.2,0.9

0.9,0.9 , 0.2,0.6 , 0.3,0.8 0.8,0.8 , 0.2,0.7 , 0.1,0.8







. 

Step 2: Decision makers/experts evaluate their satisfiability levels of each alternative Gsi over 

attributes Csk by providing the SVNCVs nCijk = <(VTijk, CTijk), (VUijk, CUijk), (VFijk, CFijk)> (i, k = 1, 2, 3, 4; j  

1, 2, 3), and then SVNCMs for Gsi for i = 1, 2, 3, 4 can be built below: 

 

           

           

           

           

1

0.7,0.8 , 0.2,0.7 , 0.1,0.8 0.6,0.7 , 0.1,0.8 , 0.3,0.7

0.6,0.7 , 0.1,0.8 , 0.2,0.6 0.7,0.9 , 0.2,0.7 , 0.3,0.8

0.8,0.8 , 0.4,0.7 , 0.2,0.7 0.8,0.7 , 0.3,0.7 , 0.2,0.8

0.8,0.8 , 0.1,0.8 , 0.3,0.8 0.9,0.8 , 0.3,0.7 , 0.2,0.6

0.7

C jkM n




 



           

           

,0.8 , 0.2,0.7 , 0.3,0.7 0.8,0.7 , 0.1,0.7 , 0.2,0.6

0.8,0.7 , 0.3,0.7 , 0.2,0.8 0.6,0.8 , 0.2,0.8 , 0.1,0.9







，

 

 

           

           

           

           

2

0.7,0.7 , 0.2,0.7 , 0.3,0.6 0.7,0.8 , 0.2,0.7 , 0.3,0.7

0.8,0.6 , 0.3,0.6 , 0.2,0.7 0.9,0.7 , 0.3,0.7 , 0.2,0.8

0.7,0.8 , 0.2,0.7 , 0.3,0.8 0.8,0.7 , 0.1,0.8 , 0.2,0.9

0.8,0.9 , 0.2,0.8 , 0.3,0.7 0.6,0.7 , 0.1,0.7 , 0.3,0.6

0.9

C jkM n




 



           

           

,0.7 , 0.4,0.6 , 0.3,0.7 0.8,0.7 , 0.1,0.8 , 0.1,0.9

0.8,0.6 , 0.1,0.7 , 0.2,0.8 0.7,0.8 , 0.2,0.8 , 0.3,0.7







，

 

 

           

           

           

           

3

0.7,0.8 , 0.2,0.6 , 0.1,0.7 0.9,0.8 , 0.2,0.7 , 0.3,0.6

0.6,0.9 , 0.2,0.7 , 0.3,0.8 0.8,0.8 , 0.2,0.7 , 0.1,0.9

0.8,0.7 , 0.1,0.8 , 0.2,0.7 0.7,0.9 , 0.1,0.8 , 0.3,0.8

0.7,0.8 , 0.2,0.7 , 0.3,0.7 0.6,0.8 , 0.2,0.8 , 0.3,0.8

0.9

C jkM n




 



           

           

,0.8 , 0.2,0.6 , 0.1,0.8 0.8,0.9 , 0.1,0.9 , 0.3, 0.7

0.8,0.7 , 0.1,0.7 , 0.2,0.7 0.7,0.8 , 0.3,0.7 , 0.1,0.8







，
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 

           

           

           

           

4

0.9,0.7 , 0.2,0.7 , 0.1,0.8 0.8,0.8 , 0.2,0.8 , 0.2,0.7

0.7,0.8 , 0.3,0.7 , 0.2,0.9 0.8,0.8 , 0.3,0.7 , 0.1,0.8

0.8,0.9 , 0.1,0.8 , 0.1,0.8 0.9,0.7 , 0.1,0.8 , 0.3,0.7

0.7,0.8 , 0.1,0.7 , 0.3,0.7 0.6,0.8 , 0.2,0.8 , 0.3,0.6

0.9

C jkM n




 



           

           

,0.7 , 0.2,0.8 , 0.1,0.8 0.8,0.7 , 0.4,0.8 , 0.2, 0.7 .

0.7,0.8 , 0.2,0.9 , 0.2,0.9 0.7,0.8 , 0.3,0.7 , 0.1,0.9







 

Step 3: In view of the influence of the decision makers/experts’ weights Cj on the four SVNCMs for 

Gsi for i = 1, 2, 3, 4, the weighted SVNCMs using Eq. (15) can be obtained below: 

 

           

           

           

1

0.56,0.56 , 0.28,0.94 , 0.28,0.94 0.48,0.49 , 0.19,0.96 , 0.44,0.91

0.42,0.42 , 0.28,0.94 , 0.44,0.88 0.49,0.54 , 0.36,0.91 , 0.51,0.94

0.48,0.64 , 0.52,0.88 , 0.28,0.97 0.48,0.56 , 0.44,0.88 , 0.28,0.98

0.64,0.5

E Cj C jkM n




  



           

           

           

6 , 0.19,0.96 , 0.44,0.94 0.72,0.56 , 0.37,0.94 , 0.36,0.88

0.49,0.48 , 0.36,0.91 , 0.51,0.91 0.56,0.42 , 0.28,0.91 , 0.44,0.88

0.48,0.56 , 0.44,0.88 , 0.28,0.98 0.36,0.64 , 0.36,0.92 , 0.19,0.99







,

 

 

           

           

           

2

0.56 0.49 , 0.28,0.94 , 0.44,0.88 0.56 0.56 , 0.28,0.94 , 0.44,0.91

0.56,0.36 , 0.44,0.88 , 0.44,0.91 0.63,0.42 , 0.44,0.91 , 0.44,0.94

0.42,0.64 , 0.36,0.88 , 0.37,0.98 0.48,0.56 , 0.28,0.92 , 0.28,0.99

0.64,0.6

E Cj C jkM n




  



, ,

           

           

           

3 , 0.28,0.96 , 0.44,0.91 0.48,0.49 , 0.19,0.94 , 0.44,0.88

0.63,0.42 , 0.52,0.88 , 0.51,0.91 0.56,0.42 , 0.28,0.94 , 0.37,0.97

0.48,0.48 , 0.28,0.88 , 0.28,0.98 0.42,0.64 , 0.36,0.92 , 0.37,0.97







,

 

 

           

           

           

3

0.56,0.56 , 0.28,0.92 , 0.28,0.91 0.72,0.56 , 0.28,0.94 , 0.44,0.88

0.42,0.54 , 0.36,0.91 , 0.51,0.94 0.56,0.48 , 0.36,0.91 , 0.37,0.97

0.48,0.56 , 0.28,0.92 , 0.28,0.97 0.42,0.72 , 0.28,0.92 , 0.37,0.98

0.56,0.5

E Cj C jkM n




  



           

           

           

6 , 0.28,0.94 , 0.44,0.91 0.48,0.56 , 0.28,0.96 , 0.44,0.94

0.63,0.48 , 0.36,0.88 , 0.37,0.94 0.56,0.54 , 0.28,0.97 , 0.51,0.91

0.48,0.56 , 0.28,0.88 , 0.28,0.97 0.42,0.64 , 0.44,0.88 , 0.19,0.98







,

 

 

           

           

           

4

0.72,0.49 , 0.28,0.94 , 0.28,0.94 0.64,0.56 , 0.28,0.96 , 0.36,0.91

0.49,0.48 , 0.44,0.91 , 0.44,0.97 0.56,0.48 , 0.44,0.91 , 0.37,0.94

0.48,0.72 , 0.28,0.92 , 0.19,0.98 0.54,0.56 , 0.28,0.92 , 0.37,0.97

0.56,0.5

E Cj C jkM n




  



           

           

           

6 , 0.19,0.94 , 0.44,0.91 0.48,0.56 , 0.28,0.96 , 0.44,0.88

0.63,0.42 , 0.36,0.94 , 0.37,0.94 0.56,0.42 , 0.52,0.94 , 0.44,0.91

0.42,0.64 , 0.36,0.96 , 0.28,0.99 0.42,0.64 , 0.44,0.88 , 0.19,0.99







.

 

Step 4: In terms of the influence of the attribute weights Cjk on the four SVNCMs for Gsi for i = 1, 2, 

3, 4, the weighted SVNCMs using Eq. (16) can be obtained below: 
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 

           

           

           

1

0.56,0.64 , 0.28,0.91 , 0.37,0.96 0.36,0.63 , 0.28,0.96 , 0.37,0.91

0.42,0.49 , 0.28,0.92 , 0.28,0.88 0.42,0.72 , 0.36,0.91 , 0.44,0.92

0.64,0.56 , 0.58,0.91 , 0.36,0.88 0.56,0.63 , 0.44,0.91 , 0.36,0.94

0.64,0.

C Cjk C jkM n




  



           

           

           

48 , 0.46,0.98 , 0.51,0.96 0.63,0.56 , 0.37,0.91 , 0.36,0.84

0.42,0.56 , 0.28,0.94 , 0.37,0.97 0.72,0.42 , 0.19,0.94 , 0.36,0.96

0.72,0.63 , 0.44,0.88 , 0.44,0.96 0.48,0.64 , 0.36,0.94 , 0.19,0.98







,

 

           

           

           

2

0.56,0.56 , 0.28,0.91 , 0.51,0.92 0.42,0.72 , 0.36,0.94 , 0.37,0.91

0.56,0.42 , 0.44,0.84 , 0.28,0.91 0.54,0.56 , 0.44,0.91 , 0.36,0.92

0.56,0.56 , 0.44,0.91 , 0.44,0.92 0.56,0.63 , 0.28,0.94 , 0.36,0.97

0.64,0.

C Cjk C jkM n




  



           

           

           

54 , 0.52,0.98 , 0.51,0.94 0.42,0.49 , 0.19,0.91 , 0.44,0.84

0.54,0.49 , 0.46,0.92 , 0.37,0.97 0.72,0.42 , 0.19,0.96 , 0.28,0.99

0.72,0.54 , 0.28,0.88 , 0.44,0.96 0.56,0.64 , 0.36,0.94 , 0.37,0.94







,

 

           

           

           

3

0.56,0.64 , 0.28,0.88 , 0.37,0.94 0.54,0.72 , 0.36,0.94 , 0.37,0.88

0.42,0.63 , 0.36,0.88 , 0.37,0.94 0.48,0.64 , 0.36,0.91 , 0.28,0.96

0.64,0.49 , 0.37,0.94 , 0.36,0.88 0.49,0.81 , 0.28,0.94 , 0.44,0.94

0.56,0.

C Cjk C jkM n




  



           

           

           

48 , 0.52,0.97 , 0.51,0.94 0.42,0.56 , 0.28,0.94 , 0.44,0.92

0.54,0.56 , 0.28,0.92 , 0.19,0.98 0.72,0.54 , 0.19,0.98 , 0.44,0.97

0.72,0.63 , 0.28,0.88 , 0.44,0.94 0.56,0.64 , 0.44,0.91 , 0.19,0.96







,

 

 

           

           

           

4

0.72,0.56 , 0.28,0.91 , 0.37,0.96 0.48,0.72 , 0.36,0.96 , 0.28,0.91

0.49,0.56 , 0.44,0.88 , 0.28,0.97 0.48,0.64 , 0.44,0.91 , 0.28,0.92

0.64,0.63 , 0.37,0.94 , 0.28,0.92 0.63,0.63 , 0.28,0.94 , 0.44,0.91

0.56,0.

C Cjk C jkM n




  



           

           

           

48 , 0.46,0.97 , 0.51,0.94 0.42,0.56 , 0.28,0.94 , 0.44,0.84

0.54,0.49 , 0.28,0.96 , 0.19,0.98 0.72,0.42 , 0.46,0.96 , 0.36,0.97

0.63,0.72 , 0.36,0.96 , 0.44,0.98 0.56,0.64 , 0.44,0.91 , 0.19,0.98







.

 

Step 5: Using Eqs. (17)(22), we obtain the collective SVNCMs M(nCijk)  <(M(VTijl), M(CTijl), (M(VUijl), 

M(CUijl), (M(VFijl), M(CFijl)> (j, l = 1, 2, 3; i = 1, 2, 3, 4), where M(VTijl), M(CTijl), (M(VUijl), M(CUijl), and 

(M(VFijl), M(CFijl) are given as follows: 

 1

1.3496 1.0780 0.9756

1.2240 1.9912 0.8640

1.4336 1.1648 1.0944

T jlM V

 
 


 
  

,  2

1.1600 1.2166 0.9204

1.3072 1.3972 1.0560

1.3568 1.4336 1.0848

T jlM V

 
 


 
  

, 

 3

1.2176 1.1256 0.9408

1.2288 1.1886 0.9648

1.3832 1.3104 1.0938

T jlM V

 
 


 
  

,  4

1.3408 1.2096 1.0164

1.3080 1.2523 1.0236

1.4856 1.3769 1.1472

T jlM V

 
 


 
  

, 
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 1

0.3559 0.4484 0.6044

0.2703 0.3620 0.4956

0.4628 0.5800 0.8184

U jlM V

 
 


 
  

,  2

0.3609 0.6052 0.4156

0.4113 0.6796 0.4788

0.3484 0.5632 0.4448

U jlM V

 
 


 
  

, 

 3

0.4032 0.4960 0.4480

0.3332 0.4132 0.3636

0.3836 0.4580 0.4540

U jlM V

 
 


 
  

,  4

0.3450 0.5928 0.4680

0.4284 0.7272 0.5496

0.3736 0.6444 0.5052

U jlM V

 
 


 
  

, 

 1

0.6204 0.7700 0.4184

0.5644 0.6947 0.3736

0.5212 0.6500 0.3609

F jlM V

 
 


 
  

,  2

0.8052 0.8101 0.5979

0.5676 0.5739 0.4116

0.7084 0.7133 0.5237

F jlM V

 
 


 
  

, 

 3

0.6844 0.7387 0.4669

0.5040 0.5870 0.3440

0.5716 0.6061 0.4229

F jlM V

 
 


 
  

,  4

0.6224 0.6487 0.4003

0.4212 0.4555 0.2784

0.5140 0.5324 0.3753

F jlM V

 
 


 
  

, 

 1

1.2495 1.0746 1.3896

1.1760 1.0398 1.2992

1.3335 1.1466 1.4736

T jlM C

 
 


 
  

,  2

1.2579 0.9366 1.3344

1.0339 0.7686 1.0864

1.2810 0.9618 1.3800

T iiM C

 
 


 
  

, 

 3

1.3440 1.2240 1.5040

1.3272 1.2078 1.4728

1.4392 1.3014 1.6200

T jlM C

 
 


 
  

,  4

1.2600 1.0512 1.4720

1.1424 0.9582 1.3440

1.4231 1.1760 1.6768

T jlM C

 
 


 
  

, 

 1

3.5732 3.4489 3.3452

3.5244 3.4037 3.3024

3.4574 3.3397 3.2408

U jlM C

 
 


 
  

,  2

3.5352 3.3740 3.3652

3.4306 3.2793 3.2692

3.4674 3.3142 3.3048

U jlM C

 
 


 
  

, 

 3

3.5074 3.4216 3.3552

3.4706 3.3891 3.3188

3.4492 3.3679 3.3048

U jlM C

 
 


 
  

,  4

3.5912 3.4971 3.4788

3.5248 3.4337 3.4132

3.5620 3.4686 3.4520

U jlM C

 
 


 
  

, 

 1

3.3721 3.3130 3.5954

3.4210 3.3667 3.6562

3.4474 3.3940 3.6858

F jlM C

 
 


 
  

,  2

3.2323 3.3628 3.5385

3.3919 3.5359 3.7135

3.3931 3.5344 3.7145

F jlM C

 
 


 
  

, 

 3

3.3500 3.4580 3.5876

3.5038 3.6187 3.7538

3.3858 3.4962 3.6274

F jlM C

 
 


 
  

,  4

3.3251 3.4346 3.5857

3.4944 3.6096 3.7735

3.4471 3.5608 3.7247

F jlM C

 
 


 
  

. 

Step 6: Using Eq. (11), the respective SVNCM energy values for all alternatives can be obtained 
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below: 

E[M(nC1jl)]  <(4.4771, 4.9817), (2.0120, 13.6191), (2.2225, 13.8893)>; 

E[M(nC2jl)]  <(4.8330, 4.5180), (1.9188, 13.4854), (2.5293, 13.9709)>; 

E[M(nC3jl)]  <(4.5915, 5.5376), (1.6398, 13.5913), (2.1478, 14.1255)>; 

E[M(nC4jl)]  <(4.9048, 5.1673), (2.0910, 13.9646), (1.8518, 14.2063)>. 

Step 7: Using Eq. (12), the SVNCM energy score values for each alternative Gsi (i = 1, 2, 3, 4) is 

calculated and given as follows: 

Z{E[M(nC1jk)]}  41.1393, Z{E[M(nC2jk)]}  34.2103, Z{E[M(nC3jk)]}  42.8003, and Z{E[M(nC4jk)]}  

53.5819. 

Step 8: According to the score values, the ranking order of the four alternatives is Gs4 > Gs3 > Gs1 > Gs2 

and the best one is Gs4. 

5.2 Comparative Investigation of the Decision Results Between SVNM and SVNCM Scenarios 

Since the existing MAGDM model [5] introduced in the SVNM scenario cannot perform the 

school site selection problem in the SVNCM scenario, we must ignore all the credibility values in 

SVNCMs as a special case of the site selection problem. Thus, we can apply the existing MAGDM 

model based on SVNM energy in the above site section problem to compare the proposed model with 

the existing model in the SVNM and SVNCM scenarios. 

Based on the MAGDM algorithm in [5], we can obtain the respective SVNM energy values for 

all alternatives Gsi (i = 1, 2, 3, 4): 

E[M(n1jk)]  <4.4771, 2.0120, 2.2225>, E[M(n2jk)]  <4.8330, 1.9188, 2.5293>, E[M(n3jk)]  <4.5915, 

1.6398, 2.1478>, and E[M(n4jk)]  <4.9048, 2.0910, 1.8518>. 

Using Eq. (8) [5], the SVNM energy score values for all alternative Gsi (i = 1, 2, 3, 4) are calculated 

and given as follows: 

H{E[M(n1jk)]}  8.7436, H{E[M(n2jk)]}  9.0555, H{E[M(n3jk)]}  8.6750, and H{E[M(n4jk)]}  9.4150. 

According to the score values, the ranking order of the four alternatives is Gs4 > Gs2 > Gs1 > Gs3 

and the best one is Gs4. 

For the comparative convenience of the decision results in the SVNM and SVNCM scenarios, all 

results are shown in Table 1. 

Table 1. Decision results between SVNM and SVNCM scenarios 

MAGDM model Ranking Best one Information environment 

Proposed model Gs4 > Gs3 > Gs1 > Gs2 Gs4 SVNCMs 

Existing model [5] Gs4 > Gs2 > Gs1 > Gs3 Gs4 SVNMs 

In terms of the decision results in Table 1, the ranking orders of the four alternatives between the 

SVNM and SVNCM scenarios are different, then the best one Gs4 is the same in the school site 

selection problem. It is clear that the credibility measures with respect to true, false, and uncertain 

evaluation values reveal their importance in the neutrosophic MAGDM problem because they can 

affect the ranking order and decision credibility of the four alternatives. Furthermore, the proposed 

model is the generalization of the existing model [5] and more general and creditable than the existing 

model in neutrosophic MAGDM problems under uncertain and inconsistent environments. 
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6. Conclusions 

Regarding an extension of SVNM energy, this study presented SVNCM energy and its 

properties. Then, a MAGDM model using the SVNCM energy was established in the SVNCM 

scenario, which can solve MAGDM problems and fill a research gap of MAGDM in the SVNCM 

scenario. Finally, the proposed MAGDM model was applied to the school site selection problem, then 

the comparative investigation of the decision results in the SVNM and SVNCM scenarios indicated 

that the proposed model was more general and creditable than the existing model in neutrosophic 

MAGDM problems under uncertain and inconsistent environments. Furthermore, the credibility 

measures with respect to true, false and uncertain evaluation values revealed their importance and 

necessity in the neutrosophic MAGDM problem and affected the ranking of the alternatives, then the 

decision credibility of the proposed model in the SVNCM scenario is significantly better than the 

existing model in the SVNM scenario. 

However, the proposed SVNCM energy and MAGDM model can be further applied in image 

processing, clustering analysis, project risk evaluation, slope stability analysis/assessment, and so on 

in engineering fields, which are future research directions. 
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Abstract: In this manuscript, we introduce the idea of complex-valued Neutrosophic b-metric spaces 

along with numerous significant illustrations. We provide fixed-point results for contraction maps. 

To support the main result, we establish the existence and uniqueness of solutions for nonlinear 

integral equations after the work.  

Keywords: Fuzzy Metric; Complex Valued Neutrosophic Metric Space; Fixed Point; Contractive 

Map; Unique Solution. 

 

1. Introduction 

Azam et al. [1] pioneered the idea of complex-valued metric spaces in 2011. Rouzkard et al. [2] 

studied and extended the conclusions of [1] by investigating numerous common fixed point theorems 

in this space. Many standard fixed point solutions in such space for mappings satisfying rational 

expressions on a closed ball were examined by Ahmad et al. [3]. Common fixed point theorem in 

complex-valued b-metric established by Rao et al. [4]. Following the development of this concept, 

Mukheimer [5] discovered common fixed point outcomes of a pair of self-mappings meeting a 

rational inequality in complex-valued b-metric space. Zadeh [6] established the basis for fuzzy 

mathematics in 1965. Kramosil and Michalek [7] initially brought up the concept of fuzzy metric-like 

space and then modified it by George and Veeramani [8]. Atanassov [9] stirred things up by adding 

the idea of a non-membership grade of fuzzy set theory. Fuzzy metric space has been widened to 

Intuitionistic fuzzy metric space by Park [10]. Park used continuous triangular norm as well as 

continuous triangular conorm to describe this idea. Smarandache [11] described the concept of 

neutrosophic logic and neutrosophic sets in 1998. 

This study aims to present the concept of Complex Valued Neutrosophic b-metric Space. In 

addition, this research expands on previous fixed-point findings over contractions. To strengthen, we 

finish our work with an application to integral equations and an example illustrating the applicability 

of our main results. 

 

2. Preliminaries 

This study will require the following definitions and results. 

ℂ denotes the set of complex numbers.  

