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Abstract

The Neutrosophic Set provides a flexible mathematical framework for handling uncertainty by incorporating
three distinct membership functions: truth, indeterminacy, and falsity [50]. In response to the growing
complexity of real-world problems, advanced extensions such as the Hyperneutrosophic Set and the
SuperHyperneutrosophic Set have been introduced. These extensions offer a higher-dimensional approach
to modeling uncertainty and can be formally defined in [33, 34, 35, 37, 36, 51, 32].
Since the Hyperneutrosophic Set and the SuperHyperneutrosophic Set have only been recently defined,
there remains a lack of concrete examples demonstrating their applicability. This paper aims to bridge this
gap by exploring practical examples of these concepts in the field of agriculture. Additionally, we introduce
two novel extensions, the Forest Hyperneutrosophic Set and the Forest SuperHyperneutrosophic Set,
which further generalize the existing models to accommodate hierarchical and interconnected uncertainty
structures in complex systems.

Keywords: Set Theory, SuperhyperNeutrosophic set, Neutrosophic Set, HyperNeutrosophic set

1 | Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essential for the discussions in
this paper. The analysis utilizes classical set-theoretic operations and extends them into advanced frameworks.

1.1 | Neutrosophic, HyperNeutrosophic, and n-SuperHyperNeutrosophic Sets
To address uncertainty, vagueness, and imprecision in decision-making processes, numerous set-theoretic frame-
works have been developed. These frameworks include Fuzzy Sets, which were introduced in foundational works
such as those by Zadeh [56, 57, 64, 63, 62, 58, 59, 61, 60]. Another prominent framework is Intuitionistic Fuzzy
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Sets, extensively studied by Atanassov and others [4, 7, 5, 3, 8, 6]. Vague Sets, introduced and developed by
researchers, also contribute significantly to this domain [42, 39, 1, 9, 45].

Neutrosophic Sets, first introduced by Smarandache, offer a powerful means of capturing indeterminacy, allowing
for more nuanced decision-making models [49, 50, 31, 26, 17, 23, 16, 53, 25, 28, 15, 27, 24]. Neutrosophic
Sets generalize Fuzzy Sets by introducing an additional component: indeterminacy, alongside truth and falsity
[49, 50, 47, 48]. This enhancement allows for a richer and more precise representation of uncertainty and
ambiguity.

To address increasingly complex scenarios, HyperNeutrosophic Sets and 𝑛-SuperHyperNeutrosophic Sets have
been developed. These advanced models are particularly suited for high-dimensional and intricate problem
spaces [29, 19].

Definition 1 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 ∣ 𝑥 is an element within a specified domain}.
All elements in constructs like 𝒫(𝑆) or 𝒫𝑛(𝑆) originate from the elements of 𝑆.

Definition 2 (Powerset). [18, 44] The powerset of a set 𝑆, denoted 𝒫(𝑆), is the collection of all possible subsets
of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

𝒫(𝑆) = {𝐴 ∣ 𝐴 ⊆ 𝑆}.

Definition 3 (𝑛-th Powerset). (cf.[52, 18, 20, 13, 46])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛(𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1(𝐻) = 𝑃(𝐻), 𝑃𝑛+1(𝐻) = 𝑃(𝑃𝑛(𝐻)), for 𝑛 ≥ 1.
Similarly, the 𝑛-th non-empty powerset, denoted 𝑃 ∗

𝑛(𝐻), is defined recursively as:
𝑃 ∗

1 (𝐻) = 𝑃 ∗(𝐻), 𝑃 ∗
𝑛+1(𝐻) = 𝑃 ∗(𝑃 ∗

𝑛(𝐻)).
Here, 𝑃 ∗(𝐻) represents the powerset of 𝐻 with the empty set removed.

