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1 |Introduction 

Precision agriculture (PA) is a revolutionary farming method that uses technology to improve operations and 

increase yield in recent years. Through the use of cutting-edge technologies for data collection and analysis, 

precision agriculture empowers farmers to make well-informed decisions and allocate resources exactly where 

and when they are needed. This focused strategy minimizes waste and lessens the impact on the environment 

by optimizing the use of pesticides, water, and fertilizers. 

Unmanned aerial vehicles (UAVs) have emerged as a crucial tool in precision agriculture because they can 

swiftly and effectively gather high–resolution data. With their array of sensors and cameras, UAVs can take 

precise aerial photos of crops, soil, and other agricultural resources, where they can access the collected data 

that is used in precision agriculture[1]. They are also considered effective in monitoring changes occurring in 

agricultural fields and are also characterized by their low cost compared to satellites [2]. This data collected 
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Precision agriculture (PA) utilizing unmanned aerial vehicles (UAVs) has supplanted labor-intensive and time-

consuming conventional agricultural methods in recent times. This is because of its great economic benefits, as it 

possesses many advantages. It's fascinating to see how drones are being increasingly used in agriculture due to the 

numerous benefits they offer. However, it's important to evaluate their performance and determine the most 

effective criteria to ensure their optimal use. To make the most effective use of drones in agriculture, we need to 

consider multiple criteria when making decisions about their performance. The suggested model is constructed 

utilizing neutrosophic sets to effectively handle uncertainty and address multi-criteria decision-making (MCDM) 

situations with several competing criteria and options. The proposed model integrates Multi-Attributive Border 

Approximation Area Comparison (MABAC), and the entropy method is used for evaluating the performance of 

UAVs in PA based on diverse criteria and their importance, along with single-valued neutrosophic sets (SVNSs). 

The entropy method used for calculating the weight of criteria, and the MABAC method is used for ranking 

alternatives. An experimental case study has been established for choosing the best UAV for precision agriculture. 
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by UAVs can be examined afterward to help with decision-making about fertilization, irrigation, pest 

management, and general crop management. UAVs are also distinguished by their high ability to monitor 

crops, as they allow the discovery of many plants that may be obscured by terrain.Choosing the best UAV 

for a given situation entails assessing and contrasting several factors or characteristics. Therefore, choosing 

the best UAV for precision agriculture is a multi-attribute collective decision-making problem [3].  

When choosing a UAV for precision agriculture, different stakeholders—such as agronomists, and 

technological experts—may have different goals and points of view. In order to tackle this issue, a methodical 

strategy is needed to assess and contrast UAVs using the established standards. When evaluating UAVs, there 

are frequently several factors to take into account, including dimensions, payload, and endurance [4].Thus, it 

is imperative to assess every criterion independently and together to understand the UAV's capabilities 

comprehensively. Certain criteria may be extra significant of needs than others, and not all criteria are created 

equal. So it is necessary to decide which criteria are critical to operations and adjust the evaluation's weighting 

accordingly. Therefore, Weighing the benefits and drawbacks of each criterion can help you decide whether 

trade-offs are acceptable [5], which a bigger UAV could be less agile than a smaller UAV but might have a 

longer flying period and a larger payload capacity. According to the above issues, evaluating UAVs for 

precision agriculture usage is a complicated MCDM challenge. 

MCDM is one effective technique for using UAVs in PA which, a group of individuals or stakeholders use it 

to evaluate and select the best option from a set of options regarding to a number of qualities or criteria. In 

one particular study, ,the analytic hierarchy process (AHP) technique was used to prioritize objectives and 

select UAVs for operations involving several fleets, several studies used the Analytic Hierarchy Process to 

select the best UAV engines based on their technical attributes [6]. By using the AHP technique, the right 

type of UAV for crisis transport was determined [7]. The best single-engine piston airplane was determined 

using the AHP and Technique for Order of Preference by Similarity (TOPSIS) techniques [8]. The 

combination of fuzzy logic and the AHP technique led to the development of meteorological forecasting 

systems for UAVs [9]. A combined fuzzy MCDM strategy is built upon two important techniques. The fuzzy-

weighted zero-inconsistency (FWZIC) method is the first technique used to determine the weight coefficients 

for the UAV criterion. The fuzzy decision by opinion score method (FDOSM), which is based on both 

individual and group decision making, is the second technique for selecting UAV alternatives [10].  

Fuzzy sets are only able to handle situations that are either true or false; they cannot deal with uncertain 

scenarios. To address this limitation, intuitionistic fuzzy sets and interval value intuitionistic fuzzy sets have 

been introduced as a generalization of fuzzy sets. However, the intuitionistic fuzzy set is still unable to express 

the inconsistency and ambiguity of information, to tackle ambiguity and inconsistency.  The concept of truth, 

falsity, and indeterminacy (𝑇, 𝐼, and 𝐹) membership has been introduced for neutrosophic sets. This can help 

to overcome the problems associated with such data. One specific type of neutrosophic set is called a single-

valued neutrosophic set (SVNSs). 

