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1 |Introduction    

The livestock sector has the potential to be a major force in the achievement of Sustainable Development 

Goals (SDGs)by assisting in the eradication of starvation and malnutrition [1]. Scholars in [2] demonstrated 
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Presently contemporary and virtual technologies that are being embraced by many businesses have a favorable 

influence. For instance, biometric sensors of the Internet of Things (IoT), artificial intelligence (AI), big data 

(BD), blockchain technology (BCT), and so on in livestock permit the real-time observation of the health and 

behavior of animals. Also, monitoring helps prevent deterioration, diagnose injuries, and stress, and sustain 

productivity. The collected data from biometric sensors is analyzed by using BD securing the processed information 

and making it transparent for partners using BCT. Achieving safety and security through collaborating human 

robots (cobots) Accordingly, these technologies turn traditional livestock into precision livestock farms (PrLFs). 

Currently, the concept of precision serves as the cornerstone for the advancement of sustainable and user-friendly 

livestock farm management in many nations as well as globally. Hence, the objective of this study is to embrace the 

concept of precision and illustrate its influence on livestock farms toward sustainability of livestock farm. These 

objectives consider catalysts for analyzing and evaluating the sustainability of livestock farms that embrace 

contemporary technologies in their operations and practices. Moreover, we are constructing an evaluation model 

for obtaining the most sustainable livestock farm through harassing Multi-Criteria Decision Making (MCDM) 

techniques where each technique is responsible for a certain function.  For instance, CRiteria Importance Through 

Inter-criteria Correlation (CRITIC) is utilized for obtaining the criteria’s weights and the combined compromise 

solution (CoCoSo) leverages the obtained weights from CRITIC for ranking the alternatives of livestock farms and 

recommends the most sustainable and worst alternative. The evaluation for alternatives is performed based on 

rating four main criteria related to sustainability’s pillars and thirteen sub-criteria. Finally, the utilized MCDM 

techniques are working under the authority of Triangular Neutrosophic Sets (TrNSs) to bolster these techniques 

when handling incomplete information and perplexed situations.  
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that raising livestock is a major global strategy to lower childhood wasting and stunting in children. 

Nonetheless, there are some risks to livestock farms' capacity to survive and then its sustainability. Livestock 

husbandry's carbon emissions [3] have become a critical problem that threatens the industry's ability to grow 

sustainably. Confirming that [4]where overindulgence in emissions of carbon intensifies the effects of global 

warming and declining ecological sustainability. That is why there is resource scarcity, health harm, economic 

stagnation, and harsh weather [5]. Given that [6] a large portion of the world's food security depends on cattle 

production, risks associated with climate change might become even more pressing.  

In order to maintain sustainable livestock production [7], a climate response plan is required, as livestock 

crises brought on by climate change have the potential to reduce livestock farming and the quality of animal 

meals, resulting in a food crisis. In light of the climate catastrophe and the growing importance of global 

warming[8], by 2050 GHG reduction target for food security and a sustainable society is necessary. 

Another factor that threatens livestock’s sustainability is discussed in [9] where the long-term sustainability of 

livestock production systems—particularly those that generate meat and milk—as well as supply networks, 

commerce, and consumer purchasing habits have all been significantly impacted by COVID-19.  

From the perspective of [10] Livestock producers and businesses must collaborate to embrace technologies 

as solutions that can help reduce greenhouse gas emissions and achieve carbon-neutral livestock to achieve 

these goals to make livestock sustainable environmental, economic, and social. In the same vein  [11] 

demonstrated that the adoption of cutting-edge technologies like the Internet of Things (IoT), robots, 

artificial intelligence (AI), and so on has increased the efficiency of the livestock farming sector. Moreover, 

embracing the mentioned technologies in studies of [10], and [11] is a motivator for raising the concept of 

Precision livestock farming (PrLF). The intent of PLF exhibited in [12] as establish a management system 

that relies on real-time, integrated automated control and monitoring of animal welfare, health, and 

reproduction as well as the effects of livestock farming on the environment. On the other hand, utilizing and 

adopting industry 4.0 (Ind 4.0) [13] that permit real-time communication and cooperation between cyber-

physical systems (CPSs) and people are facilitated by IoTs. Hence, PrLF is considered a defense for the 

sustainability of livestock framing against any hazards. For instance [14] pandemic of COVID-19 has resulted 

in serious secondary health issues for both humans and animals as well as economic damage,  though social 

isolation and lockdowns are required to prevent and postpone the virus's spread. PrLF can avoid such hazards 

for the sustainability of livestock as illustrated in Figure 1. 

Given the importance of embracing technologies for livestock to be PrLF and then sustainable. Therefore, 

evaluating livestock framing and its ability to survive and competitors is crucial. This issue is a catalyst for 

conducting this study to obtain the most sustainable livestock farm amongst the set of alternatives of livestock 

farms that embrace the PrLF in their operation. 

  To achieve the study’s objectives, we are evaluating the sustainability of alternatives of livestock farms based 

on a set of criteria. For this reason, MCDM techniques have been harassed for analyzing alternatives based 

on the determined criteria due to the ability of these techniques to treat conflicting criteria. Accordingly, 

CRiteria Importance Through Inter-criteria Correlation (CRITIC) is utilized for generating criteria weights 

that leverage in Combined Compromise Solution (CoCoSo) for ranking alternatives of livestock farms and 

recommending the most sustainable livestock farm. These techniques are supported by Triangular 

Neutrosophic Sets (TrNSs) is type of uncertainty theory of Neutrosophic in situations characterized by 

ambiguity and when treated with incomplete information. 
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Figure 1. Technologies of precision livestock farming toward pillars of sustainability. 

