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1 |Introduction    

Consider the set Ω of adults of a certain locality, classified into (i) employed and (ii) unemployed.  This 

classification is unsatisfactory if we consider the fact that there may be adults who are partially employed or 

employed with a meager income.  It is thus necessary to introduce another class (iii) under-employed.  As 

another example, let Ω be the set of adult males in a village, classified into two sets (i) A: those who shave 

themselves (ii) B: those who are shaved by the village barber, who is a member of  Ω.  Since the barber belongs 

to both A and B, the truth value of the proposition (iii) that the barber belongs to the set A/B may be taken 

as 𝜇 1 − 𝜇⁄ .  Due to insufficient information 𝜇 1 − 𝜇⁄  will be called a coefficient of uncertainty/indeterminacy.  

Similarly in the first example, we may assign the truth value 𝜇 1 − 𝜇⁄ (0 ≤ 𝜇 ≤ 1) that the class (iii) is part of 

class (i)/(ii). A simple way of assigning values for 𝜇 1 − 𝜇⁄  is explained in Examples 1 and 2 of Section 9. To 

analyze conditional statements of the type “if A is B then C is D”, the probabilistic concepts of Section 8 are 

useful. 

2 |Connectives in Symbolic Logic and Lattices    

In the propositional logic, the lattice operations −/' for negation, ⋀ for conjunction, ∨ for disjunction, and → 

for the conditional operation are applied to the propositions A and B according to Table 1. 

It is further assumed that 

(i) (A → B) ≡ [A → (A ∧ B)].  According to the column (4), (i) is equivalent to 

(ii) (A ∨ B) ≡ [A ∨ (A ∧ B)]  

By considering the truth values of (ii) we have 
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(iii) T(A ∨ B) ≠ 𝑇[A ∨ (A ∧ B)] according to column (5) of the table. For if we suppose that T(B) > T(A) > 
1

2
 

then LHS = max{T(A), T(B)} = T(B) and similarly RHS = T(A) so that LHS and RHS are different. 

This indicates that the max operator in column (5) is to be properly checked.  Since (ii) and (iii) are 

in contradiction (ii) and hence (i) has to be checked; hence the meaning of (A → B) has to be revised. 

Again T(A ∨ A) = max{T(A), 1 − T(A)} ≠ 1, in general, and T(A ∧ A) = min{T(A), 1 − T(A)} ≠ 0 in 

general i.e. the law of excluded middle and the law of contradiction are violated in classical logic and 

fuzzy logic. These violations occur solely because of the operations min/max for 

conjunction/disjunction according to column (5) of the above table. Thus all three operations: →,

∧ and ∨ have to be modified to keep the LOEM and LOC always true.  This can be done by the new 

rule of conditional proposition, the new multiplication theorem/addition theorem for 

conjunction/disjunction. 

Table 1. Some of lattice operations. 

Sl. 

No. 

Connective or 

Operator 
Symbol Notation Truth Value 

(1) (2) (3) (4) (5) 

1 Negation − / ′ A / A′ T(A) = 1 − T(A) 

2 Conjunction ∧ A ∧ B min{T(A), T(B)} 

3 Disjunction ∨ A ∨ B max{T(A), T(B)} 

4 
Conditional 

Operation 
→ A → B ≡ A max{1 − T(A), T(B)} 

 

3 |Rule for T(AB)  

Consider the modus ponens, modus tollens, and syllogism: A, (A→B) implies B, hence A, B or A and B 

∴ T(A)T(A → B) = T(A, B) or T(A ∧ B) 

∴ T(A → B) =
T(A, B)

T(A)
 or 

T(A ∧ B)

T(A)
 

Similarly 

T(A ∧ B ∧ C) = T(A) T(A → B)T(A ∧ B → C)  

since T(A ∧ B → C) =
T(A∧B∧C)

T(A∧B)
  where bar does not mean negation. 

These are exactly analogous to the laws of conditional probability: 

P(A B⁄ ) =
P(AB)

P(B)
 and P (B A) =

P(AB)

P(A)
⁄  

It follows that we can redefine P(A B)⁄ = P(B → A) and P(B A)⁄ = P(A → B) analogous to the above formulae. 