All previous studies illustrate the usefulness and flexibility of MCDM approaches in evaluating various 

characteristics of UAV technology in the context of PA. By using MCDM techniques, one can make informed 

decisions by comparing different options founded on several factors, including cost, effectiveness, and 

sustainability. Currently, no complete study exists that offers a whole approach to evaluating the UAV 

requirements and then classifying and selecting UAVs for each precision agriculture category. Therefore, this 

research provides a solution to evaluate UAV standards and choose the best UAV for each category of 

precision agriculture. 

In this paper, the evaluation of UAV used in precision agriculture is introduced as an MCDM problem with 

the neutrosophic sets, including Entropy, MABAC. The purpose of this research is to delve further into the 

topic of uncertainty and vagueness by utilizing neutrosophic technique on different linguistic sets and 

integrating it with MCDM using entropy and MABAC methods to determine the most suitable agriculture 

UAV that would result in increased productivity and sustainability in their operations. UAVs are employed in 

a wide range of applications, including mapping, precision farming, photography, inspection, and surveillance. 
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Various UAVs models have been developed to meet customer demands. These models have distinct 

dimensions, carry a diversity of sensors and payload capacities. There are three standards are frequently 

applied to estimate these various categories and associated UAV substitutes: dimensions, payload, and 

endurance. 

 Payload: Precision agriculture requires the collection of accurate data regarding crops and also soil 

conditions. UAVs are commonly used for this purpose, but their payload capacity limits the type and 

amount of equipment they can carry. Payload capacity pertains to the greatest weight a UAV can 

carry during flight, with sensors, cameras, or other equipment. Larger UAVs with higher payload 

capacity can carry more advanced cameras or sensors to capture more precise measurements or 

detailed photos conversely, though, smaller UAVs with a smaller cargo capacity can only carry smaller 

equipment, which restricts the amount and quality of data they can collect. Therefore, it's crucial to 

consider a UAV's payload capacity when selecting equipment for precision agriculture applications. 

It's important to keep in mind that even within the same category of UAVs, for instance fixed-wing 

or rotary-wing, the payload capacity can differ among diverse models. Therefore, when selecting a 

UAV for precision agriculture applications, it's crucial to thoroughly evaluate the payload capacity of 

different UAV models [11]. 

 Endurance: when discussing the use of UAVs in agriculture, endurance refers to the amount of time 

a UAV can stay in the air using a single battery charge or fuel tank. Longer endurance is generally 

preferred in PA applications because it enables the UAV to face larger farming areas and collect more 

data, numerous factors can affect endurance, such as the weight and size of the UAV and the type 

of propulsion system being employed. The endurance of different UAV models should be compared 

carefully to guarantee that it can cover the required distance and gather the appropriate data before 

landing, charging, or refueling [12]. 

 Dimensions: when discussing UAVs for agricultural use, the dimension requirement pertains to the 

actual size of the UAV, including height, width, and length. The size of a UAV is crucial since it 

affects how readily it can go around obstructions like buildings, trees, and power lines. Smaller UAVs 

are typically easier to handle and may fly closer to the ground, enabling the collection of more precise 

data. They might, however, be less durable and able to carry less cargo. However, larger UAVs might 

be fewer agile and not capable to fly as close to the ground, even though they might be able to carry 

more payload and stay in the air longer. The size and configuration of the farmland that will be 

scanned are crucial factors to take into account when choosing a UAV for PA. Where, a UAV that 

is too small could not be able to cover a sufficient amount of ground effectively, while a UAV that 

is too big might not be able to maneuver through confined locations.  

The exact requirements of the farmer or agronomic and the kind of data that must be gathered will 

determine the optimal UAV dimensions [13]. The basic criteria for evaluating UAVs are as in Figure 

1. 

 

Figure 1. Criteria for UAV evaluation in PA. 
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UAV classification according to the type of wing (alternative) as in Figure 2: 

 

Figure 2. UAV classifications based on wing type. 

In the agricultural field, UAVs can be divided into the following categories based on the number of rotors 

they have: fixed-wing and rotary-wing, which include helicopter and multi-rotary. Hybrid UAVs that combine 

earlier wing technologies have been eliminated from agricultural missions as they are not used.  Fixed-Wing: 

Unmanned Aerial Vehicles (UAVs) are highly capable machines that can cover vast regions, travel long 

distances from the launch site, fly at high speeds and altitudes, and measure ground sample distance with 

centimeter-level accuracy. They are excellent resources for obtaining information about agricultural field 

surroundings quickly and accurately. For tasks that require heavier or denser payloads, fixed-wing UAVs are 

the best option due to their better endurance and payload capacity. They are particularly well-suited for tasks 

like pesticide spot spraying that require longer flight duration. They almost never need a pilot, and they can 

be controlled entirely on their own [14]. Table 1 lists the many kinds of fixed-wing UAVs that are part of this 

UAV group. 

Table 1. kinds of fixed-wing UAVs. 

Ref Type Description 

[15] GATEWING X100 Is a UAV intended for use in aerial mapping and surveying 

applications 

Is capable of being launched by hand and has a high-quality 

camera for taking pictures from the air. 