Definition 4 (Neutrosophic Set). [49, 50, 47, 54, 53] Let 𝑋 be a non-empty set. A Neutrosophic Set (NS) 𝐴 on
𝑋 is characterized by three membership functions:

𝑇𝐴 ∶ 𝑋 → [0, 1], 𝐼𝐴 ∶ 𝑋 → [0, 1], 𝐹𝐴 ∶ 𝑋 → [0, 1],
where for each 𝑥 ∈ 𝑋, the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degrees of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

Definition 5 (HyperNeutrosophic Set). (cf.[19, 51, 22, 14, 30, 29]) Let 𝑋 be a non-empty set. A HyperNeutro-
sophic Set (HNS) ̃𝐴 on 𝑋 is a mapping:

̃𝜇 ∶ 𝑋 → 𝒫([0, 1]3),
where 𝒫([0, 1]3) is the family of all non-empty subsets of the unit cube [0, 1]3. For each 𝑥 ∈ 𝑋, ̃𝜇(𝑥) ⊆ [0, 1]3 is
a set of neutrosophic membership triplets (𝑇 , 𝐼, 𝐹 ) that satisfy:

0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3.

Definition 6 (𝑛-SuperHyperNeutrosophic Set). (cf.[19, 14, 30, 29]) Let 𝑋 be a non-empty set. An 𝑛-
SuperHyperNeutrosophic Set (𝑛-SHNS) is a recursive generalization of Neutrosophic Sets and HyperNeutrosophic
Sets. It is defined as a mapping:

̃𝐴𝑛 ∶ 𝒫𝑛(𝑋) → 𝒫𝑛([0, 1]3),
where:
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• 𝒫1(𝑋) = 𝒫(𝑋), the power set of 𝑋, and for 𝑘 ≥ 2,
𝒫𝑘(𝑋) = 𝒫(𝒫𝑘−1(𝑋)),

representing the 𝑘-th nested family of non-empty subsets of 𝑋.

• 𝒫𝑛([0, 1]3) is defined similarly for the unit cube [0, 1]3.

For each 𝐴 ∈ 𝒫𝑛(𝑋) and (𝑇 , 𝐼, 𝐹 ) ∈ ̃𝐴𝑛(𝐴), the following condition is satisfied:
0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3,

where 𝑇 , 𝐼, 𝐹 represent the degrees of truth, indeterminacy, and falsity for the 𝑛-th level subsets of 𝑋.

2 | Some Examples of Neutrosophic Set
This section outlines the main results presented in this paper.

2.1 | Neutrosophic Set in Agriculture
We provide several examples related to the Neutrosophic Set in Agriculture.

Example 7 (Neutrosophic Set in Agriculture (Crop Suitability)). Context and Intuition: Crop Suitability
refers to the assessment of land, climate, and soil conditions to determine the feasibility of growing specific crops
effectively[2, 41, 38, 12]. Let 𝑋 = {Plot A, Plot B, Plot C} represent three agricultural plots. We want to assess
their suitability for growing a particular vegetable (say, organic tomatoes). A Neutrosophic Set 𝐴 on 𝑋 is given
by three membership functions:

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) for each 𝑥 ∈ 𝑋,
which measure the degrees of truth (suitability), indeterminacy (uncertainty), and falsity (unsuitability),
respectively. These functions must satisfy

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.

Specific Membership Values:
We assign:

𝑇𝐴(Plot A) = 0.85, 𝐼𝐴(Plot A) = 0.1, 𝐹𝐴(Plot A) = 0.05,
𝑇𝐴(Plot B) = 0.60, 𝐼𝐴(Plot B) = 0.30, 𝐹𝐴(Plot B) = 0.10,
𝑇𝐴(Plot C) = 0.40, 𝐼𝐴(Plot C) = 0.45, 𝐹𝐴(Plot C) = 0.15.

Interpretation:

• Plot A is very likely suitable (𝑇 = 0.85) and only slightly uncertain (𝐼 = 0.10), possibly due to consistent
past yields.

• Plot B shows moderate suitability (𝑇 = 0.60) with higher uncertainty (𝐼 = 0.30), e.g. incomplete soil
analysis or pending irrigation upgrades.