2 |Role of Contemporary Technologies for Precision and  

Sustainability of Livestock Farm    

Various Digital Technologies like the Internet of Things (IoT), data, (DLT), Blockchain (BC), artificial 

intelligence (AI), machine learning (ML), Cloud Computing, Edge Computing, Fog Computing, and so on 

are used to monitor Animal health and drive more Sustainable livestock. With the help of these technologies, 

farm-to-fork traceability techniques can be strengthened, fraud concerns related to food safety can be better 

managed, animal production regulations can be followed, and culinary standards, streamlining processes, 

enabling commerce, and increasing customer awareness. 

2.1 |Internet of Things (IoT 

IoT are a sophisticated network of networked objects that always interact with one another and locations. It 

also includes data interchange and gathering to achieve group goals.  Any physical objects connected over the 

internet, such as computers, cameras, smartphones, sensors, etc., are referred to as "things." IoT have become 

more adaptable and well-liked in the present era of technological advancement thanks to a variety of smart 

gadgets like sensors, smartphones, tablets, smart wristbands, and Radio Frequency Identification (RFID) [15]. 

IoT are a very promising technology that offers many creative ways to modernize cattle husbandry.  It is 

believed IoT technology can revolutionize livestock farming systems by connecting livestock sensor data, 

particularly identifying animals who are located remotely from the farm, via the internet [16]. Important 

innovations in the last few years include machine-assisted milking, automated feeding, and increasing 

production efficiency through nutrition, instrumentation, and animal health monitoring [16]. The world's 

growing need for livestock products has made processing large amounts of data more difficult. Fortunately, 

IoTs can assist in the systematic and effective processing of data as well as its real-time availability, which 

greatly benefits users by providing them with access to basic information about input procurement, livestock 

management and production, livestock disease surveillance, and livestock product market trends. IoT are 
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rapidly evolving into a crucial element of farming society, helping to expand and improve the livestock 

industry while providing improved solutions and increasing livestock output [15]. 

2.2 |Big Data 

Big data describes collections of massive, complex, and diverse data that are difficult to store, handle, analyze, 

and visualize for use in other processes or outcomes. Big Data offers a multitude of techniques to tackle the 

challenge of processing and storing all the specifications and limitations needed to enable smart Livestock 

[17].  

Big Data offers insights into the following domains [18] (i) animal behavior studies how an animal lives in its 

surroundings, (ii) animal welfare is concerned with the health and medical needs of animals, (iii) nutrition is 

about metabolic processes that consider an animal's diet,(iv) genetics regulates or controls genetic 

disease/irregularity and reproduction; and (v) species protection aims to prevent the extinction of a species. 

This technology is beneficial for stakeholders for (i) monitoring climate/weather, (ii) resilience to external 

factors influencing the farm, (iii) productivity monitoring for control over products and all surrounding 

processes, (iv) monitoring all individuals and their practices; and (v) for sustainability through monitoring the 

purpose of promoting sustainable food.  

All the data generated spans all relevant sectors and offers comprehensive insights that should be fully utilized.  

2.3 |Blockchain 

A blockchain is a distributed, decentralized database of encrypted transactions in which every transaction 

generates a node. By use of consensus among participating parties, or peers, these nodes are arranged into 

records, or "blocks," and these blocks are connected to form a chain using distinct hash codes [19]. 

Distributed, transparent, immutable, and democratic are the four cornerstones of blockchain technology. This 

implies that in livestock husbandry, each animal on the farm needs to be given a special identifier. This special 

ID would be attached to the animal for the duration of its life to gather information about the farm or farms 

it had resided on, the mode of transportation used to get it from the farm to the slaughterhouse, the 

veterinary's examination of the animal at the slaughterhouse, the quality check that occurs after the animal is 

killed, the transportation of the meat product, and lastly the packager and retailer's details [20]. 

2.4 |Artificial Intelligence (AI) 

AI technology plays a significant role in supporting smart farming practices that improve animal health and 

well-being while also producing positive economic results [21]. Traditional sectors, such as the dairy livestock 

export industry, are seeing paradigm upheavals due to the introduction of AI and advanced sensor 

technologies. AI and sensor technology-driven precision digital livestock farming provide novel answers to 

enduring problems in the dairy livestock export sector. These innovative solutions promise improved animal 

care, increased production, and more efficient supply chain operations by enabling real-time monitoring, 

proactive intervention, and data-driven decision-making [22].  