It has safety features including automated return-to-home and the 

ability to fly pre-programmed missions autonomously. 

Intended for a variety of mapping and aerial surveying uses in 

isolated or difficult-to-reach areas. 

[16] ZANGÃO UAV designed for use in Portugal 

The characteristics and applications of drones may vary based on 

the manufacturer and intended purpose. Drones come in a wide 

range of sizes, designs, and capabilities. 

[4] M23UAV It is suitable for tasks such as agricultural spraying and monitoring 

due to its ability to carry up to 200 kg of payload and last up to 

390 minutes 

[17] TUFFWING 

MAPPER 

produced by Tuff wing, a California-based drone manufacturer 

It comes with custom mapping software and a mapping camera 

capable of capturing visible, near-infrared photos, and high-

resolution aerial imagery. 

Giving users the ability to swiftly create maps and models of 

sizable regions and carry out various data analysis operations. 
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Rotary-Wings: Multi-rotor and helicopters are aerial vehicles that use several rotors to create the necessary 

airflow and lift. One of their main advantages is their ability to hover, which is particularly useful for aerial 

photography as it allows for longer camera exposure times to compensate for low-light conditions. Multi-

rotor aircraft have become more popular than helicopters due to their simpler mechanical structure, which 

only requires changing the speed of direct current motors for control. Multi-rotor UAV categorized into3 

groups (8-rotors, 6-rotors, 4-rotors) each with its own set of specifications, discussed as shown in Table 2. 

Table 2. Multi-rotor UAV categories. 

Category Type Description Ref 

8-rotors 

The MK 

OKTO XL 2 

 this professional-grade octocopter drone for 
aerial photography and videography 

 It has a 25-minute flight duration 

 an 8kg cargo capacity 

 It has several features that are appropriate for 
professional photographers and filmmakers. 

[18] 

OKTO XL 

 comes equipped with a Canon G11 camera, 
which is ideal for aerial photography 

 It has a 25-minute flight duration 

 has a 1.8-kilogram payload capacity 

 Requires an observer to pilot it. 

 travels at a speed of 1 meter per second, at a 
height of 70 meters above the ground 

[19] 

SPREADING 

WINGS S1000 

 a high-quality professional drone that can be 
used for various purposes such as aerial 
photography, mapping, surveillance, and 
search and rescue missions 

 it has a maximum payload capacity of 6 kg 
and can fly for up to 15 minutes with its 
robust carbon fiber structure 

 can travel up to a range of 1.5 kilometers with 
a maximum speed of 80 km/h 

 has retractable landing gear, GPS, and remote 
control, making it a reliable device for taking 
aerial videos 

[20] 

6-rotors 

EM6-800 

 It is equipped with six electric motors, a 
robust carbon fiber frame 

 a maximum payload capacity of 5 kg 

 a maximum speed of 80 km/h and a range of 
up to 10 km 

 can fly for up to 50 minutes 

 It comes with retractable landing gear, GPS, 
and a remote control making it a dependable 
platform for taking aerial videos. 

[21] 

DJI 

MATRICE 

600 

 Compared to a quadcopter, the DJI Matric 
600 has a higher payload capacity 

 is less likely to experience the gyro effect 

 in case of a motor failure, it has a higher 
chance of landing safely 

[22] 
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HEXACOPTE

R P-Y6 

 Has a strong motor system and a lightweight 
carbon fiber frame for steady flight 
performance. 

 has sophisticated flight control systems 
including GPS and altitude hold capabilities 

 Professionals in a variety of industries, such 
as construction, search and rescue, and 
agriculture 

[23] 

4-rotors 

PARROTAR/

2.0 

 Can run on mobile or tablet operating 
systems. 

 has numerous sensors, including a 3-axis 
accelerometer, gyroscope, magnetometer, 
pressure sensor, and ultrasonic sensors to 
monitor ground and flying height 

 is equipped with four brushless in-runner 
motors that allow it to record video at 30 
frames per second in 720p resolution 

[24] 

PHANTOM2/

3 PRO/4 PRO 

 Are widely used by both professionals and 
enthusiasts for aerial photography and 
cinematography. 

 All versions have a gimbal to stabilize the 
camera and create smooth footage 

 The camera on the Phantom 2 has a 14-
megapixel resolution, while the camera on the 
Phantom 3 has a 12-megapixel resolution. 

[25] 

3DR 

IRIS/SOLO 

 is designed for aerial photography and 
cinematography purposes 

 Is an affordable drone that is specifically 
made for aerial photography. 

[26] 

Helicopt

er 

YAMAHA 

FAZER R 

 use in commercial and industrial settings 

 designed to carry out tasks like agricultural 
spraying, surveying, and inspection 

 can run for up to three hours, allowing it to 
travel up to 100 kilometers in a single flight 

 With a maximum payload capacity of 20 kg. 

[27] 

ROTOMOTI

ONSR200 

 A top-of-the-line quadcopter drone designed 
for aerial mapping, inspection, and surveying 

 Boasts cutting-edge sensors and technologies 
that allow for precise and safe flight in 
various conditions. 