Hence T(A → B) = T(B A)⁄  and T(A B)⁄ = T(B → A). 

4 |Rules for Conjunction and Disjunction  

It can be proved that 

(i) T(A⋁A) = T(A⋀A) = T(A)  

(ii) T(A ∧ B) = min{T(A), T(B)} − 𝑑 

(iii) T(A ∨ B) = max{T(A), T(B)} + 𝑑 where 
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(iv) 𝑑 = min[min{T(A), T(A)},min{T(B), T(B)}] 

(v) T(A⋁B) = T(A) + T(B) − T(A ∧ B) 

Proof 

T(A ∧ B) ≤ T(A) and T(A ∧ B) ≤ T(B) imply T(A ∧ B) ≤ Min {T(A), T(B)} 

Similarly 

max{T(A), T(B)} ≤ T(A ∨ B) 

since  

T(A) ≤ T(A ∧ B) and T(B) ≤ T(A ∧ B) 

These inequalities can be re-written as 

T(A ∧ B) = min{T(A), T(B)}−𝑑1 and T(A ∨ B) = max{T(A), T(B)}+𝑑2. 

Adding these 

T(A ∧ B) +  T(A ∨ B) = min{T(A), T(B)} + max{T(A), T(B)} + 𝑑2−𝑑1 

i.e. T(A) + T(B) = T(A) + T(B) + 𝑑2−𝑑1 ⟹ 𝑑2−𝑑1 = 0 ∴ 𝑑2 = 𝑑1 = 𝑑, say.   

Thus we get (ii) T(A ∧ B) = min{T(A), T(B)} − 𝑑  

(iii) T(A ∨ B) = max{T(A), T(B)} + 𝑑 

Case 1: (when B = A).  The LHS of these equations coincide 

∴ T (A ∧ A) = T (A ∨ A) ⟹ 

min{T(A), T(A)} − 𝑑 = max{T(A), T(A)} + 𝑑 

i.e. T(A) − 𝑑 = T(A) + 𝑑 or 𝑑 = 0.  Thus we get (i) 

Case 2: (when B ≠ A) 

Letting B = A implies 

T (A ∧ A) = min{T(A), T(A)} − 𝑑 and T(A ∨ A) = max{T(A), T(A)} + 𝑑 

   To make T (A ∧ A) ≥ 0 we must take 𝑑 ≤ min{T(A), T(A)} 

Similarly 

𝑑 ≤ min{TB), T(B) ∴ 𝑑 = min[min{T(A), T(A)},min{T(B), T(B̅)}] 

Thus we get (iv).  Adding (ii) and (iii) we get (v).  It is readily shown that (i) to (iv) are in agreement with 

LOEM/LOC, since 

T (A ∧ A) = min{T(A), T(A)} − min{T(A), T(A)} = 0 

 implies A ∧ A =  so that  T(A ∨ A) = 1 or (A ∨ A) = , the universal set. 

5 |Truth Table involving Truth Values /1 ˗  and /1 ˗   

The classical truth value table involving (0/1) can be upgraded by using the formulae of 4(i) to 4(iv).  Thus we 

get Table 2. 
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Table 2 

T(P) T(Q) T(PQ) T(PQ) T(P → Q) 

Limiting 

value of  

T(P → Q) 

(1) (2) (3) (4) (5) (6) 

 1 − 𝛼′ min{1, 1 –  ′} − 𝑑 max{, 1 − ′} + 𝑑 min {1,
1 − ′


} −

𝑑


 1 

 𝛼′ min{1,′} − 𝑑 max{,′} + 𝑑 min {1,
′


} −

𝑑

𝛼
 1 

1 − 𝛼 1 − 𝛼′ 
min{1 − , 1 − ′}

− 𝑑 

max{1 − , 1 − ′}

+ 𝑑 
min {1,

1 − ′

1 − 
} −

𝑑

1 − 
 1 

1 − 𝛼 𝛼′ min{1 − ,′} − 𝑑 max{1 − ,′} + 𝑑 min {
′

1 − 
1} −

𝑑

1 − 
 0 

 

where 𝑑 = min[min{, 1 − },min{′, 1 − ′}] → 0 as  → 0,′ → 0 and 
′


→ 1 

The truth values in column (6) are identical to the classical truth value of  (P→Q). 

