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1 |Introduction    

The global wheat crop represents a major aspect of food security and environmental sustainability. According 

to FAOSTAT report [1] wheat production in Egypt is constantly increasing. Unfortunately, climate change 

would reduce global wheat production by 1.9% by mid-century, with Africa and South Asia bearing the brunt 

of the damage. Studies have already shown that wheat yields fell by 5.5% between 1980 and 2010, due to 

rising global temperatures. Climate change threatens wheat crop spreading and affects environmental 

sustainability and global food security [2].  

The utilization of machine learning (ML) and Deep learning (DL) techniques in the detection of plant diseases 

has become increasingly popular and has demonstrated promising outcomes in accurately identifying plant 

diseases based on digital images. Conventional ML techniques, such as SVM, random forest, and decision 

trees have been extensively employed in the domain of wheat disease detection. These techniques utilize 

various algorithms to extract distinct characteristics from images, including color, texture, and shape. These 
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model (Mobile-DNN-Net) to identify wheat diseases. The mobile-DNN-Net model is evaluated using a wheat 
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Deep convolution neural network (DCNN). Also, Grad-Cam techniques into a convolutional neural network 

(CNN) defect detection model to enhance its transparency and comprehensibility. Grad-CAM precisely identifies 

the precise regions of the input image that exert the greatest influence on the model's prediction, thereby enhancing 

the clarity and comprehension of the detection process. The mobile-DNN-Net model is compared to other DL 

models such as Xception, MobileNet, InceptionV3, and VGG19. The proposed model shows superior results 

compared to other models.  
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extracted features are then used to train a classifier that can accurately distinguish between healthy plants and 

those that are diseased [3]. 

In recent times, advanced DL techniques like convolutional neural networks (CNNs) and deep belief 

networks (DBNs) have been suggested to detect plant diseases. These techniques entail training a neural 

network to acquire knowledge about the fundamental characteristics of the images, allowing for the detection 

of subtle disease symptoms that conventional image processing methods may fail to identify[4, 5]. DL models 

are capable of processing intricate and sizable images, rendering them appropriate for high-resolution images. 

Nevertheless, these techniques necessitate a substantial quantity of annotated training data and may not be 

appropriate for novel illnesses [6]. Moreover, DL models incur significant computational costs, which can 

pose limitations for certain applications. 

In this study, we introduce a novel DL model (Mobile-DNN-Net) to identify 15 different wheat diseases 

from the Wheat Plant Diseases Dataset. The dataset consists of 14,155 high-resolution images. Grad-Cam 

techniques in a CNN-based defect detection model to improve its transparency and comprehensibility.  A 

comparison between the Mobile-DNN-Net model and other 4 DL models such as Xception, MobileNet, 

InceptionV3, and VGG19, has been maintained in terms of accuracy, precision, recall, F1-Score, and area 

under the curve (AUC). Additionally, these models offer visual representations that aid in diagnosis and 

facilitate comprehension. Through the utilization of techniques such as Grad-CAM (Gradient-weighted Class 

Activation Mapping), we have effectively generated comprehensible results that provide valuable insights into 

the decision-making process of CNN models. 

The main contributions of the present study can be succinctly summarized as follows: 

 An integration between MobileNet and Deep Neural Network (DNN) to introduce the Mobile-

DNN-Net model. 

 A novel Mobile-DNN-Net model is introduced to classify a wide range of wheat diseases. 

 An investigation of the effectiveness of different DL models such as (Xception, MobileNet, 

InceptionV3, and VGG19) has been evaluated between 15 classes of wheat disease. 

 The mobile-DNN-Net model achieves superior results compared with other DL models.  

 The grad-CAM visual explanation method is utilized to troubleshoot the prediction procedure for 

each model and to emphasize the noteworthy parts in the wheat leaf image that are accountable for 

the conclusion. 

 The validity of the models was assessed using a range of metrics, such as accuracy, precision, recall, 

F1-score, and AUC. In exploratory data analysis using the ROC Curve. 

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 presents materials 

and methods. Section 4 presents the proposed model. Section 5 presents results and discussion Section 6 

managerial implications and Section 7 presents the conclusion and future work. 

