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1 |Introduction    

1.1 |Background 

Tomatoes are considered the highest consumption rate among all other crops. With an annual yield of over 

170 million tons, tomatoes are the most produced vegetable crop worldwide. Every year, several nations 

produce tomatoes worldwide, with the United States, Turkey, India, and Egypt being the top producers [1]. 

 A study by the FAO found that the main cause of the tomato production rate slowdown is the existence of 

several illnesses, the majority of which originate from the leaves of the tomato plant and cause the annual 

production quantity to drop from 8 to 10% [1]. This is in sync with another FAO report that predicts an 

increase in the world's food demand by 2050 [2], and with crop yields decline because of climate change. All 

those factors can significantly lower the quantity and quality of food produced. As a result, it's critical to 

identify these irregularities in the plants at an early stage since they might lead to higher food prices and 
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negatively affect farmers' profits. In its more destructive form, famine conditions can arise, particularly in 

developing nations [2]. 

Originally, the molecular biology and immunology domains provided techniques to the tomato leaf disease 

(TLD) inspection research community. These works suffer from significant processing complexity and a 

considerable deal of human knowledge. Since most crop growers are low-income people, they are unable to 

afford such expensive treatments. Therefore, classifying and identifying the many TLD is the main objective 

of this research. So, AI technologies can assist practitioners in more correct and early detection of TLD, 

saving farmers from suffering large losses [3]. 

1.2 |Tomato Plant Diseases 

Plant diseases pose a significant problem for anyone engaged in gardening, farming, and other plant 

cultivation activities. Diseases in tomato plants can be caused by a wide range of pathogens, including 

bacterial, viral, fungal, and insect infections as well as nutritional problems. Table 1 lists the most tomato 

diseases [4].  

Table 1. Tomato diseases categories. 

Bacterial diseases 

Bacterial Canker of Tomato 

Bacterial speck 

Bacterial spot 

Bacterial wilt 

Fungal diseases 

Alternaria stem canker 

Anthracnose 

Black mold rot 

Black root rot 

Powdery mildew 

Verticillium wilt 

Leaf mold 

Early blight 

Late blight 

Septoria leaf spot 

Fusarium wilt 

Target spot 

Viral diseases 

Tomato mosaic 

Yellow leaf curl 

Spider mite 

Cucumber mosaic 

Nematodes 

Root-knot 

Sting 

Stubby-root 

 

Fungal disease can appear in the form of leaf spots, powdery mildew, lesions, and mold. Bacterial diseases 

can cause wilting, leaf spots, ulcers, and rot. Which leads to serious damage to the plant’s leaves. Some 

examples of bacterial diseases are bacterial leaf spot, fire blight, and downy mildew.  

Viral diseases are caused by plant viruses, which are transmitted through insects, contaminated tools, or 

infected plant materials. These diseases can lead to stunted growth, mottled leaves, yellowing, and misshapen 

plant parts. Tomato mosaic virus is a common example of a viral disease. Nematodes are little spherical 

parasites that can invade plant roots and inflict substantial harm. These organisms consume plant tissues, 
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thereby interfering with the process of water and nutrient absorption. Nematode-infected plants may manifest 

symptoms such as inhibited growth, wilting, and chlorosis of the foliage [4].  

In agriculture, early-stage diagnosis of plant diseases is critical, and leaf detection is frequently employed to 

distinguish between various illnesses. But diagnosing the illness necessitates a thorough understanding of its 

causes and signs. In isolated areas, manual assessments are still utilized, although they are unable to pinpoint 

the precise illness and its variations. Manual evaluation takes a lot of time and manpower on larger farms. 

Furthermore, crop health must be periodically monitored during the ongoing process of cultivation to identify 

illnesses. Since this other approach is more precise and efficient, it is required to automatically diagnose 

illnesses from leaf photos. Machine Vision and DL are techniques is recommended in plant disease 

recognition and identification especially in large fields and Demond for continuous monitoring [5]. 

1.3 |Aims and Scope of this Work 

Generally, ML and DL techniques play an evolutionary role in agriculture. Automated agriculture systems can 

perform high-performance in different tasks such as monitoring, navigation, mapping, identifying plant 

diseases and pests. Plant disease detection is developed on captured images of pests or diseases. Classification 

is the most demanding phase in computer vision and ML. The completion of this stage depends on earlier 

ones like acquisition, preprocessing, as well as feature selection and extraction. This method uses a dataset 

that has been trained first to determine if the test image is Normal/diseased. Unfortunately, most plant images 

suffer from some complex problem that poses a challenge to this study [6]: 

 Backgrounds that cannot be easily separated from the region of interest (usually leaf and stem).  

