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1 |Introduction 

Precision agriculture has emerged as a transformative approach to modern farming, aiming to optimize 

agricultural inputs and maximize productivity while minimizing environmental impacts [1]. A key component 

of precision agriculture is the assessment of soil fertility, which determines the soil’s capacity to provide 

essential nutrients for plant growth [2]. Soil fertility is influenced by various factors, including the 

concentrations of macronutrients like nitrogen (N), phosphorus (P), and potassium (K), as well as 

micronutrients such as zinc (Zn), iron (Fe), and manganese (Mn) [3]. Comprehensive soil analysis is therefore 

critical for identifying nutrient deficiencies and tailoring fertilizer applications to specific crop and soil needs. 

By enabling sustainable resource management, soil fertility assessment directly contributes to enhancing 

agricultural productivity and mitigating soil degradation [4]. 

Soil fertility prediction has traditionally relied on laboratory-based chemical analysis and heuristic methods 

informed by agricultural expertise. While these methods provide valuable insights, they are often time-

consuming, labor-intensive, and geographically limited [5, 6]. Moreover, traditional approaches may fail to 
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capture the complex, non-linear interactions between soil properties and fertility levels [7]. As agriculture 

scales to meet the demands of a growing global population, the need for more efficient, scalable, and accurate 

methods to predict soil fertility becomes increasingly apparent [8]. These gaps underscore the importance of 

exploring advanced analytical techniques to complement and enhance traditional soil assessment methods. In 

recent years, advancements in artificial intelligence (AI) and machine learning (ML) have revolutionized 

multiple fields, including healthcare [9, 10], finance [11], and environmental science [12]. Machine learning 

excels at identifying patterns and relationships within large, complex datasets, making it a powerful tool for 

predictive modeling. In agriculture, ML has been successfully applied to optimize crop yield predictions [13], 

Crop diseases detection [14], and weather forecasting [15]. When applied to soil analysis, ML models have the 

potential to analyze vast amounts of elemental and chemical data, accurately classifying soil fertility levels and 

offering actionable insights for farmers and agronomists. 

This study explores the application of machine learning techniques to predict soil fertility based on elemental 

soil analysis. A total of twelve machine learning models covering a diverse range of approaches were utilized 

in this study. The methods include ensemble methods such as Extra Trees, Random Forest, LightGBM, 

XGBoost, Gradient Boosting, and linear models such as Logistic Regression, Stochastic Gradient Descent 

(SGD), as well as other algorithms like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 

Multilayer Perceptron (MLP), and AdaBoost. All these models were evaluated and compared using a 

comprehensive dataset containing key soil properties. The models were assessed based on their accuracy, 

precision, recall, and F1 score to identify the most effective approaches for soil fertility prediction. By 

leveraging ML’s ability to handle complex data relationships, this study aims to provide a scalable and efficient 

alternative to traditional soil fertility assessment. 

The primary contributions of this study include the development and evaluation of twelve machine learning 

models tailored for soil fertility prediction, with a focus on comparing their performance in classifying soils 

into three fertility categories: “Less Fertile,” “Fertile,” and “Highly Fertile.” The study highlights the 

effectiveness of ensemble models, particularly Extra Trees and Random Forest, in achieving high accuracy 

and reliability. By applying these advanced methods to real-world soil datasets, the research demonstrates the 

potential of machine learning to enhance precision agriculture through faster and more accurate soil 

assessments. This work provides valuable insights and a robust framework for integrating machine learning 

into soil fertility analysis, contributing to sustainable agricultural practices and improved resource 

management. 

The rest of this paper is structured as follows: Section 2 reviews and discusses related work. Section 3 outlines 

the methodology including the details of the dataset, preprocessing steps, and presents the machine learning 

models used. Section 4 presents experimental analysis, experimental setup, and evaluation metrics. Section 5 

shows and discusses the results, highlighting the strengths and limitations of the top-performing models and 

their implications for soil fertility prediction. Finally, Section 6 concludes the paper by summarizing key 

insights and providing recommendations for future research directions. 

2 |Related Work 

The prediction of soil fertility is a critical aspect of environmental management, agricultural planning and 

fields productivity. Over the years, various machine learning techniques have been employed to predict soil 

fertility with varying degrees of success. In this section, we review the existing literature on soil fertility 

prediction using machine learning models, highlighting the strengths and limitations, and better understand 

the effectiveness of these approaches. 

In [16], the authors developed a soil fertility index map (SFIm) for Benin using machine learning models to 

support sustainable land management. The study utilized legacy soil data with eight properties, including 

nitrogen, pH, and organic matter, and compared Cubist (CB) and Quantile Random Forest (QRF) models. 