We set ℌ = {(𝓅, 𝓆): 0 ≤ 𝓅 < ∞, 0 ≤ 𝓆 < ∞} ⊂ ℂ.  

A partial ordering ≾  on ℂ  is defined by 𝜏1 ≾ 𝜏2 (equivalently, 𝜏2 ≾ 𝜏1 ) ⇔  Re(𝜏1) ≤ 𝑅𝑒(𝜏2)  and 

𝐼𝑚(𝜏1) ≤ 𝐼𝑚(𝜏2). The closed unit complex interval is defined as 𝔉 = {(𝓅, 𝓆): 0 ≤ 𝓅 < 1,0 ≤ 𝓆 < 1} 

and the open unit complex interval by 𝔉𝔬̈ = {(𝓅, 𝓆): 0 < 𝓅 < 1,0 < 𝓆 < 1 }.  

https://doi.org/10.61356/j.nswa.2024.17244
https://sciencesforce.com/index.php/nswa/index
https://orcid.org/0000-0003-0210-8843
https://orcid.org/0000-0002-0364-1845
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The set {(𝓅, 𝓆): 0 < 𝓅 < ∞, 0 < 𝓆 < ∞} denoted by ℌ𝔬̈. The elements (1, 1), (0,0)  ∈ ℌ are indicated 

by ℓ and 𝔬̈, respectively. 

Remark 2.1[12].  Let {𝜏𝜄} be a sequence in ℌ. Then, 

(i) If {𝜏𝜄} is monotonic in ℌ and there exists 𝜌, 𝜎 ∈ ℌ such that 𝜌 ≾ 𝜏𝜄 ≾ 𝜎, for every 𝜄 ∈ Ν, 

then there exists a 𝜏 ∈ ℌ such that lim
𝜄→∞

𝜏𝜄 = 𝜏. 

(ii) Θ ⊂ ℂ is that there exists 𝜌, 𝜎 ∈ ℂ with 𝜌 ≾ ℂ ≾ 𝜎 for all 𝜃 ∈ Θ, then inf Θ and sup Θ 

both exist. 

Remark 2.2 [12].  Let 𝜏𝜄, 𝜏′𝜄 , 𝜂 ∈ ℌ for every  𝜄 ∈ Ν . Then, 

(i) If 𝜏𝜄 ≾ 𝜏′𝜄 ≾ ℓ for every 𝜄 ∈ Ν and lim
𝜄→∞

𝜏𝜄 = ℓ, then lim
𝜄→∞

𝜏′𝜄 = ℓ. 

(ii) If 𝜏𝜄 ≾ 𝜂 for every 𝜄 ∈ Ν and lim
𝜄→∞

𝜏𝜄 = 𝜏 ∈ ℌ, then 𝜄 ≾ 𝜂. 

(iii) If 𝜂 ≾ 𝜏𝜄 for every 𝜄 ∈ Ν and lim
𝜄→∞

𝜏𝜄 = 𝜏 ∈ ℌ, then 𝜂 ≾ 𝜄. 

Definition 2.3 [12]. Let {𝜏𝜄} be a sequence in ℌ. If for all 𝜏 ∈ ℌ there exists an 𝜄0 ∈ Ν such that 

𝜏 ≾ 𝜏𝜄 for all 𝜄 > 𝜄0. Then {𝜏𝜄} is named to be diverged to ∞ as 𝜄 → ∞, and we write lim
𝜄→∞

𝜏𝜄 = ∞. 

Definition 2.4 [12]. A binary operation ∗ ∶  𝔉 × 𝔉 → 𝔉 is named a complex-valued t-norm, if for all 

𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ 𝔉 

(i) 𝜏1 ∗ 𝜏2 = 𝜏2 ∗ 𝜏1; 

(ii) 𝜏 ∗ 𝔬̈=𝔬̈, 𝜏 ∗ ℓ = 𝜏; 

(iii) 𝜏1 ∗  (𝜏2 ∗ 𝜏3) = (𝜏1 ∗ 𝜏2) ∗ 𝜏3; 

(iv) 𝜏1 ∗  𝜏2 ≾ 𝜏3 ∗  𝜏4 whenever 𝜏1 ≾ 𝜏3, 𝜏2 ≾ 𝜏4. 

Example 2.5 [12].      

(i) 𝜏1 ∗ 𝜏2 =  (𝓅1𝓅2, 𝓆1𝓆2), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉, 

(ii) 𝜏1 ∗ 𝜏2 =  (min {𝓅1, 𝓅2}, min {𝓆1, 𝓆2}), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉, 

(iii) 𝜏1 ∗ 𝜏2 =  (max {𝓅1+𝓅2 − 1,0}, max {𝓆1 + 𝓆2 − 1,0}),   

for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉.  

These are examples of complex-valued t-norm. 

Example 2.6 [12]. The following are examples of complex-valued t-conorm: 

(i) 𝜏1 ⋆ 𝜏2 =  (max{𝓅1, 𝓅2}, max{𝓆1, 𝓆2}), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉, 

(ii) 𝜏1 ⋆ 𝜏2 =  (min {𝓅1+𝓅2, 1}, min {𝓆1 + 𝓆2, 1}), for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉. 

Definition 2.7. Let Ξ be a nonvoid set, ∗, ⋆ are complex-valued continuous t-norm and t-conorm, 

𝔓̃ , 𝔏̃ and 𝔔̃ are complex fuzzy sets on Ξ2 × ℌ𝔬̈ fulfilling the following assertions: 

(1) 𝔓̃(𝔲, 𝔳, 𝜏) + 𝔏̃(𝔲, 𝔳, 𝜏) + 𝔔̃(𝔲, 𝔳, 𝜏) ≾ 3; 

(2)  𝔬̈ ≺ 𝔓̃(𝔲, 𝔳, 𝜏); 

(3)  𝔓̃(𝔲, 𝔳, 𝜏) = ℓ for every 𝜏 ∈ ℌ𝔬̈ ⇔ if 𝔲 = 𝔳; 

(4) 𝔓̃(𝔲, 𝔳, 𝜏) = 𝔓̃(𝔳, 𝔲, 𝜏); 
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(5) 𝔓̃(𝔲, 𝔳, 𝜏) ∗ 𝔓̃(𝔳, 𝔴, 𝜏′) ≾ 𝔓̃(𝔲, 𝔴 , 𝜏 + 𝜏′); 

(6) 𝔓̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(7) 𝔏̃(𝔲, 𝔳, 𝜏) ≺ ℓ; 

(8) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(9) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔏̃(𝔳, 𝔲, 𝜏); 

(10) 𝔏̃(𝔲, 𝔳, 𝜏) ⋆ 𝔏̃(𝔳, 𝔴, 𝜏′) ≿ 𝔏̃(𝔲, 𝔴 , 𝜏 + 𝜏′); 

(11) 𝔏̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(12) 𝔔̃ (𝔲, 𝔳, 𝜏) ≺ ℓ; 

(13) 𝔔̃ (𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(14) 𝔔̃ (𝔲, 𝔳, 𝜏) = 𝔔̃(𝔳, 𝔲, 𝜏); 

(15) 𝔔̃ (𝔲, 𝔳, 𝜏) ⋆ 𝔔̃(𝔳, 𝔴, 𝜏′) ≿ 𝔔̃(𝔲, 𝔴 , 𝜏 + 𝜏′); 

(16) 𝔔̃ (𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous. 

The Triplet (𝔓̃, 𝔏,̃ 𝔔̃ ) is called a Complex Valued Neutrosophic Metric Space (CVNMS).  

Definition 2.8. Let Ξ be a nonvoid set, 𝜃 ≥ 1 be a given real number, ∗, ⋆ are complex-valued 

continuous t-norm and t- conorm , 𝔓̃, 𝔏̃ and 𝔔̃ are complex fuzzy sets on Ξ2 × ℌ𝔬̈  fulfilling the 

following assertions. Then (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃 ) is called a Complex Valued Neutrosophic b-Metric 

Space (CVNbMS). For all 𝔲, 𝔳, 𝔴 ∈ Ξ and 𝜏, 𝜏′ ∈ ℌ𝔬̈. 

(1) 𝔓̃(𝔲, 𝔳, 𝜏) + 𝔏̃(𝔲, 𝔳, 𝜏) + 𝔔̃(𝔲, 𝔳, 𝜏) ≾ 3; 

(2)  𝔬̈ ≺ 𝔓̃(𝔲, 𝔳, 𝜏); 

(3)  𝔓̃(𝔲, 𝔳, 𝜏) = ℓ for every 𝜏 ∈ ℌ𝔬̈ ⇔ 𝔲 = 𝔳; 

(4) 𝔓̃(𝔲, 𝔳, 𝜏) = 𝔓̃(𝔳, 𝔲, 𝜏); 

(5) 𝔓̃(𝔲, 𝔳, 𝜏) ∗ 𝔓̃(𝔳, 𝔴, 𝜏′) ≾ 𝔓̃(𝔲, 𝔴 , 𝜃(𝜏 + 𝜏′)); 

(6) 𝔓̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(7) 𝔏̃(𝔲, 𝔳, 𝜏) ≺ ℓ; 

(8) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(9) 𝔏̃(𝔲, 𝔳, 𝜏) = 𝔏̃(𝔳, 𝔲, 𝜏); 

(10) 𝔏̃(𝔲, 𝔳, 𝜏) ⋆ 𝔏̃(𝔳, 𝔴, 𝜏′) ≿ 𝔏̃(𝔲, 𝔴 , 𝜃(𝜏 + 𝜏′)); 

(11) 𝔏̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous; 

(12) 𝔔̃(𝔲, 𝔳, 𝜏) ≺ ℓ; 

(13) 𝔔̃(𝔲, 𝔳, 𝜏) = 𝔬̈, for all 𝜏 ∈ (0, ∞) ⇔ 𝔲 = 𝔳; 

(14) 𝔔̃(𝔲, 𝔳, 𝜏) = 𝔔̃(𝔳, 𝔲, 𝜏); 

(15) 𝔔̃(𝔲, 𝔳, 𝜏) ⋆ 𝔔̃(𝔳, 𝔴, 𝜏′) ≿ 𝔔̃(𝔲, 𝔴 , 𝜃(𝜏 + 𝜏′)); 

(16) 𝔔̃(𝔲, 𝔳, . ) ∶  ℌ𝔬̈ →  𝔉 is continuous. 

Example 2.9 Let (Ξ, ρ, 𝜃) be a b-Metric Space (bMS). Let 𝜏1 ∗ 𝜏2 =  (min {𝓅1, 𝓅2}, min {𝓆1, 𝓆2}),  𝜏1 ⋆

𝜏2 =  (max{𝓅1, 𝓅2}, max{𝓆1, 𝓆2})for all 𝜏1 = (𝓅1, 𝓆1), 𝜏2 = (𝓅2, 𝓆2) ∈ 𝔉. Let us consider the Complex 
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Fuzzy Sets[CFS] 𝔓̃, 𝔏̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that 𝔓̃(𝔲, 𝔳, 𝜏) =
𝓅𝓆

𝓅𝓆+ρ(𝔲,𝔳)
ℓ, 𝔏̃(𝔲, 𝔳, 𝜏) =

ρ(𝔲,𝔳)

𝓅𝓆+ρ(𝔲,𝔳)
ℓ, 𝔔̃(𝔲, 𝔳, 𝜏) =

ρ(𝔲,𝔳)

𝓅𝓆
ℓ, where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈. Then, (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS. 

Lemma 2.10 Let ( Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗ , ⋆, 𝜃)  be a CVNbMS and 𝜏1, 𝜏2 ∈ ℂ . If 𝜏1 ≺  𝜏2 , then 𝔓̃(𝔲, 𝔳, 𝜏1) ≾

𝔓̃(𝔲, 𝔳, 𝜃𝜏2), 𝔏̃(𝔲, 𝔳, 𝜏1) ≿ 𝔏̃(𝔲, 𝔳, 𝜃𝜏2) and 𝔔̃(𝔲, 𝔳, 𝜏1) ≿ 𝔔̃(𝔲, 𝔳, 𝜃𝜏2) for all 𝔲, 𝔳 ∈ Ξ. 

Proof. Let 𝜏1, 𝜏2 ∈ ℌ𝔬̈ be such that 𝜏1 ≺  𝜏2.  

Therefore, 𝜏2 − 𝜏1 ∈ ℌ𝔬̈ and so that for all 𝔲, 𝔳 ∈ Ξ,  we get 𝔓̃(𝔲, 𝔳, 𝜏1) = ℓ ∗ 𝔓̃(𝔲, 𝔳, 𝜏1) = 𝔓̃(𝔲, 𝔲, 𝜏2 −

𝜏1) ∗ 𝔓̃(𝔲, 𝔳, 𝜏1) ≾ 𝔓̃(𝔲, 𝔳, 𝜃𝜏2) 

𝔏̃(𝔲, 𝔳, 𝜃𝜏2) ≾ 𝔏̃(𝔲, 𝔲, 𝜏2 − 𝜏1) ⋆ 𝔏̃(𝔲, 𝔳, 𝜏1) ≾ 0 ⋆ 𝔏̃(𝔲, 𝔳, 𝜏1) and 

𝔔̃(𝔲, 𝔳, 𝜃𝜏2) ≾ 𝔔̃(𝔲, 𝔲, 𝜏2 − 𝜏1) ⋆ 𝔔̃(𝔲, 𝔳, 𝜏1) ≾ 0 ⋆ 𝔔̃(𝔲, 𝔳, 𝜏1). 

Definition 2.11 Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS and  {𝔲𝜄} be a sequence in Ξ. 

(i) {𝔲𝜄} converges to 𝔲 ∈ Ξ if for every 𝛾 ∈ 𝔉𝔬̈and every 𝜏 ∈ ℌ𝔬̈, there exists  𝜄0 ∈ ℕ such 

that, for every 𝜄 > 𝜄0, ℓ −  𝛾 ≺ 𝔓̃(𝔲𝜄, 𝔲, 𝜏), 𝔏̃(𝔲𝜄, 𝔲, 𝜏) ≺ 𝛾 and 𝔔̃(𝔲𝜄 , 𝔲, 𝜏) ≺ 𝛾.  We denote 

this by lim
𝜄→∞

𝔲𝜄 = 𝔲. 

(ii) {𝔲𝜄} in Ξ is named to be a Cauchy sequence in (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) if for every 𝜏 ∈ ℌ𝔬̈, 

lim
𝜄→∞

 𝑖𝑛𝑓𝑚>𝜄𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏) = ℓ,  lim
𝜄→∞

 𝑠𝑢𝑝𝑚>𝜄𝔏̃(𝔲𝑚 , 𝔲𝜄, 𝜏) = 𝔬̈ and lim
𝜄→∞

 𝑠𝑢𝑝𝑚>𝜄𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) = 𝔬.̈  

(iii) (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is known to be a complete  CVNbMS if for every Cauchy sequence 

{𝔲𝜄} in (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃), there exists an 𝔲 ∈ Ξ such that lim
𝜄→∞

𝔲𝜄 = 𝔲. 

Lemma 2.12 Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS. A sequence {𝔲𝜄} in Ξ converge to 

𝔲 ∈ Ξ ⇔ lim
𝜄→∞

 𝔓̃(𝔲𝑚 , 𝔲𝜄, 𝜏) = ℓ , lim
𝜄→∞

 𝔏̃(𝔲𝑚 , 𝔲𝜄, 𝜏) = 𝔬̈ and lim
𝜄→∞

 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) = 𝔬 ̈ holds for all 𝜏 ∈ ℌ𝔬̈.  

3. Main Results 

Theorem 3.1  Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS such that, for every sequence {𝜏𝜄} in ℌ𝔬̈ with 

lim
𝜄→∞

𝜏𝜄 = ∞ , we have lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏𝜄) =  ℓ ,  lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏𝜄) = 𝔬̈    and  lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏𝜄) = 𝔬̈    

for all 𝔲 ∈ Ξ. Let 𝔨 ∶  Ξ → Ξ be a mapping satisfying  

𝔓̃ (𝔨𝔲, 𝔨𝔳,
𝛿𝜏

𝜃
) ≿ 𝔓̃(𝔲, 𝔳, 𝜏), 𝔏̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔔̃(𝔲, 𝔳, 𝜏)        (3.1.1) 

For all 𝔲, 𝔳 ∈ Ξ and 𝜏 ∈ ℌ𝔬̈ where 𝛿 ∈ (0, 1). Then 𝔨 has a unique fixed point in Ξ. 

Proof: 

Let  𝔲0 be a random element of Ξ and define the sequence {𝔲𝜄} in Ξ  by the iterative method 𝔲𝜄 =

𝔨𝔲𝜄−1 for every 𝜄 ∈ Ν. If 𝔲𝜄 = 𝔲𝜄−1 for some 𝜄 ∈ Ν, then 𝔲𝜄 is a fixed point of 𝔨.  

So 𝔲𝜄 ≠ 𝔲𝜄−1 for every 𝜄 ∈ Ν. We claim that {𝔲𝜄} is a Cauchy sequence in Ξ.      

Define 𝔚𝜄 = { 𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏): 𝑚 > 𝜄}, 𝔑𝜄 = { 𝔏̃(𝔲𝑚 , 𝔲𝜄 , 𝜏): 𝑚 > 𝜄} and 𝔒𝜄 = { 𝔔̃(𝔲𝑚 , 𝔲𝜄, 𝜏): 𝑚 > 𝜄} for all 𝜄 ∈

Ν  and 𝜏 ∈ ℌ𝔬̈.  

Since 𝜃 ≺ 𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ, 𝜃 ≺ 𝔏̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ and 𝜃 ≺ 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ for every 𝑚 ∈ Ν with 𝑚 >

𝜄 and from Remark (2.1)(ii), inf 𝔚𝜄 = 𝛼𝜄, sup𝔑𝜄 = 𝛽𝜄 and sup𝔒𝜄 = 𝜚𝜄  exists for all 𝜄 ∈ Ν.  
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Using Lemma (2.10) and (3.1.1), we get  

𝔓̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ 𝔓̃ (𝔲𝑚, 𝔲𝜄 ,
𝛿𝜏

𝜃
) ≾ 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏) = 𝔓̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏)                  (3.1.2) 

𝔏̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≿ 𝔏̃ (𝔲𝑚, 𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) = 𝔏̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏)                            (3.1.3)  

and   𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≿ 𝔔̃ (𝔲𝑚 , 𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) = 𝔔̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏)                   (3.1.4) 

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄 .  

Since 𝔬̈ ≾ 𝛼𝜄 ≾ 𝛼𝜄+1 ≾ ℓ , ℓ ≿ 𝛽𝜄  ≿ 𝛽𝜄+1  ≿ 𝔬̈  and   ℓ ≿ 𝜚𝜄 ≿ 𝜚𝜄+1 ≿ 𝔬̈  for all 𝜄 ∈ Ν  it follows that 

{𝛼𝜄},{𝛽𝜄} and {𝜚𝜄} are monotonic sequences in ℌ.  

Utilizing Remark (2.1)(i), there exists ℓ0, ℓ′and ℓ̅ ∈ ℌ such that   

lim
𝜄→∞

𝛼𝜄 = ℓ0, lim
𝜄→∞

𝛽𝜄 = ℓ′    and  lim
𝜄→∞

𝜚𝜄 = ℓ̅.                                        (3.1.5) 

Now, by repeatedly using the contractive condition (3.1.1), we get 

𝔓̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≿ 𝔓̃ (𝔲𝑚 , 𝔲𝜄 ,
𝛿𝜏

𝜃
) = 𝔓̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,

𝛿𝜏

𝜃
) ≿ 𝔓̃ (𝔲𝑚−1, 𝔲𝜄−1,

𝛿2𝜏

𝜃2
) 

                               = 𝔓̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝛿2𝜏

𝜃2 ) ≿ 𝔓̃ (𝔲𝑚−2, 𝔲𝜄−2,
𝛿3𝜏

𝜃3 ) ≿ ⋯ ≿ 𝔓̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ). 

𝔏̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝔏̃ (𝔲𝑚 , 𝔲𝜄,
𝛿𝜏

𝜃
) = 𝔏̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,

𝛿𝜏

𝜃
) ≾ 𝔏̃ (𝔲𝑚−1, 𝔲𝜄−1,

𝛿2𝜏

𝜃2 ) 

     = 𝔏̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝛿2𝜏

𝜃2 ) ≾ 𝔏̃ (𝔲𝑚−2, 𝔲𝜄−2,
𝛿3𝜏

𝜃3 ) ≾ ⋯ ≾ 𝔏̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) and 

𝔔̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝔔̃ (𝔲𝑚, 𝔲𝜄 ,
𝛿𝜏

𝜃
) = 𝔔̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,

𝛿𝜏

𝜃
) ≾ 𝔔̃ (𝔲𝑚−1, 𝔲𝜄−1,

𝛿2𝜏

𝜃2 ) 

      = 𝔔̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝛿2𝜏

𝜃2 ) ≾ 𝔔̃ (𝔲𝑚−2, 𝔲𝜄−2,
𝛿3𝜏

𝜃3 ) ≾ ⋯ ≾ 𝔔̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ). 

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄.  

Thus, 𝛼𝜄+1 = 𝑖𝑛𝑓𝑚>𝜄𝔓̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≿ 𝑖𝑛𝑓𝑚>𝜄𝔓̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) ≿ 𝑖𝑛𝑓𝔳∈Ξ.𝔓̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ), 

𝛽𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔏̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔏̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) and 

 𝜚𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔔̃(𝔲𝑚+1, 𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔔̃ (𝔲0, 𝔲𝑚−𝜄,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ).  

Since lim
𝜄→∞

𝛿𝜄+1𝜏

𝜃𝜄+1, = ∞, by using the hypothesis along with (3.1.5), we obtain  

ℓ0 ≿ lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) = ℓ, ℓ′ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) = 𝔬̈ and 

ℓ̅ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔲0, 𝔳,
𝛿𝜄+1𝜏

𝜃𝜄+1, ) = 𝔬̈. 

This indicates that ℓ0 =  ℓ, ℓ′ = 𝔬̈ and  ℓ̅ = 𝔬̈. Thus, {𝔲𝜄} is a Cauchy sequence in Ξ.  

