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Abstract
In actual multi-attribute group decision-making problems, due to the complexity and uncertainty of objective
things and the ambiguity of human thinking, decision-makers find it hard to give accurate evaluation information
by crisp numbers. Even the weights of attribute values and decision-makers are ambiguous. At this time, we are
more inclined to adopt the intuitive form of linguistic variables such as "excellent", "good" or "bad" to describe
attribute values and weights. So in this paper, based on a neutrosophic set (NS), we further propose interval
linguistic neutrosophic uncertain linguistic number (ILNULN). ILNULN combines interval linguistic
neutrosophic and uncertain linguistic numbers, and it has the advantages of both. At the same time, due to the
weighted arithmetic Bonferroni mean operator considering the interrelationship between aggregation parameters,
therefore we combine the ILNULN and weighted arithmetic Bonferroni mean operator to propose the interval
linguistic neutrosophic uncertain linguistic weighted arithmetic Bonferroni mean (ILNULWABM) operator.
Finally, under the environment of interval linguistic neutrosophic and uncertain linguistic numbers, this article uses
the linguistic weights and ILNULWABM operator to make VIKOR decision based on the relative closeness, and

gives a practical example.

Keywords: Multi-Attribute Group Decision-Making, Interval Linguistic Neutrosophic Uncertain Linguistic Number, Weighted
Arithmetic Bonferroni Mean Operator, VIKOR.

1 | Introduction

Since its birth, the theory of multi-attribute group decision-making has been a research hotspot in academia.
With the development of society and economy, the complexity, uncertainty, and ambiguity of human thinking
are increasing. In the actual decision-making process, decision information is often expressed as fuzzy
information. In 1965 Zadeh [1] put forward the concept of fuzzy set (FS). Fuzzy Set represents the uncertainty
of decision information by membership degree, which refers to the degree that which something belongs to
a certain judgment. However, in the process of cognition, people tend to hesitate to different degrees or show
a certain degree of lack of knowledge, so the cognitive results are shown as positive, negative, or intermediate
between positive and negative hesitation. Therefore, in 1986, Atanassov |2, 3] extended the theory of fuzzy
sets and proposed the concept of intuitionistic fuzzy sets (IFS). IFS considers both membership and non-
membership information at the same time, so it provides more choices in the description of the attributes
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and has a stronger performance in dealing with uncertain information. In addition, in some practical situations,
the membership, non-membership, and hesitation of elements may not be specific values, so IFS extended
to interval-value intuitionistic fuzzy set (IVIFS) by Atanassov and Gargov [4]. Although the ES theory has
been widely developed and popularized, it still can not handle all types of uncertain problems in real life, such
as uncertain information and inconsistent information. To this end, Smarandache [5] proposed the concept

of a neutrosophic set (NS). NS includes membership degree T(X), uncertainty degree H(x) , and non-
membership degree F(x) of elements. Wang and Zhang [6] further proposed the concept of an interval

neutrosophic set (INS), where the representation of the T(x) ) H(x) and F(x) extended from a single value
to an interval number. Later Wang and Smarandache et al. [7] proposed the single-valued neutrosophic set
(SVNS) theory. In addition, Ye [8] combined the uncertain linguistic set with INS to define the interval
neutrosophic uncertain linguistic set INULS), and he also defined the score function, accuracy function, and
operational laws of INULS. The first part of the interval neutrosophic uncertain linguistic variable represents
the subjective evaluation value of the thing being evaluated, and the second part indicates membership degree,
uncertainty degree, and non-membership degree. In 2017, Ye and Fang [9] proposed the concept of linguistic
neutrosophic number (LNN), which was characterized independently by the truth, indeterminacy, and falsity

of linguistic variables.

ViseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [10] is a method of multi-attribute
decision-making based on the ideal point proposed by Opricuvic in 1998. This method gives the ranking
index with the ideal closest to the ideal solution, which maximizes the group utility and minimizes individual
regret when selecting a solution. At present, many scholars have studied the VIKOR method and its
application. Bayakzkan and Ruan [11] extended the VIKOR method to the fuzzy environment to solve the
software evaluation problem. Sayadi et al. [12] discussed the VIKOR method with the attribute values as
interval numbers and the weights as real numbers. Sanayei et al. [13] researched the VIKOR method using
fuzzy sets and linguistic values, and they applied it to supplier selection problems. In 2011, Park et al. [14]
considered the VIKOR method with attribute values of intuitionistic interval fuzzy numbers and weights of
real numbers. Zhang and Wei [15] extended the VIKOR method to the hesitating fuzzy set. Due to the
traditional VIKOR method only considering the closeness between the alternatives and the positive ideal
solution, Liu [16] proposed the VIKOR method based on the relative closeness coefficient. This method
takes the closeness coefficient between alternatives and positive ideal solution as well as the closeness

coefficient between alternatives and negative ideal solution into account.

Information integration is a common activity in our daily life. The Bonferroni mean (BM) operator is one of
the aggregation methods proposed by Bonferroni [17]. BM operator has a desirable characteristic that it can
capture the interrelationship of input arguments. Then Yager [18] further extended the BM operator and
proposed some more efficient integration operators. Xu and Yager [19] introduced a new BM operator to
solve the multi-attribute decision-making (MADM) problems under fuzzy conditions. To solve the
reducibility of the weighted BM operator, Xia et al. [20] proposed a modified generalized weighted BM
operator and applied it to the intuitionistic fuzzy environment. Since the arithmetic average only considers
group decisions and ignores individual decisions, Zhou et al. [21] proposed the standardized weighted BM
operator and fully considered the correlation between attribute values. Later the BM operator extended to a
neutrosophic environment. Wei et al. [22] developed an uncertain linguistic Bonferroni mean (ULBM)
operator and an uncertain linguistic geometric Bonferroni mean (ULGBM) operator to aggregate the
uncertain linguistic information. Liu [23] and Wang introduced a single-valued neutrosophic normalized
weighted Bonferroni mean (SVNNWBM) operator. Wang et al. [24] developed a simplified neutrosophic
linguistic Bonferroni mean (SNLBM) operator and a simplified neutrosophic linguistic normalized weighted
Bonferroni mean (SNLNWBM) operator.