2.4.1|Machine learning (ML) 

ML is a branch of artificial intelligence that uses algorithms for statistical prediction and inference [23] . With 

its ability to enable computer algorithms to gradually learn from sensor big data sets and adapt themselves 

accordingly, machine learning (ML) is becoming a more and more popular topic of study in precision cattle 

farming. This is because it renders human data analysts unnecessary [24]. ML approaches are widely applied 

in animal genetics research to genotype imputation, outlier identification, and phenotypic prediction based 

on genotypic information. ML has also been applied to picture analysis for body weight estimation, mastitis 

detection from automated milking technology on dairy farms, and microbiome health monitoring [23]. The 

welfare and production of dairy cattle could be enhanced by machine learning and big data analytics. They 

can be used to track and forecast the risk of mastitis and lameness in dairy cattle, two extremely important 
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welfare concerns that can seriously impair milk output [25]. Two primary classifications of machine learning 

tasks are supervised and unsupervised learning. In the machine learning technique known as supervised 

learning, models are built using labeled data while being closely monitored by training data [15]. It indicates 

that certain data that has already been tagged or labeled with the right response—training data—is given to 

the computers to act as the supervisor and educate them on how to accurately forecast the output. 

Unsupervised learning is a machine learning approach that finds latent patterns in unlabeled data even while 

models are not supervised by training datasets [15]. 

2.5 |Cloud Computing 

Using the internet, cloud computing is a technology that provides global access to shared pools of 

reconfigurable system resources that can be quickly and easily installed with little administrative work [26]. 

The adoption of the computing infrastructure-as-a-service architecture is inevitable as the livestock industry 

embraces the IoT paradigm. To employ computation and storage services, farmers would not need to own 

any infrastructure, especially in low-income areas. Livestock farmers will benefit greatly from these services 

(s) to the extent that they can pay with a token and connect to the cloud. Infrastructure as a service (IaaS), 

software as a service (SaaS), platform as a service (PaaS), container as a service (CaaS), and software as a 

service (SaaS) are examples of cloud-based technologies. Additionally, it enhances Quality of Service (QoS), 

data security, and application access efficiency. Furthermore, it makes operating models more easily accessible 

to livestock farmers [27]. 

2.6 |Edge Computing 

A concept known as "edge computing" involves processing data close to where it originates. This method is 

a useful contribution to the domains of AI and IoT. It is easier to carry out important choices on time when 

data transfer latency is decreased [28]. Edge computing makes it possible to take quick action in livestock 

management when a cow exhibits unusual behavior. Edge Computing enables real-time monitoring of dairy 

animals and feed grain conditions. It guarantees the reliability and long-term viability of various production 

procedures. This prompt intervention may prevent health issues or improve the effectiveness of reproductive 

cycles. The lower latency also suggests that decisions are made more quickly, which is crucial for maintaining 

the welfare of animals [29]. 

2.7 |Fog Computing 

Since farms are typically situated in isolated areas, there may be times when there is little to no Internet or 

network connectivity. It is best to process the data as much locally as possible in these unfavorable 

connectivity conditions and transfer the aggregated or partial outputs to the cloud via the Internet for further 

improved analytical results[30]. The purpose of fog computing is to guarantee that farmers can utilize the 

distributed computing paradigm and that it is operational. Additionally, fog computing will encourage the 

usage of near-user edge devices' capabilities to enhance computation. Farmers will have the open chance to 

collaborate on the numerous dispersed normal activities of regularly monitoring with sensors, even at strange 

hours, from a remote place [27]. 

Overall, the objective of this section is to exhibit the role of contemporary technologies in livestock to be 

precise toward achieving the resilience and sustainability of livestock in the market. Hence, evaluating the 

livestock farms that embrace these notions is vital and we attempted to cover this aspect through the following 

section of previous studies related to our study’s cope. 

3 |Comprehensive Overview of Prior Literature    

This section showcases the various methodologies for evaluating livestock based on conducted surveys for 

earlier studies. For instance, the hazards associated with the livestock supply chain are ranked and evaluated 

using the analytical hierarchical process (AHP) [31] where The results also indicate that out of the seventeen 
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risks "poor quality and undersupply of feed and fodder," "lack of proper waste disposal," and "absence of 

certification for the quality of animals" are the most prevalent. Geographical Information Systems GIS-

MCDM hybrid with R-numbers in [32] to explore the selection of industrial livestock sites and select the 

optimal site. To generate sustainable solutions and alternatives based on economic, environmental, and social 

are three pillars of sustainability in [33], MCDM techniques are utilized for recommending sustainable and 

resilient livestock. Also, Neutrosophic theory collaborated with MCDM techniques [34] to minimize the 

inaccuracy in the disease diagnosis. The livestock feeding stuff is divided into categories by study of [35]  as 

green fodder, subsidiary fodder, and concentrate feed These categories are prioritized by combining MCDM 

with plithogenic which can handle uncertain and ambiguous decision-making data. After that the combined 

techniques are compared with fuzzy CRITIC-MAIRCA and the findings indicated that plithogenic CRITIC-

MAIRCA approach is extremely successful at generating a workable rating. 

4 | Methodology of Evaluation Process: Proposed Model    

The goal of this study is to determine whether and how stakeholders of livestock farms might use digital 

technologies (DTs) to optimize livestock and its operations to achieve PrLF and resilient and sustainable 

livestock farms. Moreover, in this study, the advantage of the Critic Method to determine the weights of 

criteria in MCDM problems is combined with CoCoSo to evaluate and rank Livestock alternatives. These 

techniques of MCDM are working under the authority of TrNSs through the following stages. 

Stage 1: Data Collection 

- Determining main criteria (CM) as {C1, C2, C3...CM} and sub- criteria (Cm-n) as {C1-1, C1-2…Cm-

n}. 