Since (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS, by Lemma (2.12), there exists a 𝔡 ∈ Ξ such that for all 𝜏 ∈ ℌ𝔬̈, 
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 lim
𝜄→∞

𝔓̃(𝔲𝑚, 𝔡, 𝜏) = ℓ, lim
𝜄→∞

𝔏̃(𝔲𝑚 , 𝔡, 𝜏) = 𝔬̈  and   lim
𝜄→∞

𝔔̃(𝔲𝑚, 𝔡, 𝜏) = 𝔬̈.              (3.1.6) 

We will demonstrate that 𝔡 is the fixed point of 𝔨. As a result of (5), (10) and (15) of definition (2.8), 

the contractive condition (3.1.1) we get, 

 𝔓̃(𝔡, 𝔨𝔡, 𝜏) ≿ 𝔓̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ∗ 𝔓̃ (𝔲𝑚+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔓̃ (𝔡, 𝔲𝜄+1,

𝜏

2𝜃
) ∗ 𝔓̃ (𝔨𝔲𝑚, 𝔨𝔡,

𝜏

2𝜃
) 

≿ 𝔓̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ∗ 𝔓̃ (𝔲𝑚, 𝔡,

𝜏

2𝛿
). 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔏̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔏̃ (𝔲𝑚+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔏̃ (𝔡, 𝔲𝜄+1,

𝜏

2𝜃
) ⋆ 𝔏̃ (𝔨𝔲𝑚 , 𝔨𝔡,

𝜏

2𝜃
) 

≾ 𝔏̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔏̃ (𝔲𝑚 , 𝔡,

𝜏

2𝛿
) and 

𝔔̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔔̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔔̃ (𝔲𝑚+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔔̃ (𝔡, 𝔲𝜄+1,

𝜏

2𝜃
) ⋆ 𝔔̃ (𝔨𝔲𝑚, 𝔨𝔡,

𝜏

2𝜃
)  

 ≾ 𝔔̃ (𝔡, 𝔲𝜄+1,
𝜏

2𝜃
) ⋆ 𝔔̃ (𝔲𝑚 , 𝔡,

𝜏

2𝛿
) 

for any 𝜏 ∈ ℌ𝔬̈. Taking  the limit as 𝜄 → ∞, by (3.1.6) and Remark (2.2)(ii), we obtain 𝔓̃(𝔡, 𝔨𝔡, 𝜏) = ℓ, 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ and 𝔔̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ and for all 𝜏 ∈ ℌ𝔬̈, which gives 𝔡 = 𝔨𝔡.  

To show that the fixed point 𝔡  is unique. Let 𝔷 be another fixed point of  𝔨, i.e., there is a 𝜏 ∈ ℌ𝔬̈ with 

𝔓̃(𝔡, 𝔷, 𝜏) ≠ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ from (3.1.1), we obtain that 

𝔓̃(𝔡, 𝔷, 𝜏) = 𝔓̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≿ 𝔓̃ (𝔡, 𝔷,
𝜃𝜏

𝛿
) = 𝔓̃ (𝔨𝔡, 𝔨𝔶,

𝜃𝜏

𝛿
) ≿ 𝔓̃ (𝔡, 𝔷,

𝜃2𝜏

𝛿2 ) … ≿ 𝔓̃ (𝔡, 𝔷,
𝜃`𝜄𝜏

𝛿𝜄 ) 

                  ≿ 𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ). 

𝔏̃(𝔡, 𝔷, 𝜏) = 𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝔏̃ (𝔡, 𝔷,
𝜃𝜏

𝛿
) = 𝔏̃ (𝔨𝔡, 𝔨𝔷,

𝜃𝜏

𝛿
) ≾ 𝔏̃ (𝔡, 𝔷,

𝜃2𝜏

𝛿2
) … ≾ 𝔏̃ (𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄
) 

                ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ) and 

𝔔̃(𝔡, 𝔷, 𝜏) = 𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝔔̃ (𝔡, 𝔷,
𝜃𝜏

𝛿
) = 𝔔̃ (𝔨𝔡, 𝔨𝔷,

𝜃𝜏

𝛿
) ≾ 𝔔̃ (𝔡, 𝔷,

𝜃2𝜏

𝛿2 ) … ≾ 𝔔̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ) 

                 ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔡, 𝔷,
𝜃𝜄𝜏

𝛿𝜄 ),  for all 𝜄 ∈ ℕ.  

Hence, since lim
𝜄→∞

𝛿𝜄𝜏

𝜃𝜄, = ∞, the above inequality becomes 𝔓̃(𝔡, 𝔷, 𝜏) ≿ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≾ 𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏) ≾

𝔬̈ which leads to a contradiction. Thus, we determine that the fixed point of 𝔨 is unique. 

Example 3.2. Let Ξ = [0,1] and let 𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that  

𝔓̃(𝔲, 𝔳, 𝜏) =
𝓅𝓆

𝓅𝓆+(𝔲− 𝔳)2 ℓ,  𝔏̃(𝔲, 𝔳, 𝜏) =
(𝔲− 𝔳)2

𝓅𝓆+(𝔲− 𝔳)2 ℓ and 𝔔̃(𝔲, 𝔳, 𝜏) =
(𝔲− 𝔳)2

𝓅𝓆
ℓ , 

where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈. Then, we can readily verify that (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS with 𝜃 = 2. 

We conclude that for any sequence {𝔲𝜄}  in ℌ𝔬̈  with lim
𝜄→∞

𝜏𝜄 = ∞ , we have 
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lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏)= ℓ, lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏)=𝔬̈  and  lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏)=𝔬̈ for all 𝔲 ∈ Ξ. Let 𝔨 ∶  Ξ → Ξ 

be a mapping defined by 𝔨𝔲 = 𝜍 𝔲2 where 0 < 𝜍 <
1

4
. By a routine calculation, we see that  

 𝔓̃ (𝔨𝔲, 𝔨𝔳,
𝛿𝜏

𝜃
) ≿ 𝔓̃(𝔲, 𝔳, 𝜏), 𝔏̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃ (𝔨𝔲, 𝔨𝔳,

𝛿𝜏

𝜃
) ≾ 𝔔̃(𝔲, 𝔳, 𝜏)for every  𝔲, 𝔳 ∈ Ξ and 

𝜏 ∈ ℌ𝔬̈, where 𝛿 = 4𝜍 and 0 < 𝛿 < 1. All the requirements of Theorem (3.1) are fulfilled and 0 is the 

unique fixed point of 𝔨. 

Theorem 3.3. Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗ , ⋆, 𝜃)  be a CVNbMS such that, for every sequence {𝜏𝜄}  in ℌ𝔬̈ with 

lim
𝜄→∞

𝜏𝜄 = ∞, we have lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏𝜄)= ℓ, lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏𝜄)=𝔬̈ and   lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏𝜄)=𝔬̈, for 

all 𝔲 ∈ Ξ. Let 𝔨, 𝔥 ∶  Ξ → Ξ be a mapping satisfying the following requirements: 

(i) 𝔥(Ξ) ⊆ 𝔨(Ξ), 

(ii) 𝔨 and 𝔥 commute on Ξ, 

(iii) 𝔨 is continuous on Ξ, 

(iv) 𝔓̃ (𝔥𝔲, 𝔥 𝔳,
𝛿𝜏

𝜃
) ≿ 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏), 𝔏̃ (𝔥𝔲, 𝔥 𝔳,

𝛿𝜏

𝜃
) ≾ 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) and 𝔔̃ (𝔥𝔲, 𝔥 𝔳,

𝛿𝜏

𝜃
) ≾ 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏)for 

all 𝔲, 𝔳 ∈ Ξ and 𝜏 ∈ ℌ𝔬̈ where 0 < 𝛿 < 1. Then 𝔨 and 𝔥 have a unique common fixed 

point in Ξ. 

Proof. Let 𝔲0 ∈ Ξ. Since 𝔥(Ξ) ⊆ 𝔨(Ξ), we can choose an 𝔲1 ∈ Ξ such that 𝔥𝔲0 = 𝔨𝔲1. Repeating this 

procedure, we can choose  𝔲𝜄 ∈ Ξ such that 𝔨𝔲𝜄 =  𝔥𝔲𝜄−1.  

We claim that the sequence {𝔨𝔲𝜄} is a Cauchy sequence. For every 𝜄 ∈ Ν and 𝜏 ∈ ℌ𝔬̈, define   

𝔚𝜄 = {𝔓̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏): 𝑚 > 𝜄}, 𝔑𝜄 = {𝔏̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏): 𝑚 > 𝜄} and 𝔒𝜄 = { 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏): 𝑚 > 𝜄}  

for every 𝜄 ∈ Ν  and 𝜏 ∈ ℌ𝔬̈.  

Since 𝔬̈ ≺ 𝔓̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏) ≾ ℓ , 𝔬̈ ≺ 𝔏̃(𝔲𝑚 , 𝔲𝜄, 𝜏) ≾ ℓ  and 𝔬̈ ≺ 𝔔̃(𝔲𝑚, 𝔲𝜄 , 𝜏) ≾ ℓ,  for every 𝑚 ∈ Ν  with 

𝑚 > 𝜄 and from Remark (2.1)(ii), inf 𝔨𝔚𝜄 = 𝛼𝜄, sup 𝔨𝔑𝜄 = 𝛽𝜄 and sup𝔨𝔒𝜄 = 𝜚𝜄 exists for every 𝜄 ∈ Ν. 

Using Lemma(2.10) and (iv), we get  

𝔓̃(𝔨𝔲𝑚, 𝔨𝔲𝜄 , 𝜏) ≾ 𝔓̃ (𝔨𝔲𝑚, 𝔨𝔲𝜄 ,
𝛿𝜏

𝜃
) ≾ 𝔓̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) = 𝔓̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏),                                   

𝔏̃(𝔨𝔲𝑚, 𝔨𝔲𝜄 , 𝜏) ≿ 𝔏̃ (𝔨𝔲𝑚, 𝔨𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔏̃(𝔥𝔲, 𝔥𝔳, 𝜏) = 𝔏̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) and  

𝔔̃(𝔨𝔲𝑚 , 𝔨𝔲𝜄 , 𝜏) ≿ 𝔔̃ (𝔨𝔲𝑚, 𝔨𝔲𝜄 ,
𝛿𝜏

𝜃
) ≿ 𝔔̃(𝔥𝔲, 𝔥𝔳, 𝜏) = 𝔔̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏),  

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄 .  

Since 𝔬̈ ≾ 𝛼𝜄 ≾ 𝛼𝜄+1 ≾ ℓ, ℓ ≿ 𝛽𝜄  ≿ 𝛽𝜄+1  ≿ 𝔬̈ and ℓ ≿ 𝜚𝜄  ≿ 𝜚𝜄+1  ≿ 𝔬̈, for all 𝜄 ∈ Ν it follows that {𝛼𝜄}, 

{𝛽𝜄} and {𝜚𝜄}  are monotonic sequences inℌ.  

So, utilizing Remark (2.1) (i), there exists an ℓ0, ℓ′and ℓ̃ ∈ ℌ satisfying  

lim
𝜄→∞

𝛼𝜄 = ℓ0, lim
𝜄→∞

𝛽𝜄 = ℓ′ and lim
𝜄→∞

𝜚𝜄 = ℓ̃                              (3.3.1) 

By applying the condition (iv), we have 
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𝔓̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) = 𝔓̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) ≿ 𝔓̃ (𝔨𝔲𝑚 , 𝔨𝔲𝜄 ,
𝜃𝜏

𝛿
) ≿ 𝔓̃ (𝔥𝔲𝑚−1, 𝔥𝔲𝜄−1,

𝜃𝜏

𝛿
) 

      ≿ 𝔓̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,
𝜃2𝜏

𝛿2
) = 𝔓̃ (𝔥𝔲𝑚−2, 𝔥𝔲𝜄−2,

𝜃2𝜏

𝛿2
) 

                              ≿ 𝔓̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝜃3𝜏

𝛿3 ) ≿ ⋯ ≿ 𝔓̃ (𝔲0, 𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1, ). 

𝔏̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) = 𝔏̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) ≾ 𝔏̃ (𝔨𝔲𝑚 , 𝔨𝔲𝜄 ,
𝜃𝜏

𝛿
) ≾ 𝔏̃ (𝔥𝔲𝑚−1, 𝔥𝔲𝜄−1,

𝜃𝜏

𝛿
) 

                                 ≾ 𝔏̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,
𝜃2𝜏

𝛿2
) = 𝔏̃ (𝔥𝔲𝑚−2, 𝔥𝔲𝜄−2,

𝜃2𝜏

𝛿2
) 

                                 ≾ 𝔏̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝜃3𝜏

𝛿3 ) ≾ ⋯ ≾ 𝔏̃ (𝔲0, 𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) and 

𝔔̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) = 𝔔̃(𝔥𝔲𝑚, 𝔥𝔲𝜄 , 𝜏) ≾ 𝔔̃̃ (𝔨𝔲𝑚 , 𝔨𝔲𝜄,
𝜃𝜏

𝛿
) ≾ 𝔔̃ (𝔥𝔲𝑚−1, 𝔥𝔲𝜄−1,

𝜃𝜏

𝛿
) 

      ≾ 𝔔̃ (𝔨𝔲𝑚−1, 𝔨𝔲𝜄−1,
𝜃2𝜏

𝛿2
) = 𝔔̃ (𝔥𝔲𝑚−2, 𝔥𝔲𝜄−2,

𝜃2𝜏

𝛿2
) 

                                   ≾ 𝔔̃ (𝔨𝔲𝑚−2, 𝔨𝔲𝜄−2,
𝜃3𝜏

𝛿3
) ≾ ⋯ ≾ 𝔔̃ (𝔲0, 𝔲𝑚−𝜄,

𝜃𝜄+1𝜏

𝛿𝜄+1
), 

for 𝜏 ∈ ℌ𝔬̈ and 𝑚, 𝜄 ∈ Ν  with 𝑚 > 𝜄. Thus, 

 𝛼𝜄+1 = 𝑖𝑛𝑓𝑚>𝜄𝔓̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) ≿ 𝑖𝑛𝑓𝑚>𝜄𝔓̃ (𝔨𝔲0, 𝔨𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) ≿ 𝑖𝑛𝑓𝔳∈Ξ.𝔓̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1 ). 

 𝛽𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔏̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔏̃ (𝔨𝔲0, 𝔨𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1 ) and 

 𝜚𝜄+1 = 𝑠𝑢𝑝𝑚>𝜄𝔔̃(𝔨𝔲𝑚+1, 𝔨𝔲𝜄+1, 𝜏) ≾ 𝑠𝑢𝑝𝑚>𝜄𝔔̃ (𝔨𝔲0, 𝔨𝔲𝑚−𝜄,
𝜃𝜄+1𝜏

𝛿𝜄+1
) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔨𝔲0, 𝔳,

𝜃𝜄+1𝜏

𝛿𝜄+1
). 

Since lim
𝜄→∞

𝜃𝜄+1𝜏

𝛿𝜄+1, = ∞, by using the hypothesis along with (3.3.1), we obtain  

ℓ0 ≿ lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = ℓ, ℓ′ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = 𝔬̈,  

ℓ′ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = 𝔬̈ and ℓ̅ ≾ lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔨𝔲0, 𝔳,
𝜃𝜄+1𝜏

𝛿𝜄+1, ) = 𝔬̈ 

Which implies that ℓ0 =  ℓ and ℓ′ = 𝔬̈. Thus, {𝔨𝔲𝜄} is a Cauchy sequence in Ξ.  

Using Lemma (2.12) and completeness of Ξ, there exists a 𝔡 ∈ Ξ such that lim 𝔨𝔲𝜄 =
𝜄→∞

𝔡. 

Using (iv), we can check that the continuity of 𝔨 implies continuity of 𝔥. So, lim 𝔥𝔨𝔲𝜄 =
𝜄→∞

𝔥𝔡.  

Since 𝔨 and 𝔥 commute on Ξ, we have lim 𝔨𝔥𝔲𝜄 =
𝜄→∞

𝔥𝔡.  

Moreover, we know that lim 𝔥𝔲𝜄−1 =
𝜄→∞

𝔡  so we get lim 𝔨𝔥𝔲𝜄−1 =
𝜄→∞

𝔨𝔡.  

Based on the uniqueness of limit, we get 𝔨𝔡 = 𝔥𝔡 and therefore 𝔥𝔥𝔡 = 𝔨𝔥𝔡.   
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Repeated use of the condition (iv) yields 

 𝔓̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) ≿ 𝔓̃ (𝔨𝔡, 𝔨𝔥𝔡,
𝜃𝜏

𝛿
) = 𝔓̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜏

𝛿
) ≿ ⋯ ≿ 𝔓̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜄𝜏

𝛿𝜄
) 

                          = 𝔓̃ (𝔥𝔡, 𝔨𝔥𝔡,
𝜃𝜄𝜏

𝛿𝜄 ) ≿ 𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄, )       

𝔏̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) ≾ 𝔏̃ (𝔨𝔡, 𝔨𝔥𝔡,
𝜃𝜏

𝛿
) = 𝔏̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜏

𝛿
) ≾ ⋯ ≾ 𝔏̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜄𝜏

𝛿𝜄
) 

                        = 𝔏̃ (𝔥𝔡, 𝔨𝔥𝔡,
𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄, ) and  

𝔔̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) ≾ 𝔔̃ (𝔨𝔡, 𝔨𝔥𝔡,
𝜃𝜏

𝛿
) = 𝔔̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜏

𝛿
) ≾ ⋯ ≾ 𝔔̃ (𝔥𝔡, 𝔥𝔥𝔡,

𝜃𝜄𝜏

𝛿𝜄
) 

                         = 𝔔̃ (𝔥𝔡, 𝔨𝔥𝔡,
𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄, ).   

Letting the limit as 𝜄 → ∞, and applying the hypothesis we get,  

𝔓̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) = ℓ , 𝔏̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) = 𝔬̈ and 𝔔̃(𝔥𝔡, 𝔥𝔥𝔡, 𝜏) = 𝔬̈ which implies that  𝔥𝔥𝔡 = 𝔨𝔥𝔡 = 𝔥𝔡.  

i.e., 𝔥𝔡 is a common fixed point of 𝔨 and 𝔥. 

We shall establish the uniqueness of the common fixed point 𝔥𝔡.  

Assume that 𝔥𝔡 and 𝔷 are two distinct common fixed points of  𝔨 and 𝔥.  

Utilizing (iv) with 𝔲 =  𝔥𝔡 and 𝔳 =  𝔷, we find that, 

ℓ ≿ 𝔓̃(𝔥𝔡, 𝔷, 𝜏)=𝔓̃(𝔥𝔥𝔡, 𝔥𝔡, 𝜏) ≿ 𝔓̃ (𝔨𝔥𝔡, 𝔨𝔷,
𝜃𝜏

𝛿
) = 𝔓̃ (𝔥𝔡, 𝔷,

𝜃𝜏

𝛿
) … ≿ 𝔓̃ (𝔥𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄 ) ≿ 𝑖𝑛𝑓𝔳∈Ξ𝔓̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄 ). 

𝔬̈ ≾ 𝔏̃(𝔥𝔡, 𝔷, 𝜏)=𝔏̃(𝔥𝔥𝔡, 𝔥𝔡, 𝜏) ≾ 𝔏̃ (𝔨𝔥𝔡, 𝔨𝔷,
𝜃𝜏

𝛿
) = 𝔏̃ (𝔥𝔡, 𝔷,

𝜃𝜏

𝛿
) … ≾ 𝔏̃ (𝔥𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔏̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄 ) and 

𝔬̈ ≾ 𝔔̃(𝔥𝔡, 𝔷, 𝜏)=𝔔̃(𝔥𝔥𝔡, 𝔥𝔡, 𝜏) ≾ 𝔔̃ (𝔨𝔥𝔡, 𝔨𝔷,
𝜃𝜏

𝛿
) = 𝔔̃ (𝔥𝔡, 𝔷,

𝜃𝜏

𝛿
) … ≾ 𝔔̃ (𝔥𝔡, 𝔷,

𝜃𝜄𝜏

𝛿𝜄 ) ≾ 𝑠𝑢𝑝𝔳∈Ξ𝔔̃ (𝔥𝔡, 𝔳,
𝜃𝜄𝜏

𝛿𝜄 ). 

Since lim
𝜄→∞

𝜃𝜄𝜏

𝛿𝜄 = ∞, we conclude that 𝔓̃(𝔥𝔡, 𝔷, 𝜏) = ℓ, 𝔏̃(𝔥𝔡, 𝔷, 𝜏) = 𝔬̈ and  𝔔̃(𝔥𝔡, 𝔷, 𝜏) = 𝔬̈   

Thus, 𝔥𝔡 = 𝔷, this concludes the proof. 

Example 3.4 Let Ξ = [0,1] and let 𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that 𝔓̃(𝔲, 𝔳, 𝜏) = 𝑒
−

(𝔲− 𝔳)2

𝓅+𝓆 ℓ,  

𝔏̃(𝔲, 𝔳, 𝜏) = (1 − 𝑒
−

(𝔲− 𝔳)2

𝓅+𝓆 )ℓ   and 𝔔̃(𝔲, 𝔳, 𝜏) = (𝑒
(𝔲− 𝔳)2

𝓅+𝓆 − 1)ℓ   where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈ . Then, we can 

readily verify that (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) is a CVNbMS with 𝜃 = 4. On the other hand, let lim
𝜄→∞

𝜏𝜄 = ∞ for 

any sequence {𝜏𝜄} in ℌ𝔬̈, where 𝜏𝜄 = (𝓅𝜄 , 𝓆𝜄). Since  (𝔲 −  𝔳)2 ≤ 1 for every 𝔲, 𝔳 ∈ Ξ it follows that  

𝑖𝑛𝑓𝔳∈Ξ𝔓̃(𝔲, 𝔳, 𝜏𝜄)=𝑖𝑛𝑓𝔳∈Ξ 𝑒
−(

(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄
)
ℓ  =𝑒

−(
𝑠𝑢𝑝𝔳∈Ξ(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄
)
ℓ ≿ 𝑒

−(
1

𝓅𝜄+𝓆𝜄
)
ℓ. 