Although the combination of the neutrosophic set and the linguistic set has been further developed, there are
few studies on the combination of the interval linguistic neutrosophic and uncertain linguistic number.
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Therefore, this paper proposes the concept of interval linguistic neutrosophic uncertain linguistic number,
combining the WABM operator and linguistic weights to make the VIKOR decision.

2 | Preliminaries

This section is the theoretical foundation of this thesis. Some basic concepts about FS, ILNULS, BM
operator, and VIKOR are reviewed to provide mathematical support and theoretical guarantee for the
following research.

. all [a“,a"]={xa" <x<a"}

Definition 1 [25]: Le , then a is an interval fuzzy number. When 0< a-<a’ g

is a positive interval fuzzy number.

Definition 2 [26]: Let 5= O 1=012.-4-1

satisfies the following conditions:

, then Sis a linguistic set (LS) and Uis an odd number. §

(1) Tfi> ], than =5

(2) There is the inverse operator reg(s;)=s;, and i+ j=t-1

(3) If 5,2, then max(s,,s;)=s,

(4) If 5, <s;, then min(s,,s;)=s,

Definition 3 [26]: If a linguistic variable s=[s,,s,], s €linguistic set § and@, A€[0, t—1], then sis an
uncertain linguistic variable (ULV). S4,S, are the upper and lower limits respectively.

Definition 4 [26]: For any three uncertain linguistic variables S = [Sg , Sp] , § = [Sg1 , Spl] and S, = [39Z ) sz] , then

the algorithms for uncertain linguistic variables are as follows:
(1) St (_DSZ :[S@’S/’l]+[sgz ’sﬂz] :[591*'92 ’S/’1+/’2]

2) 5®s,=[s,;,5,1®I[s,,,s, 1=[544,:S,,,]

@) s" =Is,.s,1" =I(s,)".(s,) =I5, 5,1 (A2 0)

“4) As=As,,s,1=[1s,,4s,]J=[s,,,s,,]1 (1 =0)

Definition 5 [20]: For any three uncertain linguistic variables s =[s,,s ], s, =[s,,s,] and s, =[s,,s, ], then

the operational properties are as follows:
(1) s,®s,=5,®5

(2) 5,®s,=5,®s,

3) A(s,®@s,)=4s,®1s,

@) As®AS(4+4,)s

5) s/ ®s, =(5,®s,)

©) $" @s” =gt
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Definition 6 [27]: Let S, S, € linguistic set § and 7:(Sg,sp), if @+p <t-1, then we call y the linguistic
intuitionistic fuzzy number (LIFN) defined on §. If s,,s, €S, then we call y the original linguistic
intuitionistic fuzzy number; otherwise, we call y the virtual linguistic intuitionistic fuzzy number.

Definition 7 [27]: For any three linguistic intuitionistic fuzzy numbers 7:(S€,sp) , 71:(551’%) and

7,=(8,,.8,, ) the following operations of linguistic intuitionistic fuzzy numbers have been defined:
M) 7©7,=[54.5, ]+[305, ]=[Sa:0.405, ]
@ 7®7 =[5, |®[30.:3, |=[s00 Snspnn ]
@ 7 =[5, ] =) (5 [ 805, [(220)

@ Ay =2[s,8,]=[48,,25, 17| 5. 0y 5, |(420)

Definition 8 [5]: Let X be a set of objects and X be the element in X . The neutrosophic set (NS) A in X

consists of Ta(x). membership degree, (). uncertainty degree, and Fa(x) non-membership degree, and it

A={(xT (0 L () Fa ()X e X] T,(x) 1a(x)

. F, (X .
is defined as . R and A( ) are non-standard subsets in

107,17 , i.e.TA(X): X —>]O‘,1+[’ Ia(X): X —>]0‘,l*[’ and F.(x): X =]07,1°

0 STA(x)+IA(x)+FA(x)s3*'

[. Due to the sum of Ta (X), IA(X)

and Fa (X) is unlimited, so

Definition 9 [7]: Let X be a set of objects and X be the element in X . When Ta(x) (x) and Fa(x)

>

respectively degenerate to an exact number, then A is a single neutrosophic set (SVNS).

Definition 10 [6]: Let X be a set of objects and X be the element in X . The neutrosophic set A X consists
of TA(X)a membership degree, IA(X) -an uncertainty degree, and FA(X) a non-membership degree. When
Ta(x) , Ia(x) and Fa(%) belong to a closed interval [0,1], ie. T,(x):X —>[01], I,(x): X —>[0,1], and

F.(x): X =>[0,1], then A s an interval neutrosophic set (INS) which can be expressed as follows:

A={X,[TAL(X),T,:J(X)],[lk(X),|K(X)J,[FAL(X),F:(X)]|XEX}. Similarly, the sum of T,(x), la(x) and F,(x)
satisfies: 0°<T) (X)+1; (x)+F) (x)<3".

Definition 11 [28]: Let U be a space of objects. S is a linguistic set where S = {Si [i=01..t —1} and t is odd.

Then an interval neutrosophic linguistic set (INLS) A X can be defined as
A= {54 ([T 00T (L1 (0112 (0T [FE (0. FY (x))lxe X

The membership degree, uncertainty degree and non-membership degree of X in X to the linguistic term
Sy satisfies: [T, (x), Ty (x)]<=[0.4], [15(x),17 (x)]<[0.1], and [Fy (x),F) (x)]<[04].

Besides, the interval neutrosophic linguistic number (INLN), which is an element of A, can be expressed as
(Su0+ ([T 0O, T AL (), 1 OOLLFS (0, B O0D)) -

Definition 12 [29]: An interval neutrosophic uncertain linguistic set A on X can be defined as

A= {5 {[ 80y ([T OOTY (OTL15 ()1 (VL [FE (.Y ()]))lxe x|, where Sy and s, €S,
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[T )T ()]0l . [ (x]efoy  and  [Ff(x).FY(x)]<[01] with the condition
0<T. (x)+15 (x)+F. (x)<3 for any xe X . The function T,(x), 1,(x) and F,(x) represent the
membership degree, uncertainty degree, and non-membership degree respectively with interval values of the

element x in X to the uncertain linguistic vatiable [s o) Sp(x)] .