While CB slightly outperformed QRF in accuracy metrics like RMSE and R2, it showed higher uncertainty in 
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predictions. Key predictors included topographic and bioclimatic variables. The analysis revealed widespread 

low fertility soils, emphasizing the need for targeted agricultural policies and sustainable practices. 

Authors in [17] developed predictive fertilization models for potato crops in Eastern Canada using machine 

learning techniques to optimize nitrogen, phosphorus, and potassium requirements for high tuber yield and 

quality. Utilizing a dataset of 273 field experiments conducted from 1979 to 2017, they compared models 

including k-nearest neighbors, random forest, neural networks, and Gaussian processes. Machine learning 

models achieved R2 values of 0.49-0.59 for yield prediction, outperforming the traditional Mitscherlich model 

(R2 =0.37). Gaussian processes were identified as the most promising due to their ability to incorporate risk 

assessment in decision-making. Similarly, machine learning was applied to predict soil fertility elements in 

Morocco as an alternative to traditional methods [18]. A dataset of 400 soil samples was used test multiple 

linear regression (MLR), support vector machines (SVM), and random forest (RF) to predict organic matter, 

potassium (K2O), and phosphorus (P2O5). The models showed satisfactory predictions for soil fertility 

elements. Cation exchange capacity, carbonates, and texture were identified as key contributors to prediction 

accuracy, demonstrating the potential of ML in cost-effective soil fertility assessment. 

Another machine learning-based approach for soil classification and crop yield prediction was proposed in 

[19] using various algorithms, including Support Vector Machine (SVM), Random Forest, Naive Bayes, Linear 

Regression, Multilayer Perceptron (MLP), and Artificial Neural Networks (ANN). Their study aimed to 

determine soil fertility, recommend crops suitable for specific soil types, and predict crop yield based on soil 

features. The ANN model, leveraging a deep learning architecture with multiple layers, outperformed other 

methods, achieving higher accuracy in soil classification and crop yield prediction. This work highlights the 

potential of machine learning in precision agriculture. Similarly, in [20], a machine learning model was 

proposed for soil fertility prediction in the Bhimtal block of Uttarakhand, India. The utilized dataset contained 

soil test reports to classify soil features such as Organic Carbon (OC), Phosphorus (P), Potassium (K), 

Magnesium (Mn), and Boron (B). The study employed an Artificial Neural Network (ANN) with ReLU and 

Tanh activation functions, finding that ReLU outperformed Tanh in predicting four out of five soil nutrient 

parameters. This approach aimed to reduce fertilizer costs and improve efficiency for stakeholders in 

agriculture. 

In [21], an explainable AI (XAI) model was developed for soil fertility prediction using a Random Forest 

classifier. The model predicts soil fertility based on various physiochemical properties, such as Nitrogen and 

Organic Carbon concentrations, achieving an accuracy of 97.02%. The model also provides transparent 

explanations of its predictions through user-friendly graphs. This approach offers insights for improving soil 

fertility in both the short and long term, demonstrating the effectiveness of XAI in agricultural applications. 

These studies highlight the rapid advancements in applying machine learning models in soil fertility prediction 

across diverse regions and contexts. They demonstrate the versatility of machine learning techniques, 

including Random Forest, Neural Networks, and support vector machines, in analyzing key soil parameters 

such as organic carbon, nitrogen, and phosphorus to predict soil fertility and optimize agricultural practices. 

which help the stakeholders to make data-driven decisions for improved soil management. These efforts 

showcase the growing potential of machine learning to address soil fertility challenges, reduce costs, and 

support sustainable land management practices. 

3 |Methodology 

This section outlines the methodology employed to predict soil fertility based on elemental soil properties 

using machine learning techniques. The process begins with a description of the dataset, including its 

attributes and target variable, followed by the data preparation and preprocessing steps, and finally a 

description of the machine learning models used. 
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3.1 |Dataset Description 

The dataset used in this study is a publicly available dataset. Each data record represents a soil sample 

described by 12 attributes that capture various elemental and chemical properties of the soil. These attributes 

include macronutrients such as Nitrogen (N), Phosphorous (P), and Potassium (K); chemical properties like 

soil pH and electrical conductivity (EC); and micronutrients, including organic carbon (OC), Sulfur (S), Zinc 

(Zn), Iron (Fe), Copper (Cu), Manganese (Mn), and Boron (B). The target variable, fertility, categorizes soil 

into three levels: "Less Fertile" (0), "Fertile" (1), and "Highly Fertile" (2). The dataset serves as a valuable 

resource for investigating the feasibility of predicting soil fertility based on soil properties or soil elements 

analysis. 

