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1 |Introduction 

Since its birth, the theory of multi-attribute group decision-making has been a research hotspot in academia. 

With the development of society and economy, the complexity, uncertainty, and ambiguity of human thinking 

are increasing. In the actual decision-making process, decision information is often expressed as fuzzy 

information. In 1965 Zadeh [1] put forward the concept of fuzzy set (FS). Fuzzy Set represents the uncertainty 

of decision information by membership degree, which refers to the degree that which something belongs to 

a certain judgment. However, in the process of cognition, people tend to hesitate to different degrees or show 

a certain degree of lack of knowledge, so the cognitive results are shown as positive, negative, or intermediate 

between positive and negative hesitation. Therefore, in 1986, Atanassov [2, 3] extended the theory of fuzzy 

sets and proposed the concept of intuitionistic fuzzy sets (IFS). IFS considers both membership and non-

membership information at the same time, so it provides more choices in the description of the attributes 

  Plithogenic Logic and Computation   

  Journal Homepage: sciencesforce.com/plc  

             Plithogenic Log. Comp. Vol. 1 (2024) 73–92 

Paper Type: Original Article 

A VIKOR Method Based on the Relative Closeness on Interval 

Linguistic Neutrosophic Uncertain Linguistic Numbers 
 

Shanshan Zhai 1  and Qianwen Sun 1,*  

 

1  Shijiazhuang Posts and Telecommunications Technical College, Shijiazhuang 050022, China. Emails: 984468091@qq.com; 

1332461409@qq.com. 

 

Received: 07 Dec 2023           Revised: 23 Mar 2024           Accepted: 26 Apr 2024            Published: 29 Apr 2024 
 

In actual multi-attribute group decision-making problems, due to the complexity and uncertainty of objective 

things and the ambiguity of human thinking, decision-makers find it hard to give accurate evaluation information 

by crisp numbers. Even the weights of attribute values and decision-makers are ambiguous. At this time, we are 

more inclined to adopt the intuitive form of linguistic variables such as "excellent", "good" or "bad" to describe 

attribute values and weights. So in this paper, based on a neutrosophic set (NS), we further propose interval 

linguistic neutrosophic uncertain linguistic number (ILNULN). ILNULN combines interval linguistic 

neutrosophic and uncertain linguistic numbers, and it has the advantages of both. At the same time, due to the 

weighted arithmetic Bonferroni mean operator considering the interrelationship between aggregation parameters, 

therefore we combine the ILNULN and weighted arithmetic Bonferroni mean operator to propose the interval 

linguistic neutrosophic uncertain linguistic weighted arithmetic Bonferroni mean (ILNULWABM) operator. 

Finally, under the environment of interval linguistic neutrosophic and uncertain linguistic numbers, this article uses 

the linguistic weights and ILNULWABM operator to make VIKOR decision based on the relative closeness, and 

gives a practical example. 

 

Keywords: Multi-Attribute Group Decision-Making, Interval Linguistic Neutrosophic Uncertain Linguistic Number, Weighted 
Arithmetic Bonferroni Mean Operator, VIKOR. 

 

Abstract 

https://doi.org/10.61356/j.plc.2024.1238
https://sciencesforce.com/index.php/plc
https://sciencesforce.com/index.php/plc
https://orcid.org/0000-0002-3770-7048
https://orcid.org/0009-0000-1544-8279
https://sciencesforce.com/
https://sciencesforce.com/index.php/plc


A VIKOR Method Based on the Relative Closeness on Interval Linguistic Neutrosophic ... 

 

47

 

  
and has a stronger performance in dealing with uncertain information. In addition, in some practical situations, 

the membership, non-membership, and hesitation of elements may not be specific values, so IFS extended 

to interval-value intuitionistic fuzzy set (IVIFS) by Atanassov and Gargov [4]. Although the FS theory has 

been widely developed and popularized, it still can not handle all types of uncertain problems in real life, such 

as uncertain information and inconsistent information. To this end, Smarandache [5] proposed the concept 

of a neutrosophic set (NS). NS includes membership degree 
 T x

, uncertainty degree 
 I x

 , and non-

membership degree 
 F x

 of elements. Wang and Zhang [6] further proposed the concept of an interval 

neutrosophic set (INS), where the representation of the 
 T x

, 
 I x

  and 
 F x

 extended from a single value 

to an interval number. Later Wang and Smarandache et al. [7] proposed the single-valued neutrosophic set 

(SVNS) theory. In addition, Ye [8] combined the uncertain linguistic set with INS to define the interval 

neutrosophic uncertain linguistic set (INULS), and he also defined the score function, accuracy function, and 

operational laws of INULS. The first part of the interval neutrosophic uncertain linguistic variable represents 

the subjective evaluation value of the thing being evaluated, and the second part indicates membership degree, 

uncertainty degree, and non-membership degree. In 2017, Ye and Fang [9] proposed the concept of linguistic 

neutrosophic number (LNN), which was characterized independently by the truth, indeterminacy, and falsity 

of linguistic variables. 

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [10] is a method of multi-attribute 

decision-making based on the ideal point proposed by Opricuvic in 1998. This method gives the ranking 

index with the ideal closest to the ideal solution, which maximizes the group utility and minimizes individual 

regret when selecting a solution. At present, many scholars have studied the VIKOR method and its 

application. Bayakzkan and Ruan [11] extended the VIKOR method to the fuzzy environment to solve the 

software evaluation problem. Sayadi et al. [12] discussed the VIKOR method with the attribute values as 

interval numbers and the weights as real numbers. Sanayei et al. [13] researched the VIKOR method using 

fuzzy sets and linguistic values, and they applied it to supplier selection problems. In 2011, Park et al. [14] 

considered the VIKOR method with attribute values of intuitionistic interval fuzzy numbers and weights of 

real numbers. Zhang and Wei [15] extended the VIKOR method to the hesitating fuzzy set. Due to the 

traditional VIKOR method only considering the closeness between the alternatives and the positive ideal 

solution, Liu [16] proposed the VIKOR method based on the relative closeness coefficient. This method 

takes the closeness coefficient between alternatives and positive ideal solution as well as the closeness 

coefficient between alternatives and negative ideal solution into account.  

Information integration is a common activity in our daily life. The Bonferroni mean (BM) operator is one of 

the aggregation methods proposed by Bonferroni [17]. BM operator has a desirable characteristic that it can 

capture the interrelationship of input arguments. Then Yager [18] further extended the BM operator and 

proposed some more efficient integration operators. Xu and Yager [19] introduced a new BM operator to 

solve the multi-attribute decision-making (MADM) problems under fuzzy conditions. To solve the 

reducibility of the weighted BM operator, Xia et al. [20] proposed a modified generalized weighted BM 

operator and applied it to the intuitionistic fuzzy environment. Since the arithmetic average only considers 

group decisions and ignores individual decisions, Zhou et al. [21] proposed the standardized weighted BM 

operator and fully considered the correlation between attribute values. Later the BM operator extended to a 

neutrosophic environment. Wei et al. [22] developed an uncertain linguistic Bonferroni mean (ULBM) 

operator and an uncertain linguistic geometric Bonferroni mean (ULGBM) operator to aggregate the 

uncertain linguistic information. Liu [23] and Wang introduced a single-valued neutrosophic normalized 

weighted Bonferroni mean (SVNNWBM) operator. Wang et al. [24] developed a simplified neutrosophic 

linguistic Bonferroni mean (SNLBM) operator and a simplified neutrosophic linguistic normalized weighted 

Bonferroni mean (SNLNWBM) operator.  

