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1 |Introduction    

Neutrosophic statistics, an extension of interval statistics, provides a robust framework for handling various 

indeterminacies in statistical analysis, which makes it a powerful tool for predicting intervals in machine 

learning [1]. This form of statistics is particularly useful when data, inferential procedures, or probability 

distributions are not precisely defined but are instead characterized by uncertainty or imprecision. As machine 

learning increasingly permeates various domains, the ability to predict intervals rather than single-point 

estimates becomes crucial, especially in decision-making contexts where understanding the reliability and 

uncertainty of predictions is paramount [2]. 

In regression analysis, representing predictions as prediction intervals provides a more comprehensive view 

of the uncertainty associated with the predictions. A prediction interval offers a range within which we expect 

the true value of the dependent variable to fall with a certain probability, typically 95% or 99%. This is 

particularly useful because it accounts for the variability in the data that might not be captured by the 

prediction alone. To calculate a prediction interval, one must consider both the uncertainty in the estimate of 

the regression model and the inherent variability of the data. The interval is constructed around the predicted 

value and is usually symmetric, extending a certain amount above and below the predicted value [3]. 
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Utilizing prediction intervals in regression analysis is beneficial because they offer a realistic spectrum of 

possible outcomes, which aids in the decision-making process. This acknowledges that a single predicted 

value is not absolute but rather a likely scenario within a range of potential outcomes. To further refine this 

model, neutrosophic statistics can be applied, which excel at managing the ambiguity and indeterminacy of 

data. By converting the interval into a neutrosophic number [4], the traditional interval is enhanced to include 

an indeterminacy component. This addition captures the uncertainty and imprecision that are typically present 

in real-world data, offering a more nuanced understanding of the data's variability. This article explores the 

integration of neutrosophic statistics into regression analysis, demonstrating its efficacy in handling 

uncertainty and improving the reliability of predictive models. 

2 |Preliminaries 

Machine learning (ML) involves mathematical formulations to create models that can learn from data to make 

predictions or decisions without being explicitly programmed to perform those tasks. Interval prediction in 

machine learning refers to the technique of predicting a range of possible outcomes for a given input rather 

than a single-point estimate. By providing intervals, these methods offer not just predictions but also an 

insight into the reliability and uncertainty of the predictions, which is crucial for decision-making in uncertain 

environments [5]. 

For a dataset with independent variables 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] and a dependent variable 𝑦, the objective of 

regression analysis is to model the relationship between 𝑋 and 𝑦 accurately. This relationship is mathematically 

expressed as [6]: 

𝑦 ≈  𝑓(𝑋;  𝜃)                 (1) 

where : 

𝑦 is the dependent variable or the target that is to be predicted. 

𝑋 represents the independent or explanatory variables that are used to predict  

𝑓 is the regression function, which may vary in form depending on the type of regression model used (linear, 

polynomial, logistic, etc.). 

𝜃 are the parameters or coefficients of the model, adjusted during the training process to minimize a loss 

function, typically the Mean Squared Error (MSE) in regression [7]. 

In regression analysis, representing predictions as prediction intervals provides a more comprehensive view 

of the uncertainty associated with the predictions. A prediction interval offers a range within which we expect 

the true value of the dependent variable to fall with a certain probability, typically 95% or 99%. This is 

particularly useful because it accounts for the variability in the data that might not be captured by the 

prediction alone[8]. 

To calculate a prediction interval, one must consider both the uncertainty in the estimate of the regression 

model and the inherent variability of the data. The interval is constructed around the predicted value and is 

usually symmetric, extending a certain amount above and below the predicted value. This range is determined 

based on the standard error of the prediction and the residual standard deviation, which reflects the spread 

of the residuals or errors of the model [9]. 

For example, in a simple linear regression, the prediction interval for a new observation is given by [10]:  

𝑦̂0 ± 𝑡∝ /2,𝑛−2 ⋅ 𝑆𝐸               (2) 

Where 𝑦̂0 is the predicted value of y from the t-distribution for a specified confidence level ∝ and 𝑛−2 degrees 

of freedom, and 𝑆𝐸. 
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Utilizing prediction intervals in regression analysis is beneficial because they offer a realistic spectrum of 

possible outcomes, which aids in the decision-making process. This acknowledges that a single predicted 

value is not absolute but rather a likely scenario within a range of potential outcomes. This method of 

forecasting effectively incorporates the inherent uncertainties associated with future predictions, providing a 

more accurate depiction of what to expect. To further refine this model, neutrosophic statistics can be applied, 

which excel at managing the ambiguity and indeterminacy of data. By converting the interval into a 

neutrosophic number, the traditional interval is enhanced to include an indeterminacy component. This 

addition captures the uncertainty and imprecision that are typically present in real-world data, offering a more 

nuanced understanding of the data's variability. The neutrosophic treatment of the interval is as follows [11]: 