 With pre-programmed flight patterns, it can 
fly autonomously and carry a maximum 
payload of 5 kg 

 can navigate through complex areas with 
ease, thanks to its obstacle 

[28] 

 

Research conducted on the development of UAVs has some limitations. These include ineffective modeling 

of uncertainty, a lack of systematic determination of expert weights, failure to consider expert opinions, and 

failure to consider different types of criteria. In light of these limitations, we propose a new model that 

addresses these issues. The remaining portion of our manuscript is provided below for processing purposes. 

In section 2, the fundamental concepts of research methodology are introduced. In section 3, a case study for 

evaluating UAVs is solved to demonstrate the method's applicability. Also, the study's conclusions and 

recommendations for the future are presented in Section 4. 
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2 |Techniques 

The research techniques used in this study was based on two MCDM approaches for estimating the UAVs 

used in PA applications. Entropy technique was presented to weigh the UAV estimation criteria across every 

category and MABAC technique to rank UAVs inside every agriculture category based on the weights 

obtained from Entropy. The framework of proposed methodology is as in Figure 3. 

 

Figure 3. The Framework of proposed methodology. 

 

2.1 |Entropy Technique 

The MCDM approach was used to evaluate different options. Neutrosophic theory supports MCDM 

techniques to handle ambiguous situations and complex data. SVNS was applied, which helps determine the 

degree of uncertainty involved in evaluating linguistic representations of criteria and options. The primary 

advantage of the Entropy technique is it can be used in any weight-determination process. Thus, it is a helpful 

tool for decision-making difficulties. 
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Step 1. (Determined list of evaluation criteria): the process of evaluating UAVs involves the identification of 

decision-making criteria and defining the problem at hand. Firstly, the existing evaluation criteria were 

reviewed and clarified. Secondly, each criterion, sub-criterion, and relevant indicator was categorized based 

on its characteristics and the evaluation method used. Meanwhile, a team of experts evaluated the identified 

criteria to arrive at the chosen set of criteria for further assessment. 

Step 2. (Expert/decision- maker respondents to a survey): A committee was formed to review the selection 

process for specialists in the field of unmanned aircraft devices, in which three experts were given the task of 

evaluating the judgment comparison for the main criteria using a single-valued neutrosophic scale, each with 

a different background in UAV design. We used a single-valued neutrosophic scale as in Table 3 to convert 

the linguistic scale into a corresponding numerical scale, using the terminology used by experts to construct 

decision matrices. The range of terms used in this context runs from "extremely good" to "extremely bad”. 

Each term in the language has a set of characteristics, including truth, indeterminacy, and falsity, collectively 

referred to as SVNS. These SVNS are then easily converted into a crisp, clear value for use in the suggested 

model. It should be noted that the score function (shown in Equation 1) is used to convert neutrosophic 

matrix into a crisp matrix [29]. This procedure enables more data-driven decision-making. 

𝑆𝑐𝑜𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
2+(𝑇𝑟−𝐹−𝐼𝑑)

3
                                                                                              (1) 

Where 𝑇𝑟, 𝐹, 𝐼𝑑 refers to truth, false, and indeterminacy respectively. This procedure made it possible for 

decision-makers to assess and prioritize the criteria objectively, enabling a more data-driven decision-making 

process. The experts then prioritized the criteria and eliminated the least significant ones resulting in a final 

list of criteria ranked by significance. 

Table 3. Single-valued neutrosophic scale [29]. 

Variables of Linguistic Abbreviation 
SVNs 

Tr             Id              F 

Extremely Bad EB 0.00         1.00        1.00 

Very Very Bad VVB 0.10         0.90        0.90 

Very Bad VB 0.20         0.85        0.80 

Bad B 0.30         0.75        0.70 

Medium Bad MB 0.40         0.65        0.60 

Medium M 0.50         0.50        0.50 

Medium Good MG 0.60         0.35        0.40 

Good G 0.70         0.25        0.30 

Very Good VG 0.80         0.15        0.20 

Very Very Good VVG 0.90          0.10       0.10 

Extremely Good EG 1.00          0.00        0.00 

 

Step 3. (Aggregated decision matrix): Equation 2 is utilized to combine all these matrices into one matrix 

called aggregated matrix, after that Equation 3 is utilized to normalize the aggregated decision matrix based 

on entropy [30]. 

𝑌𝑖𝑗 =  
∑ 𝑞𝑖𝑗

𝑁
𝑗=1

𝑁
                                                                                                                         (2) 

𝑁𝑜𝑟𝑚𝑖𝑗 =  
𝑦𝑖𝑗

∑ 𝑦𝑖𝑗
𝑚
𝑗=1

                                                                                                                (3) 

Where 𝑞𝑖𝑗 represents the value of criterion in matrix, 𝑁 represents the number of experts, 𝑚 represented the 

number of alternatives, ∑ 𝑦𝑖𝑗
𝑚
𝑗=1  shows the total of each criterion for each column in the aggregated matrix. 