Although the combination of the neutrosophic set and the linguistic set has been further developed, there are 

few studies on the combination of the interval linguistic neutrosophic and uncertain linguistic number. 
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Therefore, this paper proposes the concept of interval linguistic neutrosophic uncertain linguistic number, 

combining the WABM operator and linguistic weights to make the VIKOR decision. 

2 |Preliminaries 

This section is the theoretical foundation of this thesis. Some basic concepts about FS, ILNULS, BM 

operator, and VIKOR are reviewed to provide mathematical support and theoretical guarantee for the 

following research. 

Definition 1 [25]: Let 
[ , ] { }  L U L Ua a a x a x a

, then a is an interval fuzzy number. When 0  L Ua a , a  
is a positive interval fuzzy number.  

Definition 2 [26]: Let 
{ 0,1,2,... 1}  iS s i t

, then S is a linguistic set (LS) and t  is an odd number. S 

satisfies the following conditions: 

(1) If i j , than 
i js s

 

(2) There is the inverse operator ,（ )i jreg s s  and -1i j t   

(3) If i js s , then  max ,i j is s s  

(4) If i js s , then  min ,i j is s s  

Definition 3 [26]: If a linguistic variable [ , ]s s s  , s linguistic set S and  0 1 ， ，t  , then s is an 

uncertain linguistic variable (ULV). ,s s  are the upper and lower limits respectively. 

Definition 4 [26]: For any three uncertain linguistic variables [ , ]s s s  , 
1 11

[ , ]s s s
   and 

2 22
[ , ]s s s

  , then 

the algorithms for uncertain linguistic variables are as follows: 

(1) 
1 1 2 2 1 2 1 21 2 [ , ] [ , ] [ , ]s s s s s s s s             

(2) 
1 1 2 2 1 2 1 21 2 [ , ] [ , ] [ , ]s s s s s s s s            

(3) [ , ] [( ) ,( ) ]=[ , ] ( 0)  s s s s s s s 

   

     
  

(4) [ , ] [ , ]=[ , ] ( 0)  s s s s s s s
     

      

Definition 5 [26]: For any three uncertain linguistic variables [ , ]s s s
  , 

1 11
[ , ]s s s

   and 
2 22

[ , ]s s s
  , then 

the operational properties are as follows: 

(1) 
1 2 2 1
  s s s s  

(2) 
1 2 2 1
  s s s s  

(3)  1 2 1 2
  s s s s    

(4)  1 2 1 2
 s s s     

(5)  1 2 1 2
  s s s s

   

(6) 
1 2 1 2 s s s   
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Definition 6 [27]: Let ,s s   

linguistic set S and   = ,s s
 

 , if + -1t   , then we call   the linguistic 

intuitionistic fuzzy number (LIFN) defined on S. If , s s S  , then we call   the original linguistic 

intuitionistic fuzzy number; otherwise, we call   the virtual linguistic intuitionistic fuzzy number. 

Definition 7 [27]: For any three linguistic intuitionistic fuzzy numbers  = ,s s
 

 ,  
1 11

= ,s s
 

  and 

 
2 22

= ,s s
 

 , the following operations of linguistic intuitionistic fuzzy numbers have been defined: 

(1) 
1 1 2 2 1 2 1 2 1 21 2 -, , ,s s s s s s           

               

(2) 
1 1 2 2 1 2 1 2 1 21 2 + -, , ,s s s s s s                          

(3)    
 

 
1- 1-

, , = , 0             
s s s s s s 

 

     
   

(4) 
 

 
1- 1-

, , = , 0s s s s s s     
                

 

Definition 8 [5]: Let X be a set of objects and x  be the element in X . The neutrosophic set (NS) A  in X  

consists of 
 AT x

- membership degree,
 AI x

- uncertainty degree, and
 AF x

- non-membership degree, and it 

is defined as 
      ,, , 

A A A
A x T x I x F xx X

. 
 AT x

, 
 AI x

 and 
 AF x

 are non-standard subsets in 

]0 [,1 

, i.e.
  ]: 0 ,1 [AT x X  

,
  ]: 0 ,1 [AI x X  

, and 
  ]: 0 ,1 [AF x X  

. Due to the sum of 
 AT x

, 
 AI x

 

and 
 AF x

 is unlimited, so 
     0 3A A AT x I x F x   

. 

Definition 9 [7]: Let X be a set of objects and x  be the element in X . When 
 AT x

, 
 AI x

 and
 AF x

 

respectively degenerate to an exact number, then A  is a single neutrosophic set (SVNS). 

Definition 10 [6]: Let X be a set of objects and x be the element in X . The neutrosophic set A  X  consists 

of 
 AT x

a membership degree,
 AI x

-an uncertainty degree, and 
 AF x

a non-membership degree. When 

 AT x
, 

 AI x
 and 

 AF x
belong to a closed interval [0,1], i.e.    [ ]: 0,1AT x X ,   [ ]: 0,1AI x X , and 

  [ ]: 0,1AF x X , then A  is an interval neutrosophic set (INS) which can be expressed as follows: 

  , ( ) ( ) , ( ) ( ) , ( ) ., , ,          
L U L U L U

A A A A A A
A x T x T x I x I x F x F x x X Similarly, the sum of  AT x ,  AI x  and  AF x  

satisfies:      0 3U U U

A A AT x I x F x     . 

Definition 11 [28]: Let U  be a space of objects. S  is a linguistic set where  0,1,... 1  iS s i t  and t  is odd. 

Then an interval neutrosophic linguistic set (INLS) A  X  can be defined as :

               , ,, , , , .,L U L U L U

A A A A A Ax
A x s T x T x I x I x F x F x x X


           

 The membership degree, uncertainty degree and non-membership degree of x  in X  to the linguistic term 

 x
s


 satisfies:      0,1 ,,   
L U

A A
T x T x      , 0,1  

L U

A A
I x I x ,

 
and      , 0,1  

L U

A A
F x F x . 

Besides, the interval neutrosophic linguistic number (INLN), which is an element of A , can be expressed as 

(x)
, ([ ( ) ( )],[ ( ) ( )],[ ( ) ( )], , , )L U L U L U

A A A A A A
s T x T x I x I x F x F x


. 

Definition 12 [29]: An interval neutrosophic uncertain linguistic set A on X  can be defined as 

                 , , , ,, , ,,L U L U L U

A A A A A Ax x
A x s s T x T x I x I x F x F x x X

 
            

 ， where  x
s
 and  x

s


S ,
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     0 1, ,   
L U

A AT x T x ,      0 1, ,   
L U

A AI x I x  and      0 1, ,   
L U

A AF x F x  with the condition 

     0 3U U U

A A AT x I x F x  
 
for any x X . The function  AT x ,  AI x  and  AF x

 
represent the 

membership degree, uncertainty degree, and non-membership degree respectively with interval values of the 

element x  in X  to the uncertain linguistic variable 
   

, 
 x x
s s
 

. 

Definition 13 [29]: For any three-interval neutrosophic uncertain linguistic variables 

                , , , ,, , ,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              ，

                
1 11 1 1 1 1 1 1

, , ,, , ,,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              ，

                
2 2 2 2 2 2 22 2

, , ,, ,L U L U L U

A A A A A Aa a
a s s T a a a a a aT I I F F

 
           ， ，  and 0   , then  the operational laws for 

interval neutrosophic uncertain linguistic variables are as follows:  

(1)                            

            
1 2 1 21 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

, ,

,

L L L L U U U U L L

A A A A A A A A A Aa a a a

U U L L U U

A A A A A A

a a s s T a T a T a T a T a T a T a T a I a I a

I a I a F a F a F a F a

   


 
         

   ，

， ， ，
 

(2)                            

                    
1 2 1 21 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

, , ,

.