𝑦̂0 − 𝑡∝/ 2,𝑛−2 ⋅ 𝑆𝐸 + (𝑦̂0 + 𝑡∝ /2,𝑛−2 ⋅ 𝑆𝐸)𝐼              (3) 

Here, 𝐼𝑁  represents the indeterminacy factor associated with the prediction, where 𝐼𝑁 ∈ [𝐼𝑙 , 𝐼𝑢],  This 

notation introduces the bounds of indeterminacy. 𝐼𝑙  (lower indeterminacy) and 𝐼𝑢   (upper indeterminacy), 

which defines the range of possible deviations due to uncertain elements affecting the forecast [12,13]. 

3 |Material and Methods 

The Diabetes Dataset is a classic dataset used for regression analysis. Originating from the Diabetes Research 

Institute in Scania, Sweden, this dataset includes medical data from 442 patients. The target variable is a 

quantitative measure of diabetes progression one year after the baseline [14] as shown in Figure 1. 

 

Figure 1. Visual analysis of variable distributions in diabetes research data. 

The process of analyzing a dataset for regression and using neutrosophic numbers to represent uncertainty 

can be broken down into several key steps: 

(i) Data Partitioning: The first step is to divide the data into training and testing sets. This split is crucial 

as it allows for the validation of the model on unseen data, ensuring the model's performance is not 

just a result of overfitting the training data. Typically, data scientists might use a 70-30 or 80-20 split 

where 70% or 80% of the data is used for training, and the remaining is for testing. 
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(ii) Training the Models: Each model is then trained on the training set. This involves adjusting the model 

parameters to best fit the data. Common regression models include Linear Regression [15], Ridge 

Regression [16], and Random Forest [17], among others. The training process involves finding the 

model parameters that minimize a loss function, essentially capturing the underlying pattern of the 

dataset. 

(iii) Estimation of Prediction Intervals: After the models are trained, the next step is to estimate 

prediction intervals for new observations. This is where neutrosophic numbers come into play. 

Unlike traditional crisp intervals, neutrosophic intervals include measurements of truth, 

indeterminacy, and falsity, allowing for a more nuanced representation of uncertainty in predictions. 

Each model may require different methods to calculate these intervals, considering the model's 

specific characteristics and the data's nature. 

(iv) Calculation and Analysis of Uncertainty Through Neutrosophic Numbers: The final step involves a 

detailed analysis of the uncertainty represented by the neutrosophic numbers. This includes 

evaluating how the indeterminate component of these numbers varies with different models and 

what it suggests about the data's complexity or variability. For example, a higher indeterminacy might 

indicate more significant external influences or inherent unpredictability in the dataset. 

In this case, we employ neutrosophic means to combine interval predictions with other methods as part of a 

fusion approach in regression analysis. Neutrosophic means are particularly useful for integrating different 

predictive models because they allow for the incorporation of uncertainty, indeterminacy, and conflicting 

information which typically arise from diverse data sources or model outputs. This approach enhances the 

robustness and reliability of the predictive models by providing a more comprehensive framework that 

accounts for various aspects of uncertainty. 

The neutrosophic mean is denoted as 𝑋𝑛, is calculated by considering the neutrosophic inclusion 𝐼𝑁that 

belongs to the interval [𝐼𝑙, 𝐼𝑢]. This mean consists of two main elements: 𝑋𝑙 , which is the mean of the lower 

part of the neutrosophic samples, and 𝑋𝑢, which is the mean of the upper part. The respective definitions are 

[18]: 

𝑋𝑙 =
∑ 𝑋𝑖𝑙

𝑛𝑙
𝑖=1

1

𝑛𝑙
                                                          (4) 

𝑋𝑢 =
∑ 𝑋𝑖𝑢

𝑛𝑢
𝑖=1

𝑛𝑢
                                                                 (5) 

where 𝑛𝑙 and 𝑛𝑢represent the number of elements in the lower and upper parts of the neutrosophic samples, 

respectively. Therefore, the neutrosophic mean 𝑋𝑛, is expressed as the sum of 𝑋𝑙 and 𝑋𝑢, adjusted by the 

interval of indetermination 𝐼𝑛: 

𝑋𝑁 =  𝑋𝑙 + 𝑋𝑢𝐼𝑁;  𝐼𝑁 ∈  [𝐼𝑙 , 𝐼𝑢]                                                    (6) 

𝐼𝑙,=0, and 𝐼𝑢  

𝐼𝑢 =
𝑋𝑢−𝑋𝑙

𝑋𝑢
                            (7) 

4 |Results 

The selected test case for prediction has the following standardized characteristics: 

