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1 |Introduction    

A. Csaszar [1] in 2002, introduced Generalized topological space which generalization the concept of 

“topological space” and the concept of “supra topological space” which was introduced by A.S. Mashhour et 

al. [2]. Since then many concepts in “topology” and “supra topology” have been developed to “generalized 

topological space”.  

Recently, F.Smarandache introduced “the theory of neutrosophic sets” [3, 4]. The theory of “neutrosophic 

topology” and neutrosophic topological space was introduced in 2012 [5]. 

In [6], G.Jayaparthasarathy, et al. studied the concept of “neutrosophic supra topological space” in 2019. 

Moreover, a new method is proposed to solve medical diagnosis problems by using a “single valued 

neutrosophic score function”. Also, neutrosophic supra-topological space is more generalization than 

neutrosophic topological space. Finally, they investigate new weak open and closed sets in this new space, 

called neutrosophic supra open (closed) sets. After P. G.Jayaparthasarathy, et al. found out “neutrosophic 

supra topological space”. this encouraged us to think of presenting neutrosophic generalized topological 

space. Moreover, this new generalization of neutrosophic space enabled researchers to define and study many 

concepts in “neutrosophic topology”. On the other hand, the “neutrosophic sets” and the new “neutrosophic 

sets” in this space may have applications in “the medical field” such as “diagnosis of bipolar disorder diseases” 

[7], “Intelligent Medical Decision Support Model” Based on “Soft Computing” and “IoT” [8], “evaluation 
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Hospital medical care systems” [9] and “A novel group decision-making model” for “heart disease diagnosis” 

[10]. 

In this work, we are defining a more generalized concept in “neutrosophic topology”, as we define the 

“neutrosophic generalized topological space”, which is more general than “neutrosophic topological space” 

and “neutrosophic supra topological space”. Also, we define many kinds of open and closed sets in this new 

space. Moreover, we study the properties of these sets. Finally, We introduce interior and closure operators 

in “neutrosophic generalized topological space”, and we study their properties. 

NSO(), NPO(), and NO() mean the family of all “neutrosophic semi-open sets” [11], “neutrosophic 

pre-open sets” [11], and “neutrosophic  open sets” [11]respectively. For a neutrosophic set Â, Âc denotes 

the “neutrosophic complement” of Â. 

More for “neutrosophic bi-topological space” in [12, 13]. And for “neutrosophic topological space” [14, 15]. 

2 |Preliminaries 

We need to recall some necessary definitions which are important to complement this paper.  

Definition 2.1. [3] Let ℵ be a set. A neutrosophic set (NS) Â is a subset having the form U={> x, U1, U2, 

U3 < : xℵ}; U1, U2, and U3 are the “degree of membership”, the “degree of indeterminacy” and the “degree 

of nonmembership” of all x∈ℵ. 

Definition 2.2. [6] A neutrosophic supra topology (NST) on ℵ is a family Ŵ of neutrosophic subsets in 

ℵ, satisfying the following axioms: 

i. 1N Ŵ and 0N Ŵ. 

ii. Ŵ is closed under “arbitrary union”. 

(ℵ, Ŵ) is called a “neutrosophic supra topological space” (NSTS) in X. Also, every element 𝝑 Ŵ is said to 

be a “neutrosophic open set” (NOS), A neutrosophic set fi is a closed set (NCS) iff fic Ŵ. 

3 |Neutrosophic Generalized Topological Space 

In this part, we present the neutrosophic generalized topological space and introduce the “neutrosophic 

generalized open set” and “neutrosophic generalized closed set” in this new space. 

Definition 3.1. let ℵ ≠ ∅ be a set, gN is a subcollection of neutrosophic sets on ℵ, then: 

gN is called “neutrosophic generalized topology” (NGT) on X if 0NgN and gN are closed under “arbitrary 

union”.  

Definition 3.2. Let gN be a NGT on ℵ, then: 

(ℵ, gN) is called a “neutrosophic generalized topological space” (NGTS). The “neutrosophic set” Â in ℵ is 

said to be “neutrosophic generalized open set” (NGOS) if Â gN, a neutrosophic set F in ℵ is said to be 

“neutrosophic generalized closed set” (NGCS) if Âc gN. 

 NGOS(ℵ) are a family of “neutrosophic generalized open sets”. 

 NGCS(ℵ) are a family of “neutrosophic generalized closed sets”. 