2 |Related Work    

Recently, the manual process of visually inspecting plants to identify diseases is frequently characterized by 

being time-consuming, requiring a significant amount of labor, being costly, and subject to personal 

interpretation. These factors are among the primary motivations for researchers to investigate alternative 

methods. Several ML methodologies have been suggested to address this issue. With a high level of precision, 

as well as a decrease in expenses and subjectivity. 

Singh et al. [7] examine the utilization of ML methods, such as DL, in the context of high-throughput stress 

phenotyping in plants. The authors investigated the utilization of different omics technologies, such as 

genomics, transcriptomics, proteomics, and metabolomics, for stress phenotyping. They emphasized the vast 
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capabilities of ML Methods for managing the large and complex datasets generated by these technologies, 

allowing for efficient analysis and interpretation.  

Boulent et al. [8] proposed a sophisticated plant disease detection system by leveraging DL techniques and 

implementing a CNN. The system underwent training using a comprehensive dataset consisting of 54,306 

photographs that covered 15 different types of plant diseases. The model demonstrated an impressive level 

of accuracy, reaching a remarkable 95% in correctly identifying and categorizing plant diseases. Gogolev et 

al. [9]  Developed an autonomous system for detecting and diagnosing plant diseases by analyzing leaf images 

using a CNN. The dataset consisted of 3,795 images representing 10 different plant diseases. The accuracy 

rate achieved was 95.5%. Also, Feng et al. [10] Devised a technique for identifying plant leaf diseases by fine-

tuning the parameters of CNN. Using a dataset of 2,376 images that represent 11 different plant diseases, the 

researchers achieved an accuracy rate of 98.8%. 

Rubio et al. [11]Suggested a DL methodology for categorizing and diagnosing plant ailments by employing 

transfer learning and fine-tuning techniques. The dataset consisted of 54,306 images depicting 15 distinct 

plant diseases, achieving an accuracy rate of 99.2%. 

Feng et. al [12] Suggested a technique that combines ML and multispectral imaging to identify and diagnose 

plant diseases. By employing a random forest classifier, the researchers achieved a commendable accuracy 

rate of 93.3% when analyzing a dataset consisting of 480 multispectral images of apple trees affected by fire 

blight.  

Song et. al [13] proposed a technique for detecting tomato diseases by utilizing DL algorithms and 

hyperspectral images. The researchers achieved an accuracy of 93.6% on a dataset consisting of 1,080 

hyperspectral images representing six different tomato diseases.  

Arjmand et. al [14] Explored the use of ML methods to enhance agriculture, specifically by analyzing omics 

data and sensor data for crop phenotyping and disease diagnosis. They emphasized the capacity of ML 

techniques to expedite crop improvement and tackle global food security concerns. 

Fu et. al [15] Examined the latest progress in the application of DL methods, such as CNNs, Recurrent Neural 

Networks (RNNs), and autoencoders, for the diagnosis of plant diseases. The author explored a wide range 

of data types used for diagnosing plant diseases, including images, omics data, and sensor data. Moreover, the 

discussion illuminated the difficulties faced in this domain and emphasized the possibilities for future research 

endeavors. Kuswidiyanto et al. [16] Developed a plant disease identification system utilizing CNN technology. 

When applied to a collection of 1,625 images representing four distinct plant diseases, their efforts resulted 

in an impressive accuracy rate of 98.34%. 

Furthermore, there is a strong need among plant pathologists and cultivators for the creation of accessible 

tools and platforms that streamline. Streamlined data gathering and analysis from plant omics. The application 

of recent advancements in cloud computing, the Internet of Things (IoT) Sayed et al. [17], and mobile 

technology can enable seamless monitoring and instantaneous decision-making. DL methods that make use 

of plant omics data have significant potential to enhance plant disease control and contribute to the 

advancement of global food security. By conducting ongoing research and development, these methods can 

aid in the creation of a durable and adaptable agricultural system that can effectively address the challenges 

of the twenty-first century. 

3 |Materials and Methods 

This study investigates four DL models: Xception [18], MobileNet [19], InceptionV3 [20]  and VGG19 [21]. 

3.1 |MobileNet Architecture 

MobileNet is a specific sort of CNN that has been specifically developed to be used in mobile and embedded 

vision applications. These networks are constructed using depthwise separable convolutions, which results in 
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a streamlined design. This allows for the creation of lightweight deep neural networks that have low latency, 

making them suitable for usage in mobile and embedded devices [19]. 