Definition 13 [29]: For any three-interval neutrosophic uncertain linguistic variables
a=([5005 J [T @) (@) [0 @)1 @1 [F: (0.2 )]
% =<[S(}(a1),sp(a1)](|:'|'; (al)’T/:J (al)}’[lk(al)' I;L\J (al)]":FAL (al)' F: (al):|)>’

a,= <[sg(az), sp(aZ)J,([TAL (a,). T (&) [ 1 (a,) 1 (&) L[ Fr (a,)-FY (a, )])> and 2>0 ,then the operational laws for

interval neutrosophic uncertain linguistic variables are as follows:

iy 3% =[S S J (T @) <az> TH(@)TS (@) T2 (a) 4T ()T (a)T2 () ] [15 (@)1 (@),
1 )()M <a1>F< Y ()R ()

‘(a
[swaz o (al)T (az Y (@)TY (@) L[ (@) + 1 (a)-1i(a) i (a,), 13 (a)+13 (a,)-
(a) ][F Fi(a)F' (a,).F (al) Y (2,)FY ()Y (2,)]).

©) ma=<[sw<a),s;m,],([l—(l—v (2)) 2-(2-T¢ @) J[ (13 @) (12 @) J[(Fr @) (R (@) ]))
@ a'= <[Sg»-(a)75p»(a)]([(TAL () (T (a))‘Ml-(l- 15(a)) 1-(2-1 (a))‘Hl—(l— F (a)) 1-(1-FY (a))‘})>

Definition 14 [29]: For any three-interval neutrosophic uncertain linguistic variables
=[50 J ([T (@1 @)1 @ [F () F )]
8= ({81080 J([TH )T @)1 (@)1 (&) [Fr (). FY (a)]))

az:<[sg(az),sp(az)]([TAL(az),TA” (ag)][l:(‘clz),li(az)],[FAL (a,).F (az)})> and 1>0 , then the operational properties for

interval neutrosophic uncertain linguistic variables are as follows:

@ &=
12

(1) a®a-ada

(2) a®a,=a,®a

(3) AMa ®ap=la ®Aa,
4) Aa®lta= (4+4) a
(5) a’ ®a,/=(a ®a,)’

(6) a/?.l ® aiz :a(llJr/lZ)

Definition 15 [8]: For any two interval neutrosophic uncertain linguistic  variables

3 =[S0 (T @) T @)1 )12 (&)L [FL (R)F (@)]):

L u L u L u

a,= <|:59(az)’sp(az):|’(|:TA ()T, (az)},[lA (3,)1 (az)”FA (a).F (az)})> be any two interval neutrosophic uncertain linguistic

variables, then the Hamming distance between @: and @. can be defined as:
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d(@,az):Wl_l)(\wam@)—a(az)rxaz)\+\e(amm—e(az)ra(az)\+\9<a1)|m a)a)|+pa)1a) - o))+

0(2)F{a)-0(a,)F{(a,) +[6(,) K@ )F%@ﬂ+hdaﬁxa)— a)T{a)+|p(@)T{a)- p(a)T{a)+
lp(@)1{a) - p(a)1(a,)|+|p(a)14a) - p(a)1 @) +[p(a)Fia) - pla,)F (&) +|p(a)F { a) - pla)F{a))

Definition 16  [30]: For an  interval  neutrosophic  uncertain  linguistic ~ variable

:<[Sg(a)13/,(a)]n([TAL @1, (a)]:[lk(a): I:(a)]’[FAL (@),F, (a)1)> , then the scotre function of @ can be expressed by

A

the equation below: S(a)= %(H(a) +p(2))(4+T,(8)- 1,(a) - Fi(a)+T, () - 1(a) - F(a)).

={si=012,.t-1}

Definition 17 [31]: Assume that S ,then S isa linguistic set (LS) and ! is an odd number.

1f2= <ST 'S 'SF>1S defined for Sr+5i:5¢ € S and T.1,Fel0t-1] , where S , S and ¢ expresses independently
the membership degree, uncertainty degree, and non-membership degree by linguistic numbers, then @ is called
a LNN.

Definition 18 [17]: Let p, q>0and &, (i =1, 2,...n) be a collection of nonnegative real numbers. If

1
p+q

ZZa, aj » then BM™ is called the Bonferroni mean (BM) operator.
n(n ==

i=j

BM ™ (3,8,...,) =

Definition 19 [32]: Let s, :[Sgl S M],(i =12,..n)be a set of uncertain linguistic numbers and p, q = 0.

o=(0,0,.., )T is the weight vector of S, @ €[0,1] and iwi =1.1f

s

i=l j= =1
i#]j :

L st | fitgEgie o | |

Then IULWABM?® is called the intuitionistic uncertain linguistic weighted arithmetic Bonferroni mean

1 & (s ) ﬁ
n(n_l)ZZ(wiSi) (C‘)J‘ J)J [

ULWABMj%gﬁymg):[

operator.

Definition 20 [10]: VIKOR is a method of multi-attribute decision-making based on the ideal point proposed
by Opricuvic in 1998. It is regarded as a pragmatic approach to searching for a compromise solution appearing

in a set that includes conflicting criteria. The multi-criterion measurement of compromise order is developed
from the ™ measure and it is an aggregate function of distance functions. L is the sum of all individual

regrets, and L. is the maximum of individual regrets. The assembly function of the VIKOR method is as
follows:

-

o (f -1 )]

L .= Z I ———— ,13 pS-l—OO,j:l,z,...n
P.J = (f _ f )
ij ij
Where o, ( i :12,...n) is the relevant weight of the criteria, Ly represents the distance of each scheme from
the positive ideal solution, f =max f represents the positive ideal solution, and f = m,-in f, represents the
J

negative ideal solution. Therefore, the main advantage of this method is that it produces a solution by maximizing
group utility and minimizing the opponent's individual regret.
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2.1 | Calculation Steps of VIKOR Method

A={A,A,..A,}is a set of alternatives; C={C,,C,,..C,} represent n criteria; and ©®=(®,,®,,..®,)" denotes a

weight vector of criteria with @, >0 (j = 1 2,--, n) and Xn:a)i =1.The evaluation value of A on attribute C,
=t

is represented by the decision matrixY = (yij)

mxn

Step 1: Normalize the decision matrixY = (yij)

mxn

Step 2: Calculate the positive ideal alternative y; and the negative ideal alternative y; by score function
y; = {max Yi } :{max S (yij )},

y;={miny,}= {min s(y; )}

Step 3: Compute the group utility values S and the individual regret values R =12-m .