- Determining Alternatives in this regard include livestock-1, livestock-2, livestock-3 livestock-4, and 

livestock-5. For ease, the alternatives are denoted by the set T = {A1; A2; A3; A4; A5} respectively.  

- Communicating with decision makers who contribute to the evaluation process and forming the panel. 

The scale of TrNSs is utilized for placing linguistics terms and their corresponding value for each alternative 

based on criteria and sub-criteria. 

Stage 2: Critic Based on TrNSs: Generating weights for criteria and their sub-criteria. 

Importance The inter-criteria Correlation method is one of the weighting methods that determine weights 

for criteria with the support of TrNSs. 

- Weighting criteria 

- The Neutrosophic decision matrices are formed. It shows the performance of different alternatives with 

respect to various criteria. 

- Convert the constructed decision matrices into de-neutrosophic matrices through Eq. (1). 

Score(℘ij) =
lij+mij+uij

9
∗ (2 + T − I − F)                                                                                 (1) 

Where: 𝑖=1,2,3,…m; n=1,2,3,….. 𝑗; 𝑙, 𝑚, 𝑢 refer to the lower, middle, and upper values and  𝑇, 𝐼, 𝐹  refer 

to truth, indeterminacy and false respectively. 

- Aggregate deneutrosophic matrices into a single decision matrix.                        

𝐷𝜇𝑡𝑖𝑗
=    

∑ ℘𝑖𝑗

𝑁

𝑗=1

𝑍
                                                                                                                                     (2) 

Where: ℘𝑖𝑗 refers to the value of the criterion in the matrix, and Z refers to the number of decision-

makers. 

- Normalizing aggregated matrix through the following equation: 
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𝑥∗
𝑖𝑗 =

𝑥𝑖𝑗−min (𝑥𝑖𝑗)

max(𝑥𝑖𝑗)−min (𝑥𝑖𝑗)
 

  𝑖=1,2, 3,…m; n=1,2,3,…..   for benefit;                                                             (3) 

𝑥∗
𝑖𝑗 =

𝑚𝑎𝑥 (𝑥𝑖𝑗)−𝑥𝑖𝑗

max(𝑥𝑖𝑗)−min (𝑥𝑖𝑗)
 

  𝑖=1,2, 3,…m; n=1,2,3,…..   for non-benefit;                                                   (4) 

Where: 𝑥∗ is the normalized performance value of 𝑖th alternative on 𝑗th criterion. 

- Calculate the standard deviation for each criterion per column as: 

𝜎𝑗 =  √
1

𝑠−1
 ∑ (𝑥𝑖𝑗

𝑠
𝑗=1 − 𝑥∗

𝑗 )2                                                                                                                       (5)                                                         

Where: 𝑥∗
𝑗is the mean score of criterion j, while s is the number of alternatives. whereas 𝜎𝑗 is the 

standard deviation of the 𝑗th criterion and𝑟𝑖𝑗 is the correlation coefficient between the two criteria. 

- Correlation between criteria is computed according to Eq. (6).  

ℊ𝑗𝑘 =  ∑ (𝑛
𝑖=1 𝑥𝑖𝑗 −   𝑥∗

𝑗) (𝑥𝑖𝑘 −   𝑥∗
𝑘)/ √∑ (𝑥𝑖𝑗 −  𝑥∗

𝑗)2 𝑚
𝑖=1 ∑ ((𝑥𝑖𝑘 −  𝑥∗

𝑘)2𝑚
𝑖=1                                    (6) 

Where:  ℊ𝑗𝑘 is the correlation coefficient between jth and kth criteria. 

- Quantity in relation to each criterion is calculated through Eq. (7). 

𝐶𝑗 = 𝜎𝑗  ∑ (1 − 𝑛
𝑘=1  ℊ𝑗𝑘)               (7) 

- The final weight is calculated by  

𝑤𝑗 =  
𝐶𝑗

∑ 𝐶𝑗
𝑛
𝑗=1

                (8) 

- Weighting sub-criteria. 

- Following the previous steps of obtaining criteria weights for obtaining subcriteria weights 

Stage 3: CoCoSo Based on TrNSs: Recommending the most sustainable livestock farm. 

The combined Compromise Solution method depends on the relative distance of the alternative from the 

ideal one which gives the compromised solution of alternatives ranking. 

- A normalized matrix of critic is utilized for generating weighted comparability sequence (Si) and power 

weight of comparability sequence (Pi) using Eqs. (9) and (10), respectively. 

𝑆𝑖 = ∑ (𝑤𝑗 ∗ 𝑥∗
𝑖𝑗)

𝑛

𝑗=1
                                                                                                                                  (9) 

where wj = final criteria weights by Critic method 

𝑃𝑖 = ∑ (𝑥∗
𝑖𝑗)𝑤𝑗

𝑛

𝑗=1
                                                                                                                                       (10) 

- Based on Si and Pi values, three appraisal score strategies are employed for ranking of alternatives which 

are calculated using Eqs. (11), (12), and (13), respectively. 