,

, -

L L U U L L L L U U

A A A A A A A A A Aa a a a

U U L L L L U U U U

A A A A A A A A A A

a a s s T a T a T a T a I a I a I a I a I a I a

I a I a F a F a F a F a F a F a F a F a

   
        





 

  

   

，

，
 

(3) 
                      ,, 1 1 1 1 ,, ,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

     

 
 

                 
， ，  

(4) 
   

                  , ,1 1 ,, , , 1 1 1 1 1 1L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a 

     


 

            
     




，  

Definition 14 [29]: For any three-interval neutrosophic uncertain linguistic variables 

                , , , ,, , ,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              ，

                
1 11 1 1 1 1 1 1

, , ,, , ,,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              ，

                
2 2 2 2 2 2 22 2

, , ,, , , ,             
L U L U L U

A A A A A Aa a
a s s T T I Ia a a a a aF F

 
 and 0   , then  the operational properties for 

interval neutrosophic uncertain linguistic variables are as follows: 

(1) 
1 2 2 1

a a a a   

(2) 
1 2 2 1

=a a a a   

(3) 
1 2 1 2

=a a a a   （ ）  

(4) 
21 21

= +a a a   （ ）  

(5) 
1 2 21

=(a a a a    )  

(6) 
1 2 1 2( )=a a a     

 

Definition 15 [8]: For any two interval neutrosophic uncertain linguistic variables 

                
1 11 1 1 1 1 1 1

, , ,, , , ,              ，L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 

 

                
2 22 2 2 2 2 2 2

, , ,, , ,,L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

 
              be any two interval neutrosophic uncertain linguistic 

variables, then the Hamming distance between 1a  and  2a  can be defined as: 
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 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

1
( , ) +

12(t 1)

+) ( ) ( ) (

L L U U L L U U

A A A A A A A A

L L U U L L
A A A A A A

T T T T I I Id a a a a a a a a a a a a a a a a a a

a a a a a a

I

F a a a a a aF F F aT T

       

      

   



  






 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )


1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

U U
A A

L L U U L L U U

A A A A A A A A

T Ta a a

a a a a a a a a a a a aI I I I F aF F Fa a a



       



    





( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

 

 
Definition 16 [30]: For an interval neutrosophic uncertain linguistic variable 

     , ,[ , ], ( ) ( ) , ( ) ( ) , ,( ) ( )           
L U L U L U

A A A A A Aa a
a s s T a T a I a I a F a F a

  , then the score function of a  can be expressed by 

the equation below:   ( ) (
1

( ) 4+ + .
12

) L L L U U U

A A A A A A
S a a a a a a a a aT I F T I F   ( ) - ( ) - ( ) ( ) - ( ) - ( )   

Definition 17 [31]: Assume that
 0,1,2,... 1  

i
S s i t

, then S  is a linguistic set (LS) and t  is an odd number.  

If 
, ,

T I F
a s s s

is defined for , ,
T I F

s s s S  and , , [0, 1]T I F t  , where T
s , I

s  and F
s  expresses independently 

the membership degree, uncertainty degree, and non-membership degree by linguistic numbers, then a  is called 

a LNN. 

Definition 18 [17]:  Let p , 0q and  1,2,...ia i n  be a collection of nonnegative real numbers. If  

 

1

n
,

1 2

i=1 1

1
, ,...

( 1)






 
 
 
 

 ，

p q
n

p q p q

n i j

j
i j

BM a a a a a
n n

 

then ,p qBM  is called the Bonferroni mean (BM) operator. 

Definition 19 [32]: Let  , 1,2,...
i iis s s i n 

   ， be a set of uncertain linguistic numbers and p, q ≥ 0.   

 1 2
, ,...

T

n
     is the weight vector of s ,  0,1i   and 

1

1



n

i
i

 . If 

 
 

   
 

   
 

   

1 1 1

,

1 2

1 1 1 1 1 1

1 1 1
, ,... ,

-1 -1 -1i j i j

p q p q p q
n n n n n nq qp pqpp q

n i i j j i j i j

i j i j i j
i j i j i j

IULWABM s s s s s s s s s
n n n n n n

    
     

  

     
  

 
      
        
     

      
 

   ，

Then ,p qIULWABM
  is called the intuitionistic uncertain linguistic weighted arithmetic Bonferroni mean 

operator. 

Definition 20 [10]: VIKOR is a method of multi-attribute decision-making based on the ideal point proposed 

by Opricuvic in 1998. It is regarded as a pragmatic approach to searching for a compromise solution appearing 

in a set that includes conflicting criteria. The multi-criterion measurement of compromise order is developed 

from the P
L

 measure and it is an aggregate function of distance functions. 1
L

 is the sum of all individual 

regrets, and 
L

 is the maximum of individual regrets. The assembly function of the VIKOR method is as 

follows: 

 
 

1

,
1

,1 , 1,2,...



 


    
      

    



p p

n j
ij ij

p j
j

ij ij

p j n
f f

L
f f



 

Where  1,2,...
j

j n   is the relevant weight of the criteria, Pj
L  represents the distance of each scheme from 

the positive ideal solution, =max


ij ij
j

f f  represents the positive ideal solution, and = min


ij ij
j

f f  represents the 

negative ideal solution. Therefore, the main advantage of this method is that it produces a solution by maximizing 

group utility and minimizing the opponent's individual regret. 
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2.1 |Calculation Steps of VIKOR Method 

 1 2
= , ,...

m
A A A A is a set of alternatives;  1 2

= , ,...
n

C C C C
 
represent n criteria; and 1 2

=( , ,... )T

n
    denotes a 

weight vector of criteria with 
j

  1,  2, , ) 0 (  j n  and  
1

1.



n

j
j

 The evaluation value of 
i

A  on attribute 
j

C
 

is represented by the decision matrix  



ij m n

Y y
 

Step 1: Normalize the decision matrix  



ij m n

Y y
 

Step 2: Calculate the positive ideal alternative 

j
y  and the negative ideal alternative -

j
y  by score function 

    

    -

= max max

= min min





= ，j ij ij

j ij ij

y y S y

y y S y  

Step 3: Compute the group utility values i
S

 and the individual regret values 
  1,  2, ,( ) 

i
i mR

. 

 
 

 
 1

max

 

   


 
 

 
 ，

n
ij ij ij ij

i j i j
j

j ij ij ij ij

d y y d y y
S R

d y y d y y
 

 

Step 4: Calculate the values 
i

Q
 

 1
 

   

 
  

 

i i

i

S S R R
Q

S S R R
 

 

Where max 
i

i
S S , =min

i
i

S S , max 
i

i
R R , =min

i
i

R R  and ɛ represents the weight of the strategy of “the 

majority of criteria”. In the comprehensive evaluation, the value of ɛ is determined according to the subjective 

tendency of the decision-maker. If the decision-maker pays more attention to group benefits, then ɛ > 0.5; if 

the decision-maker is focused more on individual regret minimization, then ɛ < 0.5; otherwise if the decision-

maker pursues both the group benefit and the individual regret value minimum, then ɛ = 0.5. 