Remark 3.3. The following table illustrates the comparison of "fuzzy supra topological space", "neutrosophic 

supra topological space", "neutrosophic generalized topological space" and “neutrosophic topological space”. 
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Every fuzzy topological space 

is fuzzy supra topological 
3 

 

Example 3.4. Let  ℵ={𝓅, 𝓆 𝓇} gN ={ 0N, 𝔇, ℭ, 𝔅}; E ={ 0N, E , G , H }; 𝔇 ={> 𝓅, 0.3, 0.2 , 0.5 <, > 𝓆, 

0.6, 0.5 , 0.3 <,  >  𝓇, 0.7, 0.1 , 0.9 <}, ℭ ={> 𝓅, 0.4, 0.1 , 0.3 <, > 𝓆, 0.2, 0.6 , 0.7 <,  >  𝓇, 0.1, 0.3 , 0.4 <},  

𝔅 ={> 𝓅, 0.4, 0.2 , 0.3 <, > 𝓆, 0.6, 0.6 , 0.3 <,  >  𝓇, 0.7, 0.3 , 0.4 <}. 

(ℵ , gN) is (NGTS). 

 0N, 𝔇, ℭ, 𝔅 are NGOS. 

Example 3.5. Let (ℵ , gN) be a (NGTS), then: 

0N is a NGOS, 1N is a NGCS. 

Remark 3.6. 

(i) Every NTS is NGTS. But, the converse is not true. see the following example. 

(ii) Every NSTS is NGTS. But, the converse is not true. see the following example. 

(iii) gN is not closed under arbitrary intersection, see the following example. 

Example 3.7. In example 3.4, (ℵ, gN) is NGTS, but (ℵ, gN) is not NCTS nor NSTS. 

In example 3.4, 𝔇, ℭ are neutrosophic generalized open sets, but 𝔇ℭ ={> 𝓅, 0.3, 0.1 , 0.5 <, > 𝓆, 0.2, 0.5 

, 0.7 <,  >  𝓇, 0.1, 0.1 , 0.9 <} is not a “neutrosophic generalized open set”. 

Example 3.8. Let (ℵ, T) be a NCTS: 

Let gN =NSO(ℵ) or gN =NPO(ℵ) or gN =NO(ℵ) or gN =NO(ℵ) then gN is NGT on ℵ. 

Remark 3.9. 1N is a “neutrosophic open set” and 1N is a “neutrosophic supra open set”, but 1N is not a 

“neutrosophic generalized open set”. 

Remark 3.10. Let  (ℵ , gN) be a NGTS, then: 

Since gN are closed under arbitrary union. Then the arbitrary intersection of any NGCS is an NGCS. 

Remark 3.11. In any NSTS (or NTS) (X, S), the union of any two “neutrosophic supra open sets”, maybe 

1N, see the following example 

Example 3.12. Let ℵ={ 𝓅 } S ={ 0N, 1N, 𝔇, ℭ, 𝔅}; 𝔇 ={> 𝓅, 0.3, 0.2 , 0.5 <}, ℭ ={> 𝓅, 0.4, 0.1 , 0.3<,  
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𝔅 ={> 𝓅, 0.4, 0.2, 0.3 <}. 

Then (ℵ ,S) is a NSTS. 

0N, 1N, 𝔇, ℭ, 𝔅 are “neutrosophic supra open sets”. 1N  𝔇 = 1N . 

 The following theorem shows that this is not true in an NGTS. 

Theorem 3.13. Let (ℵ, gN) be a NGTS. But it is not NSTS then, the union of any two “neutrosophic 

generalized open sets”, fails to be 1N. 

Proof: 

Let Â, ß two NGOS, that satisfied Âß =1N. 

Since Â, ß two NGOS, we get Âß is NGOS, therefore 1N is an NGOS, which contradicts with assumption. 

4 |The Interior and Closure Operations 

In this part, we define the “closure” and “interior” via a neutrosophic generalized open set.  

Definition 4.1. Let  (ℵ, gN) be an NGTS, and Â is a neutrosophic set then: 

The union of any NGOS, contained in Â is called the “neutrosophic generalized interior” of Â  

(Ng-i(Â)). 

Ng-i(Â)={ ß  ; ßÂ ; ß NGOS(ℵ) }. 

Theorem 4.2. Let (ℵ , gN) be a NGTS, Â, ß are “neutrosophic sets” then: 

i. Ng-i (Â)  Â. 

ii. Ng-i (Â) is NGOS. 

iii. Â  ß    Ng-i (Â)  Ng-i (ß). 