3.2 |Dataset Preparation 

To prepare the dataset for machine learning, a series of preprocessing steps were conducted. First, to handle 

the class imbalance, oversampling was applied [22], which increased the representation of the minority class 

and ensured balanced learning across all classes as illustrated in Figure 1. Next, due to the wide range of values 

across different attributes, min-max scaling was employed to normalize all features to a range of 0 to 1. This 

step prevented attributes with larger magnitudes from dominating model training and ensured a consistent 

scale across all features [23]. Following normalization, the dataset was split into training and testing sets using 

an 80:20 ratio, allowing the models to train on a substantial portion of the data while retaining a separate 

subset for evaluating generalization performance. 

 
Figure 1. Dataset class distribution. 

3.3 |Machine Learning Models 

For the prediction of soil fertility, 12 machine learning models were employed, representing a diverse array 

of algorithms. These included ensemble methods such as Extra Trees, Random Forest, Gradient Boosting, 

LightGBM, and XGBoost, which can capture complex relationships through the aggregation of multiple 

decision trees [24]. Linear models, including Logistic Regression and Stochastic Gradient Descent (SGD), 

were also tested for their efficiency in handling linear relationships [25]. Additionally, Support Vector Machine 

(SVM), a kernel-based model known for its performance in high-dimensional spaces, and K-Nearest 

Neighbors (KNN), a distance-based algorithm, were evaluated [26, 27]. The study also incorporated boosting 

models like AdaBoost, which iteratively combines weak classifiers, and neural network-based approaches such 

as the Multi-Layer Perceptron (MLP), which excels at capturing non-linear patterns [28]. All models were 

implemented using the scikit-learn library, with hyperparameter tuning conducted to optimize their 

performance. The models were evaluated using asset of significant evaluation metrics, providing a 

comprehensive assessment of their predictive capabilities. These methods laid the groundwork for identifying 

the most effective model for soil fertility prediction and demonstrating the potential of machine learning in 

advancing precision agriculture. 
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4 |Experimental Analysis 

In this section, we outline the methodology used to assess the performance of the machine learning models 

in predicting soil fertility based on soil properties analysis. The following subsections detail the experimental 

setup, including model training, and evaluation, as well as the evaluation metrics employed to measure the 

models' effectiveness. These components are critical for understanding how the models were developed, 

optimized, and assessed in the context of this research. 

4.1 |Experimental Setup 

The soil properties values in the dataset were normalized using standard scaling to ensure that all features had 

a similar scale, improving the performance of distance-based algorithms like KNN model [29]. Normalization 

helps avoid bias in the model’s performance, as it prevents features with larger numerical ranges from 

dominating the distance calculations, thus improving the overall effectiveness of the algorithm. Following the 

normalization, the dataset was split into two distinct subsets: one for training the machine learning models 

and another for testing their performance. The data was partitioned in an 80/20 ratio, with 80% of the samples 

used for training the models and the remaining 20% reserved for testing the models' generalization ability. 

This division is standard practice in machine learning to evaluate the models on unseen data, ensuring that 

the models do not overfit to the training data. The experiments were implemented using Python programming 

language (version 3.10), along with the widely used Scikit-learn library (version 1.5) which provides a robust 

set of tools for building and evaluating machine learning models [30]. Initially, each machine learning model 

was trained and evaluated using the default hyperparameters provided by Scikit-learn. This allowed for a 

baseline assessment of each model’s performance. Afterward, hyperparameter optimization was performed 

to fine-tune the models and enhance their performance by adjusting the settings for each algorithm, such as 

the number of trees in a random forest or the learning rate in gradient boosting. 

4.2 |Evaluation Metrices 

To evaluate the performance of the proposed hybrid models, we employed four essential metrics: accuracy, 

precision, recall, and F1-score. These metrics offer a multifaceted view of the model's overall performance, 

considering both its effectiveness and efficiency. The mathematical expressions for each of the evaluation 

metrics are as follows: 

 𝐴𝑐𝑐𝑢𝑒𝑟𝑐𝑦 = (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

/ 𝑇𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

(1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) (3) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (4) 

These metrics offer distinct ways to evaluate model performance. Accuracy provides an overall measure of 

the model’s performance across all classes, while also addressing how well the model deals with class 

imbalances. Precision and recall are particularly useful for assessing the model’s ability to accurately identify 

positive cases. In scenarios where a trade-off might occur between precision and recall, the F1-score serves 

as a harmonizing measure, reflecting the balance between these two metrics and helping to highlight the 

model’s ability to achieve both high precision and recall simultaneously. 