When  = ′ =  
1

2
 then all four rows are identical, columns (3) and (5) contain zeros only, and column (4) 

contains 1 only. 

6 |Interpretations of the Lattice Operators  

The lattice operators are 

(i) T(A ∧ B) = min{(T(A), T(B)} and  

(ii) T(A ∨ B) = max{T(A), T(B)} 

Those formulae are equivalent to 4(ii) and 4(iii) with 𝑑 = 0.  We know that 𝑑 = 0 iff A A⁄  coincides with ϕ or 

B/B coincides with ϕ. But this will be true only in the trivial case. 

From 6(i) and 6(ii), it follows that 

T(A ∧ A) = min{T(A), T(A)} ≠ 0 

T(A ∨ A) = max{T(A), T(A)} ≠ 1 

i.e. A ∧ A ≠ ϕ and A ∨ A ≠ Ω 

i.e. 6(i) and 6(ii) lead to a rejection of LOEM/LOC 

Again if we use the min/max rule for the product/sum of numbers in problems of the scalar product of two 

vectors or the product of two matrices, the answers will be different from their exact values. Hence in 

computations, it is desirable to use the theory of Sections 3, 4, and 5 rather than that of 6. 

7 |Space of Propositional Logic and Probability Space  

In this section, it is shown that the space of propositional logic is a probability space.  Then it will follow that 

∧≡∩ and ∨≡∪. 

Consider the universal set Ω = {0, 1} where 0 stands for ‘No’ to a question and 1 stands for ‘Yes’ to the same 

question with truth values T(0) =  and T(1) = 1 − .  Now it is possible to define a random variable X 

taking values 0 and 1 with P(X = 0) = T(0) =  and P(X = 1) = T(1) = 1 − . 

Clearly 0̅ and 1̅ are complementary propositions and {0} and {1} complementary events; either is a disguised 

form of the other and we have P(. . ) = T (. . ).  Let Σ = {𝜙,Ω, E0E1} where E0 = {0} or {X = 0} and E1 =
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{1} or {X = 1}.  Clearly 𝜙 = Ω and E0 = E1 and vice-versa.  It follows that Σ is sigma-algebra [1,4] of subsets 

of Ω satisfying the axioms (i) Ω ∈ Σ (ii) E ∈ Σ implies E ∈ Σ (iii) {E𝑛} ⊂ Σ implies (∨ En) ∈ Σ 

Further the set function T (..) defined by T:Σ → [0, 1] is a probability function P (..) satisfying 

(iv) (a) T(E) ≥ 0  for any E ∈ Σ (b) T(Ω) = 1(c) T(E) = 1 − T(E) (d) T (
∨ E𝑛
𝑛
) = ∑ T(En)n  

whenever E𝑖 ∧ E𝑗 = 𝜙 for 𝑖 ≠ 𝑗 and Σ on the RHS of (d) is used as a summation symbol. 

Thus the propositional space (Ω, Σ, T( )) is the probability space (Ω, Σ, P( )) so that ∧ ≡ ∩ and ∨ = ∪ and T(Ε) 

≡ P(Ε).  Hence we can interchangeably use T and P in the remaining sections. 

Now consider a probability space consisting of a random variable X on a sample space Ω with a cumulative 

probability function F(x) [3,6,7].  The statement 𝑥 = 𝑥 is a simple proposition as well as a simple event and 

𝑎 ≤ 𝑥 ≤ 𝑏 represents a compound proposition as well as a compound event. 

We may define  

T(𝑎 ≤ 𝑥 ≤ 𝑏) = P(𝑎 ≤ 𝑥 ≤ 𝑏) = F(𝑏) − F(𝑎). 