𝑘 𝑖𝑎
=    

   𝑃𝑖 + 𝑆𝑖

∑   𝑃𝑖 + 𝑆𝑖
𝑚
𝑖=1

                                                                                                                                 (11)                                                                                                     

𝑘 𝑖𝑏
=    

 𝑆𝑖

min  𝑆𝑖
+  

 𝑃𝑖

min  𝑃𝑖
                                                                                                                          (12) 

𝑘 𝑖𝑐
=    

λ( 𝑆𝑖)+(1−λ)( 𝑃𝑖)

λ(max   𝑆𝑖)+(1−λ)(max   𝑃𝑖)
             0 ≤ λ ≤ 1                                                                                   (13) 
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where λ = 0.5 is usually chosen by the decision-maker, ranking can be done based on the  𝑘 𝑖𝑎

, 𝑘 𝑖𝑏 
,

𝑘 𝑖𝑐
 (larger k acquires good rank preference), but it is recommended that the ranking obtained through 

all three appraisal scores should be in the highest agreement with each other. 

- Determine the value of Ki using Eq. (14). Rank the alternatives based on Ki, and the alternative which 

has the highest value of Ki will acquire the first rank followed by others with decreasing 𝐾 𝑖. 

𝐾 𝑖= (𝑘 𝑖𝑎
𝑘 𝑖𝑏 

 𝑘 𝑖𝑐
)

1

3 +
1

3
(𝑘 𝑖𝑎

+ 𝑘 𝑖𝑏 
+  𝑘 𝑖𝑐

)                                                                                                   (14) 

5 | Real Case Study    

5.1 | Comprehensive Overview 

We applied the constructed evaluation model of this study in a real case study of livestock farms to validate 

the accuracy of the constructed model. Herein, five livestock farms have contributed to this process 

embracing the technologies in their operations and practices for achieving Precision and sustainable livestock. 

The evaluation of five alternatives is conducted through a set of criteria and sub-criteria obtained from 

utilizing contemporary and virtual technologies. Thereby, four criteria are contributed to the rating also, and 

thirteen sub-criteria of contemporary and virtual technologies are contributed to the evaluation process as 

mentioned in Table 1. 

Table 1. Criteria and associated points to be considered for evaluating livestock in terms of sustainability. 

Main Criteria Sub-Criteria Description 

Environmental Impact 
(C1) 

Greenhouse gas emissions (C1-1) 
Measurement and reduction of emissions such as methane and 
CO2 produced by livestock farming activities. 

Land use and biodiversity conservation 
(C1-2) 

Conservation of natural habitats, preservation of biodiversity, 
and sustainable land management practices. 

Water usage and quality(C1-3) 
 
 
 

Efficient use of water resources and prevention of 
contamination of water bodies through proper management 
practices. 
 

Economic Viability (C2) 

Cost-effectiveness(C2-1) 
Ensuring profitability and financial sustainability of livestock 
operations while minimizing production costs. 

Market competitiveness (C2-2) 
 
 
 

Ability to compete in the market by producing high-quality 
products that meet consumer demand while adhering to 
sustainability. 

Proactivity(C2-3) 
Based on historical behaviors of the market, digital technologies 
have been utilized by farms to anticipate future events. 

Social Responsibility (C3) 

Animal welfare (C3-1) 
Ensuring the health, comfort, and humane treatment of animals 
throughout their lives, from breeding to slaughter. 

Community engagement 
(C3-2) 
 
 

Collaboration with local communities, stakeholders, and 
policymakers to address social needs, promote transparency, and 
foster trust. 

Labor conditions (C3-3) 
Providing safe, fair, and healthy working conditions for 
farmworkers and employees involved in livestock farming 
operations. 

Policy (C4) 

Research and Development Funding 
(C4-1) 

Allocation of funding for research and development initiatives 
aimed at advancing sustainable technologies, practices, and 
innovations in livestock farming. 

Incentive Programs 
(C4-2) 

Participation in government-sponsored incentive programs that 
encourage the adoption of sustainable practices through 
subsidies, grants, tax incentives, or other financial mechanisms. 

Regulatory Compliance 
(C4-3) 

Ensuring compliance with environmental regulations and 
standards related to livestock farming activities, including 
emissions, waste management, and land use. 

Stakeholder Engagement (C4-4) 

Engagement with stakeholders such as government agencies, 
NGOs, community organizations, and industry associations to 
develop and implement policies that promote sustainability in 
livestock farming. 
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5.2 | Valuating Criteria and Sub-criteria: CRITIC-TrNSs 

5.2.1 | Valuating Criteria 

Members of the panel utilized the Triangular Neutrosophic scale for rating alternatives based on the 

determined criteria mentioned in Table 1. 

- Five Neutrosophic decision matrices are constructed based on the members of the panel trough using a 

Triangular scale [36]. 

- Utilizing Eq. (1) to de-neutrosophic these matrices and aggregate them into an aggregated matrix using 

Eq. (2) as listed in Table 2. 

- Table 3 illustrates the normalized matrix by employing Eqs. (3) and (4). 

- Table 4 represents the Correlation between criteria is computed according to Eq. (6).  

- Table 5 showcases the conflict degree of the main criteria. Figure 2 represents the final criteria’s weights. 

Table 2. Aggregate de-neutrosophic matrix of main criteria. 

Alternatives Criteria 

 C1 (-) C2(+) C3(+)                         C4(+) 

A1 2.9300 2.5267 2.2367 2.4133 

A2 1.4267 3.2600 4.8167 3.6500 

A3 3.9367 4.1667 4.2433 4.2967 

A4 2.1000 4.4167 2.1433 2.2633 

A5 0.6767 1.9100 3.7900 3.2533 

max 3.9367 4.4167 4.8167 4.2967 

min 0.6767 1.9100 2.1433 2.2633 

 
Table 3. Normalize aggregate de-neutrosophic matrix of main criteria. 