5 |Results and Discussion 

Machine learning models offer significant potential for accurately predicting soil fertility levels by leveraging 

complex data relationships. This section presents the evaluation of twelve machine learning models based on 

their performance metrics, including accuracy, precision, recall, and F1-score. The results are discussed in 
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terms of overall performance, with particular attention to the strengths of ensemble methods, and their 

implications for precision agriculture. The performance metrics for all twelve models are summarized in Table 

1. Among the evaluated models, ensemble techniques demonstrated superior performance, with Extra Trees 

achieving the highest accuracy of 96.17%, followed closely by Random Forest (95.69%) and LightGBM 

(95.22%). These models not only exhibited excellent accuracy but also high precision, recall, and F1-scores, 

making them the most reliable choices for soil fertility prediction. On the other hand, linear models such as 

Logistic Regression and SGD recorded lower accuracies, indicating their limitations in handling the non-linear 

relationships present in soil datasets. 

Table 1. Performance metrics of machine learning models for soil fertility prediction. 

Model Accuracy Precision Recall F1-Score 

Decision tree (DT) 0.9234 0.9194 0.9363 0.9264 

Random Forest (RF) 0.9569 0.9570 0.9642 0.9600 

Extra Trees (ET) 0.9617 0.9684 0.9642 0.9661 

Support Vector Machine (SVM) 0.7560 0.7835 0.7560 0.7700 

Logistic Regression (LR) 0.7608 0.7280 0.6545 0.6280 

K-Nearest Neighbors (KNN) 0.8278 0.8166 0.8406 0.8243 

AdaBoost 0.8373 0.8410 0.8212 0.8289 

XGBoost 0.9426 0.9413 0.9522 0.9462 

Gradient Boosting 0.9378 0.9348 0.9483 0.9402 

LightGBM 0.9522 0.9468 0.9602 0.9524 

Stochastic Gradient Descent SGD 0.6938 0.6346 0.6349 0.6267 

Multiple layer Perceptron (MLP) 0.8804 0.8881 0.8686 0.8770 

 

The ensemble models consistently outperformed traditional methods and simpler models like Logistic 

Regression and SGD. The top-performing model, Extra Trees, achieved the highest accuracy of 96.17%, and 

its confusion matrix and ROC curve are presented in Figure 2. These visualizations further confirm the 

model's robustness in accurately classifying soil samples into fertility categories. The confusion matrix for 

Extra Trees, shown in Figure 2 (a), demonstrates a high level of agreement between predicted and actual soil 

fertility categories. The model correctly classified most of the samples, with minimal misclassifications. The 

ROC curve in Figure 1 (b) further underscores the model’s ability to distinguish between different fertility 

categories, with an area under the curve (AUC) nearing 1. 
 

 

 

(A) (B) 

Figure 2. Performance Analysis of the Extra Trees Model: (a) Confusion Matrix, (b) ROC Curve. 

Furthermore, the comparative diagram in Figure 3 provides a comparative visualization of the accuracy of all 

twelve models and highlights the overall ranking of model performances based on accuracy. Ensemble 



   Abdullah, W.| Optimization Agri. 2 (2025) 1-9 

 

7 

methods such as Extra Trees, Random Forest, LightGBM, and XGBoost occupy the top ranks, clearly 

outperforming linear models and simpler classifiers like SVM and KNN. These results emphasize the strength 

of ensemble learning in capturing complex data patterns for soil fertility prediction. 

 

Figure 3. Comparative accuracy of machine learning models for soil fertility prediction. 

 

6 |Conclusion and Future Work 

This study demonstrates the effectiveness of machine learning models in predicting soil fertility based on 

elemental soil properties, providing an efficient and scalable alternative to traditional soil assessment methods. 

By evaluating twelve machine learning models across key metrics such as accuracy, precision, recall, and F1 

score, the research highlights the superior performance of ensemble methods like Extra Trees, Random 

Forest, and LightGBM. Among these, the Extra Trees classifier achieved the highest accuracy of 96.17%, 

showcasing its ability to handle complex interactions and relationships within the dataset. The findings 

underscore the potential of leveraging advanced data-driven techniques to support precision agriculture, 

enabling more informed decision-making in soil management and resource allocation. Despite these 

promising results, there are several avenues for future research. Expanding the dataset to include additional 

soil properties and diverse geographical regions would improve the generalizability of the models. 

Incorporating temporal data to capture seasonal variations in soil fertility could further enhance prediction 

accuracy. Moreover, exploring hybrid machine learning approaches, integrating deep learning, or leveraging 

explainable AI techniques could provide deeper insights into the key factors influencing soil fertility. These 

advancements will not only strengthen the utility of machine learning in agriculture but also contribute to 

sustainable farming practices and global food security. 
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