Step 4: We applied Entropy that represented by: 

𝐸𝑗 =  −ℎ ∑ 𝑁𝑜𝑟𝑚𝑖𝑗 ∗ 𝑙𝑛 𝑁𝑜𝑟𝑚𝑖𝑗
𝑚
𝑖=1     , 𝑤ℎ𝑒𝑟𝑒 ℎ = 1/ 𝑙𝑛(𝑚)                                            (4) 
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Step 5: Calculate weight vector by using: 

𝑊𝑗 =
1−𝐸𝑗

∑ (1−𝐸𝑗)𝑛
𝑗=1

                                                                                                                    (5) 

At the end of this stage, the weights of each criteria are obtained, which help in the process of evaluating the 

UAV. It is also necessary to give each of the alternatives a rank to help choose the best one according to each 

case study, this is what we will show in the next section. 

2.2 |Multi Attribute Border Approximation Area Comparison (MABAC) 

Technique 

MABAC is a precise and powerful MCDM technique that employs a systematic and straightforward 

computation approach. The MABAC steps to rank the UAV within each agriculture category based on the 

weights obtained from the entropy technique that was used before to select the best alternative are represented 

as follows: 

Step 1: (Data input): As with any MCDM technique, any MCDM problem consists of a set of 𝑚 alternatives 

denoted as {𝐴1, 𝐴2, … . 𝐴𝑚}, and a set of 𝑛 decision criteria denoted as {𝐶1, 𝐶2, … . 𝐶𝑛} with weighted vector 

𝑤𝑖 which we got from the entropy technique. These two elements are used to construct the decision matrix, 

an aggregated decision matrix that was constructed before is used, which serves as a tool to assess and rank a 

set of options according to a predefined set of criteria. 

Step 2: Calculate normalized decision matrix: 

𝑑𝑖𝑗 =  
𝑓𝑖𝑗−min(𝑓𝑖)

max(𝑓𝑖)−min(𝑓𝑖)
 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎                                                                     (6) 

𝑑𝑖𝑗 =  
𝑓𝑖𝑗 − max(𝑓𝑖)

min (𝑓𝑖) − max(𝑓𝑖)
  𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

where, 𝑓𝑖𝑗 refers to each alternative value regarding the determining criterion in the decision matrix. 

Step 3: Calculate weighted normalized decision matrix: 

𝑏𝑖𝑗 =  𝑤𝑗𝑥 (𝑑𝑖𝑗 + 1)                                                                                                                (7) 

Where, 𝑤𝑗 is the importance weight of decision variables. 

Step 4: Calculate the border approximation area (BAA:) 

𝑔𝑖 =  (∏ 𝑏𝑖𝑗
𝑚
𝑖=1 )

1

𝑚                                                                                                                   (8) 

𝐺 =  [𝑔𝑖]𝑛                                                                                                                                (9) 

Where, 𝑚 is the number of alternatives.  

Step 5: Calculate distance of alternatives from BAA: 

𝑄 = 𝐵 − 𝐺                                                                                                                           (10) 

[
𝑏11 − 𝑔1 𝑏12 − 𝑔2 𝑏13 − 𝑔3

⋮ … ⋮
𝑏𝑚1 − 𝑔1 ⋯ 𝑏𝑚𝑛 − 𝑔𝑛

] = [

𝑞11 𝑞12 𝑞1𝑛

⋮ … ⋮
𝑞𝑚1 ⋯ 𝑞𝑚𝑛

] 

𝑆𝑖 =  ∑ 𝑞𝑖𝑗

𝑛

𝑗=1

 

Step 6: Selection of the best alternative with the highest rank. 
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3 |Result and Discussion 

In our case study, the three main criteria and thirteen alternatives are proposed based on the ones introduced 

in [10]. Figure 1 shows how the three different classes of endurance, payload, and dimension can be used to 

separate the predetermined criteria for evaluating UAVs, as mentioned in step 2 in Entropy, data is gathered 

from experts. First off, a UAV panel consisting of three experts were given the task of evaluating the judgment 

comparison for the main criteria using a single-valued neutrosophic scale. Tables 4, 5 and 6 display the 

evaluation matrix for the three main criteria by three experts respectively. Tables 7- 9 show the outcome of 

converting the collected decisions for the importance level from a linguistic scale to a corresponding 

numerical scale based on a single-valued neutrosophic scale. Table 10, shows an aggregated decision matrix 

by normalization, which was calculated by using Equation (3). Table 11, shows a normalized decision matrix 

based on the entropy technique. In Table 12, we applied the Entropy technique to calculate weight of criteria. 

According to Table 12, the payload criterion was assigned the highest weight (0.404434) among the three 

main criteria, indicating its greater importance in comparison to the other criteria. The Dimension criterion 

was given the second highest weight (0.329404), while the Endurance criterion had the lowest weight 

(0.266161) as appear also in Figure 4.  

Table 4. Evaluation comparison matrix for three main criteria by first expert. 