𝑠𝑢𝑝𝔳∈Ξ𝔏̃(𝔲, 𝔳, 𝜏𝜄) = 𝑠𝑢𝑝𝔳∈Ξ {ℓ −
ℓ

𝑒

(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄

}= ℓ −
ℓ

𝑒
𝑠𝑢𝑝(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄

≾ ℓ −
ℓ

𝑒
1

𝓅𝜄+𝓆𝜄

  and  

𝑠𝑢𝑝𝔳∈Ξ𝔔̃(𝔲, 𝔳, 𝜏𝜄) = 𝑠𝑢𝑝𝔳∈Ξ {𝑒
(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄 ℓ − ℓ}= 𝑠𝑢𝑝𝔳∈Ξ {𝑒
(𝔲− 𝔳)2

𝓅𝜄+𝓆𝜄 ℓ − ℓ} ≾ 𝑒
1

𝓅𝜄+𝓆𝜄ℓ. 
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Therefore, we have  lim
𝜄→∞

𝑖𝑛𝑓𝔳∈Ξ 𝔓̃(𝔲, 𝔳, 𝜏𝜄) ≿  lim
𝜄→∞

𝑒
−(

1

𝓅𝜄+𝓆𝜄
)
ℓ = ℓ, 

 lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔏̃(𝔲, 𝔳, 𝜏𝜄) ≾  lim
𝜄→∞

(ℓ −
ℓ

𝑒
1

𝓅𝜄+𝓆𝜄

)= 𝔬̈ and 

 
 

lim
𝜄→∞

𝑠𝑢𝑝𝔳∈Ξ 𝔔̃(𝔲, 𝔳, 𝜏𝜄) ≾  lim
𝜄→∞

(𝑒
1

𝓅𝜄+𝓆𝜄ℓ)= 𝔬̈. Let 𝔨, 𝔥 ∶  Ξ → Ξ be defined by 𝔨𝔲 = 𝔲  and, 𝔥𝔲 =
𝔲

4
 .  

One can readily verify that 𝔥(Ξ) ⊆ 𝔨(Ξ) and 𝔨 is continuous on Ξ. Furthermore, 𝔨 and 𝔥 commute 

on Ξ. Moreover, It is simple to demonstrate that condition (iv) true for every 𝔲, 𝔳 ∈ [0,1] with 𝛿 =
1

4
. 

Definition.3.5 Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a complete CVNbMS. The modified contraction condition for 

the mapping 𝔨 ∶  Ξ → Ξ as follows:  

ℓ − 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔲, 𝔳, 𝜏)], 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏)    (1)  

For all 𝔲, 𝔳 ∈ Ξ  and 𝜏 ∈ ℌ𝔬̈ where 𝛿 ∈ [0,1). 

Theorem 3.6 Let ( Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗ , ⋆, 𝜃)  be a CVNbMS, and 𝔨 ∶  Ξ → Ξ  be a mapping fulfilling the 

contraction condition (I). Then, 𝔨  has a unique common fixed point in Ξ. 

Proof:  Let 𝔲0 be a random element of Ξ. Using induction, we can generate a sequence {𝔲𝜄} in Ξ 

such that 𝔲𝜄 =  𝔨𝔲𝜄−1 for every 𝜄 ∈ ℕ. Continuing from the proof of Theorem (3.1) in [12], we examine 

that the sequence {𝔲𝜄} is a Cauchy sequence in Ξ and converges to some 𝔡 ∈ Ξ.  

We will demonstrate that 𝔡 is a fixed point of 𝔨. By the contractive condition (I), we have 

ℓ − 𝔓̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔲, 𝔳, 𝜏)], 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏) and 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏)  

for all 𝜄 ∈ ℕ and 𝜏 ∈ ℌ𝔬̈. The above inequality demonstrates that 

ℓ(1 − 𝛿) + 𝛿𝔓̃(𝔲𝜄, 𝔡, 𝜏) ≾ 𝔓̃(𝔨𝔲𝜄, 𝔨𝔡, 𝜏), 𝔏̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏)and 𝔔̃(𝔨𝔲, 𝔨𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏).      (3.6.1) 

for all 𝜄 ∈ ℕ and 𝜏 ∈ ℌ𝔬̈.  

Therefore,  

𝔓̃(𝔡, 𝔨𝔡, 𝜏) ≿ 𝔓̃ (𝔡, 𝔲𝜄+1 ,
𝜏

2𝜃
) ∗ 𝔓̃ (𝔲𝜄+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔓̃ (𝔡, 𝔲𝜄+1 ,

𝜏

2𝜃
) ∗ 𝔓̃ (𝔨𝔲𝜄 , 𝔨𝔡,

𝜏

2𝜃
). 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔏̃ (𝔡, 𝔲𝜄+1 ,
𝜏

2𝜃
) ⋆ 𝔏̃ (𝔲𝜄+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔏̃ (𝔡, 𝔲𝜄+1 ,

𝜏

2𝜃
) ⋆ 𝔏̃ (𝔨𝔲𝜄 , 𝔨𝔡,

𝜏

2𝜃
) and  

𝔔̃(𝔡, 𝔨𝔡, 𝜏) ≾ 𝔔̃ (𝔡, 𝔲𝜄+1 ,
𝜏

2𝜃
) ⋆ 𝔔̃ (𝔲𝜄+1, 𝔨𝔡,

𝜏

2𝜃
) = 𝔔̃ (𝔡, 𝔲𝜄+1 ,

𝜏

2𝜃
) ⋆ 𝔔̃ (𝔨𝔲𝜄, 𝔨𝔡,

𝜏

2𝜃
) for any 𝜏 ∈ ℌ𝔬̈.  

Taking the limit as 𝜄 → ∞ , from (3.6.1) and Remark (2.2) (ii), we determine that 𝔓̃(𝔡, 𝔨𝔡, 𝜏) =  ℓ , 

𝔏̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ and 𝔔̃(𝔡, 𝔨𝔡, 𝜏) = 𝔬̈ for all 𝜏 ∈ ℌ𝔬̈, which yields 𝔨𝔡 =  𝔡. 

To prove that the fixed point of  𝔨 is unique, assume that there exists another 𝔷 ∈ Ξ such that 𝔨(𝔷) =

𝔷. Then, there is a 𝜏 ∈ ℌ𝔬̈ fulfilling 𝔓̃(𝔡, 𝔷, 𝜏) ≠ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ and  𝔔̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈.  

As a result of (I), we have  

ℓ − 𝔓̃(𝔡, 𝔷, 𝜏) = ℓ − 𝔓̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔡, 𝔷, 𝜏)], 𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝔏̃(𝔡, 𝔷, 𝜏) and 𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝔔̃(𝔡, 𝔷, 𝜏).  

Since 𝔓̃(𝔡, 𝔷, 𝜏) ≠ ℓ, 𝔏̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏) ≠ 𝔬̈,  we obtain 

Re(𝔓̃(𝔡, 𝔷, 𝜏)) ≠ 1 or Im(𝔓̃(𝔡, 𝔷, 𝜏)) ≠ 1, Re(𝔏̃(𝔡, 𝔷, 𝜏)) ≠ 0 or Im(𝔏̃(𝔡, 𝔷, 𝜏)) ≠ 0 and Re(𝔔̃(𝔡, 𝔷, 𝜏)) ≠ 0 or 

Im(𝔔̃(𝔡, 𝔷, 𝜏)) ≠ 0. Let Re(𝔓̃(𝔡, 𝔷, 𝜏)) ≠ 1, Re(𝔏̃(𝔡, 𝔷, 𝜏)) ≠ 0 and 𝑅𝑒 (𝔔̃(𝔡, 𝔷, 𝜏)) ≠ 0.  
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Therefore, we get  

1 − 𝑅𝑒 (𝔓̃(𝔡, 𝔷, 𝜏)) ≾ 𝛿[1 − 𝑅𝑒(𝔓̃(𝔡, 𝔷, 𝜏))] ≾ 1 − 𝑅𝑒 (𝔓̃(𝔡, 𝔷, 𝜏)),  

Re(𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝑅𝑒(𝔏̃(𝔲, 𝔳, 𝜏)) ≾ 𝑅𝑒(𝔏̃(𝔲, 𝔳, 𝜏)) = 𝑅𝑒(𝔏̃(𝔨𝔡, 𝔨𝔷, 𝜏)) and 

Re(𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏) ≾ 𝛿𝑅𝑒(𝔔̃(𝔲, 𝔳, 𝜏)) ≾ 𝑅𝑒(𝔔̃(𝔲, 𝔳, 𝜏)) = 𝑅𝑒(𝔔̃(𝔨𝔡, 𝔨𝔷, 𝜏)) which is a contradiction.   

We can omit the details of the other since the other case is identical to this one.  

Thus, 𝔓̃(𝔡, 𝔷, 𝜏) =  ℓ, 𝔏̃(𝔡, 𝔷, 𝜏)=𝔬̈ and 𝔔̃(𝔡, 𝔷, 𝜏)=𝔬̈ for all 𝜏 ∈ ℌ𝔬̈ and the proof is completed.  

Example: 3.7  Let Ξ = [0,1] and let 𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 such that  

𝔓̃(𝔲, 𝔳, 𝜏) = ℓ −
(𝔲− 𝔳)2

1+𝓅𝓆
ℓ, 𝔏̃(𝔲, 𝔳, 𝜏) =

(𝔲− 𝔳)2

1+𝓅𝓆
ℓ  and 𝔏̃(𝔲, 𝔳, 𝜏) =

(𝔲− 𝔳)2

1+𝓅𝓆−(𝔲− 𝔳)2 ℓ  where 𝜏 = (𝓅, 𝓆) ∈ ℌ𝔬̈ . 

Define the mapping  𝔨: Ξ → Ξ  by 𝔨𝔲 =
𝔲2

4
. Therefore, we have  

(𝔨𝔲− 𝔨𝔳)2

1+𝓅𝓆
ℓ ≾ 𝛿

(𝔲− 𝔳)2

1+𝓅𝓆
ℓ and 

(𝔨𝔲− 𝔨𝔳)2

1+𝓅𝓆−(𝔨𝔲− 𝔨𝔳)2 ℓ ≾ 𝛿
(𝔲− 𝔳)2

1+𝓅𝓆−(𝔲− 𝔳)2 ℓ  where 𝛿 ∈ [
1

4
, 1). Thus, we determine that 

(I) holds, all the necessary hypotheses of Theorem (3.6) are fulfilled and thus we establish the 

existence and uniqueness of the fixed point of 𝔨 and 0 is the unique fixed point of  𝔨. 

Corollary 3.8   Let (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, 𝜃) be a CVNbMS and 𝔨 ∶  Ξ → Ξ be a mapping satisfying  

ℓ − 𝔓̃(𝔨𝜄𝔲, 𝔨𝜄𝔳, 𝜏) ≾ 𝛿[ℓ − 𝔓̃(𝔲, 𝔳, 𝜏)], 𝔏̃(𝔨𝜄𝔲, 𝔨𝜄𝔳, 𝜏) ≾ 𝛿𝔏̃(𝔲, 𝔳, 𝜏)  and 𝔔̃(𝔨𝜄𝔲, 𝔨𝜄𝔳, 𝜏) ≾ 𝛿𝔔̃(𝔲, 𝔳, 𝜏) for every 

𝔲, 𝔳 ∈ Ξ and 𝜏 ∈ ℌ𝔬̈, where 0 ≤ 𝛿 < 1. Then, 𝔨  has a unique common fixed point in Ξ. 

Proof: By Theorem (3.6), we get a unique 𝔲 ∈ Ξ such that 𝔨𝜄𝔲 = 𝔲. Since 𝔨𝜄𝔨𝔲 = 𝔨𝔨𝜄𝔲 = 𝔨𝔲 and from 

uniqueness, we get 𝔨𝔲 = 𝔲. This demonstrates that 𝔨 has a unique fixed point in Ξ.  

4. Application 

Applying our main results from the previous part, we analyze the existence theorem for a 

solution to the following integral equation in this section: 

𝔲(𝔰̃)= κ(𝔰̃) + σ ∫ ℶ(𝔰̃,
1

0
 θ̿)ψ (θ̿, 𝔲(θ̿)) dθ̿, 𝔰̃ ∈ [0,1],                (2) 

where 

(i) κ is a continuous real-valued function on[0,1]; ψ ∶ [0,1] × ℝ → ℝ is continuous, 

ψ(𝔰̃, 𝔲) ≥ 0 and there exists a δ ∈ [0,1) such that |ψ(𝔰̃, 𝔲) − ψ(𝔰̃, 𝔳)| ≤ δ|𝔲 − 𝔳|, for 

every  𝔲, 𝔳 ∈ ℝ; 

(ii) ℶ ∶ [0,1] × [0,1] ] → ℝ is a continuous at 𝔰̃ ∈ [0,1] for every θ̿ ∈ [0,1] and measurable 

at θ̿ ∈ [0,1] for every  𝔰̃ ∈ [0,1]. Moreover, ℶ(𝔰̃, θ̿) ≥ 0 and ∫ ℶ(𝔰̃,
1

0
 θ̿)dθ̿ ≤ ℒ; 

(iii) δ2ℒ2σ2 ≤
1

2
. 

Theorem 4.1. If the condition (i)-(iv) fulfilled. Then, the integral Eq. (2) has unique solution in 

(C[0,1], ℝ), where (C[0,1], ℝ) is the set of all continuous real valued functions on [0,1]. 

Proof: Let Ξ =(C[0,1], ℝ) and define a mapping 𝔨 ∶  Ξ → Ξ by  

𝔨𝔲(𝔰̃)= κ(𝔰̃) + σ ∫ ℶ(𝔰̃,
1

0
 θ̿)ψ (θ̿, 𝔲(θ̿)) dθ̿, 𝔰̃ ∈ [0,1],  for all 𝔲 ∈ Ξ and for every 𝔰̃ ∈ [0,1].  

We need to prove that the mapping 𝔨 fulfils all requirements of Theorem (3.6).  
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Define  𝔓̃, 𝔏̃, 𝔔̃ ∶ Ξ2 × ℌ𝔬̈ → 𝔉 by 𝔓̃(𝔲, 𝔳, τ) = ℓ − sup𝔰̃∈[0,1]
(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆 ℓ, 

𝔏̃(𝔲, 𝔳, τ) = sup𝔰̃∈[0,1]
(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆  ℓ and 𝔏̃(𝔲, 𝔳, τ) = (
sup𝔰̃∈[0,1]

(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆  

1−sup𝔱̅∈[0,1]
(𝔲(𝔰̃)− 𝔳(𝔰̃))2

e𝓅𝓆

)  ℓ 

where τ = (𝓅, 𝓆) ∈ ℌ𝔬̈. Clearly, (Ξ, 𝔓̃, 𝔏̃, 𝔔̃,∗, ⋆, θ) be a complete CVNbMS. 

Moreover, for every 𝔲, 𝔳 ∈ Ξ and 𝔰̃ ∈ [0,1], we get  

|𝔨𝔲(𝔰̃) − 𝔨𝔳(𝔰̃)| = σ |∫ ℶ(𝔰̃, θ̿)ψ (θ̿, 𝔲(θ̿)) − ℶ(𝔰̃, θ̿)ψ (θ̿, 𝔳(θ̿)) dθ̿
1

0

| 

    ≤  σ ∫ ℶ(𝔰̃, θ̿) |ψ (θ̿, 𝔲(θ̿)) − ψ (θ̿, 𝔳(θ̿))| dθ
1

0

≤ σ ∫ ℶ(𝔰̃, θ̿)δ|𝔲(θ̿) − 𝔳(θ̿)|dθ̿
1

0

 

                            ≤  σℒ δsup𝔰̃∈[0,1]|𝔲(𝔰̃) − 𝔳(𝔰̃)| 

Since,  sup𝔰̃∈[0,1]|𝔨𝔲(𝔰̃) − 𝔨𝔳(𝔰̃)| ≤  σℒ δsup𝔰̃∈[0,1]|𝔲(𝔰̃) − 𝔳(𝔰̃)| 

We get, sup𝔰̃∈[0,1]
|𝔨𝔲(𝔰̃)−𝔨𝔳(𝔰̃)|2

e𝓅𝓆 ≤ σ2ℒ2δ2sup𝔰̃∈[0,1]
|𝔲(𝔰̃)−𝔳(𝔰̃)|2

e𝓅𝓆 ≤
1

2
sup𝔰̃∈[0,1]

|𝔲(𝔰̃)−𝔳(𝔰̃)|2

e𝓅𝓆  and  

(
sup𝔰̃∈[0,1]

|𝔨𝔲(𝔰̃)− 𝔨𝔳(𝔰̃)|2

e𝓅𝓆  

1−sup𝔱̅∈[0,1]
|𝔨𝔲(𝔰̃)− 𝔨𝔳(𝔰̃)|2

e𝓅𝓆

) ≤ σ2ℒ2δ2 (
sup𝔰̃∈[0,1]

|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆  

1−sup𝔱∈̅[0,1]
|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆

) ≤
1

2

sup𝔰̃∈[0,1]
|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆

1−sup𝔱∈̅[0,1]
|𝔲(𝔰̃)− 𝔳(𝔰̃)|2

e𝓅𝓆

. 

This establishes that the mapping 𝔨 fulfilling the contractive condition (1) in Theorem (3.6), and  𝔨 

has a unique solution in (C [0,1], ℝ), i.e., the integral Eq. (2) has a unique solution in (C [0,1], ℝ). 

Example 4.2 Take the integral equation 

𝔲(𝔰̃)= 
1

1+𝔰̅̃
+ 2 ∫

θ̿2

𝔰̃2+2
.

|cos𝔲(𝔰̃)|

5eθ̿

1

0
dθ̿, 𝔰̃ ∈ [0,1],                 (4.2.1) 

It can observed that the above equation is of the form (II), for σ = 2,  κ(𝔰̃) =
1

1+𝔰̃
 , ξ(𝔰̃, θ̿) =

θ2

𝔰̃+2
, 

ψ(𝔰̃, 𝔲) =
|cos𝔰̃|

5e𝔰̃ .  

Clearly,  ψ is continuous on [0,1] × ℝ and we get  

|ψ(θ̿, 𝔲) − ψ(θ̿, 𝔳)| =
1

5e𝔰̃ ||cos𝔲| − |cos𝔳|| ≤
1

5e𝔰̃
|cos𝔲 − cos𝔳| ≤

1

5
|cos𝔲 − cos𝔳| ≤

1

5
|𝔲 − 𝔳|  

for every 𝔲, 𝔳 ∈  ℝ. Thus, ψ fulfills the condition (ii) of the integral equation (II) with =
1

5
 . It is easy 

to verify that the mapping κ  is continuous and  ∫ ℶ(𝔰̃, θ̿)dθ̿ =
1

0
∫

θ̿2

𝔰̃2+2

1

0
 dθ̿ =

1

𝔰̃2+2

1

3
≤

1

6
= ℒ,  the 

mapping ξ meets the condition (iii). We get σ2ℒ2δ2 ≤
1

2
.. Thus, the hypotheses (i), (ii), (iii), and (iv) 

are true. Using the Theorem (3. 6) leads us to the conclusion that the integral equation (II) has a unique 

solution in (C [0, 1], ℝ). 

5. Conclusion 

In this paper, we have defined complex valued neutrosophic metric like space and we have 

proved fixed point theorems for mappings on complex valued neutrosophic metric like space. We 

hope that the results proved in this paper will form new connections for those who are working in 

complex valued neutrosophic metric-like spaces. 
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Abstract: Bipolar fuzzy graphs, capable of capturing situations with both positive and negative 

memberships, have found diverse applications in various disciplines, including decision-making, 

computer science, and social network analysis. This study investigates the domain of domination and 

global domination numbers within bipolar fuzzy graphs, owing to their relevance in these 

aforementioned practical fields. In this study, we introduce certain operations on bipolar fuzzy 

graphs, such as intersection(𝛤1 ∩ 𝛤2), join (𝛤1 + 𝛤2), and union (𝛤1 ∪ 𝛤2) of two graphs. Furthermore, 

we analyze the domination number 𝛾(Γ)  and the global domination number 𝛾𝑔 (𝛤) for various 

operations on bipolar fuzzy graphs, including intersection, join, and union of fuzzy graphs and their 

complements.  

Keywords: Bipolar Fuzzy Graph; Global Domination; Domination Number; Operations Fuzzy 

Graphs. 

 

1. Introduction 

L.A. Zadeh, who created the fuzzy set theory and fuzzy logic, originally suggested and studied 

the idea of "fuzzy sets" in 1965 [1]. By giving each element in a subset of a universal set a specific 

value in the closed interval [0, 1], this theory suggests a graded membership for each of such elements. 

Many scientific disciplines, including the fields of computer science, machine learning, analysis of 

decisions, the science of information, system sciences, controlling engineering, expertise systems, 

recognition of patterns, management science, and operation research, as well as a number of 

mathematical disciplines, including topology, algebra, geometry, graph theory, and analysis, have 

used Zadeh’s ideas. 

Rosenfeld 1975 [2] studied the notion of fuzzy graphs and numerous fuzzy analogs of graph-

theoretic notions, such as the path, cycles, and connectedness. Zadeh 1987 [3] investigated the fuzzy 

relationship as well. Ore studied the mathematical definition of dominance in the graph in 1962 [4], 

while A. Somasundaram and S. Somasundaram examined various concepts of domination in fuzzy 

graphs [5]. 

Sampat-Kumar presented the first concept of global dominant sets in graphs in 1989 [6]. The 

notions of domination and global domination of some operations in fuzzy product graphs were 

presented by Haifa A. and Mahioub S. in [6], while the concepts of global domination number, 

domatic number, and global domatic number were introduced by Mahioub in [7]. Mordeson, J.N., 

and Peng C-S introduced and analyzed operations on the fuzzy graph in 1994 [8], and also in 2017 [9] 

Somasundaram presented more notions on domination in fuzzy graphs. 

The study of domination and global domination numbers in bipolar fuzzy graphs has 

implications in fields such as operations research, game theory, and graph theory. By studying these 

https://doi.org/10.61356/j.nswa.2024.17245
https://sciencesforce.com/index.php/nswa/index
https://orcid.org/0000-0002-4881-6493
https://orcid.org/0000-0001-6252-8968


Neutrosophic Systems with Applications, Vol. 17, 2024                                                 35 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Haifa Ahmed, and Mohammed Alsharafi, Domination on Bipolar Fuzzy Graph Operations: Principles, Proofs, and 

Examples 

important parameters, researchers can gain insight into the properties and behavior of complex 

systems modeled by bipolar fuzzy graphs. 

Bipolar fuzzy graphs are a type of fuzzy graph where each vertex is assigned a pair of values 

that represent its positive and negative degrees. This paper studies the domination and global 

domination properties of these graphs, which are important concepts in network analysis. 