Step 5: Sort the 
i

Q in ascending order 

Step 6: Test the compromise solution 

Condition 1: Acceptable advantage:    12 1
-

-1
Q A Q A

m
, where 2A  ranks second in the ordered list by Q ; 

Condition 2: Acceptable stability in the process of decision making 

1A must be the best sorted by S  or/and R . This compromise solution holds steady during the whole 

decision-making process. 

A set of compromise solutions is obtained if it does not satisfy one of the following conditions: 

(1) 1A  and 2A
 
are compromise solutions if only condition 2 is not satisfied; or 

(2) 
1 2, ,... MA A A  are compromise solutions if condition 1 is not satisfied; and 

MA  is decided by the 

constraint    1
1

-
1




MQ A Q A
m

for maximum M. 

Definition 21 [16]: Liu thought that the traditional VIKOR method was not reasonable to consider only the 

closeness of the scheme to the positive ideal solution. So she proposed the VIKOR method based on the 

relative closeness coefficient. This method takes the closeness coefficient between alternatives and positive 
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ideal solution as well as the closeness coefficient between alternatives and negative ideal solution into account 

and aims to obtain a relative optimal compromise solution through relative group utility and relative individual 

regret. 

Different from the traditional VIKOR method, she computed the utility values 
i

S
 
and the regret values 

  1,  2, ,( ) 
i

i mR  by following formulations: 

   
 1

 

 


  
 




n
j ij j ij

i j

j j j

d y y d y y
S

d y y


 

   
 

max

 

 

  
 



j ij j ij

i j
j

j j

d y y d y y
R

d y y


 

Obviously, the bigger the 
i

S
 
and 

i
R , the bigger the  

i
Q , and the better alternative i . 

3 |Interval Linguistic Neutrosophic Uncertain Linguistic Number 

and Interval Linguistic Neutrosophic Uncertain Linguistic 

Weighted Arithmetic Bonferroni Mean Operator 

Definition 22: An interval linguistic neutrosophic uncertain linguistic set A  in X can be defined as 

                , , ,, , , , ,              L U L U L U
A A A A A AT x T x I x I x F x Fx xx

A s s s s s s s s
  Where s S . The function 

       
,, ,   

   L U L U
A A A AT x T x I x I x

s s s s
 
and 

   
, 

 L U
A AF x F x

s s
 
are interval linguistic numbers and represent the membership 

degree, uncertainty degree, and non-membership degree respectively with interval values of the element x  in 

X  to the uncertain linguistic number  
   

, 
 x x
s s
 

. 

Definition 23: For any three interval linguistic neutrosophic uncertain linguistic numbers 

                , ,, , ,, , ,L U L U L U
A A A A A AT T Ia a a a a aI F a F a

a s s s s s s s s
 

                               1 1 1 1 1 1 1 1
1

, ,, , , ,, ,              L U L U L U
A A A A A AT T I I Fa a a a aFa a a

a s s s s s s s s
 

                2 2 2 2 2 2 2 2
2

, , , ,, , ,              L U L U L U
A A A A A AT T I Ia a a a a aFa aF

a s s s s s s s s
 

 
and 0 , then  the operational laws for interval 

linguistic neutrosophic uncertain linguistic numbers are as follows: 

(1) 

 



1 2 1 2 1 2 2 2 2 2 21 1 1 1 1

2 21 1

1 2 ( ) ( ) ( , ,+ - + -(

,

) )
, , , ,s

L L L L U U U U L L U U
A A A A A A A A A A A A

L L U U
A A A A

T a T a T a T a T a T a T a T a I a I a I a I a

F a F a F

a a a

F

a

a a

a a s s s s s

s s

   


 

             

 
  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) () )

( ) ( ) ( ) ( )

 

(2) 
 

1 2 2 2 2 2 21 1 1 1 1

2 2 21 1 1 1

1 2 1 2 , ,- -

,- -

1 2 ( ) ( ) ( ) ( ), , , ,L L U U L L L L U U U U
A A A A A A A A A A A A

L L L L U U U U
A A A A A A A A

a a T a T a T a T a I a I a I a I a I a I a I a I a

F a F a F a F a F a F a F a F

a a s sa a s s s

s s

s   
             ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ( ) + ( ) ( ) ( )

( ) + ( ) ( ) ( ) ( ) + ( ) ( ) ( 
2a

 
  )

 

(3)         1 (1 ( )) 1 (1 ( )) , ,( ) ( ) ( ))
( ) (

(
)

, , , ,L U L L UUA A A A AA
T Ta a I F FI

a a a a aa

a s s s s s s s s     
 

   

                
，  

(4)  ( ( )) , ( ( )) 1- 1- ( )) 1- 1- ( )) 1- 1- ( )) 1-( ) ( 1- ( )))
, , ,L U L U L U

A A A A A Aa a a a aT T I I F a aFa
a s s s s s s s s       



 

      
       （ ， （ ( （ ， (

，   
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Definition 24: For any three interval linguistic neutrosophic uncertain linguistic numbers 

                , ,, , ,, , ,L U L U L U
A A A A A AT T Ia a a a a aI F a F a

a s s s s s s s s
 

              

                1 1 1 1 1 1 1 1
1

, ,, , , ,, ,              L U L U L U
A A A A A AT T I I Fa a a a aFa a a

a s s s s s s s s
 

 

                2 2 2 2 2 2 2 2
2

, , , ,, , ,              L U L U L U
A A A A A AT T I Ia a a a a aFa aF

a s s s s s s s s
 

and 0 , then  the operational properties for 

interval linguistic neutrosophic uncertain linguistic numbers are as follows: 

(1) 
1 2 2 1 a a a a  

(2) 
1 2 2 1

= a a a a  

(3) 
1 2 1 2

= （ ）a a a a   

(4) 
21 21

= + （ ）a a a    

(5) 
1 2 21

=(  )a a a a    

(6) 1 2 1 2( )= a a a   
 

Definition 25: For any two-interval linguistic neutrosophic uncertain linguistic numbers 

                1 1 1 1 1 1 1 1
1

, ,, , , ,, ,              L U L U L U
A A A A A AT T I I Fa a a a aFa a a

a s s s s s s s s
 

                2 2 2 2 2 2 2 2
2

, ,, , , ,, ,              L U L U L U
A A A A A AT T I I Fa a a a aFa a a

a s s s s s s s s
    the Hamming distance between 

1
a  and 

2
a  can 

be defined as: 

 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

1
( , ) +

12(t 1)

+) ( ) ( ) (

L L U U L L U U

A A A A A A A A

L L U U L L
A A A A A A

T T T T I I Id a a a a a a a a a a a a a a a a a a

a a a a a a

I

F a a a a a aF F F aT T

       

      

   



  






 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )


1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

U U
A A

L L U U L L U U

A A A A A A A A

T Ta a a

a a a a a a a a a a a aI I I I F aF F Fa a a



       



    





( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

 

Definition 26: For an interval linguistic neutrosophic uncertain linguistic number 

                , ,, ,, , ,L U L U L U
A A A A A AT T Ia a a a a a aF aI F

a s s s s s s s s
 

      
       

， then the score function a  can be 

expressed by the equation below: 

  
1

( ) 4+( +
12

) ( )  ( ) - ( ) - ( ) ( ) - ( ) - ( )L L L U U U

A A A A A A
S a a a a aT I F T I Fa a a a 

 

Definition 27: Let , 0p q ,
                , ,,,, ,,      

       L U L U L U
A A A A Ai i i i i i i iAT T Ii a a a a a a a aI F F

a s s s s s s s s
 

be a set of interval 

linguistic neutrosophic uncertain linguistic numbers, and  1 2
= , ,...