• Plot C has fairly low confirmed suitability (𝑇 = 0.40) and the highest uncertainty (𝐼 = 0.45), reflecting
ambiguous data (e.g. new farmland or mixed historical records).

Example 8 (Neutrosophic Set in Agriculture (Pest Infestation Risk)). Context and Intuition: Pest Infestation
Risk refers to the likelihood of pest outbreaks affecting crops, influenced by environmental factors, pest species, and
agricultural management practices (cf.[55, 10, 43, 40, 11]). Using the same set 𝑋 = {Plot A, Plot B, Plot C}, we
now define a Neutrosophic Set 𝐵 that indicates each plot’s propensity to suffer from a particular pest infestation.

Membership Functions:
For each 𝑥 ∈ 𝑋:

𝑇𝐵(𝑥) ∶ likelihood that pests will be a problem,
𝐼𝐵(𝑥) ∶ uncertainty in pest predictions,

𝐹𝐵(𝑥) ∶ likelihood that pests will not be a problem.
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Again, 𝑇𝐵(𝑥) + 𝐼𝐵(𝑥) + 𝐹𝐵(𝑥) ≤ 3.

Specific Values:

𝑇𝐵(Plot A) = 0.25, 𝐼𝐵(Plot A) = 0.50, 𝐹𝐵(Plot A) = 0.25,
𝑇𝐵(Plot B) = 0.70, 𝐼𝐵(Plot B) = 0.20, 𝐹𝐵(Plot B) = 0.10,
𝑇𝐵(Plot C) = 0.55, 𝐼𝐵(Plot C) = 0.25, 𝐹𝐵(Plot C) = 0.20.

Interpretation:

• Plot A has a low-but-non-negligible pest risk (𝑇 = 0.25) and a high uncertainty (𝐼 = 0.50) since historical
records of pest infestation are incomplete.

• Plot B shows a high risk (𝑇 = 0.70), consistent with repeated infestations in prior seasons.

• Plot C has moderate risk (𝑇 = 0.55) and a fair amount of uncertainty (𝐼 = 0.25), reflecting partial data
on pest patterns.

2.2 | HyperNeutrosophic Set in Agriculture
We provide several examples related to the HyperNeutrosophic Set in Agriculture.

Example 9 (HyperNeutrosophic Set in Agriculture (Yield Scenarios)). Context and Intuition: Now, let
us move to a HyperNeutrosophic Set. We retain 𝑋 = {Plot A, Plot B, Plot C}. A HyperNeutrosophic Set �̃� is
defined by

�̃� ∶ 𝑋 → 𝒫([0, 1]3),
meaning that for each 𝑥 ∈ 𝑋, �̃�(𝑥) is a non-empty subset of [0, 1]3. Each point (𝑇 , 𝐼, 𝐹 ) in �̃�(𝑥) satisfies
0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3, but now each element 𝑥 can have multiple possible triplets to represent differing conditions.

Example Definition:
Interpret (𝑇 , 𝐼, 𝐹 ) as “favorable yield,” “uncertainty,” and “unfavorable yield” degrees under various climate or
fertilizer scenarios:

�̃�(Plot A) = {(0.75, 0.20, 0.05), (0.65, 0.25, 0.10)},

�̃�(Plot B) = {(0.45, 0.35, 0.20)}, �̃�(Plot C) = {(0.80, 0.10, 0.10), (0.75, 0.15, 0.10)}.

Interpretation:

• Plot A has two possible triplets, e.g. different irrigation levels or nutrient programs, each giving a slightly
different yield forecast.

• Plot B is represented by a single triplet, suggesting simpler or more stable yield predictions.

• Plot C has two plausible yield states, potentially corresponding to variations in weather patterns.

Example 10 (HyperNeutrosophic Set in Agriculture (Pest Management Outcomes)). Context and Intuition:
Using a HyperNeutrosophic Set ̃𝐶, we consider the degree of successful pest control across multiple pest species
and weather combinations.