S :Z”:wd(L_y"), R :maxa).M
CE Al ()

Step 4: Calculate the values Q,

S-S ,
= i 1_ i
Ql gSJr_S,-I—( 8)

Where S*=maxS,, S"=minS,, R" =maxR,, R"=minR and ¢ represents the weight of the strategy of “the

majority of criteria”. In the comprehensive evaluation, the value of € is determined according to the subjective
tendency of the decision-maker. If the decision-maker pays more attention to group benefits, then & > 0.5; if
the decision-maker is focused more on individual regret minimization, then € < 0.5; otherwise if the decision-

maker pursues both the group benefit and the individual regret value minimum, then £ = 0.5.
Step 5: Sort the Q, in ascending order

Step 6: Test the compromise solution

Condition 1: Acceptable advantage: Q(A*)-Q(A') 2 ﬁ , where A? ranks second in the ordered list by Q;
Condition 2: Acceptable stability in the process of decision making

A" must be the best sorted by S or/and R . This compromise solution holds steady during the whole

decision-making process.
A set of compromise solutions is obtained if it does not satisfy one of the following conditions:
(1) A" and A’ are compromise solutions if only condition 2 is not satisfied; or

@) AL A LAY e compromise solutions if condition 1 is not satisfied; and A" is decided by the

constraint Q(A“’I )-Q(A1 ) < ml

1 for maximum M.

Definition 21 [16]: Liu thought that the traditional VIKOR method was not reasonable to consider only the
closeness of the scheme to the positive ideal solution. So she proposed the VIKOR method based on the
relative closeness coefficient. This method takes the closeness coefficient between alternatives and positive



A VIKOR Method Based on the Relative Closeness on Interval Linguistic Neutrosophic ... 80

ideal solution as well as the closeness coefficient between alternatives and negative ideal solution into account

and aims to obtain a relative optimal compromise solution through relative group utility and relative individual

regret.

Different from the traditional VIKOR method, she computed the utility values S, and the regret values
R (i =1 2,---, m) by following formulations:

o d(y;-y)-d(y - y)

AS, = ij

7 by
AR =maxa d(y;_ylj)_d(y;_y|1)
i d(y;—y;)

Obviously, the bigger the AS; and R, , the bigger the Q, , and the better alternative i .

| Interval Linguistic Neutrosophic Uncertain Linguistic Number
and Interval Linguistic Neutrosophic Uncertain Linguistic
Weighted Arithmetic Bonferroni Mean Operator

Definition 22: An interval linguistic neutrosophic uncertain linguistic set A in X can be defined as

A= <|:SH(X) S J ' (|:STk(x) ' ST;\J(X) } ' [S,k(x) ' S|g(x) } 1 [SFM 1 SFE(X):|)>' Where seS . The function

[S S i|'|:slk(x)’slg(x)i| and |:SFAL(X)’SFE(X):| are interval linguistic numbers and represent the membership

Th' TR ()
degree, uncertainty degree, and non-membership degree respectively with interval values of the element X in

X to the uncertain linguistic number [Sg(x) , Sp(x)J .

Definition 23: For any three interval linguistic neutrosophic uncertain linguistic numbers

a= <[Sﬂ(a> S }’({Sﬁw) ! STE(a)}’{SIk(a) S } ' {sma) ! SFxmm 8= <[%> ’ Sp(an}'({SmalwSne(anHSmaa Sy LS SFE@J»’

%= <[Se<az>'Sp(ag]([sr,&(az)'Smm}’[SmazvS'x(azJ'[Sak(az)'Sa?(azj)> and 22, then  the operational laws for interval

linguistic neutrosophic uncertain linguistic numbers are as follows:

qe0d, = <|:Se(a1)+9(az) ! Sp(a1)+p(az) ] ! ([STk(al)ﬂk(az)-TAL(al)T,k(az): STE(al)wk’(az)-Tk’(al)T,&J(az) :| ! |:S|k(a1)|k(az):slk(a1)|2(a2) :|’

S
Fi(ay) FA(a) FA (a )FA(aZ):|)>

1) [
< bla)0a) Sota) <az>}*([STk(am:(az»ST:(al)w(az)}’[Sl,&(aml;(az)-uk(al)lk(azrslx(al)+|x(az>-|x<a1>maz)}

[SFk(alek(az)-Fk(al)Fk(az)’SFE(amFE(az)-FX(al)FE(az) D>

3) /1®a:<[sw(a),sma)],([51 otk e ))’HS('km)"vS(lk(m)"HS(F/&@))’"S(FE(&))" D>
i _
@ &= <[Sa‘(a)’Sp‘(a)}’([sﬂk(a»‘,sﬂk @) }’[Sl- k(e @Yy }’[Su- b S ) })>
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Definition 24: For any three interval linguistic neutrosophic uncertain linguistic numbers

a= <[59<a) Seo ) ([swa) ! STE(aJ ! [Slkm S } ’ [Sak(a) Seva })>
Ch =<[Sﬂ(a1);5p(al) (|: T (a) l T j|,|:5 'S :| |: FA(al)'SFE(al):|)>’

a, :<[sg(az),sp(az) ([ ) S e } ST azJ [ ) sFU(BZJ)> and 1 >C, then the operational properties for
interval linguistic neutrosophic uncertain linguistic numbers are as follows:

(1) a®a_-ada

(2 a®a,=a, ®a

(3) Aa ®a)=la @ Aa,

4 Aa®la= (L+4) a

(5) a'®a'=(a ®a,)

6) a*®a*=a*"

Definition 25: For any two-interval linguistic neutrosophic uncertain linguistic numbers

&= <[Se<an’ S ) ([Sw tb(a) } ! [Slw ' Sw} ! [Sw et })>

4, :<[5€(az)’sp(az&’([STAL(aZ)’Sr}f(az)}’|:S|,k(az)’Sll,{(az)}’[Spk(az)’SF,‘{(az)}»’ the Hamming distance between a, and a, can
be defined as:

d(a,a,)= e 1(\0 a)Tia)-0()T1a)+/0@)T{a)-0(a)T5(a,) +o@)1{a)-0(a)i{a)] +|0(a){a) - 0(a)1{a) +