T

n
     be the weight vector of 

i
a , 

  1,  20 , ,  ( )
i

j n   and 
1

1



n

i

j

 . Then the aggregated result by interval linguistic neutrosophic 

uncertain linguistic weighted arithmetic Bonferroni mean (ILNULWABM) operator can be expressed as: 
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1 1

1

1

1 1

1

1

1

1 1

1 1 1 1 1

1 1 1 1 1 1 1 1 1

, ,

,

p q p q
n n

P q n n
i i j j

i j
j

U U U U
A i

i

p q
n n

p q n n
i i j j

A i A j A j

L L L L
A i A i A j

j

A

j
i

j

i

I a aI I

F F

I a a

F a a F a a

s

s s

   

   

 



 






 


 
 

           
  
 
 

 
 

               
  
 
 

 
 
 
 
 

 
 

            

1

1

1

1 1

1

p q
n n

P q n n
i

U U U U
A i A i A j A ji j j

i j
j i

F a a FF Fa a   





 


 
 

       
  
 
 

 
 
 
 
 

   
  

 

Proof. 

Since 

           

        

         

, , ,

, ,

, , ,

i i i i i i i i i i i
L U L L U U
A i A i A i A i A i A i

L L U U
A i A i A i A i

L U L L U
A j A j A j A

i i i i

j j j j j A jj j j j j j

T a T a I a I a I a I a

F a F a F a F a

T a T a I a I a I a

i

j

s a s s s s s s

s s

s a s s s s s s

         

   

          

 



 

 

 



 

          

 
 

        

， ，

，
 

       

,

,

U
A j

L L U U
A j A j A j A

j

j j j j j

I a

F a F a F a F a
s s     

 
  

 
   

 

and 

 
                   

         

 
      

1 1 1 1

1 1 1 1

, , , , ,

, ,

, , ,

p p p p p P
L U L L U U
A i A i A i A i A i A i

L L U U
A i A i

i
i i i i i i i i i i

p P

i i i i

q q q

A i

j
j j j

A i

Aj
L

jj

T a T a I a a I a a

a

p

i
I I

F F a a

T a

FaF

q

j

s a s s s s s s

s s

s a s s s

         

   


    

       

       

                

 
 

  

 
   

，

            

         

1 1 1 1

1 1 1 1

, ,

, ,

 

q q q
U L L U U
A j A j A j A j A jj j

L L U U
A j A j A j

j j j

q q

j j j A jj

T a I a a I a a

a a

I I

F F FaF a

s s s

s s

    

   

       

       

    
    
   

 
 

  

 

Then 
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1 1 1 1 1 1

1 1

, , , ,
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LL U U
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A ii i A
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, .
L L L U

p q P q

j j i i j
U U U

i A j A j A i A i A A jjja a a a aF F F F F aFa

s
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1 1 1 1

1 1 1 1

1 1

1 1 1 1 1 1

, ,

, ,

n n n n
i j q qp p

i i j j i i j j

i j i j
j i j i

n n n n
p q p q

i j i j i i

i j i j
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L L U U L
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Finally, we can get 
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Next, some special cases of the ILNULWABM operator concerning the parameters p and q will be 

demonstrated respectively.  
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(1) When p=0 and q=0, then 

 

 
   

           

1 1 1 1

1 1

1 1

1 1 1 1

=1, =0

1 2

1 1
1 1

1 1

1 1 1 1

, ,...

1
, ,

-1

,
L U L

n n n n

i i i i

i j i j
j i j i

n n n n

n n n n
i A i Ai i

i j i j
i j i j

i A i

p q

s n

n n

i i

i j
n n n

T a T a I a

ni j

ILNULWABM s s s

a s s
n n

s s s



   

  



   
 

 

   
 

 
 

    

 
 

   
  

 

  
  
  
   
   



，
    

                    

1

1

1 1

1 1 1

1 1 1

1 1 1 1

+ -

,

,

L
A i

U

n n

n n
i

i j
j i

n n n n

n n n n n n
i i i i i i

i

U

j i

L L U U
A i A i A i A i A i A i

j
j i j i

a

I a a F a a F

I

I F a F a

s s s



     



 


  

   
 



   




 


  
  
  
   
     

，  

(2) When p=1 and q=1, then 
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(3) When p=0.5 and q=0.5, then 
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4 |The VIKOR Method Based on Relative Closeness Coefficient 

under ILNULN and ILNULWABM Operator 

For a group decision-making problem, there is a discrete set of alternatives  1 2
= , ,...,

m
A A A A  and n attributes 

 1 2
= , ,...

n
C C C C , and the attribute weight vector of C is  1 2

= , ,...
T

n
    . There are   decision-makers 

 1 2
= , ,...D D D D


assess this problem and the relative importance vector is  1 2

= , ,...
T

W W W W


. 

For the decision maker kD , the evaluation value of 
i

A  on attribute 
j

C
 
is represented by the decision matrix

 =


k k

ij m n
R r , where

           ( ) ( )
, , ,, , ., ,

       
        


        

k k L k U k L k U k L k U k
ij ij ij ij ij ij ij ijr r T r T r I r I r F r F

k

i rj
s s s s sr s s s
 

 

The steps of the VIKOR method based on the relative closeness coefficient under interval linguistic 

neutrosophic uncertain linguistic numbers and ILNULWABM operators are shown as follows: 

Step 1: Normalize the decision matrix  k


k

ij m n
R r . 

First, the decision-making information k

ij
r

 
in the matrix  k


k

ij m n
R r  must be normalized. The normalized 

matrix F  of the decision matrix can be expressed as: 

 
 

 
k

k k

2
k

1

, 1,2,... ; 1,2,...




   



ijk

ij ij mm n

ij

i

r
F f f i m j n

r

 
Step 2: Aggregate information from each decision-maker. 

Different decision-makers give different evaluation information. To aggregate the evaluation values of experts, 

we can use the ILNULWABM operator to aggregate the evaluation information matrix kF  given by the 

decision maker kD  to obtain the integration matrix F . 

   1 2, , ,...


 
ij ij ij ij ijm n

F f f ILNULWABM f f f 

 

Step 3: Calculate the positive ideal alternative 

ij
f

 
and the negative ideal alternative 

ij
f . 

We can use the score function to obtain the positive ideal alternative and the negative ideal alternative: 
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         -= max max = min min = ，
j ij ij j ij ij

f f S f f f S f
 

  
1

( ) 4+
1

( ) (
2

)  ( ) - ( ) - ( ) + ( ) - ( ) - ( )
ij ij ij ij ij ij ij

L L L U U U

A A A A A Aij ij
T I F T IS f f f f f f f f fF 

 

Step 4: Compute the group utility values 
i

S
 
and individual regret values 

i
R . 

   
 

   
 

1

max

n
j ij j ij

i j

j j j

j ij j ij

i j
j

j j

d f f d f f
S

d f f

d f f d f f
R

d f f





 

 


 

 

  
 



  
 





 

Step 5: Compute the values 
i

Q
.  

 1
 

   

   
   

   

i i

i

S S R R
Q

S S R R
   

Where max  
i

i
S S , =min 

i
i

S S , max  
i

i
R R , =min 

i
i

R R  and   represents the weight of the 

strategy of the “the majority of criteria”. 