Domination refers to the minimum number of vertices needed to control or influence the entire graph, 

while global domination refers to the minimum number of vertices needed to control or influence 

any vertex in the graph. Additionally, Crisp graphs, being a fundamental mathematical construct, 

exhibit a plethora of operations that allow for their manipulation and analysis. These operations 

include but are not limited to, union, intersection, join, tensor product, Cartesian product, 

composition, strong product, disjunction, and symmetric difference of graphs. A comprehensive 

treatment of these operations is provided in [10-16]. Tobaili et al. [17] investigated hub number 

properties within the context of fuzzy graph structures. Further exploration into domination 

parameters on product fuzzy graphs was conducted by Ahmed and Alsharafi [18], with a specific 

focus on the semi-global domination number. In this study, we focus our attention on some of these 

operations, namely union, intersection, and join on bipolar fuzzy graphs, and discuss theorems and 

bounds of domination and global domination in such operations of the bipolar fuzzy graph. 

Bipolar fuzzy graphs (BFG) are an extension of fuzzy graphs that can effectively capture 

uncertain or imprecise information in various applications. BFGs are used to define concepts such as 

covering, matching, and domination in graph theory when the vertices and edges are uncertain or 

imprecise. BFGs have been used in various domains, including disaster management, location 

selection, and medical diagnosis. The energy of a directed bipolar fuzzy graph is calculated as the 

sum of the absolute values of the eigenvalues of its adjacency matrix, and it can be used in solving 

multi-criteria decision-making problems [19-22]. 

Inverse domination in bipolar fuzzy graphs refers to the idea of an inverse dominating set (IDS) 

in which a set I is a dominating set of the complement of the dominating set D. The least IDS is called 

the inverse domination number. In addition, inverse domination has also been defined and studied 

in interval-valued fuzzy graphs, with bounds on the inverse domination number provided for 

different types of interval-valued fuzzy graphs. Furthermore, a new definition of inverse domination 

number has been introduced in the graphs, with bounds and results established for this parameter 

[23]. The cardinality, dominating set, independent set, total dominating number, independent 

dominating number, and redundancy number of bipolar fuzzy graphs have been introduced and 

investigated in [24]. The concept of domination in fuzzy graphs has been extended to bipolar 

frameworks, and various expanded concepts of bipolar fuzzy graphs have been obtained in [25]. 

This study suggests exploring the concepts of domination and global domination in some 

bipolar fuzzy graph operations. There are a few points that we want to highlight about the motivation 

and applications; 

Bipolar fuzzy graphs offer a comprehensive approach to representing complex systems in which 

relationships can have both positive and negative aspects, unlike graphs that only consider positive 

membership. 

Domination and global domination are concepts in graph theory that have applications in 

decision-making, computer science, and social network analysis. By studying these properties in 

graphs, we can gain fresh perspectives. 

Investigating domination numbers helps us to understand how efficiently a set of vertices can 

control a graph. This has implications for modeling influence and control in world systems. 

Analyzing operations like union, intersection, and join on graphs provides us with a 

mathematical framework to examine and manipulate these graphical models. This can be useful for 

algorithm development in data processing. 
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The insights obtained from this research, such as establishing bounds on domination numbers 

after operations, could reveal connections within fuzzy graph models of complex data. 

The findings could have implications for fields such as machine learning, data mining, pattern 

recognition, and other disciplines dealing with data sets that require representation using bipolar 

fuzzy graphs. 

 

2. Preliminaries 

In this section, we review some definitions of graphs, fuzzy graphs, bipolar fuzzy graphs, and 

domination numbers in a bipolar fuzzy graph [7-10]. 

Definition 2.1: A crisp graph Γ is defined as an ordered pair Γ = (V, E), where V is a set of vertices 

E is a set of edges, and each edge is a two-element subset of V. The edges of a crisp graph are present 

or absent, and there is no ambiguity or uncertainty about their existence. A fuzzy graph Γ = (λ, τ) is 

defined as: 

Definition 2.2:  A set V of vertices, where each vertex s is associated with a membership function 

λv(s) that assigns a degree of membership to each element s in V. The membership function maps 

each element to a value between 0 and 1, where 0 indicates no membership, and 1 indicates full 

membership. 

Definition 2.3: A set E of edges, where each edge e is associated with a membership function τe(s, t) 

that assigns a degree of membership to each pair of vertices (s, t) in E. The membership function 

maps each pair of vertices to a value between 0 and 1, where 0 indicates no membership and 1 

indicates full membership. 

Definition 2.4: The order and size of a fuzzy graph Γ = (λ, τ) are defined as follows: 

The order of Γ is the sum of the degrees of membership of all vertices in Γ, that is, p = ∑s∈V λ(s). 

The size of Γ is the sum of the degrees of membership of all edges in Γ, that is, q = ∑(s,t)∈E τ(s, t). 

Definition 2.5: The complement of a fuzzy graph Γ = (λ, τ) is another fuzzy graph Γ = (λ, τ), defined 

as follows: 

The vertex set of Γ is the same as the vertex set of Γ, i.e., V(Γ) = V(Γ). 

The degree of membership of each vertex in Γ is the same as in Γ, that is, λ(t) = λ(t) for all t ∈ V(Γ). 

Definition 2.6: The degree of membership of each edge in Γ is the complement of the degree of 

membership of the corresponding edge in Γ, i.e., τ(s, t) = λ(s) ∧ λ(t) − τ(s, t) for all (s, t) ∈ E(Γ). 

Definition 2.7: A dominating set D of a fuzzy graph Γ = (λ, τ) is a subset of vertices such that every 

vertex t ∈ V(Γ) − D is dominated by at least one vertex s ∈ D. In other words, for every vertex t ∈

V(Γ) − D, there exists a vertex s ∈ D such that τ(s, t) ≥ λ(s). So, a dominating set in a fuzzy graph is 

a subset of vertices that "control" the graph, in the sense that every non-dominated vertex is within a 

certain distance from a vertex in the dominating set. 

Definition 2.8: A dominating set D of a fuzzy graph Γ = (λ, τ) is called a minimal dominating set if 

no proper subset of D is a dominating set of Γ. In other words, for every t ∈ D, the set D − t is not a 

dominant set of Γ. Thus, a minimal dominating set is a dominating set that cannot be reduced in size 

while still maintaining the property of domination. It is the "smallest" dominating set possible for the 

given fuzzy graph. 

Definition 2.9: The domination number of a fuzzy graph Γ = (λ, τ), denoted by γ(Γ), is defined as 

the minimum fuzzy cardinality of all minimal dominating sets in Γ. In other words, γ(Γ) is the 

smallest possible value of ∑t∈D λ(t)  on all minimal dominating sets D  of Γ . Intuitively, the 

domination number of a fuzzy graph measures the "influence" of the graph in the sense that it 

represents the minimum number of vertices needed to control the graph. A smaller number of 

dominations indicates a more efficient control structure, where a smaller number of vertices can 

dominate the entire graph. A vertex subset D of V in a fuzzy graph Γ = (λ, τ) is said to be a global 

dominating set of Γ if it is a dominating set of both Γ and its complement Γ. In other words, every 

vertex in V(Γ) − D  is dominated by at least one vertex in D , and every vertex in V(Γ) − D  is 
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dominated by at least one vertex in D. So, a global dominating set in a fuzzy graph is a subset of 

vertices that control both the presence and absence of edges in the graph. It is a more stringent 

condition than a dominating set or an independent set, as it requires that the set dominates both the 

original graph and its complement. 

Definition 2.10:  Let Γ1 = (λ1, τ1) and Γ2 = (λ2, τ2) denote two fuzzy graphs. We consider their join 

Γ = Γ1 + Γ2 = (V1 ∪ V2, E1 ∪ E2 ∪ E′) of graphs, where E′ is defined as the set of all edges joining the 

nodes of V1 and V2, under the assumption that V1 ∩ V2 ≠ ϕ. 

Furthermore, let us assume that Γ1  and Γ2  are fuzzy graphs. In this context, we define the 

joining of the two product fuzzy graphs denoted by Γ = Γ1 + Γ2: (λ1 + λ2, τ1 + τ2), as follows:  

(λ1 + λ2)(s) = {

(λ1 ∪ λ2) if    s ∈ V1 ∩ V2
λ1(s); s ∈ V1 − V2
λ2(s); s ∈ V2 − V1

                         (1) 

and  

(τ1 + τ2)(st) = {

(τ1 ∪ τ2) if    st ∈ E1 ∩ E2
τ1(st); st ∈ E1 − E2
τ2(st); st ∈ E2 − E1

            (2) 

 

Definition 2.11: Let Γ1 = (λ1, τ1)  and Γ2 = (λ2, τ2)  denote two fuzzy graphs. We consider their 

intersection Γ∗ = Γ1
∗ ∩ Γ2

∗ = (V1 ∩ V2, E1 ∩ E2) of graphs, under the assumption that V1 ∩ V2 ≠ ϕ. 

Moreover, let us consider Γ1 and Γ2 as fuzzy graphs and define their intersection, denoted by 

Γ = Γ1 ∩ Γ2: (λ1 ∩ λ2, τ1 ∩ τ2), as a product fuzzy graph. The intersection is defined as follows:  

λ1 ∩ λ2 = {min(λ1, λ2) ifs ∈ V1 ∩ V2.               (3) 

and  

τ1 ∩ τ2 = {min(τ1, τ2) ifs ∈ E1 ∩ E2               (4) 

 

Definition 2.12: Let Γ1 = (λ1, τ1) and Γ2 = (λ2, τ2) be two fuzzy graphs considering the union Γ =

Γ1 ∪ Γ2 = (V1 ∪ V2, E1 ∪ E2) of graphs, where V1 ∩ V2 ≠ ϕ. Then the union of two fuzzy graphs Γ1 and 

Γ2 is a fuzzy graph Γ = Γ1 ∪ Γ2: (λ1 ∪ λ2 , τ1 ∪ τ2) defined as follows: 

(λ1 ∪ λ2)(s) = {

max(λ1, λ2) ifs ∈ V1 ∩ V2
λ1(s); s ∈ V1 − V2
λ2(s); s ∈ V2 − V1

                (5) 

and  

(τ1 ∪ τ2)(st) = {

max(τ1, τ2) ifst ∈ E1 ∩ E2
τ1(st); st ∈ E1 − E2

τ2(st); st ∈ E2 − E1

           (6) 

3. Results 

This section studies some bipolar fuzzy graph operations and domination and global domination 

numbers on bipolar fuzzy graph operations. 

3.1 Some Bipolar Fuzzy Graph Operations 

The study of operations on bipolar fuzzy graphs can yield several potential benefits. Firstly, these 

operations can facilitate the analysis and interpretation of complex data sets that are difficult to model 

using traditional graphs. Second, by providing a mathematical framework for the manipulation of 

bipolar fuzzy graphs, these operations can aid in the development of algorithms for processing and 

analyzing large amounts of data. Finally, the study of operations on bipolar fuzzy graphs can lead to 

the discovery of new insights and relationships within data sets, which can have practical 

applications in fields such as machine learning, data mining, and pattern recognition. Within this 

section, we shall commence an exploration of certain operations on bipolar fuzzy graphs, namely, the 

intersection, the join, and the union. 
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Definition 3.1.1. Let Γ1 = (A1, B1)  and Γ2 = (A2, B2)  be two bipolar fuzzy graphs, where A1 =

(λ1
+, λ1

−), B1 = (τ1
+, τ1

−), A2 = ((λ2
+, λ2

−) and B2 = (τ2
+, τ2

−) consider the intersection Γ = Γ1 ∩ Γ2 = (A1 ∩

A2, B1 ∩ B2) of graphs. Suppose that V1 ∩ V2 ≠ ϕ, then the intersection of two bipolar fuzzy graphs 

Γ1 & Γ2 is a bipolar fuzzy graph Γ = Γ1 ∩ Γ2 = (A1 ∩ A2, B1 ∩ B2) defined as follows: 

 

A1 ∩ A2 = {
(λ1
+ ∩ λ2

+)(s) = min(λ1
+, λ2

+)(s) ifs ∈ V1 ∩ V2
(λ1
− ∩ λ2

−)(s) = max(λ1
−, λ2

−)(s) ifs ∈ V1 ∩ V2.
          (7) 

and  

B1 ∩ B2 = {
(τ1
+ ∩ τ2

+)(st) = min(τ1
+, τ2

+)(st) ifst ∈ E1 ∩ E2
(τ1
− ∩ τ2

−)(st) = max(τ1
−, τ2

−)(st)) ifst ∈ E1 ∩ E2
         (8) 

Example 1. Let Γ1 and Γ2 be two bipolar fuzzy graphs such that (τ1
+ ∩ τ2

+)(st) = min(τ1
+, τ2

+)(st) and 

(τ1
− ∩ τ2

−)(st) = max(τ1
−, τ2

−)(st) given in Figure 1 and their intersection. 

 

Figure 1. Graphs of Γ1 , Γ2 and their Γ1 ∩ Γ2. 

  

Definition 3.1.2. Let A1 = (λ1
+, λ1

−) and A2 = (λ2
+, λ2

−) be bipolar fuzzy graphs subset of V1 and V2 

and B1 = (τ1
+, τ1

−), B2 = (τ2
+, τ2

−) be bipolar fuzzy graphs subset of V1 × V2, and assume that V1 ∩ V2 ≠

ϕ, then the join Γ = (Γ1 + Γ2) = (A1 + A2, B1 + B2) is defined as follows:  

 

(A1 + A2)(s) =

{
 

 
(λ1
+ + λ2

+)(s) = max(λ1
+, λ2

+)(s) ifs ∈ V1 ∩ V2
(λ1
− + λ2

−)(s) = min(λ1
−, λ2

−)(s) ifs ∈ V1 ∩ V2
(λ1
+, λ1

−)(s) ifs ∈ V1 − V2
(λ2
+, λ2

−)(s) ifs ∈ V2 − V1

         (9) 

and  

(B1 + B2)(st) =

{
  
 

  
 
(τ1
+ + τ2

+)(st) = max(τ1
+, τ2

+)(st) ifst ∈ E1 ∩ E2
(τ1
− + τ2

−(st)) = min(τ1
−, τ2

−)(st) ifst ∈ E1 ∩ E2
(τ1
+, τ1

−)(st) ifst ∈ E1 − E2

(τ2
+, τ2

−)(st) ifst ∈ E2 − E1
max(τ1

+, τ2
+)(st) ifst ∈ E′

min(τ1
−, τ2

−)(st) ifst ∈ E′

       (10) 
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Example 2. For two bipolar fuzzy graphs Γ1 and Γ2, the joint Γ1 + Γ2 is given in Figure 2. 

 

Figure 2. Graphs of Γ1 , Γ2 and their Γ1 + Γ2. 

 

Theorem 3.1.1. Let Γ1 and Γ2 be two bipolar fuzzy graphs, then, Γ1 + Γ2 ≠ Γ1 + Γ2.  

The theorem states that the complement of the sum of two bipolar fuzzy graphs Γ1 and Γ2 is not 

equal to the sum of the complements of Γ1  and Γ2 . In other words, De Morgan’s laws of 

complementation do not hold for bipolar fuzzy graphs. Since the complement of the sum is a 

complete graph while the sum of the complements is a disjoint graph, we can conclude that De 

Morgan’s laws of complementation do not hold for bipolar fuzzy graphs. This can be shown by 

considering a counterexample: 

Example 3. Consider the bipolar fuzzy graphs Γ1 = (V1, A1, B1), and Γ2 = (V2, A2, B2), then Γ1 +

Γ2 = (V, A1 + A2, B1 + B1) , and Γ1 + Γ2 = (V, A1 + A2, B1 + B1) . Note that Γ1 = (V, A1, B1) , and Γ2 =

(V, A2, B2) , where A1 = (λ1
+, λ1

−), B1 = (τ1
+, τ1

−), A2 = (λ2
+, λ2

−)  and B2 = (τ2
+, τ2

−) , such that τ1
+(s, t) =

max(λ1
+(s), λ1

+(t)) , τ1
−(s, t) = min(λ1

−(s), λ1
−(t))  ∀  (s, t) ∈ E1 , τ2

+(s, t) = max(λ2
+(s), λ2

+(t)) , τ2
−(s, t) =

min(λ2
−(s), λ2

−(t)) , ∀  (s, t) ∈ E2which are respectively given in Figure 3 , with Γ1 + Γ2 = (V, A1 +

A2, B1 + B2). 
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Figure 3. Graphs of Γ1, Γ2, Γ1̅, Γ2̅ and their Γ1 + Γ2, Γ1 + Γ2̅̅ ̅̅ ̅̅ ̅̅ ̅, and Γ1̅ + Γ2̅. 

 

Definition 3.1.3. The union of two bipolar fuzzy graphs Γ1 and Γ2 is a new bipolar fuzzy graph Γ =

Γ1 ∪ Γ2 = (V1 ∪ V2, E1 ∪ E2): (λ1
+ ∪ λ2

+)(s), (λ1
− ∪ λ2

−)(s) ,(τ1
+ ∪ τ2

+)(st), (τ− ∪ τ2
−)(st)  such that V1 ∩ V2 ≠

ϕ. These membership and relation grades are defined in the following way: For each vertex s in the 

union of V1 and V2, the positive and negative membership grades of s in Γ are defined as (λ1
+ ∪

λ2
+)(s) and (λ1

− ∪ λ2
−)(s), respectively. These grades are determined based on whether s is present in 

both Γ1 and Γ2 or in only one of the two graphs: 

  

{
 

 
(λ1
+ ∪ λ2

+)(s) = max(λ1
+, λ2

+)(s) ifs ∈ V1 ∩ V2
(λ1
− ∪ λ2

−)(s) = min(λ1
−, λ2

−)(s) ifs ∈ V1 ∩ V2
(λ1
+, λ1

−)(s) ifs ∈ V1 − V2
(λ2
+, λ2

−)(s) ifs ∈ V2 − V1

           (11) 

 

Similarly, for each edge st in the union of E1 and E2, the positive and negative relation grades 

of st  in Γ  are defined as (τ1
+ ∪ τ2

+)(st)  and (τ1
− ∪ τ2

−)(st) , respectively. These grades are also 

determined based on whether st is present in both Γ1 and Γ2 or in only one of the two graphs.  

 

{
 

 
(τ1
+ ∪ τ2

+)(st) = max(τ1
+, τ2

+)(st) ifst ∈ E1 ∩ E2
(τ1
− ∪ τ2

−)(st) = min(τ1
−, τ2

−)(st) ifst ∈ E1 ∩ E2
(τ1
+, τ2

+)(st) ifst ∈ E1 − E2
(τ2
+, τ2

−)(st) ifst ∈ E2 − E1

            (12) 

  

Example 4. Consider the two bipolar fuzzy graphs Γ1 = ((λ1
+, λ1

−), (τ1
+, τ1

−))  and Γ2 =

((λ2
+, λ2

−), (τ2
+, τ2

−))  be two bipolar fuzzy graphs such that τ1
+(s, t) = max(λ1

+(s), λ1
+(t) , τ1

−(s, t) =

min(λ1
−(s), λ1

−(t)) ∀ (s, t) ∈ E1 , τ2
+(s, t) = max(λ2

+(s), λ2
+(t)), τ2

−(s, t) = min(λ2
−(s), λ2

−(t)), ∀ (s, t) ∈ E2 

and Γ1 ∪ Γ2 are given in Figure 4. 



Neutrosophic Systems with Applications, Vol. 17, 2024                                                 41 

An International Journal on Informatics, Decision Science, Intelligent Systems Applications 

 

Haifa Ahmed, and Mohammed Alsharafi, Domination on Bipolar Fuzzy Graph Operations: Principles, Proofs, and 

Examples 

 

Figure 4. Graphs of Γ1 , Γ2 and their Γ1 ∪ Γ2. 

 

Theorem 3.1.2. Let Γ1 = ((λ1
+, λ1

−), (τ1
+, τ1

−)) and Γ2 = ((λ2
+, λ2

−), (τ2
+, τ2

−)) be two bipolar fuzzy graphs, 

then, 

(i) (Γ1 + Γ2) = Γ1 ∪ Γ2 

(ii)(Γ1 ∪ Γ2) = Γ1 + Γ2  

Proof. Consider the identity map 𝐼: 𝑉1 ∪ 𝑉2 ⟶ 𝑉1 ∪ 𝑉2. To prove (𝑖) it is enough to prove that 

𝐴)(𝑖) (𝜆1
+ + 𝜆2

+)(𝑡𝑖) = (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖) and (𝜆1
− + 𝜆2

−)(𝑡𝑖) =(𝜆1
− ∪ 𝜆2

−)(𝑡𝑖) 

𝐴)(𝑖𝑖) (𝜏1
+ + 𝜏2

+)(𝑡𝑖, 𝑡𝑗) = 𝜏1
+ ∪ 𝜏2

+(𝑡𝑖, 𝑡𝑗)and (𝜏1
− + 𝜏2

−)(𝑡𝑖, 𝑡𝑗) = (𝜏1
− ∪ 𝜏2

−)(𝑡𝑖, 𝑡𝑗), 

𝐴)(𝑖)(𝜆1
+ + 𝜆2

+)(𝑡𝑖) = (𝜆1
+ + 𝜆2

+)(𝑡𝑖)  

 = {
𝜆1
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉1
𝜆2
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉2

 (13) 

  

 = {
𝜆1
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉1

𝜆2
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉2

 (14) 

 = (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖). 

Similarly (𝜆1
− + 𝜆2

−)(𝑡𝑖) =(𝜆1
− ∪ 𝜆2

−)(𝑡𝑖). 

𝐴)(𝑖𝑖) (𝜏1
+ + 𝜏1

+)(𝑡𝑖 , 𝑡𝑗) = (𝜆1
+ + 𝜆2

+)(𝑡𝑖) ∧ (𝜆1
+ + 𝜆2

+(𝑡𝑗) − (𝜏1
+ + 𝜏2

+)(𝑡𝑖 , 𝑡𝑗) 

 

 = {

𝜆1
+(𝑡𝑖) ∧ 𝜆1

+(𝑡𝑗) − 𝜏1
+(𝑡𝑖𝑡𝑗)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸1

𝜆1
+(𝑡𝑖) ∧ 𝜆1

+(𝑡𝑗) − 𝜏2
+(𝑡𝑖𝑡𝑗)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸2

𝜆1
+(𝑡𝑖) ∧ 𝜆2

+(𝑡𝑗) − 𝜆1
+(𝑡𝑖) ∧ 𝜆2(𝑡𝑗)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸′

 (15) 
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 = {

𝜏1
+(𝑡𝑖, 𝑡𝑖)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸1

𝜏2
+(𝑡𝑖, 𝑡𝑖))    𝑖𝑓    (𝑡𝑖, 𝑡𝑗) ∈ 𝐸2
0    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸′

 (16) 

  

 = (𝜏1
+ ∪ 𝜏2

+)(𝑡𝑖). 