If A = (−∞, 𝑥) then T(A) = P(A) = F(𝑥) 

Thus it is possible to compute the truth value of propositions from the C.D.F., F(𝑥).  If X is a discrete variable, 

then T(X = 𝑥) = P(X = 𝑥) = F(𝑥) − F(𝑥 − 1). 

8 |Conditional Statements Involving Linguistic Clusters  

In a frequency distribution of a data set on the variables X, the usual class-width is uniform. But considering 

the heterogeneous nature of the data set, it is desirable to use clusters defined by linguistic terms such as Low, 

Medium, High, etc. Since the class limits of clusters have a vague nature, the principle of 

uncertainty/indeterminacy can be applied by making the class limits depend on 𝜇1 1 − 𝜇1⁄ , etc.  Thus a cluster 

is defined as an interval with vague endpoints depending on the coefficients of uncertainty or a set of points 

whose infimum/supremum depends on coefficients of uncertainty.  The clusters stated above can be denoted 

by L(𝑥1),M (𝑥2), H (𝑥3) etc where 𝑥1, 𝑥2, 𝑥3 denote representative values in the clusters.  The union of domains 

of these clusters will be the domain of X.  If 𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑚 denote frequencies of these clusters (which may 

depend on coefficients of uncertainty), then we may write X = {
𝑓1

𝑥1
,
𝑓2

𝑥2
, … ,

𝑓𝑚

𝑥𝑚
} as a short notation of the 

distribution [2, 8]. 

If N = Σ𝑓𝑖 and 𝑓(𝑥𝑖) =
𝑓𝑖

N
 or M = max{𝑓1, 𝑓2, … , 𝑓𝑚} and 𝜇(𝑥𝑖) =

𝑓𝑖

M
 then we may rewrite  

X = N{
𝑓(𝑥1)

𝑥1
,
𝑓(𝑥2)

𝑥2
, … ,

𝑓(𝑥𝑚)

𝑥𝑚
} 

or 

X = M{
𝜇(𝑥1)

𝑥1
,
𝜇(𝑥2)

𝑥2
, … ,

𝜇(𝑥𝑚)

𝑥𝑚
} 

Similarly, the bivariate frequency distribution of two random variables X, Y may be expressed in the form  

(X, Y) = {
𝑓𝑖𝑗

(𝑥𝑖,𝑦𝑗)
𝑖 = 1 to 𝑚;  𝑗 = 1 to 𝑛⁄ } 

By defining N0 = ΣΣ𝑓𝑖𝑗 and 𝑓𝑖𝑗 = N0𝑓(𝑥𝑖 , 𝑦𝑗), we may redefine  

(X, Y) = {
𝑓(𝑥𝑖 , 𝑦𝑗)

(𝑥𝑖, 𝑦𝑗)
𝑖 = 1 to 𝑚,⁄ 𝑗 = 1 to 𝑚}  
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as the bivariate truth value/probability distribution. 

The marginal distributions are 𝑓𝑥(𝑥) = ∑ 𝑓𝑦 (𝑥, 𝑦) and 𝑓𝑦(𝑦) = ∑ 𝑓𝑥 (𝑥, 𝑦) 

The conditional distributions are 

𝑓1(𝑦/𝑥) or R(𝑥, 𝑦) = T(X → Y) =
𝑓(𝑥, 𝑦)

𝑓𝑥(𝑥)
 

and  

𝑓2(𝑥 𝑦)⁄ or S(𝑦, 𝑥) = T(Y → X) =
𝑓(𝑥, 𝑦)

𝑓𝑦(𝑦)
 

Let P(𝑥) = N0(𝑝1, 𝑝2, … , p𝑚 formed by the truth values 𝑓𝑥(𝑥1) = 𝑝1, 𝑓𝑥(𝑥2) = 𝑝2 of clusters of X and Q(𝑦) =

N(𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′ ) formed by the truth values of clusters of Y 

𝑓𝑦(𝑦1) = 𝑝1
′ , 𝑓𝑦(𝑦2) =  𝑝2

′ , … , 𝑓𝑦(𝑦𝑛) = 𝑝𝑛
′ . 