 Boundaries of the symptoms often are not well defined, and uncontrolled capture conditions may 

present characteristics that make the image analysis more difficult. 

 Certain diseases produce symptoms with a wide range of characteristics, the symptoms produced by 

different diseases may be very similar, and they may be present simultaneously. 

Using ML models requires that all attributes, including pixel values, textures, orientations, shapes, and other 

characteristics, be identified by an expert before being manually created by a data analyst and a domain expert. 

The accuracy with which features are found or extracted determines how well the ML algorithm performs. 

DL algorithm, on the other hand, attempts to extract high-level characteristics from the data. DL is capable 

of automatically extracting features without the need for explicit feature engineering. By utilizing large 

amounts of labeled data, DL models can learn intricate features and capture complex relationships, leading 

to highly expressive representations that enable accurate pattern recognition and prediction [7]  .   

CNN is a type of DL architecture that shows significant results in Plant disease detection. CNN uses deep 

neural networks (DNN) to analyze multidimensional data by utilizing several layers for classified diseases and 

extracted features. Many convolution layers, nonlinear pooling layers, and activation functions are used in 

feature extraction. Using fully connected layers as a classifier lowers the processing complexity of the images 

without any loss of features that are crucial for the classification process. Through a stack of convolution and 

pooling processes, CNN learns spatial properties from input images of plant leaves. The fully connected layers 

receive this vector, which is essentially a reduction of these features into probabilities for a subset of classes 

[4]. Release of CNN leads to various futuristic DL architectures like AlexNet, VGG, ZFNet, GoogLeNet, 

ResNet, SegNet, YOLO, U-Net, Fast R-CNN, and Mask R-CNN [8].  

A bunch of studies have been done over the last few years by utilizing diverse image-processing techniques 

with different DL-based models in intelligent agriculture tasks. Which lead to [9]: 

 Better leaf classification is caused by similarities between different types of tree leaves. 

 Improved financial and environmental effects by effective by identifying the significant number of 

pesticides required which results in improved financial and environmental effects. 
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 Detect and discriminate weeds in a cost-effective manner and with no environmental side effects or 

issues. 

 More effective, quick, accurate results by analyzing lead vein morphology which provides more 

information about leaf properties. 

By leveraging the power of DL in the agriculture industry, Egypt can become more sustainable and profitable, 

ultimately contributing to the realization of the goals outlined Egypt Vision 2030 [10].  

On top of all that, our goal is to focus on detecting TLD using hybrid DL techniques. Also, transfer learning 

(TL) has exploited the knowledge gained from a previous task to improve generalization about another.TL is 

developed for hybrid DL ResNet152V2 and Squeeze-and-Excitation (SE) block for classifying between 9 

classes of TLD. 

1.4 |Main Contributions 

 The primary objective of this study is to investigate the effectiveness of transfer learning algorithms 

such as (Xception , ResNet152V2 , InceptionV3 , VGG19 ) in properly classifying nine unique classes 

to Tomato disease. 

 Create a proposed model capable of diagnosis with high accuracy. It is a hybrid model that combines 

Architecture ResNet125V2 with Squeeze-and-Excitation (SE) block. 

 The validity of the models was assessed using a range of metrics, such as accuracy, precision, recall, 

F1-score and AUC. In exploratory data analysis using ROC Curve and TSNE. 

 The proposed model achieved satisfactory results of 0.947, 0.948, 0.947, 0.946, and 0.970 for 

accuracy, precision, recall, F1 score, and area under the curve, respectively. 

The rest of this article is organized as follows Section 3 reviews some ML and DL models for tomato plant 

disease detection; Section 4 presents materials and methods; Section 5 presents results and discussion; 

Section 6 Implication of Egyptian Vision 2030; and Section 7 presents conclusion and future work. 

2 |Literature Review    

In this part we discuss some implementation of ML and DL approach for TLD detection. Before the 

transformation of DL models, ML algorithms produced numerous research results for various agricultural 

operations. Support Vector Machines (SVM), KNN, Random Forest (RF) classifier, and DT are the most 

notable models in these algorithms. 

In most cases, tomato diseases appear and identify on crop leaves first. Which resulting in using leaf picture 

datasets for tomato disease identification and recognition. Numerous studies have been put forth to determine 

the TLD, and each one documented a range of models, techniques, and characteristics. Consequently, a review 

of the literature was done to bring the prior research in this field to a close.  