0(a)F{a)-0(a,)F{a,) +[6(@)F{ —€(a2)Fi(az)\+\p(@)TKal) (@)Ta)|+|p@)T{a)- pla)T Aaz)\+
[p(a)1{a)- p(a,)1{a)|+|p(a)1a) - p(a,)1{a)] +[p(a)F (&) - p(@)F{a)|+|p(@)F{a) - p(a)F{a))

Definition 26: For an interval linguistic neutrosophic uncertain linguistic number

a:<|:89(a)’Sp(a)j|’(|:STAL(a)’sTk’(a):|’|:Sl,k(a)’Slh’(a):|’|:SFAL(a)'SFE(a):|)>’ then the score function a can be

expressed by the equation below:

1

S@= 12(

6(a) + p(a))(4+T,(2) - 1,(a) - F,()+T,(a)-1,(2) - F(a))

. . N _ .
Definition 27: Let p,q>0, a _<|:Sﬂ(a')'SP(%):I’([STk(ai)’STH(%)]’[SIk(ai)’slk(ai):|’|:SF,&(ai)’SFE(aa):|)> be a set of interval

linguistic neutrosophic uncertain linguistic numbers, and @=(@,, @,,..®,) be the weight vector of a,

n

®20(j =1 2--,n) and Z:a)I =1. Then the aggregated result by interval linguistic neutrosophic

=

uncertain linguistic weighted arithmetic Bonferroni mean (ILNULWABM) operator can be expressed as:
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Next, some special cases of the ILNULWABM operator concerning the parameters p and q will be

demonstrated respectively.

[17(17@ —FY (a)+orFY (3 ))P(l—wj -FR (aj J+ajFR (2 ))q JW




A VIKOR Method Based on the Relative Closeness on Interval Linguistic Neutrosophic ...

84

(1) When p=0 and q=0, then
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(3) When p=0.5 and q=0.5, then

2
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ILNULWABM = (s,,5,,..5, )
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4 | The VIKOR Method Based on Relative Closeness Coefficient
under ILNULN and ILNULWABM Operator

For a group decision-making problem, there is a discrete set of alternatives A={A,A,,... A } and n attributes
C:{CI,CZ,...CH}, and the attribute weight vector of C is a)=(a)1,a)z,...a)n )T . There are A decision-makers

D= { D, D,, ...DA} assess this problem and the relative importance vector is W=(W,W,,. W, )T.

For the decision maker D*, the evaluation value of A on atttibute C, is represented by the decision matrix

R=(r).,. whererf = <[Sﬂ<n}) 'S, }’([STLM)'ST“(HFJ’[S'L(H?) ' S'“(ﬁ?)}'[SFL(ﬁ?] ' SFU(“HD>'

The steps of the VIKOR method based on the relative closeness coefficient under interval linguistic
neutrosophic uncertain linguistic numbers and ILNULWABM operators are shown as follows:

Step 1: Normalize the decision matrix R* =(r) .

First, the decision-making information I in the matrix R :( rijk) must be normalized. The normalized
mxn
matrix F of the decision matrix can be expressed as:

k
F = (1), 1 = (i=1.20m; j=1.2..n)

(f)

i=1

Step 2: Aggregate information from each decision-maker.

Different decision-makers give different evaluation information. To aggregate the evaluation values of experts,
we can use the ILNULWABM operator to aggregate the evaluation information matrix F* given by the
decision maker D* to obtain the integration matrix F .

F=(f,) .f, =ILNULWABM (', f’,..f")

Step 3: Calculate the positive ideal alternative f;" and the negative ideal alternative f; .

We can use the score function to obtain the positive ideal alternative and the negative ideal alternative:
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f={max f, }={maxs(f,)}, f={minf,}={mins(f,)}

l(9( f\j)+p( fij))(4+TAL(fij) B I/i(fij) " FAL(fU') +T:(fij)- I:(fij)- F;:J(fij))

S(fij):12

Step 4: Compute the group utility values AS, and individual regret values AR, .
—f. )—d —f.
AS — Z o, ( (IJ ) f( )

)
() (1)
PO

Step 5: Compute the values Q,

AS, —AS™ AR —AR™

R .
AST—AS AR" —AR

Where AS* =maxAS, , AS"=minAS, , AR =maxAR , AR"=minAR and & represents the weight of the

strategy of the “the majority of criteria”.

Step 6: Sort the AQ, in descending order.

Step 7: Test the compromise solution.

5 | A Numerical Example

Now we consider a group decision-making problem. Suppose there are four alternatives labeled A AL A,

. . . w=|(S,,S,,S ..
and three attributes labeled C.C..C, whose weight vector is ( 3T 7) . Three decision-makers assess

41 Y6

this problem and the relative importance vector W=(S,,S;,S ) Here, we let S = {Si li=01, 2,...8} where §;

represent a possible value for a linguistic number, and

S ={s,,5,,5,,5;,5,:5,5:S,, 5, } ={S, = extremely poor, s, = very poor,s, = poor,
s, =a little poor, s, = medium, s, = a little good,
s, =good, s, = very good, s, = excellent}

The decision-makers assign values to the alternatives through the interval linguistic neutrosophic uncertain

linguistic numbers to form three decision matrices, as shown in Tables 1-3.

Step 1: Normalize the decision matrix R". Firstly, we should normalize the original data utilized. The

normalized decision matrices are shown in Tables 4-6.

Step 2: Aggregate information from each expert. For easy calculation, we should make the weights normalized
by the formula

. , W

o, =5——W, = '
2 (W)

> (o)

T

. . . - . T
Through calculation, we can get the normalized weight vectors: @ —(50,21, Soze 30‘5) , W =(So‘33, Spss 50‘17) .

Next, we use the ILNULWABM operators to gather decision information from all decision-makers. The
specific calculation method is shown in Definition 27. Here we let p=1 and q=1. The group decision matrix
we obtained is shown in Table 7.
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Table 1. Decision matrix R1 of the decision-maker D*.