Step 6: Sort the 
i

Q in descending order. 

Step 7: Test the compromise solution. 

5 |A Numerical Example 

Now we consider a group decision-making problem. Suppose there are four alternatives labeled 1 2 3 4
, , ,A A A A  

and three attributes labeled 1 2 3
, ,C C C  whose weight vector is 

 3 4 7
= , ,

T

s s s
. Three decision-makers assess 

this problem and the relative importance vector  4 6 2
= , ,

T

W S S S . Here, we let  0,1,2,...8 
i

S s i
 
where is  

represent a possible value for a linguistic number, and 

  



0 1 2 3 4 5 6 7 8 0 1 2

3 4 5

6 7 8

, , , , , , , , extremely poor, very poor, poor,

a little poor, medium, a li          

       

ttle good

good, very good, excell n   e t

S s s s s s s s s s s s s

s s s

s s s

    

  

  

，

 

The decision-makers assign values to the alternatives through the interval linguistic neutrosophic uncertain 

linguistic numbers to form three decision matrices, as shown in Tables 1-3.  

Step 1: Normalize the decision matrix kR . Firstly, we should normalize the original data utilized. The 

normalized decision matrices are shown in Tables 4-6. 

Step 2: Aggregate information from each expert. For easy calculation, we should make the weights normalized 

by the formula 

   

' '

3 3

1 1

,

 

 

 

k

j

j k

k

j

j k

W
W

W





. 

Through calculation, we can get the normalized weight vectors:  '

0.21 0.29 0.5
= , ,

T

s s s ,   '

0.33 0.5 0.17
= , ,

T

W s s s . 

Next, we use the ILNULWABM operators to gather decision information from all decision-makers. The 

specific calculation method is shown in Definition 27. Here we let p=1 and q=1. The group decision matrix 

we obtained is shown in Table 7. 
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Table 1. Decision matrix R1 of the decision-maker 
1D . 

 C1 C2 C3 

A1 <(S3,S4),([S6,S7][S2,S4][S0,S1])> <(S5,S6),([S5,S6][S2,S3][S1,S2])> <(S4,S5),([S4,S5][S2,S3][S3,S4])> 

A2 <(S4,S5),([S5,S6][S4,S5][S2,S3])> <(S4,S5),([S4,S5][S3,S4][S2,S3])> <(S7,S8),([S5,S6][S1,S2][S2,S3])> 

A3 <(S7,S8),([S4,S5][S2,S3][S3,S4])> <(S3,S4),([S6,S7][S2,S4][S1,S2])> <(S3,S4),([S4,S5][S3,S4][S3,S4])> 

A4 <(S5,S6),([S5,S6][S2,S3][S2,S3])> <(S6,S7),([S3,S4][S2,S4][S4,S5])> <(S7,S8),([S7,S8][S2,S3][S0,S1])> 

 

Table 2. Decision matrix R2 of the decision-maker 
2D . 

 1C 2C 3C 

1A ])>2,S1][S4,S3][S8,S7),([S4,S3<(S ])>3,S2][S3,S2][S6,S5),([S5,S4<(S ])>3,S2][S4,S3][S6,S5),([S3,S2<(S 

2A ])>3,S2][S4,S3][S5,S4),([S7,S6<(S >])2,S1][S4,S3][S7,S5),([S8,S7<(S ])>4,S3][S3,S2][S5,S4),([S8,S7<(S 

3A ])>1,S0][S2,S1][S7,S6),([S3,S2<(S ])>4,S3][S3,S2][S5,S4),([S4,S3<(S ])>1,S0][S4,S3][S7,S6),([S6,S5<(S 

4A ])>3,S2][S3,S2][S6,S5),([S8,S7<(S ])>2,S1][S4,S3][S7,S6),([S6,S5<(S ])>3,S2][S3,S2][S6,S5),([S5,S4<(S 

 

Table 3. Decision matrix R3 of the decision-maker 
3D . 

 1C 2C 3C 

1A ])>2,S1][S3,S2][S7,S6),([S5,S4<(S ])>2,S1][S3,S2][S6,S5),([S5,S4<(S ])>2,S1][S4,S2][S7,S6),([S3,S2<(S 

2A ])>3,S2][S2,S1][S6,S5),([S4,S3<(S ])>1,S0][S2,S1][S8,S7),([S7,S6<(S ])>4,S3][S3,S2][S6,S5),([S6,S5<(S 

3A ])>4,S3][S3,S2][S5,S4),([S3,S2<(S ])>2,S1][S3,S2][S7,S6),([S3,S2<(S ])>3,S2][S4,S3][S6,S5),([S4,S3<(S 

4A ])>1,S0][S4,S2][S8,S7),([S7,S6<(S ])>3,S2][S4,S2][S6,S5),([S6,S5<(S ])>4,S3][S3,S2][S5,S4),([S8,S7<(S 

 

Table 4. Normalized decision matrix F1 of the decision-maker 
1D . 

 1C 2C 

1A ])>0.1690,S0.0000][S0.5208,S0.3780][S0.5793,S0.5941),([S0.3369,S0.3015<(S ])>0.3086,S0.2132][S0.3974,S0.4364][S0.5345,S0.5392),([S0.5345,S0.5392<(S 

2A ])>0.5071,S0.4851][S0.6509,S0.7559][S0.4966,S0.4951),([S0.4211,S0.4020<(S ])>0.4629,S0.4264][S0.5298,S0.6547][S0.4454,S0.4313),([S0.4454,S0.4313<(S 

3A ])>0.6761,S0.7276][S0.3906,S0.3780][S0.4138,S0.3961),([S0.6737,S0.7035<(S ])>0.3086,S0.2132][S0.5298,S0.4364][S0.6236,S0.6470),([S0.3563,S0.3235<(S 

4A ])>0.5071,S0.4851][S0.3906,S0.3780][S0.4966,S0.4951),([S0.5253,S0.5025<(S ])>0.7715,S0.8528][S0.5298,S0.4364][S0.3563,S0.3235),([S0.6236,S0.6470<(S 

 3C 

1A ])>0.6172,S0.6396][S0.4867,S0.4714][S0.4082,S0.3885),([S0.3846,S0.3607<(S 

2A ])>0.4629,S0.4264][S0.3244,S0.2357][S0.4899,S0.4856),([S0.6154,S0.6312<(S 

3A ])>0.6172,S0.6396][S0.6489,S0.7071][S0.4082,S0.3885),([S0.3077,S0.2705<(S 

4A ])>0.1543,S0.0000][S0.4867,S0.4714][S0.6532,S0.6799),([S0.6154,S0.6312<(S 

 

Table 5. Normalized decision matrix F2 of the decision-maker 2D  

 1C 2C 

1A ])>0.4170,S0.3333][S0.5963,S0.6255][S0.6065,S0.6236),([S0.3405,S0.3030<(S ])>0.5222,S0.5164][S0.4243,S0.3922][S0.4758,S0.4951),([S0.4211,S0.4020<(S 

2A ])>0.6255,S0.6667][S0.5963,S0.6255][S0.3790,S0.3563),([S0.5959,S0.6061<(S ])>0.3482,S0.2582][S0.5657,S0.5883][S0.5551,S0.4951),([S0.6737,S0.7035<(S 

3A ])>0.2085,S0.0000][S0.2981,S0.2085][S0.5307,S0.5345),([S0.2554,S0.2020<(S ])>0.6963,S0.7746][S0.4243,S0.3922][S0.3965,S0.3961),([S0.3369,S0.3015<(S 

4A ])>0.6255,S0.6667][S0.4472,S0.4170][S0.4549,S0.4454),([S0.6810,S0.7071<(S ])>0.3482,S0.2582][S0.5657,S0.5883][S0.5551,S0.5941),([S0.5053,S0.5025<(S 

 3C 

1A ])>0.5071,S0.4851][S0.5657,S0.5883][S0.4966,S0.4951),([S0.2592,S0.2063<(S 

2A ])>0.6761,S0.7276][S0.4243,S0.3922][S0.4138,S0.3961),([S0.6911,S0.7220<(S 

3A ])>0.1690,S0.0000][S0.5657,S0.5883][S0.5793,S0.5941),([S0.5183,S0.5157<(S 

4A ])>0.5071,S0.4851][S0.4243,S0.3922][S0.4966,S0.4951),([S0.4319,S0.4126<(S 
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Table 6. Normalized decision matrix F3 of the decision- maker 3D . 