The MobileNet architecture is enhanced with Separable Convolutions, Drop-Activation, and Random 

Erasing techniques to reduce its size. Modification 4 removes redundant layers 9 to 13, along with the other 

enhancements. Access the network for a streamlined version of MobileNet. Table 1 shows the core elements 

of the Thin MobileNet model. 

Table 1. MobileNet body architecture. 

Type / Stride Filter Shape Input Size 

Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3 

Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32 

Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32 

Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64 

Conv / s1 1 × 1 × 64 × 128 56 × 56 × 64 

Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128 

Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128 

Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128 

Conv / s1 1 × 1 × 128 × 256 28 × 28 × 128 

Conv dw / s1 3 × 3 × 256 dw 28 × 28 × 256 

Conv / s1 1 × 1 × 256 × 256 28 × 28 × 256 

Conv dw / s2 3 × 3 × 256 dw 28 × 28 × 256 

Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256 

5× 
Conv dw / s1 

Conv / s1 

3 × 3 × 512 dw 

1 × 1 × 512 × 512 

14 × 14 × 512 

14 × 14 × 512 

Conv dw / s2 3 × 3 × 512 dw 14 × 14 × 512 

Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512 

Conv dw / s2 3 × 3 × 1024 dw 7 × 7 × 1024 

Conv / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024 

Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024 

FC / s1 1024 × 1000 1 × 1 × 1024 

Softmax / s1 Classifier 1 × 1 × 1000 

 

3.2 |Grad-Cam Technique 

In this study, we focus on Interpretable DL by applying Grad-Cam methods with Transfer Learning Models. 

The models used in this experiment are Xception, MobileNet, InceptionV3, and VGG19 in addition to the 

Proposed Model. The gradient-weighted class activation mapping (Grad-CAM) technique [22] is employed 

to investigate issues with any CNN model and assess its effectiveness in task classification. This technique 

provides a visual representation of how the model examines the image during processing and identifies the 

pixels that have the most significant information. The Grad-CAM approach involves calculating the 

significance weights of neurons in the last convolutional layer's feature map, namely over the width and height 

dimensions denoted by 𝑖 and 𝑗. The algorithm calculates the gradient of the score 𝑦𝑐 for class c in relation to 

the feature map activation 𝐴𝑘of the convolutional layer. Eq. (4) illustrates the computation of neuron 

significance weights.  

𝛼k
c =

1

N
∑  

i

∑  

j

∂yc

∂Aij
k   

                                                         (1) 

Where N is the number of pixels in the concerned feature map. Figure 1 explains the most important 

components of the Grad-CAM working process. This methodology offers a heat map that allows us to visually 

represent how the model is analyzing the wheat dataset and identify the specific areas of the images that have 

the most impact on the prediction conclusion. This strategy involves monitoring the prediction process by 
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utilizing the last convolutional layer. A weighted total of the feature maps is calculated for each prediction to 

identify the main regions of the original image that have a significant impact on the model's choice. The 

outcome is a heat map that may be linked to the original image for display purposes. This technique aids in 

ascertaining if the model accurately predicts cases of wheat diseases based on the correct diseased region of 

the leaves. 

 

Figure 1. Grad-Cam visual explanation mechanism. 

4 |Proposed Model 

4.1 |Pre-Processing Stage 

MobileNet is a specific sort of CNN that has been specifically developed to be used in mobile and embedded 

vision applications. These networks are constructed using depthwise separable convolutions, which results in 

a streamlined design. This allows for the creation of lightweight deep neural networks that have low latency, 

making them suitable for usage in mobile and embedded devices [19]. 

The normalization process has been done over the wheat disease dataset. Image normalization is solely relied 

upon to expedite the convergence speed. This is achieved by transforming the input images into a range of 

values between 0 and 1, as determined by the following formula: 

𝑖𝑚𝑎𝑔𝑒′ = 𝑖𝑚𝑎𝑔𝑒/255                                                         (2) 

Where 𝑖𝑚𝑎𝑔𝑒′ is a normalized image and 𝑖𝑚𝑎𝑔𝑒 is the input image. The input image is divided by 255 to 

convert the image from RGB to Grayscale so that the image becomes composed of range 0 and 1. 