Similarly (𝜏1
− + 𝜏2

−)(𝑡𝑖, 𝑡𝑗) = (𝜏1
− ∪ 𝜏2

−)(𝑡𝑖 , 𝑡𝑗).  

Consider the identity map 𝐼: 𝑉1 ∪ 𝑉2 ⟶ 𝑉1 ∪ 𝑉2. To prove (𝑖𝑖), it is enough to prove 

𝐴)(𝑖) (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖) = (𝜆1
+ + 𝜆2

+)(𝑡𝑖)and (𝜆1
− ∪ 𝜆2

−)(𝑡𝑖) =(𝜆1
−) + (𝜆2

−)(𝑡𝑖)𝐴)(i𝑖) (𝜏1
+ ∪ 𝜏2

+)(𝑡𝑖 , 𝑡𝑗) =

(𝜏1
+ ∪ 𝜏2

+)(𝑡𝑖 , 𝑡𝑗), and (𝜏1
− ∪ 𝜏2

−)(𝑡𝑖 , 𝑡𝑗) = 𝜏1
− + 𝜏2

−(𝑡𝑖, 𝑡𝑗) 

 

𝐴)(𝑖) (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖) = (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖) 

 

 = {
𝜆1
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉1
𝜆2
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉2

 (17) 

  

 = {
𝜆1
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉1

𝜆2
+(𝑡𝑖);     𝑡𝑖 ∈ 𝑉2

 (18) 

  

 = (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖) = (𝜆1
+ + 𝜆2

+)(𝑡𝑖). 

Similarly (𝜆1
− ∪ 𝜆2

−)(𝑡𝑖) =(𝜆1
−) + (𝜆2

−)(𝑡𝑖). 

𝐴)(𝑖𝑖) (𝜏1
+ ∪ 𝜏1

+)(𝑡𝑖 , 𝑡𝑗) = (𝜆1
+ ∪ 𝜆2

+)(𝑡𝑖) ∧ (𝜆1 ∪ 𝜆2(𝑡𝑗)) − (𝜏1 ∪ 𝜏2) 

 

 = {

𝜆1
+(𝑡𝑖) ∧ 𝜆1

+(𝑡𝑗) − 𝜏1
+(𝑡𝑖𝑡𝑗)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸1

𝜆1
+(𝑡𝑖) ∧ 𝜆1

+(𝑡𝑗) − 𝜏2
+(𝑡𝑖𝑡𝑗)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸2

𝜆1
+(𝑡𝑖) ∧ 𝜆2

+(𝑡𝑗) − 𝜆1
+(𝑡𝑖) ∧ 𝜆2

+(𝑡𝑗)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸′

 (19) 

  

 = {

𝜏1
+(𝑡𝑖, 𝑡𝑖)    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸1

𝜏2
+(𝑡𝑖, 𝑡𝑖))    𝑖𝑓    (𝑡𝑖, 𝑡𝑗) ∈ 𝐸2
0    𝑖𝑓    (𝑡𝑖 , 𝑡𝑗) ∈ 𝐸′

 (20) 

  

 = (𝜏1
+ ∪ 𝜏2

+)(𝑡𝑖 , 𝑡𝑗) = (𝜏1
+ + 𝜏2

+)(𝑡𝑖 , 𝑡𝑗). 

Similarly (𝜏1
− ∪ 𝜏2

−)(𝑡𝑖 , 𝑡𝑗) = (𝜏1
− + 𝜏2

−)(𝑡𝑖 , 𝑡𝑗). 

 

3.2 Domination and Global Domination Number on Bipolar Fuzzy Graph Operations 

Theorem 3.2.1. Let 𝛤1 and 𝛤2 be two disjoint bipolar fuzzy graphs. Then  

𝛾(𝛤1 ∩ 𝛤2) = 0. 

Proof. Let 𝐷1 represent a 𝛾1-set of a bipolar fuzzy graph 𝛤1, and let 𝐷2 denote a 𝛾2-set of a separate 

bipolar fuzzy graph 𝛤2. Given that 𝛤1 and 𝛤2 are disjoint, it follows that 𝐷1 ∩ 𝐷2 = 𝜙. Consequently, 

we can deduce that 𝛾(𝛤1 ∩ 𝛤2) = |𝐷1 ∩ 𝐷2| = |𝜙| = 0, where 𝛾 denotes the cardinality of a set. 
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Theorem 3.2.2. Let 𝛤1 = ((𝜆1
+, 𝜆1

−), (𝜏1
+, 𝜏1

−)) and 𝛤2 = ((𝜆2
+, 𝜆2

−), (𝜏2
+, 𝜏2

−)) be two bipolar fuzzy graphs 

such that 𝜏1
+(𝑠, 𝑡) = 𝑚𝑎𝑥(𝜆1

+(𝑠), 𝜆1
+(𝑡)) , 𝜏1

−(𝑠, 𝑡) = 𝑚𝑖𝑛(𝜆1
−(𝑠), 𝜆1

−(𝑡))  for all (𝑠, 𝑡) ∈ 𝐸1 , 𝜏2
+(𝑠, 𝑡) =

𝑚𝑎𝑥(𝜆2
+(𝑠), 𝜆2

+(𝑡)), 𝜏2
−(𝑠, 𝑡) = 𝑚𝑖𝑛(𝜆2

−(𝑠), 𝜆2
−(𝑡), for all (𝑠, 𝑡) ∈ 𝐸2. Then, 

 𝛾(𝛤1 ∪ 𝛤2) = 𝛾(𝛤1) + 𝛾(𝛤1). 

Proof. Let 𝐷1 represent a 𝛾1-set of a bipolar fuzzy graph 𝛤1, and let 𝐷2 denote a 𝛾2-set of a bipolar 

fuzzy graph 𝛤2 . Given that 𝛤1  and 𝛤2  are disjoint, it follows that 𝐷1 ∩ 𝐷2 ≠ 𝜙. Then 𝐷1 ∪ 𝐷2  is a 

dominating set of 𝛤1 ∪ 𝛤2. Consequently, we can deduce that 𝛾(𝛤1 ∪ 𝛤2) = |𝐷1 ∪ 𝐷2| = 𝛾(𝛤1) + 𝛾(𝛤2), 

where 𝛾 denotes the cardinality of a set. 

 

Theorem 3.2.3. If 𝛤1 and 𝛤2 be any two not disjoint bipolar fuzzy graphs, then  

 𝛾(𝛤1 ∪ 𝛤2) = 𝑚𝑎𝑥(𝛾(𝛤1), 𝛾(𝛤2)). 

Proof. Let 𝐷1 be a 𝛾1-set of a bipolar fuzzy graph 𝛤1 and let 𝐷2 be a 𝛾2-set of a bipolar fuzzy graph 

𝛤2. Then 𝐷1 ∪ 𝐷2 is a dominating set of 𝛤1 ∪ 𝛤2. Since 𝛤1 and 𝛤2 are not disjoint, then 𝐷1 ∩ 𝐷2 ≠ 𝜙 

Hence 𝛾(𝛤1 ∪ 𝛤2) = |𝐷1 ∪ 𝐷2| = 𝑚𝑎𝑥(𝛾(𝛤1), 𝛾(𝛤1)).  

 

Theorem 3.2.4. If 𝛤 = 𝛤1 + 𝛤2 is a complete bipolar fuzzy graph, then,  

 𝛾𝑔(𝛤1 + 𝛤2) = 𝑝. 

Proof. Consider a complete bipolar fuzzy graph 𝛤 = 𝛤1 + 𝛤2 , where 𝛤1  and 𝛤2  are two disjoint 

bipolar fuzzy graphs. In such a graph, every vertex has (𝑝 − 1) neighbors, where 𝑝 is the number 

of vertices in the graph. 

Since the complement of 𝛤 is the null graph, the set of vertices 𝑉 is the only global dominating set 

of both 𝛤 and its complement 𝛤. 

Therefore, we can conclude that the global domination number 𝛾𝑔(𝛤) of 𝛤 is equal to 𝑝, where 𝑝 is 

the number of vertices in 𝑉.  

 

Theorem 3.2.5. If 𝛤 = 𝛤1 + 𝛤2 = (𝐴1 + 𝐴2, 𝐵1 + 𝐵2) is a complete bipolar fuzzy graph, then  

 𝛾𝑔(𝛤1 + 𝛤2) = 𝛾𝑔(𝛤1 + 𝛤2). 

Proof. Consider a bipolar fuzzy graph 𝛤 = 𝛤1 + 𝛤2 = (𝐴1 + 𝐴2, 𝐵1 + 𝐵2), where 𝛤1  and 𝛤2  are two 

disjoint bipolar fuzzy graphs. Let 𝐷 be a minimal global dominating set of 𝛤. 

 

It can be observed that 𝐷 is a dominating set of both 𝛤 and its complement 𝛤. This is because every 

vertex in 𝑉(𝛤)\𝐷 is adjacent to at least one vertex in 𝐷, since 𝐷 is a global dominating set. Therefore, 

𝐷 dominates all vertices in 𝛤, and its complement 𝑉(𝛤)\𝐷 dominates all vertices in 𝛤. 

 

Furthermore, since 𝐷 is a minimal global dominating set of 𝛤, it is also a minimal global dominating 

set of 𝛤. This is because any global dominating set 𝐷′ of 𝛤 must also be a dominating set of 𝛤, since 

𝛤 = 𝛤. Therefore, |𝐷′| ≥ |𝐷|. 

From the above observations, we can conclude that the global domination number of 𝛤 is equal to 

the global domination number of 𝛤, i.e., 𝛾𝑔(𝛤) = 𝛾𝑔(𝛤).  

 

Theorem 3.2.6. Assume that 𝛤1 and 𝛤2 are two dis-joint bipolar fuzzy graphs. Then  

 𝛾𝑔(𝛤1 ∩ 𝛤2) = 0. 

Proof. Consider a bipolar fuzzy graph 𝛤1 with a global domination number 𝛾𝑔1 and a 𝛾𝑔1-set 𝐷1, as 

well as a bipolar fuzzy graph 𝛤2 with a global domination number 𝛾𝑔2 and a 𝛾𝑔2-set 𝐷2. 

 

Since 𝛤1  and 𝛤2  are disjoint, the intersection of 𝐷1  and 𝐷2  is non-empty. Hence, the size of the 

intersection, denoted by |𝐷1 ∩ 𝐷2|, is equal to zero since there are no common vertices in 𝛤1 and 𝛤2. 
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Therefore, the global domination number of the intersection of 𝛤1 and 𝛤2, denoted by 𝛤1 ∩ 𝛤2, is also 

equal to zero, since the size of any minimal global dominating set of 𝛤1 ∩ 𝛤2 is zero. Thus, 𝛾𝑔(𝛤1 ∩

𝛤2) = |𝐷1 ∩ 𝐷2| = |𝜙| = 0.  

 

Theorem 3.2.7. Consider two bipolar fuzzy graphs 𝛤1 = ((𝜆1
+, 𝜆1

−), (𝜏1
+, 𝜏1

−))  and 𝛤2 =

((𝜆2
+, 𝜆2

−), (𝜏2
+, 𝜏2

−)) such that 

𝜏1
+(𝑠, 𝑡) = 𝑚𝑎𝑥(𝜆1

+(𝑠), 𝜆1
+(𝑡) , 𝜏1

−(𝑠, 𝑡) = 𝑚𝑖𝑛(𝜆1
−(𝑠), 𝜆1

−(𝑡)  for all (s, t) ∈ E1 , τ2
+(s, t) =

max(λ2
+(s), λ2

+(t), τ2
−(s, t) = min(λ2

−(s), λ2
−(t), for all (s, t) ∈ E2, we claim that in this case, the global 

domination number of the union of the two graphs, denoted by Γ1 ∪ Γ2, is equal to the sum of the 

global domination numbers of Γ1 and Γ2, i.e.,  

 γg(Γ1 ∪ Γ2) = γg(Γ1) + γg(Γ2). 

Proof. Let D1 represent a γ1-set of a bipolar fuzzy graph Γ1, and let D2 denote a γ2-set of a bipolar 

fuzzy graph Γ2. Given that Γ1 and Γ2 are disjoint, it follows that D1 ∩ D2 = ϕ. Then D1 ∪ D2  is a 

global dominating set of Γ1 ∪ Γ2 . Consequently, we can deduce that γg(Γ1 ∪ Γ2) = |D1 ∪ D2| =

γg(Γ1) + γg(Γ2).  

4. Conclusions 

This study has explored the domain of domination and global domination numbers within the 

context of bipolar fuzzy graphs. We introduced and analyzed various operations on these graphs, 

including intersection, join, and union. Furthermore, we investigated the behavior of the domination 

number 𝛾(𝛤) and the global domination number 𝛾𝑔 (𝛤) under these operations, encompassing not 

only the original graphs but also their complements. Much work still needs to be done, and here we 

mention some directions for future research, such as the relationship between domination and global 

domination numbers in bipolar fuzzy graphs under more complex operations, such as tensor 

product, Cartesian product, composition, strong product, disjunction, and symmetric difference of 

graphs. Other graph concepts like connectivity and independence numbers may also be investigated 

in bipolar fuzzy graphs, along with their relationships to domination measures. 
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Abstract: The software reliability model estimates the probability of data failure in a specific 

environment, significantly impacting reliability and trustworthiness. The paper study focuses on 

cluster crime data, i.e., indeterministic in Neutrosophic Logic, using a software reliability model. The 

study utilizes reinforcement learning, Neutrosophic logic, and non-homogeneous Poisson process 

crime data to estimate indeterministic cluster data in crime. The "Non-homogeneous Poisson Process 

with Neutrosophic Logic" technique performs well in evaluating and deterring crime based on crime 

data analysis. The crime cluster involving offenders correctly classified as failure to accomplish does 

better than uncertain cluster reliability estimation with least squares and logistic regression analysis. 

The method enables crime prediction and prevention by using concave growth models to create an 

uncertain crime cluster, penalizing the correct person.  

Keywords: Non-homogenous Poison Process; Neutrosophic Logic; Reinforcement Learning; 

Uncertain Crime Reliability Estimation. 

 

1. Introduction 

Crime clusters" are the tendency for crimes to congregate along the time, place, and other 

dimensions used to quantify them by Aparna [1]. Strategically, the ability to anticipate any crime 

based on timing, location, and other characteristics can help law enforcement by providing crucial 

information. Individuals with good self-discipline are more likely to commit crimes, while those with 

poor self-discipline are more likely to engage in illegal activities. A person has committed a crime 

when they blatantly violate the law through action, omission, or carelessness for which they may face 

punishment. A crime is an illegal act that violates a law or social standard, is punishable by law, and 

is approved by the government. Reliability refers to the consistency of measurement, ensuring results 

can be reproduced under the same circumstances [2]. While cluster integrity looks at the internal 

cohesion and separation of the clusters, cluster veracity assesses the external consistency and crime 

application of the clusters. The clustering analysis results can be accurate and beneficial when both 

variables are considered by J.A. Adeyiga [3]. Conducting a thorough investigation is crucial to 

determining if you are a party to the specific crime committed, as determining fault is challenging. 

Insufficient, uncertain data collection methods and poor-quality or malfunctioning data collection 

tools can produce unreliable crime data inquiries. Some traits are also more difficult to accurately 

quantify. To avoid this complexity, reliability estimation is used. It can measure how consistently a 

person is involved in the crime as a sort of average of the correlations between committing and 

silence, ranging from 0.0 to 1.0. Supervised machine learning is necessary for unlabeled clustering. 

When a crime is identified, clustering changes the classification [2]. Reliability is the application of 

crime data analytics, including AI machine learning, to predict when a committed crime investigation 

https://doi.org/10.61356/j.nswa.2024.17246
https://sciencesforce.com/index.php/nswa/index
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will fail or otherwise deteriorate so that it can be an inquiry or replaced before failing [4]. The software 

reliability growth model, divided into concave and S-shaped types shown in Figure 1, exhibits similar 

behavior, with the fault detection rate decreasing as faults are detected. 

  

Figure 1. Concave and S-shaped models. 

 

Defect density is the process of detecting defects in a crime application system during testing. It 

helps determine if a software system is ready for release, as proposed by Pushpa in 2019 [5]. However, 

identifying complete defects is challenging, especially for high-reliability software. To estimate 

defects, exponential software test coverage is used to measure thoroughness and estimate residual 

defect density. This method is easier to understand and visually observe. Reliability models are then 

used to evaluate the results. 

The following six sections make up the correlation in this essay: Section 1's introduction and the 

proposed work in Section 2 using neutrosophic logic, a non-homogeneous poisoning process for 

crime clusters are covered in Section 2.1. Reinforcement learning is used for crime data analysis in 

Section 2.2. Uncertain cluster crime using least squares estimation in Section 2.3. A discussion of the 

experimental result is included in Section 2.4. The summary and projections for the future are found 

in Section 3 of the paper. References make mention of Section 4. 

 

2. Proposed Work 

The study utilizes neutrosophic logic and the non-homogenous Poisson process to analyze an 

uncertain crime cluster, focusing on the impact of software reliability on system reliability. The 

Contributions of this work are: 

 To use hyperparameter control in the machine learning process using reinforcement 

learning on the uncertain crime cluster for a concave shape. 

 To improve the uncertain cluster of crime using software reliability growth models. 

The crime department utilizes a machine learning-based method called neutrosophic logic and 

a non-homogeneous Poisson process for crime investigation, which has a time limit for clusters. 

2.1 Non-homogeneous Poisson Process-based Neutrosophic Logic for Crime Clusters 

Neutrosophic logic is being utilized to create a non-homogeneous Poisson process for crime 

clusters. Veeraraghavan [6] introduced the Poisson process in stochastic processes {N(t)|t>=0}, 

counting actions and time t, for analyzing the non-homogeneous Poisson process on neutrosophic 

logic cluster criminals. N(t) is a random variable influenced by N(tn), which represents the number of 

crime cases identified at a specific time t and the number of criminals at time tn. 
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𝑃[𝑁(𝑡) = 𝑗 | 𝑁(𝑡𝑛) = 𝑖] = 𝑃[𝑁(𝑡) − 𝑁(𝑡𝑛)] = 𝑗 − 𝑖                (1) 

 

where P[N(t) =j| process ending time], P[N(t) =i| Process Starting Time], j-i represents the process 

execution time. The neutrosophic logic rule can be used for continuous time-based Poisson processes, 

where criminals are involved in every crime detection system by Miguel Melgarejo [7]. 

 

∫ 𝑁(𝑡)𝑑𝑡 = ∫ (T + I + F )𝑑𝑡
1

0

𝑡

0
                 (2) 

 

The neutrosophic logic variable values in the same function N (t, s) vary between 0 to 1, as shown 

by evaluating the stochastic process∫ 𝑁(𝑡)𝑑𝑡 = ∫(0 ≤  T + I + F ≤ 1)dt. The three-time interval crime 

data clusters in Neutrosophic logic, containing Certainty (T), Uncertainty (I), and False (F) which is 

not a criminal, is chosen and taken in the Non-homogeneous Poisson process. The rate parameter 

may change over time, and the general rate purpose function is given as λ(t). Here, T, I, and F are 

standard or non-standard real subsets of ]-0, 1+[ with not certainly any fitting together between them 

by Florentine [8]. 

⋋𝐚,𝐛= =∫ ⋋(𝐭)𝐝𝐭
𝐛

𝐚

                     (3) 

The number of 𝜆𝑎,𝑏 on sets in the time interval (a, b], represented as N(b) - N(a), follows a poison 

process with associated parameters.  

P[N(𝑏) − N(a) = K] =  
𝑒

−𝜆𝑎,𝑏(𝜆𝑎,𝑏)
𝐾

𝐾!
 , 𝐾 = 0.1, . . , 𝑛             (4) 

where K is the no. of events in the time interval between (a, b). 

A time reason purpose in a Non-homogeneous Poisson process can be deterministic or autonomous, 

similar to a Cox procedure when λ(t) equals a constant rate proposed by Prasad [4]. 

 

2.2 Reinforcement Learning Used for Crime Cluster Data Analysis 

Reinforcement learning (RL) is a method for customizing hyperparameters in crime data, 

transforming it into a supervised learning problem for model training, starting with a crime state and 

predicting an inquiry or investigation action introduced by Jagan Mohan [4, 5]. To anticipate future 

crime incentives, the model uses a discretized grid of hyperparameters, an uncertainty of crime loss 

function, policy curves, and qualitative learning techniques H: r = M (H). If a Reinforcement Learning 

model R is used to predict a value q with H and r, then q = R (H, r). The following R square error is 

minimized by the model (where g represents the discount rate for future rewards): (q' - (r + g*max q)) 

^2. The network uses a linear layer output to predict q, simplifying policy gradient management and 

functioning as a classifier. 

Next reward (Agreed/Silent) =M (next H). The crime type model is optimal for Hyperparameters 

with high crime rewards and silent low reward Hyperparameters, addressing the multi-label 

classification problem by Zhu et al. [9]. Cross entropy can be utilized to enhance the probability of a 

model producing certain Hyperparameters to 1, indicating our preference for them. L= (next H | 

current H, current r) * log e-p accomplishes precisely that, but also balances the sample and reward 

value: L is equal to (next reward) *log e-p (next H | current H, current r), where 0<-P<1. 

 

2.3 Uncertain Cluster Crime using Least Square Estimation 

Non-homogeneous Poisson process-based neutrosophic logic is utilized in crime case 

investigation to estimate the uncertainty of criminal cluster data using small sample sizes by Farrell 

[10]. It estimates Hyperparameters using failure intensity and best-possible mean values, obtaining 
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coefficients for the equation Y= a + bX. The text discusses the use of Least Square estimation to 

estimate the probability of an uncertain cluster crime by Tsao Min [11]. 