 
Alternative 

Payload 

(kg) 

Endurance 

(min) 

Dimension 

(m) 

A1 8 Rotors (The MK OKTO XL 2) EG G MG 

A2 8 Rotors (OKTO XL) G VVG VG 

A3 8 Rotors (SPREADING WINGS S1000) M VG B 

A4 6 Rotors (EM6-800) MG G EG 

A5 6 Rotors (DJI MATRICE 600) VG VVG G 

A6 6 Rotors (HEXACOPTER P-Y6) B VG M 

A7 4 Rotors (ParrotANAFI) G EG G 

A8 4 Rotors (PHANTOM2/3 PRO/4 PRO) VVG G VVG 

A9 4 Rotors (3DR IRIS/SOLO) VG M VG 

A10 Helicopter (YAMAHA FAZER R) EG G EG 

A11 Helicopter (ROTOMOTIONSR200) G VVG G 

A12 Fixed-wing (GATEWING X100) M VG M 

A13 Fixed-wing  (ZANGÃO UAV) B VG G 

Table 5. Evaluation comparison matrix for three main criteria by second expert. 

 
Alternative 

Payload 

(kg) 

Endurance 

(min) 

Dimension 

(m) 

A1 8 Rotors (The MK OKTO XL 2) MG EG G 

A2 8 Rotors (OKTO XL) VG G VVG 

A3 
8 Rotors (SPREADING WINGS S1000) B M VG 

A4 6 Rotors (EM6-800) G MG EG 

A5 6 Rotors (DJI MATRICE 600) VVG VG G 

A6 6 Rotors (HEXACOPTER P-Y6) VG B M 

A7 4 Rotors (ParrotANAFI) EG EG G 

A8 
4 Rotors (PHANTOM2/3 PRO/4 PRO) G G G 

A9 4 Rotors (3DR IRIS/SOLO) M M VVG 

A10 Helicopter (YAMAHA FAZER R) MG G EG 

A11 Helicopter (ROTOMOTIONSR200) VG G G 

A12 Fixed-wing (GATEWING X100) B VVG M 

A13 Fixed-wing  (ZANGÃO UAV) B VG G 
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Table 6. Evaluation comparison matrix for three main criteria by third expert. 

 
Alternative 

Payload 

(kg) 

Endurance 

(min) 

Dimension 

(m) 

A1 8 Rotors (The MK OKTO XL 2) MG EG G 

A2 8 Rotors (OKTO XL) VG G VVG 

A3 8 Rotors (SPREADING WINGS 

S1000) 

B M VG 

A4 6 Rotors (EM6-800) G MG EG 

A5 6 Rotors (DJI MATRICE 600) VVG VG G 

A6 6 Rotors (HEXACOPTER P-Y6) VG B M 

A7 4 Rotors (ParrotANAFI) EG EG G 

A8 4 Rotors (PHANTOM2/3 PRO/4 

PRO) 

G G G 

A9 4 Rotors (3DR IRIS/SOLO) M M VVG 

A10 Helicopter (YAMAHA FAZER R) MG G EG 

A11 Helicopter (ROTOMOTIONSR200) VG G G 

A12 Fixed-wing (GATEWING X100) B VVG M 

A13 Fixed-wing  (ZANGÃO UAV) B VG G 

Table 7. Crisp decision matrix for 1st expert evaluation. 

 Payload 

(kg) 

Endurance 

(min) 

Dimension 

(m) 

A1 0.976667 0.716667 0.616667 

A2 0.716667 0.0999 0.816667 

A3 0.5 0.816667 0.283333 

A4 0.616667 0.716667 0.976667 

A5 0.816667 0.0999 0.716667 

A6 0.283333 0.816667 0.5 

A7 0.716667 0.976667 0.716667 

A8 0.0999 0.716667 0.0999 

A9 0.816667 0.5 0.816667 

A10 0.976667 0.716667 0.976667 

A11 0.716667 0.0999 0.716667 

A12 0.5 0.816667 0.5 

A13 0.283333 0.816667 0.716667 

Table 8. Crisp decision matrix for 2nd expert evaluation. 

  Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.616667 0.976667 0.716667 

A2 0.816667 0.716667 0.0999 

A3 0.283333 0.5 0.816667 

A4 0.716667 0.616667 0.976667 

A5 0.0999 0.816667 0.716667 

A6 0.816667 0.283333 0.5 

A7 0.976667 0.976667 0.716667 

A8 0.716667 0.716667 0.716667 

A9 0.5 0.5 0.0999 

A10 0.616667 0.716667 0.976667 

A11 0.816667 0.716667 0.716667 

A12 0.283333 0.0999 0.5 

A13 0.283333 0.816667 0.716667 



  Salam et al.| Optimization Agri. 1 (2024) 22-39 

 

22 

Table 9. Crisp decision matrix for 3th expert evaluation. 

  Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.616667 0.976667 0.716667 

A2 0.816667 0.716667 0.0999 

A3 0.283333 0.5 0.816667 

A4 0.716667 0.616667 0.976667 

A5 0.0999 0.816667 0.716667 

A6 0.816667 0.283333 0.5 

A7 0.976667 0.976667 0.716667 

A8 0.716667 0.716667 0.716667 

A9 0.5 0.5 0.0999 

A10 0.616667 0.716667 0.976667 

A11 0.816667 0.716667 0.716667 

A12 0.283333 0.0999 0.5 

A13 0.283333 0.816667 0.716667 

Table 10. Aggregated matrix. 