A ML proposed has been developed to identify TLD using Otsu’s segmentation algorithm with a decision 

tree (DT) method. This study used hand-crafted features for learning the TLD characteristics. The 

classification accuracy was 97.30% [11]. Another study proposed a statistical-based model to identify six types 

of TLD. To minimize SIFT feature vector dimensions, the generalized extreme value (GEV) distribution was 

adopted which reduces algorithm computational time and attained an accuracy value of 84.7% [12]. 

Further contribution based on the Moth-Flame Optimization (MFO) and Moth-Flame Optimization Rough 

Set (MFORSFS) approach to identify a two of Fungal TLD.  Comparison with the genetic algorithms (GA) 

and particle swarm optimization (PSO) with rough sets algorithms has been maintained. The proposed 

approach achieve accuracy 86% [13]. Another study based on optimization algorithms, Gangadevi et al. 

proposed a multi-objective hybrid fruit fly optimization algorithm using simulated annealing optimized SVM 
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to identify tomato plant diseases earlier, avoiding global optimization problems. The method achieved 91.1% 

accuracy and reliability, outperforming current algorithms. Its operational efficiency was measured on 

statistical parameters and compared to existing algorithms, indicating a high methodological approach for 

crop disease diagnosis [14]. 

Gadade et al. proposed a ML method for identifying and classifying TLD based on PlantVillage dataset which 

have high, medium, low, and normal severity grading. The system extracts handcrafted feature to perform 

various classification techniques such as Support vector machine (SVM), KNN, Naive Bayes, DT, and 

LDA[15]. On the other hand, Ahmad et al. developed a new feature descriptor called the local triangular-

ternary pattern (LTriTP) for TLD detection. It extracts feature vectors from leaf images using a triangular 

shape descriptor. The method uses an absolute mean value-based dynamic threshold and triangular histogram 

of gradient (T-HOG) to identify infected regions. The fusion of T-HOG and LTriTP features improves 

disease detection performance. The method outperforms renowned methods like Local Binary Pattern and 

Local Ternary Pattern [16]. 

Das et al. proposed an approach based on SVM, logistic regression (LR), and Random Forest (RF) to classify 

seven classes of TLD. The hand-crafted feature is extracted using the Haralick algorithm. These features are 

the input to the classifier. The results confirms that SVM outperforms with an accuracy of 87.60% followed 

by RF 70.05% and LR 67.30% [17]. Another study proposed an approach to identify TLD based on multiple 

features fusion for four classes. The features are extracted and input to RF and DT algorithms for 

classification process. RF Shows the highest detection accuracy of 94% whereas the DT is 90% [18]. 

A study by Gupta et al., shows the effect of weather parameters on early blight disease in tomato plants. Using 

a real-time dataset, three resampling techniques, and five classifiers, 20 models were evaluated. The proposed 

model, KELM-KM, outperformed all others with a mean accuracy of 85.82%. This model can be used to 

warn farmers about fungicide spray on diseased plants in conducive environments [19]. 

Some Studies used HOG for feature extraction based on Streamlight application for image classification. The 

features are input to Classifiers such as SVM, LR, RF. The proposed aims to develop an end-to-end system 

for detecting TLD [20]. 

Over the last ten years, there has been a surge of interest in the field of DL. Artificial neural networks (ANN) 

have multiple layers to extract high-level features from raw data. The parallel processing capability of DL 

models makes them suitable for solving a wide range of problems and reducing error rates. These techniques 

have become popular in the realm of smart farming, as they can handle complex issues and improve farming 

methods. Image recognition is a key application of DL that has overcome numerous obstacles in the 

agriculture industry. Automated image identification and classification methods are being used in various 

aspects of farming such as detecting crop diseases, determining maturity, counting plants, and identifying 

weeds [21]. 

Convolution neural networks (CNNs) specifically designed to process image data. CNNs uses convolutional 

layers that apply filters to the input data, capturing local patterns and features. These layers extract important 

features, such as edges and textures. Through the process of iterative training on a substantial dataset. CNNs 

acquire the ability to autonomously extract hierarchical features from the input data. Every layer within the 

network modifies the inputs, constructing progressively more intricate and sophisticated representations. The 

process of hierarchical representation learning allows Convolutional Neural Networks (CNNs) to efficiently 

capture intricate patterns and perform exceptionally well in tasks like image recognition. Once the model has 

finished training, it is ready and can be used to make predictions on new data by passing it through the 

network and leveraging the learned weights to create accurate predictions. There is what is known as transfer 

learning, which is algorithms that are trained on a huge dataset of ImageNet [21]. 