Now we have 

(i) ∑ P(𝑥) ∘𝑥 T(X → Y) = ∑ P(𝑥)𝑥 ∘ R (𝑥, 𝑦) = N0∑ 𝑓𝑥𝑥 (𝑥) ∘ R (𝑥, 𝑦) 

= N0∑𝑓𝑥
𝑥

(𝑥)
𝑓(𝑥, 𝑦)

𝑓𝑥(𝑥)
= N0∑𝑓(𝑥,

𝑥

𝑦) 

= {N0𝑓𝑦(𝑦)} = N0(𝑝1
′ , 𝑝2

′ ,⋯ , 𝑝𝑛
′ ) 

i.e. P∘R  = Q (y) 

(ii) ∑ Q (𝑦) ∘𝑦 P(Y → X) = ∑ Q(𝑦) ∘𝑦 S(𝑦, 𝑥) = ∑ N0𝑦 𝑓𝑦(𝑦) ∘ S(𝑦, 𝑥) 

= N0∑𝑓𝑦(𝑦)

𝑦

∘
𝑓(𝑥, 𝑦)

𝑓𝑦(𝑦)
= N0∑𝑓

𝑦

(𝑥, 𝑦) 

= {N0𝑓𝑥(𝑥)} = N0(𝑝1, 𝑃2, … , 𝑝𝑚) 

i.e. Q ∘ S = P(𝑥)  

Clearly P(𝑥) is 1 × m matrix; Q(𝑦) is 1 × n matrix, R(𝑥, 𝑦) is m × n matrix, and S(𝑦, 𝑥) is n × m matrix.  Also   

Q = P ∘ R = (Q ∘ S) ∘ R = Q ∘ (S ∘ R) does not imply S ∘ R is the identity matrix I𝑛.  Similarly, R ∘ S is not the 

identity matrix I𝑚, since cancellation law is not permissible in a matrix equation.  Hence S ≠ R† and R ≠ S† 

where † denotes generalized inverse.  The conditional propositions ‘if P then Q’ and ‘if Q then P’ are equivalent 

to the equations (ii) Q = P ∘ R and (ii) P = Q ∘ S  respectively.  For single clusters of X, we have P1(𝑥) =

N0(𝑝1, 0, … , 0), P2(𝑥) = N0(0, 𝑝2, … , 0), P3(𝑥) = N0(0,0, 𝑝3, … , 0), etc there being m components for each 

P𝑖(𝑥).  Similarly for single clusters of Y, we have Q1(𝑦) = N0(𝑝1
′ , 0, … , 0), etc there being n components for 

Q𝑗(𝑦) etc of the cluster of Y. Hence the conditional statement 

‘if ‘x’ is P𝑖(𝑥) then ‘y’ is Q𝑗(𝑦)’ is equivalent to Q𝑗(𝑦) = P𝑖(𝑥) ∘ R (𝑥, 𝑦) and can be represented as in the given 

Figure 1. 
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Figure 1. Representation of [′𝑥′ is Pi(𝑥)] → [′𝑦′ is Q𝑗(𝑦)]. 

It may be noted that the endpoints of cluster intervals and cluster frequencies contain the coefficients 

𝜇1 𝜇1⁄ , 𝜇2 𝜇2⁄  etc.  Conditional statements like (i) ‘if speed is medium, then the mileage is moderate’ (ii) ‘if fruit 

is ripe, then the taste is good’ etc. can be treated by the method of this section. 

For the computations of P(𝑥) ∘ R(𝑥, 𝑦), using the approximate methods of max/min operations, different 

users select different operations and different expressions for R(𝑥, 𝑦).  There are at least twelve such 

approximations.  Some of them are known by the names: max-min, min-min, min-max, and max-product, etc 

are found in books on Fuzzy Logic and Applications [5].  However according to the theory of this section, 

the computation is unique. 