 

 

Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.736667 0.89000033 0.68333367 

A2 0.783333667 0.511078 0.33882233 

A3 0.355555333 0.60555567 0.638889 

A4 0.683333667 0.65000033 0.976667 

A5 0.338822333 0.57774467 0.716667 

A6 0.638889 0.461111 0.5 

A7 0.890000333 0.976667 0.716667 

A8 0.511078 0.716667 0.511078 

A9 0.605555667 0.5 0.33882233 

A10 0.736667 0.716667 0.976667 

A11 0.783333667 0.511078 0.716667 

A12 0.355555333 0.33882233 0.5 

A13 0.283333 0.816667 0.716667 

Sum 7.702124 8.27205833 8.33094733 

Table 11. Normalized decision matrix based on Entropy. 

  Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.095645 0.107591 0.082024 

A2 0.101704 0.061784 0.04067 

A3 0.046163 0.073205 0.076689 

A4 0.08872 0.078578 0.117234 

A5 0.043991 0.069843 0.086025 

A6 0.08295 0.055743 0.060017 

A7 0.115553 0.118068 0.086025 

A8 0.066355 0.086637 0.061347 

A9 0.078622 0.060444 0.04067 

A10 0.095645 0.086637 0.117234 

A11 0.101704 0.061784 0.086025 

A12 0.046163 0.04096 0.060017 

A13 0.036786 0.098726 0.086025 
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Table 12. Calculation of Entropy. 

 Payload Endurance Dimension 

(kg) (min) (m) 

A1 -0.22449 -0.23987 -0.20512 

A2 -0.23246 -0.17201 -0.13024 

A3 -0.14198 -0.19139 -0.19694 

A4 -0.2149 -0.19988 -0.2513 

A5 -0.13742 -0.18589 -0.21103 

A6 -0.20651 -0.16093 -0.16884 

A7 -0.24937 -0.25225 -0.21103 

A8 -0.18 -0.21192 -0.17123 

A9 -0.19994 -0.16961 -0.13024 

A10 -0.22449 -0.21192 -0.2513 

A11 -0.23246 -0.17201 -0.21103 

A12 -0.14198 -0.13087 -0.16884 

A13 -0.12149 -0.22859 -0.21103 

∑ 𝑵𝒐𝒓𝒎𝒊𝒋

𝒎

𝒊=𝟏

 
-2.50749 -2.52714 -2.51815 

𝑬𝒋

=  −𝒉 ∑ 𝑵𝒐𝒓𝒎𝒊𝒋

𝒎

𝒊=𝟏

∗ 𝐥𝐧 𝑵𝒐𝒓𝒎𝒊𝒋 

0.9776 0.985258 0.981755 

𝑾
𝒋= 

𝟏−𝑬𝒋

∑ (𝟏−𝑬𝒋)𝒏
𝒋=𝟏

 0.404434 0.266161 0.329404 

 

 

 
Figure 4. The Final weight of main three criteria. 

 

In applying MABAC, start with aggregated decision matrix. The MABAC result as follows: Table 14 displays 

the normalized decision matrix (𝑑𝑖𝑗) obtained by applying equation 6 to the aggregated decision matrix in 

Table 13.Table 15 displays the calculated weighted normalized decision matrix using Equation 7. Here, 𝑤𝑖 

represents the weighted set of criteria that we obtained previously from the entropy technique. Table 16 

shows the results obtained by applying equations 8 and 9 to obtain the border approximation area (BAA).By 

applying equation 10, we obtain the distance of alternatives from BBA, which is shown in Table 17. By 

applying equation 10, we obtain the distance of alternatives from BBA (𝑞𝑖𝑗), which is shown in Table 17. Also 

Table 17 displays the ranking of each alternative obtained through the MABAC technique.The analysis 



  Salam et al.| Optimization Agri. 1 (2024) 22-39 

 

22 

showed that the highest-ranked UAV is Helicopter (YAMAHA FAZER R) with a total distance value equal 

to (0.371597). The next highest-ranked UAV is 4 Rotors (ParrotANAFI)with a total distance value equal to 

(0.353474), while the lowest-ranked UAV is Fixed-wing (GATEWING X100)with a total distance value equal 

to ( -0.30276). 

 

Table 13. Decision matrix in MABAC technique. 

Decision variable Max Max Max 

Weight from 

Entropy 
0.404434 0.266161 0.329404 

 Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.736667 0.89000033 0.68333367 

A2 0.78333367 0.511078 0.33882233 

A3 0.35555533 0.60555567 0.638889 

A4 0.68333367 0.65000033 0.976667 

A5 0.33882233 0.57774467 0.716667 

A6 0.638889 0.461111 0.5 

A7 0.89000033 0.976667 0.716667 

A8 0.511078 0.716667 0.511078 

A9 0.60555567 0.5 0.33882233 

A10 0.736667 0.716667 0.976667 

A11 0.78333367 0.511078 0.716667 

A12 0.35555533 0.33882233 0.5 

A13 0.283333 0.816667 0.716667 

 

Table 14. Normalized decision matrix (𝑑𝑖𝑗) in MABAC technique. 