Transfer learning is a powerful technique in the field of DL that involves fine-tuning pre-trained networks to 

create new models. The fundamental idea behind transfer learning is to leverage the knowledge gained from 

solving one problem and apply it to solve a related but different problem. By transferring learned 
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representations from one domain to another, transfer learning can effectively address various tasks and 

domains with established knowledge. One of the significant advantages of transfer learning is its ability to 

save training time and resources while improving performance [22]. 

Many research papers aim to find efficient results in plant diseases identification and classification specially 

in TLD using CNNs.  Vini and Rathika proposed TrioConvTomatoNet, which is based on deep 

convolutional neural network (DCNN) architecture for tomato leaf image classification. It uses a 3-series 

convolution layer and a stochastic gradient descent optimizer for efficient learning. The method achieves an 

accuracy of 99.39% in disease classification [23]. Another contribution based on CNN evaluated on 

PlantVillage dataset. The proposed TomConv model aims to classify between different classes of TLD. The 

improved CNN achieves an accuracy of 98.19% and is compared to existing models under various parameters 

[24]. 

Priyadharshini and dolly proposed work involves data collection, pre-processing, training, feature extraction, 

testing, and classification utilizing the Visual Geometry Group (VGG 16) to identify damaged or healthy 

leaves. VGG 16 is incorporated to categorize the leaves as healthy or diseased based on the data and 

Regression’s boundary box method is adopted. Therefore, using Faster RCNN, a model is created to identify 

and categorize diseases from every image of a tomato leaf that is used as an input, providing a forecast with 

a considerably greater degree of accuracy. We obtain an accuracy of approximately 98% after fitting the 

collected features into the neural network over 20 iterations [25]. 

A Novel contribution in pests and disease detection based on lightweight network. The proposed maintain 

Squeeze and SE Net (SSNet), a new CNN-based on SqueezeNet and SENet. The proposed study achieves 

model accuracies of 98.80% and 98.39% for tomato pests and diseases, respectively, with only 0.398 M 

parameters [26].  

A novel framework known as PCA DeepNet was created by Roy et al. that combined Principal Component 

Analysis (PCA) with a customized Deep Neural Network. To obtain a good mixing of datasets, the hybridized 

framework also includes a Generative Adversarial Network (GAN). Faster Region-Based Convolutional 

Neural Network (F-RCNN) is used for the detection. With an average precision of 98.55% and a classification 

accuracy of 99.60% overall, the work produced a promising Intersection over Union (IOU) score of 0.95 in 

detection [27]. 

Some studies use Residual Neural Network (ResNet) in TLD. Hajraoui et al. proposed DL model for TLD 

RGB images classification. The proposed integrated both VGG16 and ResNet152v2 models with transfer 

learning. The evaluation is done over 5500 images of tomato leaves in 5 different classes, 4 diseases 

(Tomato_Bacterial_spot, Tomato_Early_blight, Tomato_Late_blight, Tomato_Leaf_Mold) and one healthy 

class (Tomato_healthy). The proposed achieves 99.08% accuracy in training, 97.66% in validation, and 

99.02% in testing [28]. 

A contribution based on Xception architecture is Proposed by Bakır by examines the use of pre-trained CNN 

architectures in a DL model for TLD identification. The researcher suggests using these architectures as 

feature extraction and tuning them alongside the classification phase. They use hyperparameters to optimize 

the model, and a random search algorithm is used to refine the model. The Xception-CNN model 

outperforms the Scratch-CNN model in all evaluation metrics, with a classification accuracy of 99.40%. The 

study emphasizes the importance of meticulous deep-learning model refinement and pre-trained models [29]. 

Patokar and Gohokar proposed DL architecture for TLD detection. The study compares between three 

optimizers in ResNet50 and Xception architectures Xception Architecture with Adam optimizer and learning 

rate of 0.0001 achieved higher accuracy, recall, precision, and F-score values of 99% compared to Nadam and 

RMSProp [30]. 

Paul et al. developed a lightweight CNN model using transfer learning models VGG-16 and VGG-19 to 

classify TLD. The model, with eleven classes and optimal parameters, achieved 95.00% accuracy and recall. 

The model was used to create an end-to-end system for tomato cultivators [31]. Another study maintains a 
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mobile app-based system for intelligent TLD identification using CNNs. The system, fine-tuned using 

transfer learning, achieves over 95% accuracy, with DenseNet-121 leading the pack with a 99.85% accuracy 

[32]. Table 2 presents the literature review on tomato leaf disease detection using ML/DL. 