 

 

 

 

 

 

Table 4. Correlation coefficient values of the main criteria 

 

 

 
 
 

Table 5. Conflict degree of the main criteria. 
 

 

 

 

 

 

Alternatives Criteria 

 C1 (-) C2(+) C3(+)                         C4(+) 

A1 0.3088 0.2460 0.0349 0.0738 

A2 0.7699 0.5386 1.0000 0.6820 

A3 0.0000 0.9003 0.7855 1.0000 

A4 0.5634 1.0000 0.0000 0.0000 

A5 1.0000 0.0000 0.6160 0.4869 

σj 0.332 0.346 0.513 0.483 

Criteria C1 (-) C2(+) C3(+)                         C4(+) 

C1 1.0000 -0.5508 0.1554 -0.2299 

C2 -0.5508 1.0000 -0.0706 0.1147 

C3 0.1554 -0.0706 1.0000 0.8980 

C4 -0.2299 0.1147 0.8980 1.0000 

Criteria C1 (-) C2(+) C3(+)                         C4(+) 

C1 0.000 1.551 0.845 1.230 

C2 1.551 0.000 1.071 0.885 

C3 0.845 1.071 0.000 0.102 

C4 1.230 0.885 0.102 0.000 
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Table 6. Final weights of main criteria. 

 

 

 

 

 

 

 

Figure 2. Final criteria weights. 

5.2.2 | Valuating Sub-criteria 

- The previous steps of obtaining the criteria’s weights are repeated for obtaining the sub-criteria’s weights. 

- Tables 7, 12,17, and 22 showcase the aggregated matrix for sub-criteria of (C1, C2, C3, C4) respectively. 

- The matrices of Tables 7, 12,17, and 22 are normalized and obtained in Tables 8,13,18, and 23 

respectively. 

- Correlation coefficient values of sub-criteria of Environmental are represented in Tables 9,14,19, and 24 

respectively. 

- Final weights for sub-criteria of each criterion are illustrated in Tables 11,16,21, and 26 according to Eq. 

(8). 

Table 7. Aggregate de-neutrosophic matrix of sub-criteria of Environmental (C1). 

Alternatives 
Sub-Criteria 

C1-1 (-) C1-2 (-) C1-3 (+) 

A1 0.9367 2.3767 2.9600 

A2 5.0400 2.9467 2.6133 

A3 4.8167 4.8367 3.3700 

A4 4.9533 2.6100 2.7600 

A5 3.2167 1.9833 3.3800 

max 5.0400 4.8367 3.3800 

min 0.9367 1.9833 2.6133 

 

 

C1
26%

C2
27%

C3
23%

C4
24%

C1 C2 C3 C4

Criteria σj rij Cj Wj Percent Wj 

C1 0.332 3.625 1.205 0.266 26.64% 

C2 0.346 3.507 1.213 0.268 26.81% 

C3 0.513 2.017 1.035 0.229 22.88% 

C4 0.483 2.217 1.071 0.237 23.67% 

Sum   4.524 1.000 1.000 
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Table 8. Normalize aggregate d de-neutrosophic matrix of sub-criteria of Environmental (C1). 

Alternatives 
Sub-Criteria 

C1-1 (-) C1-2 (-) C1-3 (+) 

A1 1.0000 0.8621 0.4522 

A2 0.0000 0.6624 0.0000 

A3 0.0544 0.0000 0.9870 

A4 0.0211 0.7804 0.1913 

A5 0.4444 1.0000 1.0000 

σj 0.430 0.389 0.456 

 

Table 9. Correlation coefficient values of sub-criteria of Environmental(C1). 

 

 

 

 

Table 10. Conflict degree of sub-criteria of Environmental (C1). 

 

 

 

 

Table 11. Final weights of sub-criteria of Environmental (C1). 

 

 

 

 

 

Table 12. Aggregate de-neutrosophic matrix of sub-criteria of Economic (C2). 

 

 

 

 

 

 

 

Table 13. Normalize aggregate deneutrosophic matrix of sub criteria of Economic (C2). 

Alternatives 
Sub-Criteria 

C2-1 (-) C2-2 (+) C2-3 (+) 

A1 1.0000 0.0000 0.0000 

A2 0.0000 0.7050 1.0000 

A3 0.1799 0.9461 0.3648 

A4 0.2302 1.0000 0.1868 

A5 0.5492 0.7688 0.9537 

σj 0.393 0.401 0.453 

 

Criteria C1-1 (-) C1-2 (-) C1-3 (+) 

C1-1 1.0000 0.476 0.197 

C1-2 0.476 1.0000 -0.281 

C1-3 0.197 -0.281 1.0000 

Criteria C1-1 (-) C1-2 (-) C1-3 (+) sum 

C1-1 0.000 0.524 0.803 1.327 

C1-2 0.524 0.000 1.281 1.805 

C1-3 0.803 1.281 0.000 2.084 

weight C1= 0.226 

criteria σj rij Cj Wj Final Wj Percent Wj 

C1-1 0.430 1.327 0.570 0.257 0.05797 5.80% 

C1-2 0.389 1.805 0.703 0.316 0.07146 7.15% 

C1-3 0.456 2.084 0.950 0.427 0.09657 9.66% 

Alternatives 
Sub-Criteria 

C2-1 (-) C2-2 (+) C2-3 (+) 

A1 2.6467 1.4533 1.9133 

A2 4.0367 3.1100 3.7867 

A3 3.7867 3.6767 2.5967 

A4 3.7167 3.8033 2.2633 

A5 3.2733 3.2600 3.7000 

max 4.0367 3.8033 3.7867 

min 2.6467 1.4533 1.9133 
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Table 14. Correlation coefficient values of sub criteria of Economic (C2). 