Definition:

̃𝐶(Plot A) = {(0.60, 0.30, 0.10), (0.50, 0.40, 0.10)},

̃𝐶(Plot B) = {(0.35, 0.40, 0.25), (0.30, 0.45, 0.25), (0.25, 0.50, 0.25)},

̃𝐶(Plot C) = {(0.80, 0.10, 0.10)}.

Here, (𝑇 , 𝐼, 𝐹 ) might be interpreted as:

• 𝑇: Degree to which pest control is fully effective;
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• 𝐼: Degree of uncertainty (e.g. unexpected pest behavior, incomplete data);

• 𝐹: Degree to which pest control fails.

Having multiple triplets per plot (Plot A, Plot B) reflects different strategies or environmental conditions.

2.3 | 𝑛-SuperHyperNeutrosophic Set in Agriculture
We examine several examples related to the 𝑛-SuperHyperNeutrosophic Set in Agriculture.

Example 11 (𝑛-SuperHyperNeutrosophic Set in Agriculture (Nested Uncertainty)). Context and Intuition:
Consider the base set 𝑋 = {Plot A, Plot B}. We define the first powerset:

𝒫(𝑋) = {∅, {A}, {B}, {A, B}}.

Then the second powerset is 𝒫2(𝑋) = 𝒫(𝒫(𝑋)), which is the set of all subsets of {∅, {A}, {B}, {A, B}}.

An 𝑛-SuperHyperNeutrosophic Set with 𝑛 = 2 on 𝑋 is:
̃𝐴2 ∶ 𝒫2(𝑋) ⟶ 𝒫2([0, 1]3).

This means for every subset of 𝒫(𝑋), ̃𝐴2 assigns a family of subsets of [0, 1]3. Each triplet (𝑇 , 𝐼, 𝐹 ) still respects
0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3, but now we handle deeply nested uncertainty and multi-level interactions.

Concrete Illustration:
Pick two subsets from 𝒫2(𝑋):

• 𝑆1 = {{A}}. Then we could define:

̃𝐴2(𝑆1) = {{ (0.80, 0.15, 0.05)}, { (0.70, 0.20, 0.10)}}.

This indicates that for the single-subset set {{A}}, we have two possible sets of triplets, each describing
different secondary scenarios (e.g. microclimate changes or supplementary fertilization). One scenario
has (𝑇 = 0.80, 𝐼 = 0.15, 𝐹 = 0.05); another has (𝑇 = 0.70, 𝐼 = 0.20, 𝐹 = 0.10).

• 𝑆2 = {{A}, {B}}. We might define:

̃𝐴2(𝑆2) = {{ (0.55, 0.30, 0.15), (0.50, 0.35, 0.15)}}.

Hence for the set that simultaneously considers {A} and {B}, we store a single set of two triplets
capturing synergy or correlation in uncertain yield or pest-control outcomes across both plots.

This richer structure is valuable for modeling multi-layered agricultural decisions, where each “level” of the
powerset might encode different grouping or combined management strategies, and each set of triplets captures
variable environmental assumptions.

3 | Additional Result: Forest Hyperneutrosophic set

The ForestNeutrosophic Set is a concept that applies the idea of the ForestSoft Set to the framework of Neutro-
sophic Sets. In this section, we introduce two new frameworks—the Forest HyperNeutrosophic Set and the Forest
𝑛-SuperHyperNeutrosophic Set—that extend the concepts of HyperNeutrosophic and 𝑛-SuperHyperNeutrosophic
Sets, respectively, while also generalizing the notion of a “Forest Neutrosophic Set” within these higher-level
structures.