Table 2. Literature review in tomato leaf disease detection using ML/DL. 

Ref. Year ML/DL Model Results 

[11] 2016 

M
L

 a
p

p
ro

ac
h

es
 

DT 97.30% 

[12] 2017 Statistics based model 84.7% 

[13] 2017 MFORSFS 86% 

[14] 2024 
Fruit fly optimization, simulated annealing, 

SVM 
91.1% 

[15] 2021 SVM KNN, Naive Bayes, DT, and LDA - 

[16] 2023 LTriTP - 

[17] 2020 SVM,LR,RF 87.60% for SVM 

[18] 2020 RF and DT 94% for RF 

[19] 2024 KELM-KM 85.82% 

[20] 2022 SVM, LR, RF - 

[23] 2024 

D
L

 a
p

p
ro

ac
h

es
 

TrioConvTomatoNet 99.39% 

[24] 2023 TomConv 98.19% 

[25] 2023 Based on VGG 16, Faster RCNN 98% 

[26] 2024 SSNet 98.80% and 98.39% 

[28] 2023 Based on VGG16 and ResNet152v2 99.02% 

[27] 2023 Based on PCA F-RCNN, GAN 99.60% 

[29] 2023 Xception-CNN 99.40% 

[30] 2023 
Different optimizer under ResNet50 and 

Xception 
Acc=99% for Xception 

[31] 2023 VGG-16 and VGG-19 95% 

[32] 2023 
AlexNet, ResNet-50, SqueezeNet-1.1, 

VGG19, and DenseNet-121 

99.85% for DenseNet-

121 

 

3 |Materials and Methods    

3.1 |Dataset Description 

This study utilizes a publicly accessible dataset called PlantVillage [17,18], obtained from several sources, 

primarily from plant village records. The dataset has a total of 10 distinct classifications. Among the 10 classes, 

one was healthy and the remaining 9 represented different diseases of tomato leaf such as 

(Tomato___Tomato_mosaic_virus, Tomato___Early_blight, Tomato___Septoria_leaf_spot , 

Tomato___Bacterial_spot, Tomato___Target_Spot, Tomato___Spider_mites , 

Tomato___Tomato_Yellow_Leaf_Curl_Virus, Tomato___Late_blight and Tomato___Leaf_Mold ) , The 

Dataset distribution as shown in Table 3 where the dataset consisted of a total of 11,000 images acquired 

from a plant village dataset and some collected images distributed into two separate folders: training and 

validation sets. This study utilizes the whole validation set for testing, consisting of 1000 images divided into 

100 images for each class. The training data set is divided into two parts: 70% for training and 30% for 

validation. The training data set consists of 7000 images. Each class is allocated a total of 700 images for 
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training purposes, whereas the test set consists of 3000 images, leading to each class having 300 images 

allocated for testing. The dataset has a well-balanced distribution, making it appropriate for developing a deep 

learning model capable of predicting a specific disease in tomato leaves and then classifying them accordingly. 

Figure 1 presents the depiction of infected and healthy images in this dataset. 

Table 3. Description of used tomato dataset. 

Classes 
Mosaic 

Virus 

Early 

blight 

Septoria 

Leaf 

spot 

Bacterial 

Spot 

Target 

Spot 

Spider 

mites 

Yellow 

Leaf 

Curl Virus 

Late 

blight 

Leaf 

Mold 
Healthy 

Training 
Count 700 700 700 700 700 700 700 700 700 700 

Total 7000 

Testing 
Count 300 300 300 300 300 300 300 300 300 300 

Total 3000 

Validation Count 100 100 100 100 100 100 100 100 100 100 

 Total 1000 

 
Figure 1. Depiction of infected and healthy images in this dataset. 

 

3.2 |Dataset Preprocessing 

Before building and training a DL model, the tomato disease dataset is preprocessed in order to improve the 

performance of the DL models. In this study, image normalization is solely relied upon to expedite the 

convergence speed. This is achieved by transforming the input images into a range of values between 0 and 1, 

as determined by the following formula: 

𝑖𝑚𝑎𝑔𝑒′ = 𝑖𝑚𝑎𝑔𝑒/255                                                                                      (1) 

Where 𝑖𝑚𝑎𝑔𝑒′ is a normalized   image and 𝑖𝑚𝑎𝑔𝑒 is the input image. The input image is divided by 255 to 

convert the image from RGB to Gray scale so that the image becomes composed of range 0 and 1. 
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3.3 |Building Deep Learning Models 

In this study, we depend on some of the TL Models, such as Xception, ResNet152V2, InceptionV3, VGG19, 

in addition to the Proposed Model. 