C C; GCs
<(85,54),(186,57][S2,54][S0,S1])> <(55,56),([85,5¢][S2,55] [S1,52])> <(84,55),(154,55][S2,55] [S3,S4])>
<(S4,55),([S5,56] [S4,55][S2,53])> <(54,55),([S4,55][S3,54][S2,55])> <(57,58),([S5,56][S1,52][S2,53]) >
<(57,88),([54,55][S2,55][S3,54])> <(55,54),(S6:57][S2,54] [S1,52])> <(85,54),(154,55][S5,94] [S3,S4])>
<(85,56),([55,56][S2,55][S2,S5])> <(56,57),(185,54][S2,54] [S4,55])> <(87,58),(57,56][S2,55] [S0,S1])>

Table 2. Decision matrix R2 of the decision-maker D*
C C; G
S7,58][S3,54] [S1,52])> <(84,S5),([S5,56] [S2,55][S2,53])> <(52,55),([S5,56][S3,54][S2,S3])>
S4,55][S3,54][S2,55])> <(57,58),([S5,57][S3,54][S1,52])> <(57,58),([S4,55][S2,35][S3,54]) >
S6,57[51,52][S0,S1])> <(85,94),([S4,55][S2,53][S5,94]) > <(S5,56),([S6,57][S5,54][S0,51]) >
S5,56][S2,85][S2,S5])> <(85,56),(86,871[S3,54][S1,521)> <(84,85),([85,56][S2,55][S2,S5]

<(85,84),(
<(S6:57),(
<(S2,S3),(
<(87,58),(

— | —

—

S(,,S7] S3,S4] )>

—

Table 3. Decision matrix R3 of the decision-maker D?.
C C; G;

S6,57][S2,35][S1,52])> <(84,55),([S5,S6][S2,55] [S1,52])> <(82,53),([S6,57][S2,54] [S1,
S5,56[S1,52][S2,53])> <(86,57),([S7,S8][S1,52][S0,51])> <(85,56),([S5,56][S2,53][S3,5

S4,95][52,55][S5,54])> <(S2,83),([S6,57][82,85][S1,82])> <(S5,84),([S5,5¢][S5,54][S2,
S7,56][S2,54] [So,S1])> <(55,56),([S5,5¢][S2,54] [S2,55])> <(57,56),([54,55][S2,55] [S3,54])>

Sa])>
4])>
Ss])>

<(84,S5),(
<(85,54),(
<(S2,S3),(
<(S6,57),(

— | —

—

Table 4. Normalized decision matrix F1 of the decision-maker D*
Cy C
<(S0.3015,90.3369),([S0.5941,90.5793] [S0.3780,90.5208] [ S0.0000,50.1690]) > <(S0.5392,50.5345),([S0.5392,50.5345] [ S0.4364,90.3974] [S0.2132,50.3086]) >

<(S0.7035,90.6737),([S0.3961,90.4138] [S0.3780,90.3906] [ S0.7276,50.6761]) > <(S0.3235,50.3563),([S0.6470,90.6236] [S0.4364,90.5208] [S0.2132,90.3086] ) >

[
<(S0.4020,90.4211) ,([S0.4951,90.4966] [S0.7559,90.6509] [ S0.4851,50.5071]) > <(S0.4313,50.4454),([S0.4313,90.4454] [S0.6547,90.5298] [ S0.4264,50.4629] ) >
[
<(S0.5025,50.5253) ,([S0.4951,90.4966] [ S0.3780,90.3906] [ S0.4851,50.5071]) > <(S0.6470,50.6236),([S0.3235,90.3563] [ S0.4364,90.5298] [ S0.8528,50.7715]) >
G
<(S0.3607,50.3846), ([S0.3885,90.4082] [S0.4714,90.4867] [S0.6396,90.6172]) >
<(S0.6312,50.6154),([S0.4856,50.4899] [S0.2357,90.3244] [S0.4264,50.4629] ) >
<(S0.2705,50.3077),([S0.3885,90.4082] [S0.7071,0.6489] [S0.6396,90.6172]) >
[

<(S0.6312,50.6154),([S0.6799,90.6532] [S0.4714,50.4867] [S0.0000,90.1543] ) >

Table 5. Normalized decision matrix F2 of the decision-maker D?
Cy C
<(S0.3030,50.3405) ,([S0.6236,90.6065] [S0.6255,90.5963] [ S0.3333,90.4170]) > <(S0.4020,50.4211),([S0.4951,50.4758] [S0.3922,90.4243] [S0.5164,90.5222]) >

[
<(S0.6061,90.5959),([S0.3563,90.3790] [S0.6255,50.5963] [ S0.6667,90.6255]) > <(80.7035,90.6737),([S0.4951,0.5551] [S0.5883,50.5657] [S0.2582,50.3482]) >
[

3] ]
<(S0.2020,90.2554),([S0.5345,90.5307] [S0.2085,50.2981] [ S0.0000,50.2085]) > <(S0.3015,50.3369)([S0.3961,90.3965] [S0.3922,50.4243] [S0.7746,90.6963] ) >
<(S0.7071,90.6810) ([ S0.4454,90.4549] [S0.4170,50.4472] [S0.6667,90.6255]) > <(S0.5025,50.5053), ([S0.5941,90.5551] [S0.5883,90.5657] [S0.2582,90.3482]) >
Cs
<(S0.2063,550.2592),,([S0.4951,90.4966] [S0.5883,0.5657] [S0.4851,90.5071]) >
<(S0.7220,50.6911),( [S0.3922,50.4243] [S0.7276,0.6761]) >
]

<(So0,5157,905183),(

[
[So.3061,50.4138
[So0.5041,50.5793] [So.5883,50.5657] [S0.0000,0.1690] ) >
[

|
|
|
|

<(S0.4126,50.4319) ,([S0.4951,0.4966] [S0.3922,50.4243] [S0.4851,50.5071]) >
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Table 6. Normalized decision mattix F3 of the decision- maker D*