Regression equation of x on y: 

∑ 𝑥 = 𝑏 ∑ 𝑦 + 𝑁𝑎                    (5) 

∑ 𝑥𝑦 = 𝑏 ∑ 𝑦2 + 𝑎 ∑ 𝑦                   (6) 

Regression equation of y on x: 

∑ 𝑦 = 𝑏 ∑ 𝑥 + 𝑁𝑎                    (7) 

∑ 𝑥𝑦 = 𝑏 ∑ 𝑥2 + 𝑎 ∑ 𝑥                   (8) 

 

The values of a and b can be easily determined by calculating the normal formula, allowing for 

easy determination of y and x. 

The analysis of regression equations requires determining the appropriate criminal for the study. 

Establishing the relationship between dependent and independent criminals is crucial. Correlation, 

the linear relationship between two crime victims, is essential for this study, measured between 

observed variables by Win Bernic [12]. 

 

𝑟 =
∑ 𝑦𝑖(𝑥𝑖−𝑥̅)𝑛

𝑖=1

√[∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1 ]
                  (9) 

 

The regression model uses a coefficient r to represent the mean of observed criminals, with 

values ranging from -1 to 1. A positive relationship indicates an increase or decrease in both criminals 

simultaneously, while a zero result indicates no or small linear relationship. A good fit includes a 

highly correlated dependent variable and independent criminals by Prasanth Sharma [13]. 

Independent criminals in regression can cause non-generalized, overfit models, leading to 

multicollinearity and conditioned XTX. Perfect linear dependence can cause singular XTX and infinite 

least squares estimates. The validity of a regression model is ensured by studying the residual 

standard error. 

𝑅𝑆𝐸 = √∑ (𝑦𝑖−𝑦𝑖)
2𝑛

𝑖=1

𝑛−𝑘
                  (10) 

 

The equation estimates the difference between fitted and observed values, aiding in model cross-

validation to prevent overfitting, and is explained in a separate section by Prasanth Sharma [14]. 

 

2.4 Uncertain Crime Cluster Using Logistic Regression 

Logistic regression is a popular machine learning algorithm used to predict categorical 

dependent variables using independent variables. It uses a "Concave" shaped logistic function to 

predict probabilistic values between 0 and 1, similar to Linear Regression. This technique is used for 

classification problems, rather than regression uncertainty problem, and is similar to Linear 

Regression in its approach. Logistic Regression is a crucial machine learning algorithm that provides 

probabilities and classifies data using continuous and discrete datasets. It helps identify the most 

effective variables for classification in criminal investigations by Prasanth Sharma [14]. 
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Figure 2. Working process to analyze an uncertain crime. 

 

The categories of uncertain criminal data used include Murder, Rape, Robbery, and Auto-Theft 

as shown in Figure 3. 

 

Figure 3. Regression statistics of uncertain criminals. 

 

It will produce 12 combinations of regression analysis for each one that will be shown below in 

Figure 4 (a to k): 

   

(a) (b) (c) 

Crime Data 
Gathering

Non-Homogeneous Poisson 
Process based Neutrosophic 

logic for crime clusters

Crime Cluster 
Data Analysis

Least Square 
Estimation

Logistic 
Regression
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(d) (e) (f) 

   

(g) (h) (i) 

   

(k) (l) (m) 

Figure 4. Regression analysis on uncertain criminals data. 

3. Experimental Results 

Experimental results in Tables (A and 1) show reliability estimation of criminal cases using 

neutrosophic logic and logistic regression on uncertain crime clusters, using indeterministic 

punishment data in a Concave-shape figure as shown in Figures 5-7. 

 

Table 1. Crime punishment of uncertain criminals. 

Regression Statistics 

Multiple R 0.668981671 

R Square 0.447536476 

Adjusted R Square 0.443561918 

Standard Error 0.082019713 

Observations 141 
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Figure 5. Observation residuals for uncertain criminal’s punishment of crime cases. 

 

 
Figure 6. Observation line fit for uncertain criminal’s punishment of crime cases. 

 

 
Figure 7. Concave-Shape of uncertain criminal’s punishment of crime cases. 
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The software reliability growth model concave indicates a decrease in detection rate as faults are 

identified in crimes. 

4. Conclusion 

The likelihood that criminal data will work even if an investigation fails in a certain context has 

a big impact on cluster reliability. The study's main objective was to estimate software reliability 

models for a hazy crime cluster. In this respect, the criminal cluster predicts the non-homogeneous 

Poisson process, neutrosophic logic, and reinforcement learning technique. Using non-homogeneous 

Poisson process crime cluster data, logistic and least squares regression estimation, and neutrosophic 

logic-based crime cluster data, reinforcement learning classifies crimes, making it easier to anticipate 

crime probability based on crime data studied. 
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Appendix 

Table A. Regression statistics of uncertain criminals. 

RESIDUAL OUTPUT PROBABILITY OUTPUT 

Observation 
Predicted 
Logistic  

Regression 
Residuals 

Standard 
Residuals 

Percentile 
Logistic  

Regression 

1 0.822998174 -0.322998174 -3.95219566 0.354609929 0.5 

2 0.824798955 -0.299819768 -3.668585398 1.063829787 0.524979187 

3 0.826599736 -0.276765739 -3.386497016 1.773049645 0.549833997 

4 0.828400517 -0.253958001 -3.107422236 2.482269504 0.574442517 

5 0.830201299 -0.231513638 -2.832793715 3.191489362 0.59868766 

6 0.83200208 -0.209542749 -2.563958586 3.90070922 0.622459331 

7 0.833802861 -0.188146555 -2.30215542 4.609929078 0.645656306 

8 0.835603642 -0.16741587 -2.048495403 5.319148936 0.668187772 

9 0.837404423 -0.147429942 -1.803948209 6.028368794 0.689974481 

10 0.839205204 -0.128255702 -1.569332797 6.737588652 0.710949503 

11 0.841005986 -0.109947407 -1.345313068 7.446808511 0.731058579 

12 0.842806767 -0.092546661 -1.132398081 8.156028369 0.750260106 

13 0.844607548 -0.076082764 -0.93094635 8.865248227 0.768524783 

14 0.846408329 -0.060573346 -0.741173587 9.574468085 0.785834983 

15 0.84820911 -0.046025222 -0.563163187 10.28368794 0.802183889 

16 0.850009891 -0.032435415 -0.396878736 10.9929078 0.817574476 

17 0.851810673 -0.019792287 -0.242177816 11.70212766 0.832018385 

18 0.853611454 -0.008076719 -0.098826481 12.41134752 0.845534735 

19 0.855412235 0.0027367 0.03348618 13.12056738 0.858148935 

20 0.857213016 0.01267851 0.155133852 13.82978723 0.869891526 

21 0.859013797 0.021783281 0.26653955 14.53900709 0.880797078 

22 0.860814578 0.0300886 0.368163184 15.24822695 0.890903179 

23 0.862615359 0.037634151 0.460490312 15.95744681 0.900249511 

24 0.864416141 0.044460898 0.544022176 16.66666667 0.908877039 

25 0.866216922 0.050610382 0.619267064 17.37588652 0.916827304 

26 0.868017703 0.056124117 0.686732959 18.08510638 0.92414182 

27 0.869818484 0.061043096 0.746921428 18.79432624 0.93086158 

28 0.871619265 0.065407379 0.800322661 19.5035461 0.937026644 

29 0.873420046 0.069255778 0.847411552 20.21276596 0.942675824 
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30 0.875220828 0.072625609 0.888644708 20.92198582 0.947846437 

31 0.877021609 0.075552518 0.924458273 21.63120567 0.952574127 

32 0.87882239 0.078070355 0.955266449 22.34042553 0.956892745 

33 0.880623171 0.080211106 0.981460612 23.04964539 0.960834277 

34 0.882423952 0.082004858 1.00340891 23.75886525 0.964428811 

35 0.884224733 0.083479802 1.021456272 24.46808511 0.967704535 

36 0.886025515 0.084662255 1.035924728 25.17730496 0.970687769 

37 0.887826296 0.085576711 1.047113983 25.88652482 0.973403006 

38 0.889627077 0.086245902 1.055302184 26.59574468 0.975872979 

39 0.891427858 0.086690871 1.060746815 27.30496454 0.978118729 

40 0.893228639 0.086931055 1.063685699 28.0141844 0.980159694 

41 0.89502942 0.08698437 1.064338055 28.72340426 0.98201379 

42 0.896830202 0.086867299 1.062905583 29.43262411 0.983697501 

43 0.898630983 0.086594986 1.059573564 30.14184397 0.985225968 

44 0.900431764 0.086181318 1.054511943 30.85106383 0.986613082 

45 0.902232545 0.08563902 1.047876398 31.56028369 0.987871565 

46 0.904033326 0.084979731 1.039809361 32.26950355 0.989013057 

47 0.905834107 0.084214091 1.030441008 32.9787234 0.990048198 

48 0.907634889 0.083351813 1.019890202 33.68794326 0.990986701 

49 0.90943567 0.082401759 1.008265375 34.39716312 0.991837429 

50 0.911236451 0.081372008 0.995665369 35.10638298 0.992608459 

51 0.913037232 0.080269917 0.982180221 35.81560284 0.993307149 

52 0.914838013 0.079102185 0.967891892 36.5248227 0.993940199 

53 0.916638794 0.077874907 0.952874949 37.23404255 0.994513701 

54 0.918439576 0.076593623 0.937197199 37.94326241 0.995033198 

55 0.920240357 0.07526337 0.920920268 38.65248227 0.995503727 

56 0.922041138 0.073888724 0.904100146 39.36170213 0.995929862 

57 0.923841919 0.072473841 0.886787677 40.07092199 0.99631576 

58 0.9256427 0.071022493 0.869029021 40.78014184 0.996665193 

59 0.927443481 0.069538102 0.850866068 41.4893617 0.996981584 

60 0.929244262 0.068023777 0.832336827 42.19858156 0.997268039 

61 0.931045044 0.066482333 0.813475771 42.90780142 0.997527377 

62 0.932845825 0.064916327 0.794314164 43.61702128 0.997762151 

63 0.934646606 0.063328074 0.774880349 44.32624113 0.99797468 

64 0.936447387 0.061719674 0.75520002 45.03546099 0.998167061 

65 0.938248168 0.060093031 0.735296463 45.74468085 0.998341199 

66 0.940048949 0.058449868 0.715190779 46.45390071 0.998498818 

67 0.941849731 0.056791749 0.694902088 47.16312057 0.99864148 

68 0.943650512 0.05512009 0.67444771 47.87234043 0.998770601 

69 0.945451293 0.053436171 0.653843335 48.58156028 0.998887464 

70 0.947252074 0.051741155 0.633103172 49.29078014 0.998993229 

71 0.949052855 0.050036094 0.612240092 50 0.999088949 

72 0.950853636 0.048321939 0.591265749 50.70921986 0.999175575 

73 0.952654418 0.046599554 0.570190695 51.41843972 0.999253971 
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74 0.954455199 0.044869719 0.549024487 52.12765957 0.999324917 

75 0.95625598 0.043133141 0.527775775 52.83687943 0.999389121 

76 0.958056761 0.04139046 0.506452391 53.54609929 0.999447221 

77 0.959857542 0.039642257 0.485061425 54.25531915 0.999499799 

78 0.961658323 0.037889054 0.463609297 54.96453901 0.999547378 

79 0.963459105 0.036131328 0.442101814 55.67375887 0.999590433 

80 0.965259886 0.034369508 0.420544238 56.38297872 0.999629394 

81 0.967060667 0.032603983 0.398941327 57.09219858 0.99966465 

82 0.968861448 0.030835105 0.377297389 57.80141844 0.999696553 

83 0.970662229 0.029063193 0.355616325 58.5106383 0.999725422 

84 0.97246301 0.027288535 0.333901664 59.21985816 0.999751545 

85 0.974263792 0.025511392 0.312156599 59.92907801 0.999775183 

86 0.976064573 0.023732 0.290384021 60.63829787 0.999796573 

87 0.977865354 0.021950574 0.268586547 61.34751773 0.999815928 

88 0.979666135 0.020167307 0.246766543 62.05673759 0.999833442 

89 0.981466916 0.018382373 0.224926153 62.76595745 0.99984929 

90 0.983267697 0.016595932 0.203067314 63.4751773 0.99986363 

91 0.985068479 0.014808127 0.181191782 64.18439716 0.999876605 

92 0.98686926 0.013019087 0.159301145 64.89361702 0.999888347 

93 0.988670041 0.01122893 0.137396839 65.60283688 0.999898971 

94 0.990470822 0.009437762 0.115480165 66.31205674 0.999908584 

95 0.992271603 0.00764568 0.093552299 67.0212766 0.999917283 

96 0.994072384 0.005852769 0.071614306 67.73049645 0.999925154 

97 0.995873165 0.00405911 0.049667149 68.43971631 0.999932276 

98 0.997673947 0.002264774 0.0277117 69.14893617 0.99993872 

99 0.999474728 0.000469824 0.005748748 69.85815603 0.999944551 

100 1.001275509 -0.001325681 -0.016220994 70.56737589 0.999949828 

101 1.00307629 -0.003121688 -0.038196878 71.27659574 0.999954602 

102 1.004877071 -0.004918149 -0.060178321 71.9858156 0.999958922 

103 1.006677852 -0.006715021 -0.082164794 72.69503546 0.999962831 

104 1.008478634 -0.008512266 -0.104155818 73.40425532 0.999966368 

105 1.010279415 -0.010309846 -0.126150961 74.11347518 0.999969568 

106 1.012080196 -0.012107732 -0.14814983 74.82269504 0.999972464 

107 1.013880977 -0.013905893 -0.17015207 75.53191489 0.999975085 

108 1.015681758 -0.015704303 -0.192157362 76.24113475 0.999977456 

109 1.017482539 -0.017502939 -0.214165414 76.95035461 0.999979601 

110 1.019283321 -0.019301779 -0.236175964 77.65957447 0.999981542 

111 1.021084102 -0.021100803 -0.258188775 78.36879433 0.999983299 

112 1.022884883 -0.022899995 -0.280203631 79.07801418 0.999984888 

113 1.024685664 -0.024699338 -0.302220337 79.78723404 0.999986326 

114 1.026486445 -0.026498818 -0.324238717 80.4964539 0.999987627 

115 1.028287226 -0.028298422 -0.346258613 81.20567376 0.999988805 

116 1.030088008 -0.030098138 -0.36827988 81.91489362 0.99998987 

117 1.031888789 -0.031897955 -0.390302387 82.62411348 0.999990834 
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118 1.03368957 -0.033697864 -0.412326017 83.33333333 0.999991706 

119 1.035490351 -0.035497856 -0.434350662 84.04255319 0.999992495 

120 1.037291132 -0.037297923 -0.456376227 84.75177305 0.99999321 

121 1.039091913 -0.039098058 -0.478402622 85.46099291 0.999993856 

122 1.040892695 -0.040898254 -0.500429771 86.17021277 0.999994441 

123 1.042693476 -0.042698506 -0.5224576 86.87943262 0.99999497 

124 1.044494257 -0.044498809 -0.544486045 87.58865248 0.999995448 

125 1.046295038 -0.046299157 -0.566515048 88.29787234 0.999995881 

126 1.048095819 -0.048099546 -0.588544554 89.0070922 0.999996273 

127 1.0498966 -0.049899972 -0.610574518 89.71631206 0.999996628 

128 1.051697382 -0.051700433 -0.632604894 90.42553191 0.999996949 

129 1.053498163 -0.053500923 -0.654635644 91.13475177 0.999997239 

130 1.055298944 -0.055301442 -0.676666732 91.84397163 0.999997502 

131 1.057099725 -0.057101985 -0.698698126 92.55319149 0.99999774 

132 1.058900506 -0.058902551 -0.720729796 93.26241135 0.999997955 

133 1.060701287 -0.060703138 -0.742761717 93.97163121 0.999998149 

134 1.062502069 -0.062503743 -0.764793865 94.68085106 0.999998326 

135 1.06430285 -0.064304365 -0.786826218 95.39007092 0.999998485 

136 1.066103631 -0.066105002 -0.808858756 96.09929078 0.999998629 

137 1.067904412 -0.067905652 -0.830891462 96.80851064 0.99999876 

138 1.069705193 -0.069706316 -0.852924321 97.5177305 0.999998878 

139 1.071505974 -0.07150699 -0.874957316 98.22695035 0.999998984 

140 1.073306755 -0.073307674 -0.896990436 98.93617021 0.999999081 

141 1.075107537 -0.075108368 -0.919023669 99.64539007 0.999999168 
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Abstract: In terms of heptagonal neutrosophic topological spaces, the purpose of this paper is to 

present the idea of heptagonal neutrosophic semi-open sets. Additionally, we examine a few of its 

characterizations and heptagonal neutrosophic semi-interior and heptagonal neutrosophic 

semi-closure operators. 

Keywords: Heptagonal Neutrosophic Topology; Heptagonal Neutrosophic Semi-open Set; 

Heptagonal Neutrosophic Semi-Interior and Heptagonal Neutrosophic Semi-Closure. 

 

1. Introduction 

In the year 1965, Zadeh [1] introduced and investigated fuzzy sets. An intuitionistic fuzzy set 

was first presented in 1986 by Atanassov [2]. Later, Coker [3] discovered intuitionistic fuzzy 

topological spaces in 1997. Florentin Smarandache [4] developed concepts such as neutrosophic logic 

and neutrosophic set in 1999. The truth, falsehood, and indeterminacy membership values are the 

three components on which he defined the neutrosophic set. The neutrosophic set was created in 

2010 by Florentin Smarandache [5] as a generalization of intuitionistic fuzzy sets. In 2012,                      

A.A. Salama and S.A. Albowi [6] introduced and developed the generalized neutrosophic set and 

generalized Neutrosophic topological spaces. 

In 2014, Salama et al. [7] developed the concepts of neutrosophic closed sets and neutrosophic 

continuous functions. Salama [8] investigated the Basic Structure of Some Classes of Neutrosophic 

Crisp Nearly Open Sets & Possible Application to GIS Topology. In 2020, AL-Nafee et al. [9] 

explored New Types of Neutrosophic Crisp Closed Sets. In Neutrosophic Topological Spaces, 

Neutrosophic Semi-open sets were first introduced in 2016 by Iswarya P and K. Bageerathi [10].  

Many scientists have constructed neutrosophic topological spaces on bipartitioned, 

quadripartitioned, and pentapartitioned neutrosophic sets. Kungumaraj et al. recently created 

heptagonal neutrosophic topological spaces [11]. The idea of heptagonal neutrosophic semi-open 

sets is introduced and its characterizations are studied in this study. Additionally, we present and 

investigate the heptagonal neutrosophic semi-interior and semi-closure operators.  

The idea of heptagonal neutrosophic semi-open sets in heptagonal neutrosophic topological 

spaces is presented in this paper. The remaining part of the document is structured as follows: The 

preliminary information for a better comprehension of the study is contained in Section 2. In Section 

3, the notion of the heptagonal neutrosophic semi-open set as well as the fundamental characteristics 

of these sets are introduced. The fundamental features of the heptagonal neutrosophic semi-interior 

operator are examined and the classical definition is presented in Section 4. The heptagonal 

neutrosophic semi-closure operator is defined classically and its fundamental features are examined 

in Section 5. The concluding Section 6 of the study contains the final results as well as some 

recommendations for additional research. 

 

https://doi.org/10.61356/j.nswa.2024.17247
https://sciencesforce.com/index.php/nswa/index
https://orcid.org/0000-0002-2685-7868
https://orcid.org/0000-0002-2668-7096
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2. Preliminaries 

Definition 2.1. [4] Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the 

form A = {〈x, αA(x), βA(x), γA(x)〉: x ∈ X} where αA(x), βA(x), γA(x) represent the degree of membership, 

degree of indeterminacy and the degree of non-membership respectively of each element x ∈ X to the 

set A. 

A Neutrosophic set A = {〈x, αA(x), βA(x), γA(x)〉: x ∈ X} can be identified as an ordered triple           

〈 αA(x), βA(x), γA(x)〉in ] −0, 1 +[ on X.  

Definition 2.2. [5] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic 

subsets in X that satisfies the following axioms:  

(NT1) 0N, 1N∈ τ  

(NT2) G1 ∩ G2∈ τ for any G1, G2∈ τ  

(NT3)∪Gi∈ τ ∀{Gi : i∈ J} ⊆ τ  

The pair (X, τ) is used to represent a neutrosophic topological space τ over X. 

 

Definition 2.3. [11] A heptagonal neutrosophic number S is defined and described as  

S = < [(p, q, r, s, t, u, v); µ], [(p ′ , q′ , r′ , s′ , t′ , u′ , v′ ); ℰ] , [(p ′′, q′′, r′′, s′′, t′′, u′′, v′′); η] > where                   

µ, ℰ, η ∈ [0, 1].The truth membership function α : R ⇒ [0, µ], the indeterminacy membership function 

β : R⇒ [ℰ, 1], and the falsity membership function γ : R ⇒ [η, 1].  

Using the ranking technique of heptagonal neutrosophic number is changed as,  

𝜆 =
(𝑝 + 𝑞 + 𝑟 + 𝑠 + 𝑡 + 𝑢 + 𝑣)

7
 

𝜇 =
(𝑝′ + 𝑞′ + 𝑟′ + 𝑠′ + 𝑡′ + 𝑢′ + 𝑣′)

7
 

𝛿 =
(𝑝′′ + 𝑞′′ + 𝑟′′ + 𝑠′′ + 𝑡′′ + 𝑢′′ + 𝑣′′)

7
 

Definition 2.4.[11] Let X be a non-empty set and AHN and BHN are HNS of the form                       

AHN = <x; λAHN (x), µAHN (x), δAHN (x) >, BHN = <x; λBHN (x), µBHN (x), δBHN (x) >, then their heptagonal 

neutrosophic number operations may be defined as 

 Inclusive: 

(i) AHN ⊆ BHN ⇒λAHN (x)≤ λBHN (x),µAHN (x)≥ µBHN (x), δAHN (x)≥ δBHN (x), for all x∈X. 

(ii) BHN ⊆ AHN ⇒λBHN (x)≤ λAHN (x),µBHN (x)≥ µAHN (x), δBHN (x)≥ δAHN (x), for all x∈X. 