Definition 12 (ForestNeutrosophic Set). [21] Let {𝐹𝑡}𝑡∈𝑇 be TreeNeutrosophic Sets. The ForestNeutrosophic
Set

F ∶ 𝑃(Forest({𝐴(𝑡)})) → ([0, 1]3)𝑈

is given, for each 𝑋 in the domain, by

F(𝑋)(𝑥) = ( max
𝑡∶𝑋∩Tree(𝐴(𝑡))≠∅

𝑇𝑡(𝑋)(𝑥), max
𝑡∶𝑋∩Tree(𝐴(𝑡))≠∅

𝐼𝑡(𝑋)(𝑥), max
𝑡∶𝑋∩Tree(𝐴(𝑡))≠∅

𝐹𝑡(𝑋)(𝑥)).
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Definition 13 (Forest HyperNeutrosophic Set). Let 𝑋 be a non-empty set, and let ℱ ⊆ 𝒫(𝑋) be any
collection of non-empty subsets of 𝑋 that forms a forest under a suitable hierarchy or partial order.1 A Forest
HyperNeutrosophic Set on ℱ is a mapping

𝐻 ∶ ℱ ⟶ 𝒫([0, 1]3)

such that for each 𝐹 ∈ ℱ, every triplet (𝑇 , 𝐼, 𝐹 ) ∈ 𝐻(𝐹) satisfies
0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3.

Here, as in the usual HyperNeutrosophic framework, 𝑇 , 𝐼, 𝐹 represent (respectively) truth, indeterminacy, and
falsity degrees, but now indexed by the forest structure ℱ.

Theorem 14 (Generalization Property of the Forest HyperNeutrosophic Set). A Forest HyperNeutrosophic Set
generalizes both the standard HyperNeutrosophic Set and any Forest Neutrosophic Set.

Proof : (1) Generalization of the HyperNeutrosophic Set. Recall that a HyperNeutrosophic Set ̃𝐴 on a
base set 𝑋 is given by

̃𝜇 ∶ 𝑋 → 𝒫([0, 1]3).
This can be seen as a special case of Definition 13 by letting ℱ be the singleton collection {𝑋}. Indeed, in that
scenario, for each 𝐹 = 𝑋 ∈ ℱ, one simply sets 𝐻(𝐹) ≡ ̃𝜇(𝑥) for each 𝑥 ∈ 𝑋. Because there is exactly one subset
in ℱ (namely 𝑋 itself), the forest structure trivially holds (no nested or disjoint subsets are involved). Hence,
every HyperNeutrosophic Set arises as a particular instance of a Forest HyperNeutrosophic Set.

(2) Generalization of the Forest Neutrosophic Set. A “Forest Neutrosophic Set” (in the sense of combining
multiple “TreeNeutrosophic Sets” or similar constructs) typically maps each forest node (subset) to a single
neutrosophic membership triplet in [0, 1]3. If we specialize Definition 13 by requiring that 𝐻(𝐹) be a singleton set
of the form { (𝑇 , 𝐼, 𝐹 )} for each 𝐹 ∈ ℱ, then we recover exactly the notion of a Forest Neutrosophic Set. Thus,
the Forest HyperNeutrosophic Set (allowing sets of triplets) strictly generalizes the simpler Forest Neutrosophic
model. �

Definition 15 (Forest 𝑛-SuperHyperNeutrosophic Set). Let 𝑋 be a non-empty set, and let ℱ ⊆ 𝒫(𝑋) be
a forest (as above). For a positive integer 𝑛, define 𝒫𝑛(ℱ) recursively in the same manner as standard 𝑛-th
powersets but restricted to ℱ. In other words,

𝒫1(ℱ) = ℱ, 𝒫𝑘+1(ℱ) = 𝒫(𝒫𝑘(ℱ)) (for 𝑘 ≥ 1),
where 𝒫(⋅) is the usual powerset operator, taken over subsets of ℱ.

A Forest 𝑛-SuperHyperNeutrosophic Set is then defined as a mapping

𝐻𝑛 ∶ 𝒫𝑛(ℱ) ⟶ 𝒫𝑛([0, 1]3),

such that for every 𝐴 ∈ 𝒫𝑛(ℱ) and each (𝑇 , 𝐼, 𝐹 ) ∈ 𝐻𝑛(𝐴), the usual neutrosophic condition holds:
0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3.

Theorem 16 (Generalization Property of the Forest 𝑛-SuperHyperNeutrosophic Set). A Forest 𝑛-
SuperHyperNeutrosophic Set generalizes both the standard 𝑛-SuperHyperNeutrosophic Set and the Forest
HyperNeutrosophic Set.