Decision variable Max Max Max 

Weight from 

Entropy 
0.168022 0.341668 0.49031 

 Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.747253 0.864126 0.540118 

A2 0.824176 0.270059 0 

A3 0.119048 0.418179 0.470438 

A4 0.659341 0.487859 1 

A5 0.091466 0.374578 0.592377 

A6 0.586081 0.191722 0.252691 

A7 1 1 0.592377 

A8 0.375403 0.592377 0.270059 

A9 0.531136 0.252691 0 

A10 0.747253 0.592377 1 

A11 0.824176 0.270059 0.592377 

A12 0.119048 0 0.252691 

A13 0 0.749155 0.592377 
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Table 15. Weighted normalized decision matrix (𝑏𝑖𝑗) in MABAC technique. 

Decision variable Max Max Max 

Weight from 

Entropy 

0.168022 0.341668 0.49031 

 Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.293577 0.636912 0.755135 

A2 0.306502 0.433939 0.49031 

A3 0.188025 0.484546 0.72097 

A4 0.278806 0.508354 0.98062 

A5 0.18339 0.469649 0.780758 

A6 0.266497 0.407173 0.614207 

A7 0.336044 0.683336 0.780758 

A8 0.231098 0.544064 0.622723 

A9 0.257265 0.428004 0.49031 

A10 0.293577 0.544064 0.98062 

A11 0.306502 0.433939 0.780758 

A12 0.188025 0.341668 0.614207 

A13 0.168022 0.59763 0.780758 

Table 16. Calculated Border pproximation Area (BAA) in MABAC technique. 

Decision variable Max Max Max 

Weight from 

Entropy 

0.168022 0.341668 0.49031 

 Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.293577 0.636912 0.755135 

A2 0.306502 0.433939 0.49031 

A3 0.188025 0.484546 0.72097 

A4 0.278806 0.508354 0.98062 

A5 0.18339 0.469649 0.780758 

A6 0.266497 0.407173 0.614207 

A7 0.336044 0.683336 0.780758 

A8 0.231098 0.544064 0.622723 

A9 0.257265 0.428004 0.49031 

A10 0.293577 0.544064 0.98062 

A11 0.306502 0.433939 0.780758 

A12 0.188025 0.341668 0.614207 

A13 0.168022 0.59763 0.780758 

𝒈𝒊 0.247525 0.492337 0.706803 
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Table 17. Distance of the alternative from the BAA (𝑞𝑖𝑗) in MABAC Technique. 

Decision 

variable 

Max Max Max 

𝑺𝒊 Ranking 
Weight from 

Entropy 
0.168022 0.341668 0.49031 

  Payload Endurance Dimension 

(kg) (min) (m) 

A1 0.046052 0.144575 0.048333 0.23896 4 

A2 0.058977 -0.0584 -0.21649 -0.21591 11 

A3 -0.0595 -0.00779 0.014168 -0.05312 9 

A4 0.031281 0.016017 0.273817 0.321115 3 

A5 -0.06413 -0.02269 0.073956 -0.01287 7 

A6 0.018972 -0.08516 -0.0926 -0.15879 10 

A7 0.088519 0.190999 0.073956 0.353474 2 

A8 -0.01643 0.051727 -0.08408 -0.04878 8 

A9 0.00974 -0.06433 -0.21649 -0.27109 12 

A10 0.046052 0.051727 0.273817 0.371597 1 

A11 0.058977 -0.0584 0.073956 0.074534 6 

A12 -0.0595 -0.15067 -0.0926 -0.30276 13 

A13 -0.0795 0.105293 0.073956 0.099746 5 

 

The 𝑆𝑖 values of alternatives are as in Figure 5. 

 
Figure 5. 𝑆𝑖 Values of alternatives. 

 

4 |Conclusion 

The study's contribution to precision agriculture is significant in increasing production and efficiency by 

utilizing technologies like drones and UAVs. By choosing the appropriate UAVs for particular agricultural 

jobs, such pesticide spraying or crop monitoring, farmers may optimize their operations and get better results. 

Unmanned Aerial Vehicles (UAVs) can be categorized into five main types, each having unique 

characteristics: those that possess eight, six, or four rotors, helicopters, and fixed wings. UAVs with eight 

rotors are known for their stability and have the ability to carry a large payload, making them appropriate for 

heavy-duty farming tasks such as fertilizer and pesticide spraying. Farmers, agricultural businesses, and 
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research institutes can benefit from the suggested estimation and choosing approach for precision agriculture. 

Lastly, using entropy and MABAC methods can help agricultural decision-makers make better decisions and 

achieve more precise results in UAV estimation for PA. 

In conclusion, the research is to expand on the discussion of uncertainty and vagueness issues by using 

neutrosophic technique on various linguistic sets by integrating it with MCDM using entropy and MABAC 

methods. 

In the future, we will use various MCDM techniques such as ANP and SMART for evaluating UAVs. 
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