Criteria C2-1 (-) C2-2 (+) C2-3 (+) 

C2-1 1.000 -0.819 -0.490 

C2-2 -0.819 1.000 0.353 

C2-3 -0.490 0.353 1.000 

 

Table 15. Conflict degree of sub-criteria of Economic (C2). 

Criteria C2-1 (-) C2-2 (+) C-23 (+) sum 

C2-1 0.000 1.819 1.490 3.309 

C2-2 1.819 0.000 0.647 2.467 

C2-3 1.490 0.647 0.000 2.137 

 

Table 16. Final weights of sub-criteria of Economic(C2). 

Weight C2      = 0.268 

criteria σj rij Cj Wj Final Wj Percent Wj 

C2-1 0.393 3.309 1.302 0.399 0.107 13.82% 

C2-2 0.401 2.467 0.990 0.304 0.081 10.50% 

C2-3 0.453 2.137 0.969 0.297 0.080 10.28% 

 

Table 17. Aggregate de-neutrosophic matrix of sub-criteria of Social (C3). 

Alternatives 
Sub-Criteria 

C3-1 (+) C3-2 (+) C3-3 (+) 

A1 0.8667 3.3467 1.3400 

A2 2.5600 2.7067 2.5867 

A3 5.8467 3.6333 3.2700 

A4 4.4233 1.2133 4.2367 

A5 3.3600 3.9733 3.0267 

max 5.8467 3.9733 4.2367 

min 0.8667 1.2133 1.3400 

  

Table 18. Normalize aggregate de-neutrosophic matrix of sub-criteria of Social (C3). 

Alternatives 
Sub-Criteria 

C3-1 (+) C3-2 (+) C3-3 (+) 

A1 1.0000 0.2271 0.0000 

A2 0.6600 0.4589 0.4304 

A3 0.0000 0.1232 0.6663 

A4 0.2858 1.0000 1.0000 

A5 0.4993 0.0000 0.5823 

σj 0.378 0.395 0.365 

  

Table 19. Correlation coefficient values of sub-criteria of Social (C3). 

 

 

 

 

Table 20. Conflict degree of sub-criteria of Social (C3). 

Criteria C3-1 (+) C3-2 (+) C3-3 (+) sum 

C3-1 0.000 1.116 1.815 2.931 

C3-2 1.116 0.000 0.461 1.577 

C3-3 1.815 0.461 0.000 2.276 

 

Criteria C3-1 (+) C3-2 (+) C3-3 (+) 

C3-1 1.0000 -0.116 -0.815 

C3-2 -0.116 1.0000 0.539 

C3-3 -0.815 0.539 1.0000 
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Table 21. Final weights of sub-criteria of Social (C3). 

Weight C3 = 0.229 

criteria σj rij Cj Wj Final Wj Percent Wj 

C3-1 0.378 2.931 1.107 0.432 0.099 22.18% 

C3-2 0.395 1.577 0.622 0.243 0.056 12.47% 

C3-3 0.365 2.276 0.831 0.325 0.074 16.65% 

  

Table 22. Aggregate de-neutrosophic matrix of sub-criteria of Policy(C4). 

Alternatives 
Criteria 

C4-1 (+) C4-2 (+) C4-3 (+) C4-4 (-) 

A1 3.2067 3.0933 2.2133 3.9600 

A2 3.9067 3.7600 3.7700 4.6200 

A3 4.6733 2.0433 3.2133 5.4033 

A4 1.7833 3.5833 4.3000 4.2800 

A5 4.1633 4.1067 2.2400 2.3600 

max 4.6733 4.1067 4.3000 5.4033 

min 1.7833 2.0433 2.2133 2.3600 

 

Table 23. Normalize aggregate de-neutrosophic matrix of sub-criteria of Policy (C4). 

Alternatives 
Criteria 

C4-1 (+) C4-2 (+) C4-3 (+) C4-4 (-) 

A1 0.4925 0.5089 0.0000 0.4743 

A2 0.4544 0.8320 0.7460 0.2574 

A3 1.0000 0.0000 0.4792 0.0000 

A4 0.0000 0.7464 1.0000 0.3691 

A5 0.8235 1.0000 0.0128 1.0000 

σj 0.385 0.388 0.443 0.369 

 

Table 24. Correlation coefficient values of sub-criteria of Policy (C4). 

Criteria C4-1 (+) C4-2 (+) C4-3 (+) C4-4 (-) 

C4-1 1.000 -0.433 -0.603 0.018 

C4-2 -0.433 1.000 -0.003 0.758 

C4-3 -0.603 -0.003 1.000 -0.560 

C4-4 0.018 0.758 -0.560 1.000 

 

Table 25. conflict degree of sub-criteria of Policy (C4). 