4.2 |Proposed Architecture 

The proposed model is a fusion of the MobileNet architecture and two layers of a deep neural network. The 

architecture of the proposed model is illustrated in Figure 2. The MobileNet architecture functions as a feature 

extractor, efficiently capturing essential patterns and characteristics from the input data. The tiny size of the 

model is achieved by using depth-wise separable convolutions, which reduces both the model size and 

computational requirements. The subsequent two layers of the deep neural network enhance the model's 

learning and abstraction capabilities, allowing it to capture more intricate and advanced representations. The 

Rectified Linear Unit (ReLU) activation function introduces non-linearity, hence enhancing the model's 

capacity to acquire knowledge and generalize. 
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The main component of the proposed model is: 

 Streaming Block: which has a Conv layer followed by batch normalization and Relu Activation 

function.  

 MobileNet Block: which has a depth-wise convolutions layer followed by batch normalization and 

Relu Activation function. then Conv layer followed by batch normalization and Relu Activation 

function.  

 DNN Block: Two Dense layers with Relu activation function.  

Regarding the loss function, the proposed model adopts the categorical cross-entropy loss, Categorical cross-

entropy is a loss function often used in classification tasks involving several classes. It evaluates the 

dissimilarity between predicted values probabilities and the true values labels. The goal is to minimize this 

dissimilarity during training, helping the model learn to effectively classify new data into the correct categories. 

Minimize: loss = − ∑ yi ∙ log yǐ

M

i=1

                                                        (3) 

Where yi represent real values and yǐ represent predicted values. 

 

Figure 2. Mobile-DNN-Net model (proposed model). 

4.3 |Training DL Model 

Phase 1: The dataset is partitioned into several sets for training, validation, and testing so we process each 

partition alone by dividing it by 255 for normalization, image normalization is solely relied upon to expedite 

the convergence speed. This is achieved by transforming the input images into a range of values between 0 

and 1.  

Phase 2: The utilization of a training dataset is employed for training DL models then evaluating performance 

and checking epochs and early stopping, if a defect occurs in any of them, the model stops because it has 
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finished the training process or is unable to learn, so it stops to prevent the overfitting, otherwise it completes 

the learning and development process.  

Phase 3: The validation dataset is utilized to evaluate the performance of the model and adjust its parameters.  

Phase 4: Lastly, the testing dataset is employed to analyze the final performance and generalization ability of 

the trained model on unknown data. 

Phase 5: Display Explanation Results by using Grad-Cam on Original images for helping people who 

specialize in agriculture understand the disease and help them make decisions easily. 

 

Figure 3. DL pipeline for wheat disease data classification. 

5 |Experimental Results 

This part includes the wheat image dataset overview, evaluation metrics, and statistical, and computational 

complexity analysis related to wheat image identification. 

5.1 |Dataset Description 

This study utilizes a publicly accessible dataset called Wheat Plant Diseases[23], obtained from several sources, 

The purpose of this dataset is to provide researchers and developers with the necessary tools to create strong 

ML models that can accurately classify different diseases affecting wheat plants. The collection features high-

resolution photographs that display authentic wheat diseases in their natural state, without any artificial 

enhancement methods. The dataset has a total of 15 distinct classifications. Among the 15 classes, one was 

healthy and the remaining 14 represented different diseases of wheat leaf such as (Aphid, Black Rust, Blast, 

Brown Rust, Common Root Rot, Fusarium, Head Blight, Leaf Blight, Mildew, Mite, Septoria, Smut, Stem fly, 

Tan spot, Yellow Rust), The Dataset distribution as shown in Table 2 where the dataset contains a significant 

number of 14,154 high-quality images, which serves as a solid basis for training and evaluating DL models. 

The dataset is distributed into three separate folders: training, testing, and validation sets. The dataset has a 

well-balanced distribution, making it appropriate for developing a DL model capable of predicting a specific 

disease in wheat leaves and then classifying them accordingly. 

 

 

https://www.sciencedirect.com/topics/computer-science/evaluation-metric
https://www.sciencedirect.com/topics/computer-science/computational-complexity
https://www.sciencedirect.com/topics/computer-science/computational-complexity
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Table 2. Dataset distribution. 