9 |Worked Examples  

9.1 |Example 1 

Suppose a frequency distribution has clusters defined by linguistic terms: Low, Medium, and High, denoted 

by L, M, and H respectively such that (i) L contains those values in the interval [0, 20] with truth value 𝜇1 = 1 

and those values in  [20, 35] with truth value   𝜇1 = 𝜇11 ∈ [0, 1],  (ii) M contains those values in [20, 35] with 

truth value  𝜇2 = 𝜇21 ∈ [0, 1] and those values in [35, 45] with truth value 𝜇2 =1 and those values in [45, 60] 

with truth value 𝜇2 = 𝜇22 ∈ [0,1], (iii) H contains those values in [45, 60] with truth value 𝜇3 = 𝜇31 ∈ [0,1] and 

those values in  [60, 100] with truth value 𝜇3 = 1. 

Suppose x is measured from the ‘0’ point to the right at two x-axis at a distance of 1 unit from each other. 

By definition of slope of oblique lines, we have Figure 2. 

 

Figure 2 

 



   Chandramohanan |Plithogenic Log. Comp. 1 (2024) 108-119 

 

991 

𝜇1 = {
1, 𝑥𝜖 [0, 20]

𝜇11 =
35−𝑥

15
, 𝑥 ∈ [20, 35]

or L(𝑥) = [0, 35 − 15 𝜇11] = [0, 20 + 15 𝜇
11

] 

 

𝜇2 =

{
 
 

 
 𝜇21 =

𝑥 − 20

15
, 𝑥 ∈ [20, 35]

1, 𝑥 ∈ [35, 45]

𝜇22 =
60 − 𝑥

15
, 𝑥 ∈ [45, 60]

or M(𝑥)

= [20, 20 + 15 𝜇
11
] ∪ [35, 45] ∪ [45, 45 + 15 𝜇

22
] 

𝜇3 = {
𝜇31 =

𝑥 − 45

15
, 𝑥 ∈ [45,60]

1, 𝑥 ∈ [60, 100]
or H(𝑥) = [45 + 15 𝜇31, 100 

 

If  𝜇21 + 𝜇11 = 1 and 𝜇22 + 𝜇31 = 1 then the Venn diagrams of L, M, and H will not overlap. 

Suppose F20, F35, F45, F60 and F100 denote cumulative frequencies corresponding to the values 𝑥 =

20, 35, 45, 60, and 100 and N1, N2, N3 the cumulative frequencies are to be estimated at 𝑥1, 𝑥2 and 𝑥3.  From 

the figure 2, by considering the areas of the 3 trapezium, we have 

 

𝑁1 = 𝐹20 +
1

2
 (𝐹35 − 𝐹20) =

1

2
 (𝐹20 − 𝐹35) 

𝑁1 +𝑁2 = 𝐹45 +
1

2
 (𝐹60 − 𝐹45) =

1

2
 (𝐹45 − 𝐹60) 

𝑁1 +𝑁2 + 𝑁3 = 𝐹100 

 

Clearly, the cluster frequencies of  L, M, and H can be determined from the last three conditions. It is clear 

that the cluster frequencies of L, M, H and the cluster intervals depend on the coefficients of uncertainty: 

𝜇1, 𝜇2, 𝜇3. 

Clearly N1, N2 − N1 and N3 = N are the cluster frequencies of L, M, H, and (i) the cluster intervals and 

(ii) cluster frequencies depend on the coefficients of uncertainty: 𝜇1, 𝜇2, 𝜇3. 

9.2 |Example 2 

Consider the problem of a certain control system consisting of two cluster inputs: (i) speed difference (ii) 

acceleration and one cluster output: throttle control. 
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All three types of clusters are [5] classified into: NL (negative large), NM (negative medium), NS (negative 

small), ZE (zero), PS (positive small), PM (positive medium), and PL (positive large) as described in Figure 3. 