C Cy
Ay <(S0.4961,50.5025) ([S0.5345,50.5307] [S0.5547,50.4867] [S0.2673,50.3651]) > <(S0.4444,50.4583) ([80.4303,50.4411] [S0.5547,50.4867] [S0.4082,50.4714]) >
A, <(S0.5721,50.4020)  ([S0.4454,50.4549] [S0.2774,50.3244] [S0.5345,50.5477]) > <(S0.6667,50.6417) ([S0.6025,50.5882] [S0.2774,50.3244] [S0.0000,50.2357]) >
A; <(S0.2481,50.3015) 5 ([S0.3563,50.3790] [S0.5547,50.4867] [S0.8018,50.7303] ) > <(80.2222,50.2750) 5 ([S0.5164,50.5147] [S0.5547,50.4867] [S0.4082,50.4714]) >
Ay <(S0.7442,50.7035) s ([S0.6236550.6065] [S0.5547,50.6489] [S0.0000,50.1826]) > <(S0.5556550.5500) 5 ([S0.4303,50.4411] [S0.5547,50.6489] [S0.8165,50.7071]) >
Cs
Ay <(S0.2144,50.2683) ([S0.5941,50.5793] [ S0.4364,50.5657] [S0.2085,50.2981]) >
A, <(S0.5361,50.5367) ([ S0.4951,50.4966] [ S0.4364,50.4243] [S0.6255,50.5963]) >
A; <(S0.3216,50.3578) ([S0.4951,50.4966 ] [S0.6547,50.5657] [S0.4170,50.4472]) >
Ay <(S0.7505,50.7155) ,([S0.3961,50.4138] [ S0.4364,50.4243] [S0.6255,50.5963]) >

Table 7. Group decision matrix F.
C1 CZ

Ay <(80.1099,90.1197),([S0.1896,90.1853] ,[S0.6818,90.6896] ,[S0.4670,50.5464] ) > <(S0.14635,90.1498) ,([S0.1586,90.1563] [ S0.6503,90.6294] ,[S0.5863,90.6248] ) >
A, <(S0.1503,90.1541),([S0.1355,90.1396] ,[S0.7154,90.6871],[S0.7072,50.7071])> <(S0.1880,90.1847),([S0.1584,90.1668] ,[S0.6773,90.6487] ,[S0.4895,90.5693] ) >
A; <(S0.1118,90.1243),([S0.1405,50.1441],[S0.6062,90.6054] ,[S0.7388,50.7270] ) > <(S0.0928,90.1052) ,([S0.1619,90.1595] 5[ S0.6503,90.6594] ,[S0.6394,90.6598] ) >
Ay <(80.2036,90.2004),([S0.1606,90.1610],[S0.6423,90.6771],[S0.5923,90.6255] ) > <(S0.1803,90.1778) ,([S0.1431,90.1442] ,[S0.6865,90.7269] ,[S0.8098,90.7642]) >
Cs
Ay <(S0.0824,50.0969) ([S0.1525,50.1541],[S0.6646,90.6957],[S0.6377,50.6542] ) >
A, <(S0.2058,50.2002),([S0.1437,50.1468],[S0.5754,90.5971],[S0.7316,50.7203]) >
As <(S0.1183,50.1268),([S0.1571,90.1582],[S0.7722,50.7326],[S0.5976,50.6270] ) >
Ay <(S0.1788,50.1778),([S0.1711,90.1699] ,[S0.6274,50.6339],[S0.6059,50.6279] ) >

Step 3: Calculate the positive ideal alternative f," and the negative ideal alternative f; .

We can use the score function to obtain the positive ideal alternative and the negative ideal alternative.
According to the score function S(f”):%(H(f“)+p(f”))(4+TAL(f”)-I:(f”)-F;(fu)+T:(f“)-Ii(fu)-F;’(f”))’ we can get the
scores as follows:

S(f,)=0.0381, S(f,)=0.045, S(f,)=0.0247
S(f,)=0.037, S(f,)=0.0603, S(f,)=0.0564
S(f,)=0.0316, S(f,)=0.0283, S(f,)=0.0324
S(f,)=0.0601, S(f,)=0.0388, S(f,)=0.0549

According to the formula f'= {max f. }={maXS(fij )}, fj':{min fij}:{min S ( f; )} , the positive ideal
alternatives fij+ and the negative ideal alternatives fiJf are shown as follows:

)} f41 = <(SO.2036 1%0.2004 ) 1 ([SO 1606 ’SO 1610
S={min £} ={minS(f,)} = £, = ((Ssru0:S0ss ) ([

[ 0.6423 ’ 0.6771 ] 0.5923 ’ 0. 6255

(/)
(/)

0.1405 7

0. 1441] ’ [ 0.6062 ’ 0. 6054 0 7388 ‘ 0.7270 >

fr={

fr={

f2+ = {max fIZ } f )} = f22 = <(SO.1SEO ’SO 1847 ) 4 ([SO 1584 ’ 0.1668 ] ' [SO 6773 ’ 0.6487 ] ! [SO 4895 ’SO.5693 >
fzi = {mln fi2 } = mlns( fIZ )} = f32 = <(SO.0928 ’80.1052 ) ' ([SO 1619 ’ 0.1595 ] ’ [80.6503 1%0.6594 ] ’ [SD 6394 ’80.6598 ])>

f3+ = {max f|3} :{ maXS( fi3 )} = f23 = <(SO.2058 ’SO.ZOOZ ) ' ([SO 1437 ’ 0.1468 ] ' [80.5754 ' 05971] ! [50.7316 ’80.7203 ]>> '
f37 = {mln fi3 } = {mins( f|3 )} = f13 = <(SO 0824 ’SO 0969 ) 4 ([SO 1525 70. 1541] ! [80.6646 1%70.6957 ] ! [80.6377 ’SO.6542 ] >

Step 4: Compute the group utility values AS, and individual regret values AR,



89 Zhai and Sun | Plithogenic Log. Comp. 1 (2024) 73-92

AS, =Y o a(f, -1, )7_d(fi+_ fl'):—0.6202,ASZ “Yo, (f - )7_d(fj+_ fz')—0.8034,
= d(f —f) = d(f, —f)

AS, =Y o a(f -1 fd(ff _ f31)=-0.6765,A54 Yo, a(f -5 )7_d(f"+_ f“')—o.6957,
= d(f, —f; = d(f, —f)

AR =max e Ol(f"__f“)_d(f"*_f“'):oo451AR ) d(f, -1, ‘d(ff—fz,):OS
j i d(f]i_fj*») ' ! 2 j i d(ff—ff) =

AR, =max @ a(f, -1, _d(f;_f“):-onesm =maxa),d(fji_f4j)_d ff_f“i):ozs?s
¢ i d ( fj’ — fr) . 1 4 i ] d fjf _ fj+ . .