Training 

Classes 

Pest Rusts 

Smut 
Common 

Root Rot 

Leaf 

Blight 
Blast 

Fusarium 

Head 

Blight 

Mildew Septoria 
Tan 

Spot 
Healthy 

Aphid Mite 
Stem 

Fly 

Yellow 

Rust 

Brown 

Rust 

Black 

Rust 

Count 903 800 234 1301 1271 576 1310 614 842 647 611 1081 1144 770 1000 

Total 13104 

Testing 

Classes 

Pest Rusts 

Smut 
Common 

Root Rot 

Leaf 

Blight 
Blast 

Fusarium 

Head 

Blight 

Mildew Septoria 
Tan 

Spot 
Healthy 

Aphid Mite 
Stem 

Fly 

Yellow 

Rust 

Brown 

Rust 

Black 

Rust 

Count 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 

Total 750 

Validation 

Classes 

Pest Rusts 

Smut 
Common 

Root Rot 

Leaf 

Blight 
Blast 

Fusarium 

Head 

Blight 

Mildew Septoria 
Tan 

Spot 
Healthy 

Aphid Mite 
Stem 

Fly 

Yellow 

Rust 

Brown 

Rust 

Black 

Rust 

Count 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

Total 300 

 

 
Figure 4. Depiction of infected and healthy images in this dataset. 

5.2 |Evaluation Metrics 

This section investigates the performance of the proposed model using a widely used dataset, Wheat diseases. 

In addition, it is compared to several DL models, such as Xception, InceptionV3, VGG19, MobileNet, and 

our Proposed Model. All DL models are implemented in Python using the Kaggle platform and Keras API. 

The Adam optimizer was used to train the weights of those models for 30 epochs. In addition, the early 

stopping with a patience of 10 was used in our experiments, and applying mini-batch gradient descent 

technique with batch size 64 to decrease the error calculated from the loss function (Categorical Cross 

Entropy). 

The performance indicators used to evaluate the performance of those models are described as follows:  

 Accuracy:  The definition of this metric is the proportion of correctly predicted samples to all samples 

in a particular dataset. 

Accuracy =
TP + TN

TP + FP + TN + FN
. 

                                                   (4) 
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 Precision: Precision is a metric that quantifies how accurate positive predictions produced by a certain 

model are. The percentage of correctly detected positive instances to all anticipated positive instances 

is quantified by the statistic. 

Precision =
TP

TP + FP
. 

                                                  (5) 

 Recall: This metric, which is also known as true positive rate or sensitivity, assesses how well the 

model can identify positive samples out of all the real positive samples. 

Recall =
TP

TP + FN
. 

                                                  (6) 

 F1-score: The F1 score offers a fair evaluation of model performance by integrating recall and 

precision into a single metric.  

F1 − score

= 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙
. 

                                                  (7) 

 AUC: It shows how well the model can discriminate between positive and negative examples; a greater 

AUC denotes superior performance. 

𝐀𝐔𝐂 =
1 +

TP
TP + TN

−
FP

FP + TN
2

 

(8) 

TP, TN, FP, and FN represent the abbreviations for True Positive, True Negative, False Positive, and False 

Negative, respectively. 

 Confusion Matrix: A confusion matrix is a graphical representation that provides a concise overview 

of the performance of a ML or DL model on a certain dataset. It is a method of presenting the 

frequency of correct and incorrect events based on the model's forecasts. It is customary to evaluate 

the efficacy of classification models using metrics such as F1-score, accuracy, precision, and recall. 

When all the true values reach their maximum magnitude, the model achieves its optimal performance. 

 ROC Curve: The receiver operating characteristic (ROC) curve shows how well a model performs in 

classification. At various classification thresholds, it plots the specificity (1 - false positive rate) against 

the sensitivity (true positive rate). A greater ROC curve denotes better performance, and it is used to 

assess the model's ability to distinguish between positive and negative cases. 

5.3 |Statistical Analysis 

As shown by the data in Table 3, the proposed model demonstrates the highest accuracy among the compared 

DL models, achieving an accuracy score of 90.1% after being trained for 20 epochs. It is closely followed by 

MobileNet, Xception, InceptionV3, and then VGG19, with an accuracy of 84.8%, 83.6%, 82.9%, and 48.5%. 