 

Figure 3 

Suppose the following inference rules are given [5] 

Rule 1. (If speed diff: is NL) and (acceleration is ZE) then (throttle control is PL) 

Rule 2. (If speed diff: is ZE) and (acceleration is NL) then (throttle control is PL) 

Rule 3. (If speed diff: is NM) and (acceleration is ZE) then (throttle control is PM) 

Rule 4. (If speed diff: is ZE) and (acceleration is NM) then (throttle control is PM) 

Rule 5. (If speed diff: is NS) and (acceleration is PS) then (throttle control is PS) 

Rule 6. (If speed diff: is ZE) and (acceleration is NS) then (throttle control is PS) 

Rule 7. (If speed diff: is PS) and (acceleration is NS) then (throttle control is NS) 

Rule 8. (If speed diff: is PL) and (acceleration is ZE) then (throttle control is NL) 

It is required to compute the output (throttle control) value when the speed difference = 102 and acceleration 

= 72 are the inputs. 

Let x be the distances measured horizontally from the vertical line at the ‘0’ point and 𝜇1, 𝜇2, … , 𝜇7 the 

coefficients of indeterminacy corresponding to the linguistic clusters NL, NM, NS, ZE, PS, PM, and PL. By 

using the formula for the slope of oblique lines 

𝜇1 = {
1, 𝑥 ∈ [0, 32]

62 − 𝑥

30
, 𝑥 ∈ [32,62]

𝜇2 = {

𝑥 − 32

30
, 𝑥 ∈ [32,62]

92 − 𝑥

30
, 𝑥 ∈ [62, 92]

𝜇3 = {

𝑥 − 62

30
, 𝑥 ∈ [62,92]

122 − 𝑥

30
, 𝑥 ∈ [92, 122]

 

𝜇4 = {

𝑥 − 92

30
, 𝑥 ∈ [92, 122]

152 − 𝑥

30
, 𝑥 ∈ [122, 152]

𝜇5 = {

𝑥 − 122

30
, 𝑥 ∈ [122, 152]

182 − 𝑥

30
, 𝑥 ∈ [152, 182]

𝜇6

= {

𝑥 − 152

30
, 𝑥 ∈ [152,182]

212 − 𝑥

30
, 𝑥 ∈ [182, 212]

𝜇7 = {

𝑥 − 182

30
, 𝑥 ∈ [182, 212]

1, 𝑥 ∈ [212, 250]
 

 

For the speed difference = 102 and acceleration = 72, the details of the computation of estimated output (= 

172) are given in Table 3. 
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Table 3 

Speed Difference (102) 𝛍𝐍𝐒 = 𝛍𝟑(𝟏𝟎𝟐) =
𝟐

𝟑
 𝛍𝐙𝐄 = 𝛍𝟒(𝟏𝟎𝟐) =

𝟏

𝟑
 

Remaining 𝛍′𝐬 =

𝟎 

Acceleration (72) μNM = μ2(72) =
2

3
 μNS = μ3(72) =

1

3
 Remaining μ′s = 0 

 

Next the truth values of combined inputs according to the given rules of inference are computed, by using 

the product rule of truth values (Table 4): 

Alternatively, we can dispose of the inference rules 1 to 8, by using a frequency distribution of observed 

outputs, corresponding to a bivariate cluster containing (102, 72). The required consecutive pair of output 

clusters can be located by computing the average of the observed outputs. The simple average of the central 

coordinates of this pair will give the point estimate of the output. 

Table 4 

Rule 

Truth Value of 

Combined 

Inputs 

Computed Value Output Cluster 
Central 

Coordinate 

Estimated 

Weight 

Weighted 

Average 

(output) 

(1) (2) (3) (4) (5) (6) (7) 

1 𝜇NL 𝜇ZE 0 -    

2 𝜇ZE𝜇NL  0 -    

3 𝜇NM 𝜇ZE 0 -    

4 𝜇ZE 𝜇NM 
2

9
 PM 182  

182 ×
2

3
+ 152

×
1

3
= 172 

5 𝜇NS 𝜇PS 0 -    

6 𝜇ZE 𝜇NS 
1

9
 PS 152   

7 𝜇PS 𝜇NS 0 -    

8 𝜇PL 𝜇ZE 0 -    

 

9.3 |Example 3 

Let 𝑓(𝑥, 𝑦) =
1

72
(2𝑥 + 3𝑦); 𝑥 = 0, 1, 2 and 𝑦 = 1, 2, 3.  The joint probability distribution can be exhibited as a 

(Table 5): 

Table 5. The joint probability distribution. 