Step 5: Compute the values AQ,

Here we make € = 0.5. The VIKOR values AQ, for each alternative can be calculated as follows:

AQ, - AS, 7ASi +(1—5) AR fAR: ~0.5x -0.6202+0.6765 +0.5x 0.0451+0.1765 -0.1828
AST —AS AR" — AR 0.8034+0.6765 0.5+0.1765

AQ, =& AS, _AS, +( _8) AR, _AR, ~0.5x 0.8034+0.6765 +0.5x 0.5+0.1765 _
AST —AS AR — AR 0.8034+0.6765 0.5+0.1765
AS, —AS” AR, —AR™ -0. +0. -0. +0.

AQ, =28, S,+( ) ARAR oo 0.6765+0.6765 . -0.1765+0.1765 _
AS" —AS AR" —AR 0.8034+0.6765 0.5+0.1765

- B — B . +0. . +0.

A0, = sAS“—AS,+(1—e) AR =R 5 06957406765 . 0.2578+01765 10 o

AS" —AS AR' —AR 0.8034+0.6765 0.5+0.1765

Step 6: Sort the AQ; in descending order.

We can sort the alternatives according to the values of AS, , AR, and AQ; . The larger the value, the better

the alternative. Then, according to the ranking process, three ordered lists can be obtained as displayed in
Table 8.

Table 8. Group utility value, individual regret value, and compromise evaluation value.

Ay A A; Ay Ranking results compromise solution
As;  -0.6202 | 0.8034 = -0.6765 0.6957 Ao> As> Ar> As Az Ay
AR; | 0.0451 0.5000 -0.1765 0.2578 Ao> As> Ar> As Az Ay
AQ;  0.1828 1.0000 0.0000 0.7846 Ao> Ay> Ar> As Az Aq

Step 7: Test the compromise solutions.

The alternatives are ranked by AQ : AQ, >AQ, > AQ, > AQ,. The best alternative is A, with AQ, =1, and the

alternative A, is the second with AQ(A, ) =0.7846 . Due to this AQ, —AQ, =0.2154 < 4_11 =0.3333, it doesn’t

satisfy condition 1- acceptable advantage. However, alternative A, is also the best sorted by AS and AR

and satisfies condition 2. In that AQ, —AQ, =0.8172 >ﬁ =0.3333, so A and A, are both compromise

solutions. These results indicate that A, the best choice among the four alternatives, at the same time, A,

could be the compromise solution that holds steady during the whole decision-making process.

Due to the decision results being related to the parameters p, and q on the ILNULWABM operator, it is

necessaty to make an analysis and discussion.

Similatly, in the VIKOR method, the compromise evaluation value of each alternative is affected by the group
utility weight €. To consider the impact of different values of € on the evaluation results, the analysis is
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performed by setting different € to observe their impact. The impact of the sorting result is shown in Table
9.

It can be seen from Table 9 that under the same value of ¢, whatever the p, q is, the optimal scheme remains

unchanged. Similarly, keeping the p, ¢ fixed, the optimal solution remains the same based on different €. So p,

q, and € have a limited impact on the ranking results.

Table 9. Group utility value, individual regret value, and compromise evaluation value in different p,¢and €

Ay A As Ay Ranking results co:zf:z:;ise

AS 06202 08034 -0.6765 06957  A2> A4> Al> A3
AR 0.0451 0.5000 201765 02578 A2> A4> Al> A3

pill’ £=04 02117 1.0000 0.0000 07561  A2> A4> Al> A3 As Ay
T A0 e=05 01828 1.0000 0.0000 07846 A2> A4> Al> A3
£=06 01538 1.0000 0.0000 08131  A2> A4> Al> A3
AS 06700 0.8068 -0.6047 0.6544  A2> A4> A3> Al
AR 0.0400 0.5000 201047 02700  A2> A4> A3> Al

pj)’ £=04  0.1435 1.0000 0.0177 07305  A2> A4> Al> A3 As Ay
U e=05 0119 1.0000 0.0221 07582 A2> A4> Al> A3
£=06  0.0957 1.0000 0.0266 07859  A2> A4> Al> A3
AS 06442 0.5800 -0.1683 05702 A2> A4> A3> Al
AR 0.0378 0.5000 0.2100 05000  A2= A4> A3> Al

P i%i’_) £=04  0.0000 1.0000 0.3790 09968  A2> A4> A3> Al AsAs
T aQ e=05 00000 1.0000 0.3807 09960  A2> A4> A3> Al
£=0.6  0.0000 1.0000 0.3823 09952 A2> A4> A3> Al

6 | Conclusion

This article proposes the concept of interval linguistic neutrosophic uncertain linguistic numbers. ILNULN
consists of two parts: interval linguistic neutrosophic and uncertain linguistic number. The interval linguistic
neutrosophic reflects the subjective linguistic judgment of the decision maker on the given uncertain linguistic
number, and the uncertain linguistic number reflects the attitude of the decision maker towards the evaluation
object. Based on interval linguistic neutrosophic uncertain linguistic number, this paper studies its basic
properties, algorithms, scores function, and Hamming distance between two numbers, and proposes an
interval linguistic neutrosophic uncertain linguistic weighted arithmetic Bonferroni Mean (ILNULWABM)
operator. In addition, this paper applies ILNULN and ILNULWABM operators to the VIKOR method
based on the relative closeness coefficient and discusses the impact of different parameters p, q, and € on the
MAGDM. Finally, we give an example to illustrate our theory, which proves the practicability and feasibility
of the method proposed in this paper, and it improves and enriches the theory of MAGDM.

This article discusses and studies the VIKOR problem with ILNULN; and it has achieved certain results. But
this research still needs to be further improved:

1) This article only considers the MAGDM problem in which the attribute weights and expert weights
are single-valued linguistic numbers. The attribute weights and expert weights are not yet considered
in the interval linguistic value. However, this situation is common in practical decision-making.
Therefore, we can conduct further expansion research in the future.
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2) In future research, it will be necessary and meaningful to apply the proposed interval linguistic
neutrosophic uncertain linguistic MAGDM method to solve some practical problems in other areas,
such as personnel evaluation, medical artificial intelligence, and pattern recognition.
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