This confirms the superiority of the proposed model in terms of accuracy, followed by MobileNet, among the 

evaluated architectures. Figure 5 illustrates the confusion matrix, which displays the number of cases in which 

the actual class matches the estimated class. We notice that the main diagonal is filled with numbers, and the 

rest of the matrix elements are zeros. This means that the model can predict with high accuracy, except for 

Class No. 6. In Figure 6, the receiver operating characteristic (ROC) curve for a 15-class classification model 

shows an overall mean area under the curve (AUC) of 95%, with most classes having AUC values greater than 

95%. However, it should be noted that classes 3 and 6 scored 93% and 53%, respectively. 

The results of the prediction of the proposed model show that it correctly predicted the case, and the Grad-

CAM visualization confirmed that the prediction was based on the correct regions in the wheat, which is 

demonstrated in Figure 7. 
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Table 3. Comparison between the Mobile-DNN-Net model and others in terms of various performance indicators. 

Model Name 
# Epochs 

trained 
Accuracy Precision Recall F1-Score AUC 

Proposed Model 20 0.901 0.893 0.901 0.884 0.947 

MobileNet 30 0.848 0.852 0.848 0.834 0.918 

Xception 30 0.836 0.840 0.836 0.820 0.912 

InceptionV3 30 0.829 0.842 0.829 0.816 0.908 

VGG19 30 0.485 0.506 0.485 0.469 0.724 

 

 
Figure 5. Comparison between Mobile-DNN-Net model and other DL models. 

 

Figure 6. Roc Curve for Mobile-DNN-Net model. 
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Figure 7. Grad-CAM visualization for predicting a real. 

6 |Managerial Implications    

Egypt must achieve the goals set forth in Vision 2030 in order to establish a strong agricultural sector. 

Implementing interpretable DL methods for early identification and diagnosis of wheat leaf diseases can result 

in more efficient and environmentally friendly agricultural methods, benefiting both farmers and the wider 

agricultural ecosystem. 

Utilizing DL for the detection and diagnosis of wheat leaf diseases has the potential to enhance agricultural 

services and the precision of diagnoses. DL models that can be easily understood and analyzed offer valuable 

insights into the factors that contribute to the development of diseases. Farmers can utilize this information 

to comprehend the fundamental reasons behind disease outbreaks, recognize patterns of disease transmission, 

and formulate enduring strategies for disease control and prevention. 

This paper showcases the integration of Grad-Cam techniques into a convolutional neural network (CNN) 

defect detection model to enhance its transparency and comprehensibility. 

Grad-CAM precisely identifies the precise regions of the input image that exert the greatest influence on the 

model's prediction, thereby enhancing the clarity and comprehension of the detection process. This study can 

be utilized to enhance the process of accurately identifying wheat diseases. The proposed work has the 

potential to benefit and support the agricultural sector in achieving Egypt's vision for the year 2030. 

7 |Conclusion and Future Work   

This study introduces a Mobile-DNN-Net model for identifying wheat diseases. The proposed model is an 

integration between MobileNet and deep convolutional neural networks (DCNN). The model identifies 15 

classes of diseases by utilizing the Wheat Plant Diseases dataset, which consists of 14,155 images. The Mobile-

DNN-Net model is compared with the Xception, MobileNet, InceptionV3, and VGG19 models in terms of 

accuracy, precision, recall, F1-score, and AUC. The Mobile-DNN-Net model achieves results of 0.901, 0.893, 

0.901, 0.884, and 0.947 for accuracy, precision, recall, F1-score, and AUC, respectively. Furthermore, Grad-

CAM (Gradient-weighted Class Activation Mapping) was applied to effectively generate interpretable results 

that provide valuable insights into the decision-making process of CNN models. Grad-CAM precisely 
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identifies the precise regions of the input image that exert the greatest influence on the model's prediction, 

thereby enhancing the clarity and comprehension of the detection process. Our proposed DL analysis of 

plant data can fundamentally transform the field of plant pathology. It provides a quicker, more accurate, and 

more economical substitute for conventional approaches to diagnosing plant diseases. Future endeavors will 

concentrate on improving the model, evaluating its efficacy on larger and more diverse datasets, and 

investigating its suitability in real-world scenarios. 
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