 Union and Intersection: 

(iii) AHN ⋃ BHN = {<x; (λAHN (x)˅λBHN (x),µAHN (x)˄µBHN (x), δAHN (x)˄δBHN (x)) >}  

(iv) AHN ⋂ BHN = {<x; (λAHN (x)˄λBHN (x),µAHN (x)˅µBHN (x), δAHN (x)˅δBHN (x)) >}  

 Complement: 

Let X be a non-empty set and AHN be the HNS, AHN = <x; λAHN (x), µAHN (x), δAHN (x) >, then its 

complement is denoted by A’HN and is defined by 

A’HN = <x; δAHN (x), 1–µAHN (x), λAHN (x) > for all x∈X. 

 Universal and Empty set: 

Let AHN = <x; λAHN (x), µAHN (x), δAHN (x) > be a HNS and the universal set IA and OA of AHN 

is defined by 

(v) IHN = <x: (1,0,0)> for all x∈X. 

(vi) OHN = <x: (0,1,1)> for all x∈X. 

 

Definition 2.5. [11] A Heptagonal neutrosophic topology (HNT) on a non-empty set X is a family τ 

of heptagonal neutrosophic subsets in X satisfies the following axioms:  
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(HNT1 ) IHN(x), OHN(x) ∈ τ  

(HNT2 )⋃Ai∈τ ,∀{Ai : i∈ J} ⊆ τ  

(HNT3 ) A1⋂A2∈ τ for any A1 , A2 ∈ τ 

The pair (X, τ) is used to represent a heptagonal neutrosophic topological space τ over X. The sets in 

τ are called a heptagonal neutrosophic open set of X. The complement of heptagonal neutrosophic 

open sets are called heptagonal neutrosophic closed set of X. 

 

Throughout this paper, we denote  

HNS for heptagonal neutrosophic set  

HNOS for heptagonal neutrosophic open set  

HNCS for heptagonal neutrosophic closed set  

HNTS for heptagonal neutrosophic topological space 

 

Definition 2.6. [11] Let A be a HNS in HNTS (X, τ). Then,   

 HNint(AHN) = ⋃{GHN∶ GHN is a HNOS in X and GHN ⊆ AHN} is called a heptagonal neutrosophic 

interior of A. It is the largest HN-open subset contained in AHN. 

 HNcl(AHN) = ⋂ {KHN∶ KHN is a HNCS in X and AHN ⊆ KHN} is called a heptagonal neutrosophic 

closure of A. It is the smallest HN-closed subset containing AHN. 

3. HN-Semi Open Sets 

Definition 3.1:Let AHN be a HNS of a HNTS X. Then AHN is said to be a Heptagonal Neutrosophic 

Semi-open [written HN-SO ] set of X if there exists a heptagonal neutrosophic open set HNO such 

that HNO  AHN HNCl (HNO).  

 

Example 3.2: Let X = {x,y} and AHN, BHN ∈ HN(X). 

AHN = { <x; (λ:0.85,0.65,0.55,0.78,0.92,0.63,0.38), (µ: 0.75,0.95,0.63,0.48,0.56,0.88,0.78), (δ: 

0.25,0.36,0.45,0.58,0.69,0.72,0.90)>, <y; (λ:0.83,0.65,0.72,0.98,0.66,0.53,0.92), 

(µ:0.73,0.53,0.45,0.38,0.92,0.75,0.63), (δ:0.45,0.35,0.25,0.95,0.85,0.65,0.15)>}  and 

BHN = { <x; (λ:0.86,0.73,0.62,0.52,0.93,0.45,1), (µ:0.43,0.39,0.26,0.75,0.58,0.93,0.88), 

(δ:0.55,0.73,0.62,0.52,0.95,0.89,0.44)>, <y; (λ:0.73,0.62,0.51,0.42,0.33,0.29,0.19), 

(µ:0.82,0.92,1,0.61,0.54,0.76,0.46), (δ:0.19,0.23,0.63,0.52,0.95,0.82,1)>} 

By Ranking Technique, (Definition 2.5) 

AHN = { <x; (λ:0.68), (µ:0.72), (δ:0.56)>, <y; (λ:0.76), (µ:0.63), (δ:0.52)>}  and 

BHN = { <x; (λ:0.73), (µ:0.60), (δ:0.67)>, <y; (λ:0.44), (µ:0.73), (δ:0.62)>}   

For simplicity, we write the Heptagonal Neutrosophic sets after ranking technique as 

AHN = { <x; (0.68, 0.72, 0.56)>, <y; (0.76, 0.63, 0.52)>}  and 

BHN = { <x; (0.73, 0.60, 0.67)>, < y; (0.44, 0.73, 0.62)>}   

 

Let X = {x,y} and HNTS τ = {IHN, OHN, AHN, BHN, CHN, DHN } where 

AHN = { <x; (0.68, 0.72, 0.56)>, <y; (0.76, 0.63, 0.52)>}   

BHN = { <x; (0.73, 0.60, 0.67)>, <y; (0.44, 0.73, 0.62)>}   

CHN = { <x; (0.73, 0.60, 0.56)>, <y; (0.76, 0.63, 0.52)>}   

DHN = { <x; (0.68, 0.72, 0.67)>, <y; (0.44, 0.73, 0.62)>} 
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Consider the HNS after ranking technique 

EHN = { <x; (0.75, 0.52, 0.48)>, <y; (0.82, 0.59, 0.39)>}   

FHN = { <x; (0.58, 0.62, 0.75)>, <y; (0.25, 0.85, 0.75)>}   

Then the HN-semi open sets of HN(X) are {IHN, OHN, AHN, BHN, CHN, DHN, EHN,F’HN} 

 

The following theorems are the characterization of the HN-SO set in HNTS. 

 

Theorem 3.3: A subset AHN in a HNTS X is a HN-Semi open set iff AHN HNCl (HNInt (AHN)).  

Proof:  

Necessity: Let AHN be a HN-semi open set in X. Then HNO  AHN HNCl (HNO) for some 

heptagonal neutrosophic open set HNO. But HNO HNInt (AHN) and thus HNCl (HNO) HNCl 

(HNInt (AHN)). Hence AHN HNCl (HNO) HNCl (HNInt (AHN)). 

Sufficiency: Let AHN HNCl (HNInt (AHN)). Since HNO = HNInt (AHN), we have                         

HNO  AHN HNCl (HNO). Hence AHN is a HN-Semi open set. 

 

Theorem 3.4:  Let (X, ) be a HNTS. Then union of two HN-semi-open sets is again a HN- 

semi-open set in the HNTS X.  

Proof: Let AHN and BHN are HN-semi open sets in X. Then AHN HNCl (HNInt (AHN)) and                  

BHN HNCl (HNInt (BHN)). Therefore AHN⋃BHN HNCl (HNInt (AHN)) ⋃HNCl (HNInt (BHN)) = HNCl 

(HNInt (AHN) ⋃HNInt (BHN)) HNCl (HNInt (AHN⋃BHN)) [By Theorem 3.3].                    

Hence AHN⋃BHN is a HN-semi open set in X. 

 

Theorem 3.5:  Let (X, ) be a HNTS. Then union of a finite collection of HN-semi open sets is again a 

HN- semi open set in the HNTS X.  

Proof: For each i∈△, (AHN)i is a HN-semi open sets in X. Then by theorem 3.3,                      

(AHN)iHNCl (HNInt((AHN)i)). Thus, ⋃i∈△ (AHN)i⋃i∈△HNCl (HNInt((AHN)i)) HNCl 

(⋃i∈△HNInt((AHN)i)). Hence ⋃i∈△ (AHN)iHNCl (HNInt(⋃i∈△(AHN)i)). Therefore, the union of a finite 

collection of HN-semi open sets is again a HN- semi-open set in the HNTS X. 

 

Remark 3.6: The intersection of any two HN-semi open sets need not be a HN- semi-open set as 

shown in the following example. 

 

Example 3.7: Let X = {x,y} and τ = {IHN, OHN, AHN, BHN, CHN, DHN } where 

AHN = { <x; (0.45,0.45,0.45,0.45,0.45,0.45,0.45)>, <y; (0.75,0.75,0.75,0.75,0.75,0.75,0.75)>}   

BHN = { <x; (0.95,0.95,0.95,0.95,0.95,0.95,0.95)>, <y; (0.55,0.55,0.55,0.55,0.55,0.55,0.55)>}   

By ranking technique, 

AHN = { <x; (0.45,0.45,0.45)>, <y; (0.75,0.75,0.75)>}   

BHN = { <x; (0.95,0.95,0.95)>, <y; (0.55,0.55,0.55)>}   

CHN =AHN⋃BHN={<x; (0.95,0.45,0.45)>, <y; (0.75,0.55,0.55)>}   

DHN =AHN⋂BHN={<x; (0.45,0.95,0.95)>, <y; (0.55,0.75,0.75)>} 

τ = {IHN, OHN, AHN, BHN, CHN, DHN }is a HNTS. 

Then the HN-semi open sets of HN(X) are {IHN, OHN, AHN, BHN, CHN, DHN, B’HN, C’HN, D’HN}. 

Here AHN⋂B’HN is not a HN-semi open set, since HNCl(HNInt(AHN⋂B’HN))= C’HN and                        

AHN⋂B’HN ⊈ C’HN.  
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Theorem 3.8: Let AHN be a HNSO set in the HNTS X and suppose AHN BHNHNCl (AHN). Then BHN 

is HNSO set in X.  

Proof: There exists a heptagonal neutrosophic open set HNO such that HNO  AHN HNCl (HNO). 

Since, AHN  BHN, HNO  BHN. But HNCl (AHN) HNCl (HNO) and thus BHN HNCl (HNO). Hence 

HNO  BHN HNCl (HNO) and BHN is HNSO set in X. 

 

Theorem 3.9: Every heptagonal neutrosophic open set in the HNTS X is a HNSO set in X.  

Proof: Let A be a heptagonal neutrosophic open set in HNTS X. Then AHN = HNInt (AHN). Also 

HNInt (AHN) HNCl (HNInt (AHN)). This implies that AHN HNCl (HNInt (AHN)). Hence by Theorem 

3.3, AHN is a HNSO set in X. 

Remark 3.10: The converse of the above theorem need not be true as shown in the following 

example. 

Example 3.11: From Example 3.7, B’HN, C’HN, D’HN are HN-semi open sets, but not HN-open sets. 

 

4. Heptagonal Neutrosophic Semi-Interior In Heptagonal Neutrosophic Topological Spaces 

In this section, we introduce the heptagonal neutrosophic semi-interior operator and their 

properties in the heptagonal neutrosophic topological space.  

Definition 4.1: Let (X, ) be a HNTS. Then for a heptagonal neutrosophic subset AHN of X, the 

heptagonal neutrosophic semi-interior of AHN [HN-SInt (AHN) for short] is the union of all 

heptagonal neutrosophic semi-open sets of X contained in AHN.  

HN-SInt (AHN) = ⋃{ SHN : SHN is a HNSO set in X and SHN AHN} 

Proposition 4.2: Let (X, ) be a HNTS. Then for any heptagonal neutrosophic subsets AHN and BHN of 

a HNTS X we have  

(i) HN-SInt (AHN)  AHN 

(ii) AHN is HNSO set in X  HN-SInt (AHN) = AHN 

(iii) HN-SInt (HN-SInt (AHN)) = HN-SInt (AHN)  

(iv) If AHN BHN then HN-SInt (AHN)  HN-SInt (BHN)  

(v) HN-SInt( AHN⋂ BHN) = HN-SInt (AHN) ⋂ HN-SInt (BHN)  

(vi) HN-SInt (AHN) ⋃ HN-SInt (BHN)  HN-SInt (AHN⋃ BHN)  

Proof:  

(i) Follows from Definition 4.1.  

(ii) Let AHN be a HNSO set in X. Then AHN HN-SInt(AHN). By using (i) we get                              

AHN = HN-SInt(AHN). Conversely assume that AHN = HN-SInt(AHN). By using Definition 4.1,        

AHN is NSO set in X. Thus (ii) is proved.  

(iii) By using (ii), HN-SInt(HN-SInt(AHN)) = HN-SInt(AHN). This proves (iii). Since AHN BHN, by 

using (i), HN-SInt(AHN)  AHN BHN. That is HN-SInt(AHN)  BHN. Thus (iii) is proved 

(iv) By (iii), HN-SInt(HN-SInt(AHN))  HN-SInt(BHN). Thus HN-SInt(AHN)  HN-SInt(BHN).                 

Thus (iv) is proved. 

(v) Since AHN ⋂ BHNAHN and AHN⋂BHN BHN, by using (iv), HN-SInt (AHN ⋂ BHN)  HN-SInt (AHN) 

and HN-SInt(AHN⋂BHN)HN-SInt(BHN). This implies that  

HN-SInt(AHN⋂ BHN)  HN-SInt(AHN)⋂HN-SInt(BHN) ---(1).  
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By(i), HN-SInt(AHN)AHN and HN-SInt(BHN)BHN. This implies that 

HN-SInt(AHN)⋂HN-SInt(BHN)  AHN⋂BHN.  

Now by (iv), HN-SInt ((HN-SInt(AHN)⋂HN-SInt(BHN))  HN-SInt(AHN⋂ BHN).  

By (1), HN-SInt(HN-SInt (AHN))⋂HN-SInt(HN-SInt(BHN))HN-SInt(AHN⋂ BHN).  

By (iii), HN-SInt(AHN)⋂HN-SInt (BHN)HN-SInt(AHN⋂ BHN) -----(2).  

From (1) and (2), HN-SInt (AHN⋂ BHN) = HN-SInt(AHN)⋂HN-SInt(BHN). Thus (v) is proved. 

(vi) Since AHN AHN⋃BHN and BHN AHN⋃ BHN, by (iv), HN-SInt (AHN)  HN-SInt (AHN⋃ BHN) and 

HN-SInt (BHN)  HN-SInt (AHN⋃ BHN). This implies that, 

HN-SInt (AHN) ⋃ HN-SInt (BHN)  HN-SInt (AHN⋃ BHN). Thus (vi) is proved. 

 

The following example shows that the equality need not be held in Theorem 4.2 (vi). 

Example 4.3: Let X = {x,y} and  

AHN = { <x; (0.45,0.45,0.45,0.45,0.45,0.45,0.45)>, <y; (0.75,0.75,0.75,0.75,0.75,0.75,0.75)>}   

BHN = { <x; (0.95,0.95,0.95,0.95,0.95,0.95,0.95)>, <y; (0.55,0.55,0.55,0.55,0.55,0.55,0.55)>}   

By ranking technique, 

AHN = { <x; (0.45,0.45,0.45)>, <y; (0.75,0.75,0.75)>}   

BHN = { <x; (0.95,0.95,0.95)>, <y; (0.55,0.55,0.55)>}   

CHN =AHN⋃BHN={<x; (0.95,0.45,0.45)>, <y; (0.75,0.55,0.55)>}   

DHN =AHN⋂BHN={<x; (0.45,0.95,0.95)>, <y; (0.55,0.75,0.75)>} 

Then, τ = {IHN, OHN, AHN, BHN, CHN, DHN }is a HNTS 

Consider the HNS after the ranking technique, 

EHN = { <x; (0.75,0.52,0.48)>, <y; (0.82,0.59,0.39)>}   

Then the HN-semi open sets of HN(X) are {IHN, OHN, AHN, BHN, CHN, DHN, B’HN, C’HN, D’HN}. 

Here, HN-SInt (A’HN) ⋃ HN-SInt (EHN) =  C’HN⋃ DHN = C’HN 

HN-SInt (A’HN⋃ EHN) = DHN 

Hence, HN-SInt (A’HN) ⋃ HN-SInt (EHN) ≠ HN-SInt (A’HN⋃ EHN). 

 

5. Heptagonal Neutrosophic Semi-Closure In Heptagonal Neutrosophic Topological Spaces 

In this section, we introduce the heptagonal neutrosophic semi-closure operator and its 

properties in the heptagonal neutrosophic topological space.  

Definition 5.1: Let (X,) be a HNTS. Then for a heptagonal neutrosophic subset AHN of X, the 

heptagonal neutrosophic semi-closure of AHN [HN-SCl (AHN) for short] is the intersection of all 

heptagonal neutrosophic semi-closed sets of X contained in AHN.  

HN-SCl (AHN) = ⋃{ KHN : KHN is a HNSC set in X and AHN KHN}. 

 

Proposition 5.2: Let (X, ) be a HNTS. Then for any heptagonal neutrosophic subsets AHN and BHN of 

a HNTS X we have  

(i) AHN HN-SCl (AHN)  

(ii) AHN is HNSC set in X  HN-SCl (AHN) = AHN 

(iii) HN-SCl (HN-SCl (AHN)) = HN-SCl (AHN)  

(iv) If AHN BHN then HN-SCl (AHN)  HN-SCl (BHN)  

(v) HN-SCl ( AHN⋂ BHN)   HN-SCl (AHN) ⋂ HN-SCl (BHN)  

(vi) HN-SCl (AHN) ⋃ HN-SCl (BHN) = HN-SCl (AHN⋃ BHN)  

Proof:  
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(i) Follows from Definition 5.1.  

(ii) Let AHN be a HNSC set in X. Then AHN contains HN-SCl(AHN). Now by using (i), we get                              

AHN = HN-SCl(AHN). Conversely assume that AHN = HN-SCl(AHN). By using Definition 5.1,        

AHN is a HNSC set in X. Thus (ii) is proved.  

(iii) By using (ii), HN-SCl(HN-SCl(AHN)) = HN-SCl(AHN). This (iii) is proved.  

(iv) Since AHN BHN, by using (i), BHN HN-SCl(BHN) implies AHN HN-SCl(BHN) . But HN-SCl(AHN) 

is the smallest closed set containing AHN, hence HN-SCl(AHN)  HN-SCl(BHN).                 

Thus (iv) is proved. 

(v) Since AHN ⋂BHNAHN and AHN⋂BHN BHN, by using (iv), HN-SCl (AHN ⋂ BHN)  HN-SCl (AHN) 

and HN-SCl(AHN⋂BHN)HN-SCl(BHN). This implies that  

HN-SCl(AHN⋂ BHN)  HN-SCl(AHN)⋂HN-SCl(BHN). Thus (v) is proved. 

(vi) Since AHN AHN⋃BHN and BHN AHN⋃ BHN, by (iv), HN-SCl (AHN)  HN-SCl (AHN⋃ BHN) and 

HN-SCl (BHN)  HN-SCl (AHN⋃ BHN). This implies that, 

HN-SCl (AHN) ⋃ HN-SCl (BHN)  HN-SCl (AHN⋃ BHN) ------(1) 

By(i), AHN HN-SCl(AHN) and BHN HN-SCl(BHN). This implies that  

AHN⋃BHNHN-SCl(AHN) ⋃ HN-SCl(BHN).  

Now by (iv), HN-SCl(AHN⋃ BHN)HN-SCl ((HN-SCl(AHN)⋃HN-SCl(BHN)).  

By (1), HN-SCl(AHN⋃ BHN)HN-SCl(HN-SCl (AHN))⋃HN-SCl(HN-SCl(BHN)).  

By (iii), HN-SCl(AHN⋃ BHN)HN-SCl(AHN)⋃HN-SCl (BHN)-----(2).  

From (1) and (2), HN-SCl (AHN⋃ BHN) = HN-SCl(AHN)⋃HN-SCl(BHN). 

Thus (vi) is proved. 

 

The following example shows that equality need not be held in Theorem 5.2 (vi). 

Example 5.3: Let X = {x,y} and  

AHN = { <x; (0.45,0.45,0.45,0.45,0.45,0.45,0.45)>, <y; (0.75,0.75,0.75,0.75,0.75,0.75,0.75)>}   

BHN = { <x; (0.95,0.95,0.95,0.95,0.95,0.95,0.95)>, <y; (0.55,0.55,0.55,0.55,0.55,0.55,0.55)>}   

By ranking technique, 

AHN = { <x; (0.45,0.45,0.45)>, <y; (0.75,0.75,0.75)>}   

BHN = { <x; (0.95,0.95,0.95)>, <y; (0.55,0.55,0.55)>}   

CHN =AHN⋃BHN={<x; (0.95,0.45,0.45)>, <y; (0.75,0.55,0.55)>}   

DHN =AHN⋂BHN={<x; (0.45,0.95,0.95)>, <y; (0.55,0.75,0.75)>} 

Then, τ = {IHN, OHN, AHN, BHN, CHN, DHN} is a HNTS. 

Consider the HNS after the ranking technique, 

EHN = { <x; (0.75,0.52,0.48)>, <y; (0.82,0.59,0.39)>}   

Then the HN-semi open sets of HN(X) are {IHN, OHN, AHN, BHN, CHN, DHN, B’HN, C’HN, D’HN}. 

Here, HN-SCl (A’HN) ⋃ HN-SCl (EHN) =  C’HN⋃ DHN = C’HN 

HN-SCl (A’HN⋃ EHN) = DHN 

Hence, HN-SCl (A’HN) ⋃ HN-SCl (EHN) ≠ HN-SCl (A’HN⋃ EHN)  

 

Proposition 5.4: Let (X, ) be a HNTS. Then for any heptagonal neutrosophic subsets AHNof a HNTS 

X, we have  

(i) (HN-SInt(AHN))’ =HN-SCl(A’HN) 

(ii) (HN-SCl(AHN))’ =HN-SInt(A’HN) 
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Proof: 

(i) By definition 4.1, HN-SInt (AHN) = ⋃ { SHN : SHN is a HNSO set in X and SHN AHN} 

Taking the complement on both sides, 

(HN-SInt(AHN))’ = ⋂ { S’HN : S’HN is a HNSC set in X and A’HNS’HN} 

  Now, replace S’HN with KHN, we get 

(HN-SInt(AHN))’ = ⋂ {KHN : KHN is a HNSC set in X and A’HN KHN} 

By definition 5.1, (HN-SInt(AHN))’ =HN-SCl(A’HN). Thus (i) is proved. 

(ii) From (i) for the HNS A’HN 

We write, (HN-SInt(A’HN))’ =HN-SCl(AHN) 

Taking the complement on both sides we get 

HN-SInt(A’HN) = (HN-SCl(AHN))’. Thus (ii) is proved. 

 

6. Conclusion 

The notion of heptagonal neutrosophic semi-open sets and their characterization were 

presented and examined in this paper. It can also be expanded upon in the areas of quotient, 

continuous, and contra-continuous mappings. It is possible to investigate the set's homeomorphism, 

connectedness, and compactness in further detail. 
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