 Age (age): 0.045341 

 Sex (sex): -0.044642 (indicates the female gender if we follow the standard encoding) 

 Body Mass Index (bmi): -0.006206 
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 Mean blood pressure (bp): -0.015999 

 S1 (blood - total cholesterol measurement): 0.125019 

 S2 (blood - low-density lipoprotein measurement): 0.125198 

 S3 (blood - high-density lipoprotein measurement): 0.019187 

 S4 (blood - thyroid medication measurement): 0.034309 

 S5 (blood - lamotrigine measurement): 0.032432 

 S6 (blood-glucose level measurement): -0.00522 

These values are standardized, meaning they are different from the average (expressed in number of standard 

deviations) in a reference population. For example, a value of 0.045 for age means that the subject's age is 

slightly above average. 

Table 1. Prediction intervals and neutrosophic forms for Time Series models. 

Model 
Prediction Interval [Lower 

Bound, Upper Bound] 
Neutrosophic form 

Linear Regression [39.11, 247.05] 39.11+247.05I; I∈[0,0.842] 

Ridge Regression [39.65, 252.67] 39.65+252.67I; I∈[0,0.843] 

Random Forest [67.00, 229.53] 67.00+229.53I; I∈[0,0.708] 

Mean [48.59,243.08] N=48.59+243.08I;𝐼 ∈ [0,0,0.8] 

 

In the presented Table 1, the prediction intervals and their corresponding neutrosophic forms for different 

regression models are compared. For Linear Regression, the prediction interval ranges from 39.11 to 247.05 

and is represented neutrosophically as 39.11+247.05𝐼, where I spans from 0 to 0.842. Ridge Regression shows 

a slightly tighter interval from 39.65 to 252.67, with its neutrosophic form given by 39.65+252.67,  I in the 

range [0, 0.843]. The Random Forest model, however, presents a different interval, spanning from 67.00 to 

229.53, with the neutrosophic representation as 67.00+229.53𝐼 I between 0 and 0.708. The average model 

provides a general overview with a prediction interval from 48.59 to 243.08 and its neutrosophic form 

expressed as 𝑁=48.59+243.08𝐼, I ranges up to 0.8. These intervals and forms are crucial for understanding 

the variability and confidence in the predictions made by each model. 

 

Figure 2. Neutrosophic number representation. 

Figure 2 shows cases of the neutrosophic number representation of prediction intervals for various regression 

models, emphasizing the role of modeling indeterminacy to understand the dynamics within the analyzed 
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data. The bars for each model—Linear Regression, Ridge Regression, Random Forest, and Mean—are 

marked with indeterminacy intervals, highlighting variations that may stem from complexities or uncertainties 

in the underlying data. 

The indeterminate component of the neutrosophic numbers illustrates the growing complexity or variability 

of the data across different models. From a decision-making perspective, this analysis underscores the 

necessity for continuous monitoring and updates to predictive models to maintain alignment with the evolving 

data landscape. Such a practice ensures that decision-making processes remain robust despite the increasing 

uncertainty. This approach not only confirms the benefits of integrating neutrosophic statistics into regression 

analysis but also emphasizes the critical role these techniques play in enhancing our understanding of 

uncertainties within predictive modeling. 

5 |Conclusion 

In conclusion, the integration of neutrosophic statistics into regression analysis presents a promising avenue 

to enhance the reliability and robustness of predictive models. By augmenting traditional interval predictions 

with measures of indeterminacy, neutrosophic numbers offer a nuanced representation of the inherent 

uncertainty in datasets. This sophisticated methodology empowers decision-makers to make more judicious 

choices by acknowledging the variability inherent in predictions and considering a spectrum of potential 

outcomes. Furthermore, the incorporation of neutrosophic statistics underscores the imperative of iteratively 

refining predictive models to accommodate evolving data dynamics and escalating uncertainties. 

Looking forward, potential research avenues could explore various facets to advance the utilization of 

neutrosophic statistics in predictive modeling. Firstly, investigating the impact of different neutrosophic 

aggregation techniques on model performance and uncertainty quantification could yield valuable insights for 

optimizing predictive accuracy. Additionally, exploring the synergistic potential of combining neutrosophic 

statistics with other machine learning paradigms, such as deep learning or ensemble methods, holds promise 

for enhancing predictive capabilities across heterogeneous datasets. Furthermore, extending the applicability 

of neutrosophic statistics beyond regression analysis to encompass diverse domains like classification or time 

series forecasting could broaden its utility and foster a more comprehensive understanding of uncertainty in 

machine learning frameworks. By addressing these avenues, future research endeavors stand poised to propel 

the frontier of predictive modeling and facilitate more informed decision-making in complex and uncertain 

settings. 
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