Y/ X 1 2 3 𝑓𝑥(𝑥) 

0 
1

24
 

1

12
 

1

8
 

1

4
 

1 
5

72
 

1

9
 

11

72
 

1

3
 

2 
7

72
 

5

36
 

13

72
 

5

12
 

𝑓𝑦(𝑦) 
5

24
 

1

3
 

11

24
 1 

 

P(𝑥) = N0(𝑝1, 𝑝2, 𝑝3) = N0 (
1

4
,
1

3
,
5

12
) 

Q(𝑦) = N0 (
5

24
,
1

3
,
11

24
) 

where N0 is the total frequency of the bivariate frequency distribution. 
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T (X → Y) = R(𝑥, 𝑦) =

𝑓(𝑥,𝑦)

𝑓𝑥(𝑥)
= 𝑓1(Y X = 𝑥)⁄  is exhibited in Table 6. 

Table 6 

Y 

𝑓1(𝑦 𝑥⁄ ) 
1 2 3 Total 

𝑓1(𝑦 𝑥⁄ = 0) 
1

6
 

1

3
 

1

2
 1 

𝑓1(𝑦 𝑥 = 1⁄ ) 
5

24
 

1

3
 

11

24
 1 

𝑓1(𝑦 𝑥 = 2⁄ ) 
7

30
 

1

3
 

13

30
 1 

 

T(Y → X) = S(𝑦, 𝑥) =  
𝑓(𝑥,𝑦)

𝑓𝑦(𝑦)
= 𝑓2(X/Y = 𝑦) is similarly found to be (Table 7): 

Table 7 
X 

𝑓2(𝑥 𝑦⁄ ) 
0 1 2 Total 

𝑓2(𝑥 𝑦 = 1⁄ ) 
1

5
 

1

3
 

7

15
 1 

𝑓2(𝑥 𝑦⁄ = 2) 
1

4
 

1

3
 

5

12
 1 

𝑓2(𝑥 𝑦⁄ = 3) 
3

11
 

1

3
 

13

33
 1 

 

T(Y)0T(Y → X) = 𝑓𝑦(Y)0 S(𝑦, 𝑥) = [
5

24

1

3

1

24
]
0

[
 
 
 
 
 
1

5

1

3

7

15
1

4

1

3

5

12
3

11

1

3

13

33]
 
 
 
 
 

 

= [
1

4

1

3

5

12
] = [𝑓𝑥(𝑥)] = T(X) 

 

Similarly, it is shown that 

T(X)0T(X → Y) = T(Y) 

These are equivalent to the statements 

Q(𝑦)0 S(𝑦, 𝑥) = P(𝑥) and P(𝑥)0R(𝑥, 𝑦) = Q(𝑦) 

Since P(𝑥) = N0(𝑝1, 𝑝2, 𝑝3) and Q(𝑦) = N0(𝑝1
′ , 𝑝2

′ , 𝑝3
′ ) 

Now let us approximate P(𝑥) by P𝑥
′ = N0 (

1

6
,
1

3
,
1

2
), say 

then Q(𝑦) will be approximated by Q′(𝑦) = P0
′R 

i.e. Q′(𝑦) = N0 (
1

6
,
1

3
,
1

2
)

[
 
 
 
 
1

6

1

3

1

2
5

24

1

3

11

24
7

30

1

3

13

30]
 
 
 
 

= N0 (
77

360
,
1

3
,
163

360
) 

i.e. If N0 (
1

6
,
1

3
,
1

2
) is P𝑥

′ , then N0 (
77

360
,
1

3
,
163

360
) is Q′(𝑦) which is of the form: 

If 𝑥 is P′ then y is Q′. 
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10 |Conclusion 

The max/min operations for disjunction/conjunction of lattice theory or Fuzzy theories lead to the violation 

of LOC and LOEM; this violation does not arise according to the new interpretations of Sections 3 to 5. 
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