Proof : 

i. Follow from the definition of Ng-i (Â) as a union of any “neutrosophic generalized open sets”, contained 

in Â. 

ii. since union of any NGOS, is NGOS, then Ng-i(Â)={ ß ; ßÂ ; ß NGOS(X)} is NGOS.  

iii. Prof is Obvious. 

Definition 4.3. Let  (ℵ, gN) be an NGTS, Â is neutrosophic set then: 

The intersection of any NGCS, including Â, is called “neutrosophic generalized closure” of Â  

( Ng-c(Â) ). 

Ng-c(Â) ={ß ; ßÂ ; ß NGCS(ℵ) } 

Theorem 4.4. Let  (ℵ , gN) be a NGTS, Â is “NS” then: 

i. Â  Ng-c (Â). 

ii. Ng-c (Â) is NGCS. 

Proof : 

i. Since Ng-c(Â)is an intersection of any NGCS contained in Â. 

ii. Follow from remark 3.9. 
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Theorem 4.5. Let  (ℵ , gN) be a NGTS, Â is neutrosophic set then: 

i. Ng-c (ℵ-Â)= ℵ- Ng-i (Â). 

ii. Ng-i (ℵ-Â)= ℵ- Ng-c (Â). 

iii. Ng-i (Â)= ℵ- Ng-c (ℵ-Â). 

iv. Ng-c (Â)= ℵ- Ng-i (ℵ-Â). 

Proof : 

i. ℵ- Ng-i(Â)= ℵ-[{ß  ; ß  Â ; ß NGOS(ℵ) }] 

={ℵ-ß  ; ℵ-ß  ℵ-Â ; X-ß NGOS(X) }= Ng-c(X-Â) 

 ={ℵ-ß  ; ℵ-ß  Â ; ℵ-ß NGOS(ℵ) }=ℵ- Ng-i(Â). 

ii. ℵ- Ng-c (Â)= ℵ-[{ß  ; ßÂ ; ß NGCS(ℵ) }] 

        ={ℵ-ß  ; ℵ-ß  ℵ-Â ; ℵ-ß NGCS(ℵ) }= Ng-i (ℵ-Â) 

iii. Follows from (2) by putting ℵ-Â in place of Â. 

iv. Follows from (1) by putting ℵ-Â in place of Â. 

Theorem 4.6. Let  (ℵ , gN) be a NGTS, and Â ℵ, then: 

i. Â is NGCS, then Ng-c (Â) = Â. 

ii. Â is NGOS, then Ng-i (Â)= Â. 

Proof : 

i. Follow the definition of Ng-c (Â) and Theorem 4.4.  

ii. Follow the definition of Ng-i (Â) and Theorem 4.2. 

Theorem 4.7. Let  (ℵ, gN) be an NGTS, Â is neutrosophic set then : 

i. Ng-c [Ng-c(Â)]= Ng-c (Â). 

ii. Ng-i [Ng-i (Â)]= Ng-i (Â). 

Proof : 

The proof is Obvious. 

Remark 4.8. Let (ℵ , gN)  be a NGTS, Let Â, ß X, then:  

i. Ng-i (Âß) Ng-i (Â)Ng-i (ß). 

ii. Ng-c (Âß)  Ng-c (Â)Ng-c (ß). 

iii. Ng-i (Âß)  Ng-i (Â)Ng-i (ß). 

iv. Ng-c (Âß)  Ng-c (Â)Ng-c (ß). 

Proof: 

i. Since Âß  Â,  Âß  ß then Ng-i (Âß) Ng-i (Â) and Ng-i (Âß) Ng-i (ß), hence Ng-i (Âß) 

Ng-i (Â)Ng-i (Â).  

ii. Since Âß  Â,  Âß  ß then Ng-c (Âß) Ng-c (Â) and Ng-c (Aß) Ng-c (ß), hence Ng-c (Âß) 

Ng-c (Â)Ng-c (Â). 
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iii. Since ÂÂß,  ßÂß then Ng-i (Â) Ng-i (Âß) and Ng-i (ß) Ng-i (Âß), hence  

Ng-i (Â) Ng-i (ß) Ng-i (Âß). 

iv. Since ÂÂß,  ßÂß then Ng-c (Â) Ng-c (Âß) and Ng-c (ß) Ng-c (Âß), hence Ng-c (Â) Ng-

c (ß) Ng-c (Âß).  

Remark 4.9.  

i. Ng-i (Âß)= Ng-i (Â)Ng-i (ß). 

ii. Ng-c (Âß)= Ng-c (Â)Ng-c (ß). 