Proof : (1) Generalization of the 𝑛-SuperHyperNeutrosophic Set. In the usual 𝑛-SuperHyperNeutrosophic
framework, we have a mapping

̃𝐴𝑛 ∶ 𝒫𝑛(𝑋) → 𝒫𝑛([0, 1]3).
If we choose ℱ = {∅, 𝑋} (the most trivial forest that contains only the entire set 𝑋 and possibly the empty set
if desired), then 𝒫1(ℱ) = ℱ essentially collapses to the entire set 𝑋-level. Hence, the domain 𝒫𝑛(ℱ) merges
with 𝒫𝑛(𝑋), thereby reproducing exactly the original 𝑛-SuperHyperNeutrosophic definition.

1For instance, one may regard ℱ as a family of subsets that are pairwise “tree-like” or acyclic under set-inclusion. The exact
nature of “forest” may depend on the underlying application or classification scheme.
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(2) Generalization of the Forest HyperNeutrosophic Set. Let us consider the case 𝑛 = 1. Then a Forest
𝑛-SuperHyperNeutrosophic Set (with 𝑛 = 1) is precisely

𝐻1 ∶ 𝒫1(ℱ) = ℱ ⟶ 𝒫1([0, 1]3) = 𝒫([0, 1]3).
This is exactly the mapping in Definition 13, namely a Forest HyperNeutrosophic Set, because 𝒫1(ℱ) = ℱ.
Thus, the 𝑛-SuperHyperNeutrosophic structure reduces to the Forest HyperNeutrosophic structure when 𝑛 = 1.

Putting both points together, we see that the Forest 𝑛-SuperHyperNeutrosophic Set strictly contains the
classical 𝑛-SuperHyperNeutrosophic Set (as a special restriction on the domain) and also contains the Forest
HyperNeutrosophic Set (by setting 𝑛 = 1). This completes the proof. �

3.1 | Forest Neutrosophic Set in Agriculture
We provide several examples related to the Forest Neutrosophic Set in Agriculture.

Example 17 (Forest Neutrosophic Set in Agriculture). Context and Intuition: Suppose we have three
orchards, each cultivating different fruit trees:

ℱ = {𝐹1, 𝐹2, 𝐹3}.
Each 𝐹𝑖 is itself a non-empty subset of a larger farmland 𝑋. For instance:

𝐹1 = {Plot A}, 𝐹2 = {Plot B, Plot C}, 𝐹3 = {Plot D},
where these sets form a forest under set inclusion (i.e. they are pairwise disjoint or minimally overlapping,
creating a structure that has no cycles).

A Forest Neutrosophic Set assigns to each orchard 𝐹𝑖 a single triplet (𝑇𝑖, 𝐼𝑖, 𝐹𝑖), representing the degrees of
truth, indeterminacy, and falsity for some agricultural criterion (for example, overall suitability for an organic
certification).

Definition in This Example: For each 𝐹𝑖 ∈ ℱ, define:
F(𝐹1) = (0.80, 0.10, 0.10), F(𝐹2) = (0.60, 0.20, 0.20), F(𝐹3) = (0.50, 0.40, 0.10).

These satisfy 0 ≤ 𝑇𝑖 + 𝐼𝑖 + 𝐹𝑖 ≤ 3. Hence:

• 𝐹1 has high truth degree (0.80), indicating strong suitability for the certification, with only moderate
uncertainty (0.10) and low falsity (0.10).

• 𝐹2 is moderately suitable (0.60), with slightly higher falsity (0.20) and some uncertainty (0.20).

• 𝐹3 shows a balanced scenario of medium truth (0.50) and fairly high indeterminacy (0.40), reflecting
less reliable data for orchard Plot D.

This construction provides a straightforward Forest Neutrosophic Set, mapping each orchard (forest node) to one
triplet in [0, 1]3.