 Xception is a DL architecture based on the Inception modules. It substitutes standard convolutional 

layers with depth-wise separable convolutions for more efficient learning. This architecture seeks a 

compromise between model complexity and efficiency, providing innovative results. 

 ResNet152V2 is a form of ResNet architecture that includes 152 layers. It uses residual connections, 

also known as skip connections, and bottleneck blocks to avoid the vanishing gradient problem and 

accurately train DNNs. 

 The InceptionV3 module uses parallel convolutional algorithms across various sizes. The current 

architecture improves feature extraction by successfully gathering both local and global information. 

 VGG19 is made up of 19 layers, a mix of convolutional and fully connected layers. Where it can be 

acknowledged for its ease of use and efficacy in feature extraction and classification. 

 Proposed Model as shown in Figure 2 the proposed model is a hybrid combination between 

ResNet152 V2 and Squeeze and Excitation (SE) block, which is lightweight and has the ability to 

classify tomato plant diseases with high accuracy and efficiency. By leveraging the derived ResNet152 

V2 architecture, with its 152 layers including pooling layers, activation functions, batch normalization, 

convolutional layers, and residual blocks. Since skip connections are introduced to alleviate the 

problem of vanishing gradient, this architecture has the potential to effectively train deep neural 

networks. The Squeeze and Excitation (SE) block is added to ResNet152 V2 to improve its feature 

representation and discrimination ability. The global average pooling and the two fully connected 

layers form the SE cluster. First, by reducing the spatial dimensions of feature maps, global average 

pooling captures the global context of the input. Next, fully connected layers capture channel 

dependencies, enabling the network to adaptively recalibrate feature responses according to their 

importance. 

 
Figure 2. The proposed model. 
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The investigated Transfer Learning Models are built using the default hyperparameters. The all models are 

then compiled to determine the loss function, sgd optimizer, and metrics for evaluating performance.  The 

Categorical cross entropy loss function is used to optimize the initial weights of certain DL models to increase 

classification accuracy. The loss function is mathematically defined as follows: 

Minimize: loss = −∑ yi ∙ log yǐ
M
i=1    (2) 

          Where yi represent real values and yǐ represent predicted values. 

3.4 |Training Deep Learning Model 

The DL models were trained with 50 epochs. In addition, the early stopping with a patience of 5 was used in 

our experiments and applying mini-batch gradient descent technique to decrease the error calculated from the 

loss function (Categorical Cross Entropy). In each epoch, the data is divided into 219 batches so that the 

weights in each batch are updated. This number is calculated by dividing the length of the training data, which 

is 7000, by the batch size, which is 32, yielding 219, which means that in every epoch, the weights change 219 

times, corresponding to the number of batches. Figure 3 presents the deep learning pipeline for Tomato 

diseases data classification. 

 

Figure 3. Deep learning pipeline for Tomato diseases data classification. 

Initially, The extract important features from a preprocessed dataset of tomato diseases. Next, the dataset is 

partitioned into several sets for training, validation, and testing purposes. The utilization of a training dataset 

is employed for the purpose of training deep learning models then evaluate performance and check epochs 

and early stopping, if a defect occurs in any of them, the model stops because it has been finished the training 

process or is unable to learn, so it stops to prevent the overfitting, otherwise it completes the learning and 

development process. The validation dataset is utilized to evaluate the performance of the model and adjust 

its parameters. Lastly, the testing dataset is employed to analyze the final performance and generalization ability 

of the trained model on unknown data. 
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4 |Result and Discussion    

This section investigates the performance of the proposed model using a widely used dataset, PlantVillage[33], 

[34]. In addition, it has been compared to several DL models, such as  Xception, ResNet152V2, InceptionV3, 

VGG19. Those models are implemented in Python using the Kaggle platform and Keras API. The SGD 

optimizer was used to train the weights of those models for 50 epochs. In addition, the early stopping with a 

patience of 5 was used in our experiments. The performance indicators used to evaluate the performance of 

those models are described as follows:  

 Accuracy:  The definition of this metric is the proportion of correctly predicted samples to all samples 

in a particular dataset. To compute this metric, use the equation that follows: 

Accuracy =
TP+TN

TP+FP+TN+FN
.                                                           (3) 

where TP, FN, TN, and FP represent true positive, false negative, true negative, and false positive, 

respectively. 