 1C 2C 

1A ])>0.3651,S0.2673][S0.4867,S0.5547][S0.5307,S0.5345),([S0.5025,S0.4961<(S ])>0.4714,S0.4082][S0.4867,S0.5547][S0.4411,S0.4303),([S0.4583,S0.4444<(S 

2A ])>0.5477,S0.5345][S0.3244,S0.2774][S0.4549,S0.4454),([S0.4020,S0.3721<(S ])>0.2357,S0.0000][S0.3244,S0.2774][S0.5882,S0.6025),([S0.6417,S0.6667<(S 

3A ])>0.7303,S0.8018][S0.4867,S0.5547][S0.3790,S0.3563),([S0.3015,S0.2481<(S ])>0.4714,S0.4082][S0.4867,S0.5547][S0.5147,S0.5164),([S0.2750,S0.2222<(S 

4A ])>0.1826,S0.0000][S0.6489,S0.5547][S0.6065,S0.6236),([S0.7035,S0.7442<(S ])>0.7071,S0.8165][S0.6489,S0.5547][S0.4411,S0.4303),([S0.5500,S0.5556<(S 

 3C 

1A ])>0.2981,S0.2085][S0.5657,S0.4364][S0.5793,S0.5941),([S0.2683,S0.2144<(S 

2A ])>0.5963,S0.6255][S0.4243,S0.4364][S0.4966,S0.4951),([S0.5367,S0.5361<(S 

3A ])>0.4472,S0.4170][S0.5657,S0.6547][S0.4966,S0.4951),([S0.3578,S0.3216<(S 

4A ])>0.5963,S0.6255][S0.4243,S0.4364][S0.4138,S0.3961),([S0.7155,S0.7505<(S 

 

Table 7. Group decision matrix  F. 

 1C 2C 

1A ])>0.5464,S0.4670],[S0.6896,S0.6818],[S0.1853,S0.1896),([S0.1197,S0.1099<(S ])>0.6248,S0.5865],[S0.6294,S0.6503],[S0.1563,S0.1586),([S0.1498,S0.1465<(S 

2A ])>0.7071,S0.7072],[S0.6871,S0.7154],[S0.1396,S0.1355),([S0.1541,S0.1503<(S ])>0.5693,S0.4895],[S0.6487,S0.6773],[S0.1668,S0.1584),([S0.1847,S0.1880<(S 

3A ])>0.7270,S0.7388],[S0.6054,S0.6062],[S0.1441,S0.1405),([S0.1243,S0.1118<(S ])>0.6598,S0.6394],[S0.6594,S0.6503],[S0.1595,S0.1619),([S0.1052,S0.0928<(S 

4A ])>0.6255,S0.5923],[S0.6771,S0.6423],[S0.1610,S0.1606),([S0.2004,S0.2036<(S ])>0.7642,S0.8098],[S0.7269,S0.6865],[S0.1442,S0.1431),([S0.1778,S0.1803<(S 

 3C 

1A ])>0.6542,S0.6377],[S0.6957,S0.6646],[S0.1541,S0.1525),([S0.0969,S0.0824<(S 

2A ])>0.7203,S0.7316],[S0.5971,S0.5754],[S0.1468,S0.1437),([S0.2002,S0.2058<(S 

3A ])>0.6270,S0.5976],[S0.7326,S0.7722],[S0.1582,S0.1571),([S0.1268,S0.1183<(S 

4A ])>0.6279,S0.6059],[S0.6339,S0.6274],[S0.1699,S0.1711),([S0.1778,S0.1788<(S 

 

Step 3: Calculate the positive ideal alternative 

ij
f

 
and the negative ideal alternative 

ij
f . 

We can use the score function to obtain the positive ideal alternative and the negative ideal alternative. 

According to the score function   
1

( ) 4+
1

( ) (
2

)  ( ) - ( ) - ( ) + ( ) - ( ) - ( )
ij ij ij ij ij ij ij

L L L U U U

A A A A A Aij ij
T I F T IS f f f f f f f f fF  , we can get the 

scores as follows: 

11 12 13

21 22 23

31 32 33

41 42 43

( ) 0.0381 ( ) 0.045 ( ) 0.0247

( ) 0.037 ( ) 0.0603 ( ) 0.0564

( ) 0.0316 ( ) 0.0283 ( ) 0.0324

( ) 0.0601 ( ) 0.0388 ( ) 0.0549

  

  

  

  

， ，

， ，

， ，

， ，

S f S f S f

S f S f S f

S f S f S f

S f S f S f
 

According to the formula     = max max = ，
j ij ij

f f S f     - = min min=
j ij ij

f f S f , the positive ideal 

alternatives ijf 

 
and the negative ideal alternatives ijf 

 are shown as follows: 

             
             
    

1 1 1 41 0.2036 0.2004 0.1606 0.1610 0.6423 0.6771 0.5923 0.6255

1 1 1 31 0.1118 0.1243 0.1405 0.1441 0.6062 0.6054 0.7388 0.7270

2 2 2 22 0.

= max maxS S ,S , S ,S , S ,S , S ,S ,

= min minS S ,S , S ,S , S ,S , S ,S ,

= max maxS S

i i

i i

i i

f f f f

f f f f

f f f f







 

  

 

=

=         
             
      

1880 0.1847 0.1584 0.1668 0.6773 0.6487 0.4895 0.5693

2 2 2 32 0.0928 0.1052 0.1619 0.1595 0.6503 0.6594 0.6394 0.6598

3 3 3 23 0.2058 0.2002 0.1437 0.14

,S , S ,S , S ,S , S ,S ,

= min minS S ,S , S ,S , S ,S , S ,S ,

= max maxS S ,S , S ,S

i i

i i

f f f f

f f f f





  

 =       
             

68 0.5754 0.5971 0.7316 0.7203

3 3 3 13 0.0824 0.0969 0.1525 0.1541 0.6646 0.6957 0.6377 0.6542

, S ,S , S ,S ,

= min minS S ,S , S ,S , S ,S , S ,S .
i i

f f f f   

 Step 4: Compute the group utility values 
i

S and individual regret values 
i

R   
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1 1 2 2

1 2

1 1

3 3 3 4

3 4

1 1

1

1

=-0.6202, =0.8034,

=-0.6765, =0.6957,

max

n n
j j j j j j j j

j j

j jj j j j

n n
j j j j j j j j

j j

j jj j j j

j j j

j
j

d f f d f f d f f d f f
S S

d f f d f f

d f f d f f d f f d f f
S S

d f f d f f

d f f d f
R

 