Example 18 (Forest Neutrosophic Set in Agriculture). Context and Intuition: Consider a forest structure
ℱ = {𝐹1, 𝐹2, 𝐹3} where:

𝐹1 = {Field A, Field B}, 𝐹2 = {Field C}, 𝐹3 = {Field D}.
The sets are pairwise disjoint, forming a “forest” of fields. Let us define a Forest Neutrosophic Set to capture,
for each orchard, the likelihood of successful pest management during the next harvest season:

F(𝐹1) = (0.75, 0.15, 0.10), F(𝐹2) = (0.40, 0.40, 0.20), F(𝐹3) = (0.55, 0.25, 0.20).
Each triplet (𝑇 , 𝐼, 𝐹 ) must satisfy 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3.

• For 𝐹1, truth degree of 0.75 indicates a high likelihood of effective pest control. Uncertainty is modest
(0.15), perhaps due to partial knowledge of local pest species.

• For 𝐹2, truth is only 0.40, with a large uncertainty (0.40), reflecting difficulty predicting pest infestations
in Field C.
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• For 𝐹3, moderate truth (0.55) and moderate uncertainty (0.25) suggest better but not conclusive data
for Field D.

This example again shows how a Forest Neutrosophic Set succinctly encodes a single neutrosophic membership
value for each distinct orchard or forest node.

Example 19 (Forest HyperNeutrosophic Set in Agriculture). Context and Intuition: We extend the previous
scenario to a Forest HyperNeutrosophic Set, allowing each orchard to have multiple possible triplets. Suppose
ℱ = {𝐹1, 𝐹2} where:

𝐹1 = {Plot A, Plot B}, 𝐹2 = {Plot C}.

Each orchard (subset) is mapped to a set of membership triplets in [0, 1]3.

Specific Definition: Define 𝐻 ∶ ℱ → 𝒫([0, 1]3) by:

𝐻(𝐹1) = {(0.80, 0.10, 0.10), (0.70, 0.20, 0.10)},

𝐻(𝐹2) = {(0.50, 0.40, 0.10), (0.45, 0.40, 0.15)}.

Here, each triplet (𝑇 , 𝐼, 𝐹 ) satisfies 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3.

Interpretation:

• For orchard 𝐹1, we have two potential scenarios describing some agricultural criterion (for instance, the
success of irrigation strategies).

(0.80, 0.10, 0.10) vs. (0.70, 0.20, 0.10).

Each scenario accounts for different rainfall conditions or technology improvements.

• For orchard 𝐹2, we again have two possible sets of truth-indeterminacy-falsity values, reflecting multiple
plausible management strategies or uncertain climatic outcomes.

Thus, 𝐻 is hyper-valued at each forest node, capturing more nuanced possibilities than a single triplet would.

Example 20 (Forest HyperNeutrosophic Set in Agriculture). Context and Intuition: Let ℱ = {𝐹1, 𝐹2, 𝐹3}
be three subsets of farmland, each orchard focusing on different crop types. We want to model the likelihood of
pest control success in multiple distinct weather patterns. Because each orchard might face different pest species
and climate forecasts, we assign several triplets to each node.

Definition:
𝐻(𝐹1) = {(0.65, 0.25, 0.10), (0.60, 0.30, 0.10), (0.50, 0.35, 0.15)},

𝐻(𝐹2) = {(0.40, 0.40, 0.20), (0.45, 0.35, 0.20)},

𝐻(𝐹3) = {(0.75, 0.15, 0.10)}.

Each triplet (𝑇 , 𝐼, 𝐹 ) must satisfy 𝑇 + 𝐼 + 𝐹 ≤ 3.

Interpretation:

• 𝐹1 has three possible outcomes; for instance, one might correspond to normal rainfall, another to severe
drought, and another to mild but extended rainy periods.

• 𝐹2 has two scenarios capturing differences in pest types or pesticide availability.