It is easy to show that remark 4.9 is true in neutrosophic topological space (in this case, A, ß are neutrosophic 

sets in neutrosophic topological space). However, this remark 4.9 is not true in NGTS (in this case, A, ß are 

neutrosophic sets in NGTS), as shown in the following example.  

Example 4.10. Let ℵ={p} S ={ 0N, 1N, E,G,H}; E ={> 0.5, 1 , 0 <}, G ={> 0.25, 0 , 1<,  

H ={> 0.5, 1 , 1 <}, C ={> 0.5, 0.5 , 0<, D ={> 0.5, 0 , 0.5 <}. 

then 

Ngc(C) = {> 0.75, 1 , 0 <}, Ngc(D)= {> 0.5, 0 , 1 <}  

CD={> 0.5, 0.5 , 0.5 <}, Ngc(CD)= {> 1, 1 , 1 <}. 

Ngc(CD) Ngc(C)Ngc(D) = {> 0.75, 1 , 1 <}, 

 N={> 0.5, 1 , 0.25 <}, M= {> 0.5, 0.5 , 1 <}. 

 then 

Ngi(N) ={> 0.5, 1 , 0 <} Ngi(D)={> 0.25, 0 , 1 <} 

CD={> 0.5, 0.5 , 0.25 <}, Ngi(CD(={> 0, 0 , 0 < }. 

Ngi (CD) Ngi (C)Ngi (D) ={> 0.25, 0 , 0 < }. 

5 |New Neutrosophic Generalized Sets 

Definition 5.1. Let  (ℵ , gN) be a NGTS, then: 

i. Â “NS” U is said to be a “neutrosophic generalized pre-open set” (NGPOS) if U  Ng-i [Ng-c (U)].  

ii. Â neutrosophic set U is said to be a” neutrosophic generalized semi-open set” (NGSOS) if UNg-c 

[Ng-I (U)].  

iii. Â neutrosophic set U is said to be a “neutrosophic generalized -open set” (NGOS) if U Ng-i (Ng-

c [Ng-i (U)]).  

Definition 5.2. Let  (ℵ , gN) be a NGTS, then: 

i. Â Neutrosophic set F is said to be a “neutrosophic generalized pre-closed set” (NGPCS) if Uc is NGPOS. 

The family of NGPOS(NGPCS) set in ℵ is denoted by NGPOS(ℵ, gN) ( NGPCS(ℵ, gN)). 

ii. Â neutrosophic set F is said to be a “neutrosophic generalized semi-closed set” if Uc is NGSOS. The 

family of NGSOS(NGSCS) in ℵ is denoted by NGSOS(ℵ, gN) (NGSCS(ℵ, gN)). 

iii. Â neutrosophic set F is said to be Â “neutrosophic generalized -closed set” (NGCS) if Uc is NGOS. 

The family of NGOS (NGCS) in ℵ is denoted by NGOS(ℵ, gN) (NGCS(ℵ, gN)). 
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Theorem 5.3. Let  (ℵ, gN) be an NGTS then, Every NGOS is NGSOS. 

Proof.  

Let U be a NGOS in (ℵ, gN), We know that UNg-c(Â), and since U is an NGOS, we get U=Ng-i(Â), 

therefore UNg-c(Ng-i(Â)). 

Therefore U is NGSOS. 

Remark 5.4. The converse of the above theorem 5.3 is not necessarily true, see the following example.  

Example 5.5. Let ℵ={𝓅, 𝓆, 𝓇} gN ={ 0N, 𝔇, 𝔊}; 𝔇 ={> 0.4, 0.5 , 0.2 <, > 0.3, 0.2 , 0.1 <,> 0.9, 0.6 , 0.8 }, 

𝔊 ={> 0.2, 0.4 , 0.5 <, > 0.1, 0.1 , 0.2 <,  > 0.6, 0.5 , 0.8 <},  

𝒜 ={> 0.5, 0.6 , 0.1 <, > 0.4, 0.3 , 0.1 <,  >  0.9, 0.8 , 0.5 <}. 

Then (ℵ ,gN) is NGTS. 

𝒜 is NGSOS, but 𝒜 is not NGOS. 

Theorem 5.6. Let  (ℵ, gN) be an NGTS then, Every NGOS is NGSOS. 

Proof.  