Criteria C4-1 (+) C4-2 (+) C4-3 (+) C4-4 (-) sum 

C4-1 0.000 1.433 1.603 0.982 4.018 

C4-2 1.433 0.000 1.003 0.242 2.678 

C4-3 1.603 1.003 0.000 1.560 4.167 

C4-4 0.982 0.242 1.560 0.000 2.785 

 

Table 26. Final weights of sub-criteria of Policy. 

Weight C4 = .237 

criteria σj rij Cj Wj final w Percent Wj 

C4-1 0.385 4.018 1.546 0.283 0.0671 28.33% 

C4-2 0.388 2.678 1.039 0.190 0.0451 19.03% 

C4-3 0.443 4.167 1.845 0.338 0.0801 33.81% 

C44 0.369 2.785 1.028 0.188 0.0446 18.83% 
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5.3 | Ranking Alternatives using the CoCoSo-TrNSs Method 

- Normalized decision matrix of CRITIC and illustrated in Table 27 to generate a weighted decision matrix 

as in Table 28 based on Eq. (9). 

- Table 29 represents the weight comparability sequence based on Eq. (10). 

- The final ranking of alternatives is represented in Table 30. According to Figure 3, A2 is the most 

sustainable livestock farm otherwise, A1 is the worst alternative. 

Table 27. Normalize aggregate de-neutrosophic matrix of Main criteria. 

 

 

 

 

 

 

Table 28. Weighted normalized decision matrix (Si  = Wj * Rij) of main criteria. 

 C1 (-) C2 (+) C3 (+) C4 (+) Sum 

A1 0.0822 0.0660 0.0080 0.0175 0.1737 

A2 0.2051 0.1444 0.2288 0.1614 0.7397 

A3 0.0000 0.2414 0.1797 0.2367 0.6578 

A4 0.1501 0.2681 0.0000 0.0000 0.4182 

A5 0.2664 0.0000 0.1409 0.1153 0.5225 

 

Table 29. Weight-multiplied comparable sequence (Pi = Rij^Wij) of main criteria. 

 

 

 

 

 

 

 

Table 30. Final ranking of the alternatives Ki of main criteria. 

 

 

 

 

 C1 (-) C2 (+) C3 (+) C4 (+) 

Weight 0.2664 0.2681 0.2288 0.2367 

A1 0.3088 0.2460 0.0349 0.0738 

A2 0.7699 0.5386 1.0000 0.6820 

A3 0.0000 0.9003 0.7855 1.0000 

A4 0.5634 1.0000 0.0000 0.0000 

A5 1.0000 0.0000 0.6160 0.4869 

 C1 (-) C2 (+) C3 (+) C4 (+) Sum 

A1 0.7313 0.6866 0.4641 0.5395 2.4215 

A2 0.9327 0.8471 1.0000 0.9134 3.6932 

A3 0.0000 0.9722 0.9463 1.0000 2.9185 

A4 0.8583 1.0000 0.0000 0.0000 1.8583 

A5 1.0000 0.0000 0.8951 0.8433 2.7384 

 Si Pi Kia Kib Kic Ki Rank 

A1 0.1737 2.4215 0.1608 2.3031 0.5854 2.4665 5 

A2 0.7397 3.6932 0.2746 6.2469 1.0000 4.4665 1 

A3 0.6578 2.9185 0.2216 5.3585 0.8068 3.9843 2 

A4 0.4182 1.8583 0.1410 3.4081 0.5135 2.9499 4 

A5 0.5225 2.7384 0.2020 4.4825 0.7356 3.5633 3 

sum 2.5119 13.6299      

min 0.1737 1.8583      

max 0.7397 3.6932      
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Figure 3. Ranking of livestock farms alternatives. 

 

6 |Conclusions    

After examining the many instruments and methods, it is reasonable to conclude that, in spite of numerous 

obstacles, the irrigation industry has developed a number of excellent technologies that have the potential to 

completely transform livestock in the future. 

Contemporary technologies, such as smartphones, high-speed internet, and virtual technologies are already a 

part of our everyday lives. Currently, computers and smartphones are used by over half of the world's 

population to access the internet. Numerous nations worldwide have already adopted the use of cell phones 

for real-time alerts on various farm situations. In the days to come, modern digital technology will significantly 

increase productivity and efficiency in livestock and agricultural operations. In livestock production systems, 

the use of digital technologies has become increasingly important for comprehensive farm monitoring, 

mitigation of the dynamics and effects of climate change, animal disease surveillance, stopping the spread of 

livestock diseases, and being ready for pandemic emergencies. However, the livestock industry must ensure 

global food safety and reduce greenhouse gas emissions, among other issues. Sustainable production must 

receive more attention due to the sharp rise in demand for animal products. Decision-makers can create 

suitable sustainable production plans with the use of appropriate decision support systems.  

Accordingly, this study attempted to examine livestock farms that embrace contemporary and virtual 

technologies for the precision and sustainability of livestock. This is a catalyst for constructing the evaluation 

model for analyzing the sustainability of these livestock farms according to sustainability’s pillars which handle 

as criteria and its sub-criteria. This model was constructed based on collaboration between MCDM techniques 

and uncertainty theory especially, TrNSs. 
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