 Precision: Precision is a metric that quantifies how accurate positive predictions produced by a certain 

model are. The percentage of correctly detected positive instances to all anticipated positive instances 

is quantified by the statistic. This metric can be computed using the following equation: 

Precision =
TP

TP+FP
.                                                                 (4) 

 Recall: This metric, which is also known as true positive rate or sensitivity, assesses how well the 

model can identify positive samples out of all the real positive samples. This metric can be computed 

using the following equation: 

Recall =
TP

TP+FN
.                                                                        (5) 

 F1-score: The F1 score offers a fair evaluation of model performance by integrating recall and 

precision into a single metric. This metric can be computed using the following equation: 

F1 − score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙
.                                             (6) 

 AUC: It shows how well the model can discriminate between positive and negative examples; a 

greater AUC denotes superior performance. This metric can be computed using the following 

equation: 

AUC =
1+

TP

TP+TN
−

FP

FP+TN

2
                                                     (7) 

 Confusion Matrix: A confusion matrix is a visual aid that offers a brief summary of a machine learning 

and deep learning model's performance on a particular dataset. It is a way of displaying the number 

of accurate and inaccurate occurrences based on the model's predictions. It is common practice to 

assess the effectiveness of classification models using the previously mentioned matrices, such as 

F1Score, Accuracy, Permission, and Recall. When all of the true values are as enormous as they can 

be, the model performs at its peak. 

 ROC Curve: The receiver operating characteristic (ROC) curve shows how well a model performs in 

classification. At various classification thresholds, it plots the specificity (1 - false positive rate) against 

the sensitivity (true positive rate). A greater ROC curve denotes better performance, and it is used to 

assess the model's ability to distinguish between positive and negative cases. 

 TSNE: A dimensionality reduction method called t-SNE (t-Distributed Stochastic Neighbor 

Embedding) is frequently used to display high-dimensional data in a low-dimensional space. For 



   Tolba et al.| Optimization Agri. 1 (2024) 40-55 

 

44 

exploratory data analysis, it is helpful. Its goal is to map data points so that related points are 

positioned near one another. By grouping comparable classes after the prediction process, we may 

determine the model's effectiveness based on the increased distance between related classes [35]. 

As shown by the data shown in Table 4, The proposed model demonstrates the highest accuracy among the 

compared deep learning models, achieving an accuracy score of 94.7% after being trained for 15 epochs. 

despite its substantial parameter count of 60,917,122, It is closely followed by ResNet152 V2, with an accuracy 

of 88.3%, displaying its strong performance. Next is Xception, achieving an accuracy of 82.5%. InceptionV3 

and VGG19 show lower accuracy scores of 74.3% and 65.0%, respectively, and relatively poorer performance 

compared to the proposed model and ResNet152 V2. This confirms the superiority of the proposed model 

in terms of accuracy, followed by ResNet152 V2, among the evaluated architectures. In Table 5 illustrate 

Confusion Matrix which displays the number of cases in which the actual class matches the estimated class. 

In addition, it displays the recall ratio for each class and the precision ratio for the overall model performance. 

In Figure 4 Illustrate the performance evaluation of the proposed model is examined under the accuracy 

curve, loss curve, ROC curve and TSNE histograms. 

According to the accuracy curve (a), the learning process stopped after the 15th epoch, and the model 

continued to learn in each subsequent epoch. The stability of the learning process can be inferred. The initial 

accuracy starts at 0.7269%, and with each subsequent attempt the results show significant improvement until 

reaching the highest point of 99% training and 97% verification. According to the loss curve (b), it is an 

inverse process for accuracy, and our goal was to reach the smallest possible value, and this was achieved after 

15 epochs, where loss: 0.0039, loss value: 0.0734 , The receiver operating characteristic (ROC) curve (c) for a 

10-class classification model shows an overall mean area under the curve (AUC) of 97%, with the majority of 

classes having AUC values greater than 95%. However, it should be noted that Categories 1 and 6 which 

scored 94% and 92%. According to the TSNE plot (d), similar predicted values are grouped close to each 

other. 

Table 4. Comparison between the proposed model and others in terms of various performance indicators. 