Let 𝒜 be a NGOS in (X , gN), then 𝒜  Ng-i(Ng-c[Ng-i(𝒜)])…(1), since Ng-i(Ng-c[Ng-i(𝒜)]) Ng-

c[Ng-i(𝒜)]….(2) . 

(1),(2)   U Ng-c[Ng-i(𝒜)], Therefore  𝒜 is NGSOS. 

Remark 5.7. The converse of above theorem 5.6 is not necessarily true, see the following example.  

Example 5.8. Let ℵ={p}, gN ={ 0N, E,G}; E ={> 0.4, 0.5 , 0.5 <}, G ={> 0.3, 0.4 , 0.4 <},  

Then (ℵ ,gN) is NGTS. 

H ={> 0.5, 0.5 , 0.5 <} is NGSO, but H is not NGOS.  

Theorem 5.9. Let  (ℵ, gN) be NGTS then, Every NGOS is NGPOS. 

Proof.  

Let U be a NGOS in (ℵ, gN), then U=Ng-i(Â), since 

 UNg-c(U), then Ng-i(U)Ng-i(Ng-c(Â)). 

therefore U  Ng-i(Ng-c(Â))]. hence U is NGPOS. 

Remark 5.10. The Converse of theorem 5.9 is not true, see example 3.11.  

Example 5.11. Let ℵ={p, q, r} gN ={ 0N, E, G}; E ={> 0.4, 0.5 , 0.4 <, > 0.5, 0.5 , 0.5 <,> 0.4, 0.5 , 0.4 }, 

G ={> 0.7, 0.6 , 0.5 <, > 0.3, 0.4 , 0.5 <,  > 0.3, 0.4 , 0.4 <}, H ={> 0.5, 0.5 , 0.5 <, > 0.5, 0.5 , 0.5 <,  >  0.5, 

0.5 , 0.5 <}. 

Then (ℵ ,gN) is NGTS. 

H is NGPOS, but H is not NGOS. 

Theorem 5.12. Let (ℵ, gN) be an NGTS then, every NGOS is NGOS. 

Proof. 

Let U be a NGOS in (ℵ, gN), We now UNg-c(Â), and since U is a NGOS, we get U=Ng-i(Â). Then UNg-

c(Ng-i(Â)). Hence Ng-i (U) Ng-i(Ng-c(Ng-i(Â))), then U Ng-i(Ng-c(Ng-i(Â))).  
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Remark 5.13. The Converse of theorem 5.12 is not true, see example 4.14.  

Example 4.14. Let ℵ={p, q} gN ={ 0N, E, G}; E ={> 0.3, 0.3 , 0.4 <, > 0.4, 0.4 , 0.5 <}, G ={> 0.4, 0.4, 

0.5 <, > 0.2, 0.2, 0.3 <}, H ={> 0.4, 0.4, 0.3 <, > 0.6, 0.6, 0.4  <}. 

Then (ℵ ,gN) is NGTS. 

H is NGOS, but H is not NGOS. 

Theorem 5.15. Let  (ℵ, gN) be an NGTS then, every NGOS is NGPOS. 

Proof.  

Let U be a NGOS in (ℵ , gN), then U Ng-i(Ng-c[Ng-i(U)])…(1), since Ng-i(Ng-c[Ng-i(U)]) Ng-i[Ng-

c(U)]….(2) . 

(1),(2)   U Ng-i[Ng-c(U)], Therefore  U is NGPOS. 

Remark 5.16. The converse of the above theorem 4.18 is not necessarily true, see the following example.  

Example 5.17. Let ℵ={p, q} gN ={ 0N, E, G}; E ={> 0.3, 0.3 , 0.4 <, > 0.5, 0.5 , 0.5 <}, G ={> 0.4, 0.4 , 

0.5 <, > 0.3, 0.3 , 0.4 <}.Then (ℵ ,gN) is NGTS.  

H ={> 0.4, 0.4 , 0.5 <, > 0.5, 0.5 , 0.4 <} is NGPOS, but H is not NGOS. 

Remark 5.18. Relations among the new types of generalized neutrosophic open sets that were studied in this 

paper in the following Figure 1: 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Relations among the new types of generalized neutrosophic open sets. 

6 |Conclusion 

The neutrosophic generalized topological structure, which is a more general structure than neutrosophic supra 

topological spaces is built on neutrosophic sets. Also, we study a new type of neutrosophic open and closed 

in this space. These new neutrosophic sets can be used to find new research about, neutrosophic 

connectedness, neutrosophic compactness, neutrosophic continuity, and neutrosophic separation axioms in 

NGTS. 
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