 



   

   
 

   

   
 



     
   

 

     
   

 

 
 

 

 

 
 

   
 

   
 

   
 

1 2 2

2

3 3 4 4

3 4

=0.0451, max =0.5,

max =-0.1765, max =0.2578.

j j j j j

j
j

j j j j

j j j j j j j j

j j
j j

j j j j

f d f f d f f
R

d f f d f f

d f f d f f d f f d f f
R R

d f f d f f



 

  

   

   

   

   
 

 

     
   

 

 

Step 5: Compute the values 
i

Q
 

Here we make ɛ = 0.5. The VIKOR values 
i

Q for each alternative can be calculated as follows: 

 

 

1 1

1

2 2

2

-0.6202+0.6765 0.0451+0.1765
1 =0.5 +0.5 =0.1828

0.8034+0.6765 0.5+0.1765

0.8034+0.6765 0.5+0.1765
1 =0.5 +0.5 =1

S 0.8034+0.6765 0.5+0.1765

S S R R
Q

S S R R

S S R R
Q

S R R

 

 

 

   

 

   

   
     

   

   
     

   

 

 

 

3 3

3

4 4

4

-0.6765+0.6765 -0.1765+0.1765
1 =0.5 +0.5 =0

0.8034+0.6765 0.5+0.1765

0.6957+0.6765 0.2578+0.1765
1 =0.5 +0.5 =0.7

0.8034+0.6765 0.5+0.1765

S S R R
Q

S S R R

S S R R
Q

S S R R

 

 

 

   

 

   

   
     

   

   
     

   
846

 
Step 6: Sort the 

i
Q

 
in descending order. 

We can sort the alternatives according to the values of 
i

S , 
i

R  and 
i

Q . The larger the value, the better 

the alternative. Then, according to the ranking process, three ordered lists can be obtained as displayed in 

Table 8. 

Table 8. Group utility value, individual regret value, and compromise evaluation value. 

 1A 2A 3A 4A Ranking results compromise solution 

iSΔ -0.6202 0.8034 -0.6765 0.6957 3> A1> A4> A2A 4A 2,A 

iRΔ 0.0451 0.5000 -0.1765 0.2578 3> A1> A4> A2A 4A 2,A 

iQΔ 0.1828 1.0000 0.0000 0.7846 3> A1> A4> A2A 4A 2,A 

 

Step 7: Test the compromise solutions. 

The alternatives are ranked by Q：
2 4 1 3

      Q Q Q Q . The best alternative is
2

A with 
2

1 Q , and the 

alternative 
4

A
 
is the second with  4

0.7846 Q A . Due to this 
2 4

1
0.2154 0.3333

4 1
    


Q Q , it doesn’t 

satisfy condition 1- acceptable advantage. However, alternative 
2

A
 
is also the best sorted by S  and R  

and satisfies condition 2. In that  
2 1

1
0.8172 0.3333

4 1
    


Q Q , so 

2
A

 
and 4A

 
are both compromise 

solutions. These results indicate that 
2

A
 
the best choice among the four alternatives, at the same time, 

4
A

could be the compromise solution that holds steady during the whole decision-making process. 

Due to the decision results being related to the parameters p, and q on the ILNULWABM operator, it is 

necessary to make an analysis and discussion. 

Similarly, in the VIKOR method, the compromise evaluation value of each alternative is affected by the group 

utility weight ɛ. To consider the impact of different values of ɛ on the evaluation results, the analysis is 
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performed by setting different ɛ to observe their impact. The impact of the sorting result is shown in Table 

9. 

It can be seen from Table 9 that under the same value of ɛ, whatever the p, q is, the optimal scheme remains 

unchanged. Similarly, keeping the ,p q fixed, the optimal solution remains the same based on different ɛ. So p, 

q, and ɛ have a limited impact on the ranking results. 

Table 9. Group utility value, individual regret value, and compromise evaluation value in different ,p q and 
 

   A1 A2 A3 A4 Ranking results 
compromise 

solution 

p=1, 

q=1 

ΔS -0.6202 0.8034 -0.6765 0.6957 A2> A4> A1> A3 

A2,A4 

ΔR 0.0451 0.5000 -0.1765 0.2578 A2> A4> A1> A3 

ΔQ 

ɛ=0.4 0.2117 1.0000 0.0000 0.7561 A2> A4> A1> A3 

ɛ=0.5 0.1828 1.0000 0.0000 0.7846 A2> A4> A1> A3 

ɛ=0.6 0.1538 1.0000 0.0000 0.8131 A2> A4> A1> A3 

p=1, 

q=0 

ΔS -0.6700 0.8068 -0.6047 0.6544 A2> A4> A3> A1 

A2,A4 

ΔR 0.0400 0.5000 -0.1047 0.2700 A2> A4> A3> A1 

ΔQ 

ɛ=0.4 0.1435 1.0000 0.0177 0.7305 A2> A4> A1> A3 

ɛ=0.5 0.1196 1.0000 0.0221 0.7582 A2> A4> A1> A3 

ɛ=0.6 0.0957 1.0000 0.0266 0.7859 A2> A4> A1> A3 

p=0.5, 

q=0.5 

ΔS -0.6442 0.5800 -0.1683 0.5702 A2> A4> A3> A1 

A2,A4 

ΔR 0.0378 0.5000 0.2100 0.5000 A2= A4> A3> A1 

ΔQ 

ɛ=0.4 0.0000 1.0000 0.3790 0.9968 A2> A4> A3> A1 

ɛ=0.5 0.0000 1.0000 0.3807 0.9960 A2> A4> A3> A1 

ɛ=0.6 0.0000 1.0000 0.3823 0.9952 A2> A4> A3> A1 

 

 

6 |Conclusion 

This article proposes the concept of interval linguistic neutrosophic uncertain linguistic numbers. ILNULN 

consists of two parts: interval linguistic neutrosophic and uncertain linguistic number. The interval linguistic 

neutrosophic reflects the subjective linguistic judgment of the decision maker on the given uncertain linguistic 

number, and the uncertain linguistic number reflects the attitude of the decision maker towards the evaluation 

object. Based on interval linguistic neutrosophic uncertain linguistic number, this paper studies its basic 

properties, algorithms, scores function, and Hamming distance between two numbers, and proposes an 

interval linguistic neutrosophic uncertain linguistic weighted arithmetic Bonferroni Mean (ILNULWABM) 

operator. In addition, this paper applies ILNULN and ILNULWABM operators to the VIKOR method 

based on the relative closeness coefficient and discusses the impact of different parameters p, q, and ɛ on the 

MAGDM. Finally, we give an example to illustrate our theory, which proves the practicability and feasibility 

of the method proposed in this paper, and it improves and enriches the theory of MAGDM. 

This article discusses and studies the VIKOR problem with ILNULN, and it has achieved certain results. But 

this research still needs to be further improved: 

1) This article only considers the MAGDM problem in which the attribute weights and expert weights 

are single-valued linguistic numbers. The attribute weights and expert weights are not yet considered 

in the interval linguistic value. However, this situation is common in practical decision-making. 

Therefore, we can conduct further expansion research in the future. 
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2) In future research, it will be necessary and meaningful to apply the proposed interval linguistic 

neutrosophic uncertain linguistic MAGDM method to solve some practical problems in other areas, 

such as personnel evaluation, medical artificial intelligence, and pattern recognition.  
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