• 𝐹3 is currently modeled by a single scenario (e.g. well-studied orchard with stable conditions), but it
could be expanded if more variability were discovered.
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Example 21 (Forest 𝑛-SuperHyperNeutrosophic Set in Agriculture). Context and Intuition: Consider again
a farmland 𝑋 with several subregions. Let ℱ ⊆ 𝒫(𝑋) be a forest of those subregions (each node in ℱ might
be an orchard or field). A Forest 𝑛-SuperHyperNeutrosophic Set allows multiple levels of power set nesting,
capturing deeply nested uncertainties across orchard groupings.

Illustration: Assume ℱ = {𝐹1, 𝐹2} where

𝐹1 = {Plot A}, 𝐹2 = {Plot B, Plot C}.

Then 𝒫1(ℱ) = ℱ and 𝒫2(ℱ) = 𝒫(ℱ) is the set

{∅, {𝐹1}, {𝐹2}, {𝐹1, 𝐹2}}.

A Forest 2-SuperHyperNeutrosophic Set is

𝐻2 ∶ 𝒫2(ℱ) ⟶ 𝒫2([0, 1]3).

Concrete Assignments:

• For {𝐹1} ∈ 𝒫2(ℱ), define

𝐻2({𝐹1}) = {{ (0.80, 0.15, 0.05)}, { (0.75, 0.20, 0.05)}}.

Each of the two elements in this image is itself a subset of [0, 1]3. One subset is {(0.80, 0.15, 0.05)} and
the other is {(0.75, 0.20, 0.05)}. They could represent different orchard-level scenarios, refined at the
second powerset stage.

• For {𝐹1, 𝐹2} ∈ 𝒫2(ℱ), define

𝐻2({𝐹1, 𝐹2}) = {{ (0.60, 0.30, 0.10), (0.55, 0.35, 0.10)}}.

This might capture scenarios where both orchards are managed together (e.g. a combined strategy for
irrigation or pest control), leading to sets of triplets that represent synergy or correlation at the second
level.

Such a structure models layered uncertainty: at the first power-set level, we have orchard-by-orchard data. At
the second level, we examine subsets of orchards {𝐹1, 𝐹2} and assign sets of triplets for that grouping, enabling
multi-level planning in agricultural contexts.

Example 22 (Forest 𝑛-SuperHyperNeutrosophic Set in Agriculture). Context and Intuition: Let ℱ =
{𝐹1, 𝐹2, 𝐹3}, where each 𝐹𝑖 is a disjoint orchard. We aim to capture not only orchard-level uncertainties but
also how combinations of orchards might jointly affect supply logistics, pest control at scale, or water-sharing
resources.

Structure:
𝒫1(ℱ) = ℱ = {𝐹1, 𝐹2, 𝐹3}, 𝒫2(ℱ) = 𝒫({𝐹1, 𝐹2, 𝐹3}),

and so forth up to 𝒫𝑛(ℱ) for higher nesting. Define

𝐻𝑛 ∶ 𝒫𝑛(ℱ) ⟶ 𝒫𝑛([0, 1]3).

Example Assignments for 𝑛 = 2:

• For 𝑆 = {𝐹1, 𝐹2} ∈ 𝒫2(ℱ):

𝐻2(𝑆) = {{ (0.70, 0.20, 0.10)}, { (0.65, 0.25, 0.10)}}.

This might represent synergy in orchard 𝐹1 and 𝐹2 if they share a pest management system or irrigation
pipeline.
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• For 𝑆 = {𝐹2, 𝐹3} ∈ 𝒫2(ℱ):

𝐻2(𝑆) = {{ (0.50, 0.40, 0.10), (0.55, 0.35, 0.10)}}.

Multiple triplets in one subset can reflect slight variations (e.g. different rainfall patterns). By grouping
𝐹2 and 𝐹3, we capture complexities of orchard adjacency or shared pest vectors.

• For singletons like {𝐹3} ∈ 𝒫2(ℱ), we can store simpler sets of triplets, e.g.

𝐻2({𝐹3}) = {{ (0.75, 0.15, 0.10)}}.

These higher-level power set mappings allow multi-orchard analysis and multi-scenario planning in a single
unified framework.
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