Model Name 
# Epochs 

trained 
# Parameters Accuracy Precision Recall 

F1-

Score 
AUC 

Proposed Model 15 60,917,122 0.947 0.948 

 

0.947 

 

 

0.946 

 

 

0.970 

 

ResNet152V2 27 60,390,658 0.883 0.889 0.883 0.882 0.934 

Xception 50 22,920,490 0.825 0.840 0.825 0.823 0.902 

InceptionV3 14 23,861,794 0.743 0.794 0.743 0.740 0.857 

VGG19 40 20,547,394 0.650 0.689 0.650 0.613 0.805 

 

Table 5. Confusion matrix of the proposed model. 

 Estimated classes  

A
ct

u
al

 c
la

ss
es

 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Recall (%) 

C1 98 0 0 0 1 0 0 1 0 0 0.98 % 

C2 0 89 8 0 3 0 0 0 0 0 0.89 % 

C3 0 3 97 0 0 0 0 0 0 0 0.97 % 

C4 0 0 0 99 1 0 0 0 0 0 0.99 % 

C5 1 3 1 0 95 0 0 0 0 0 0.95 % 

C6 0 0 2 0 0 90 5 0 3 0 0.90 % 

C7 0 6 3 0 4 2 84 0 0 1 0.84 % 

C8 2 0 0 0 0 0 0 97 1 0 0.84 % 

C9 0 0 0 0 0 0 0 0 100 0 1.00 % 

C10 0 0 0 0 1 0 0 0 1 98 0.98 % 

Precision (%) 0.97 % 0.88 % 0.87 % 1.00 % 0.90 % 0.98 % 0.94 % 0.99 % 0.95 % 0.99 %  
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4-1) Accuracy curve 

 

4-2) Loss curve. 

  

4-3) ROC curve                                                            4-4) TSNE  

Figure 4. Performance evaluation of the proposed model under accuracy curve, loss curve, ROC curve, and TSNE 

events. 
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5 |Implication of Egyptian Vision 2030   

Egypt Vision 2030 seeks to establish a contemporary, globally competitive economy. DL algorithms are for 

identifying tomato leaf disease since they have the potential to completely transform disease detection 

procedures. DL algorithms have the potential to improve farming operations by encouraging data-driven 

decision-making and giving farmers the ability to make well-informed choices. Implementing DL algorithms 

in agriculture requires specific understanding in data science, machine learning, and agricultural sciences; 

capacity building and skill development are therefore essential. Through the reduction of crop losses, the 

elimination of chemical inputs, and the facilitation of early disease identification, DL algorithms can support 

sustainable agriculture. Achieving these goals requires cooperation between governmental organizations, 

academic institutions, businesses, and foreign partners. 

6 |Conclusion and Future Work   

Early diagnosis of tomato plant diseases is a complex task that requires great experience from the plant 

treatment specialist and is crucial to increasing crop productivity and improving production quality. Due to 

its importance, we do not have to depend on only on traditional diagnosis where Traditional diagnosis include 

performing periodic visual inspections on tomato plant this approach is subjective and prone to errors due 

to the presence of various tomato diseases and possible human oversight.  According to sustainability, this 

paper aims to leverage advanced artificial intelligence and deep learning algorithms to create Proposed Model 

hybrid DL. The Proposed Model was trained on PlantVillage Dataset. The Proposed model that accurately 

detects and classifies 9 different tomato plant diseases such as MosaicVirus, Earlyblight,Septoria Leaf spot , 

Bacterial Spot , Target Spot .Spider mites,Yellow Leaf Curl Virus , Late blight and LeafMold through leaf 

images. The model architecture was designed by combination between ResNet125V2 Architecture and 

Squeeze-and-Excitation (SE) block, by comine these two models can improve its feature representation and 

discrimination ability can classify tomato plant diseases with high accuracy and efficiency. The proposed 

Model was compared by 4 pre-trained models such as Xception, ResNet152V2, InceptionV3, VGG19. The 

results achieved demonstrate the efficacy of the proposed model in accurately extracting the distinct features 

from tomato leaf images, with scores of 0.947, 0.948, 0.947, 0.946, and 0.970 for accuracy, precision, recall, 

F1 score, and area under the curve, respectively. 

Additionally, we outlined some of the crucial DL problems related to the identification and classification of 

plant diseases that could have a big influence on the model's functionality.  Deep learning faces several 

challenges, including the need for large datasets, limitations in performing beyond the expressiveness of the 

dataset, time-consuming data pre-processing, and limited open datasets in computer vision and agriculture. 

Techniques like data augmentation can augment the dataset, but real-life problems require hundreds of images 

to improve classification accuracy. Additionally, developing your own datasets for applications in these 

domains is time-consuming and requires significant effort. 
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