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1 |Introduction    

Concepts have the property of development and growth, through the scientific activity carried out by humans 

searching for solutions to problems, imposed by the urgent need of the physical world, to solve some new 

issues. Mathematical concepts (like others) are subject to the principle of development and growth, including 

the concept of set, which is considered the cornerstone of the philosophy of mathematics. We can claim that 

the following proposition is true (without a doubt): If there is no set, then there is no mathematical object. 

Anyway, whoever tries to create a mathematical object, without the concept of a set, is like someone searching 

for a black cat in a dark room. If he raises his hands, he can hardly see it. Anyway, the neutrosophic set comes 

from the school of Neutrosophy, it is a branch of philosophy related to the concept of neutrality, it is means 

the tendency to not take a side in a conflict (physical or ideological or in war). The principle of neutrality as 

expressed by Smarandache states the following: suppose that 〈𝐴〉 represents any: proposition, event, theorem, 

idea, or concept; 〈𝑁𝑜𝑛 − 𝐴〉 means that the negation of 〈𝐴〉; 〈𝐴𝑛𝑡𝑖 − 𝐴〉 means that the opposite of  〈𝐴〉, 

and 〈𝑁𝑒𝑢𝑡 − 𝐴〉 meant that neither  〈𝐴〉 nor 〈𝐴𝑛𝑡𝑖 − 𝐴〉, Smarandache said, " Between an idea and its 

opposite, there is a continuum-power spectrum of neutralities [1], ". Furthermore, the neutrosophic set can 

be viewed from two different directions, one depends on the degree of membership functions like [2, 3]. The 

other depends on the neutrosophic number 𝑎 + 𝑏𝐼, neutrosophic number term used in many structures of 

neutrosophic Algebra such as: neutrosophic linear algebra, neutrosophic groups,  neutrosophic rings,  

neutrosophic number theory and so on, such as [4, 5]. The target of this article is to present an introduction 

to neutrosophic set theory, according to the generalization of the classical set, depending on the neutrosophic 

set generated by indeterminacy 𝐼 which proposed by Smarandache, where 𝐼2 = 𝐼 and 𝑜𝐼 = 0. This work 

enhances the neutrosophic number in the previous works of works [6-10]. 
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2 |Short Historical Review about Neutrosophic Sets 

In this section, we present a short review to see how the particular object develops and grows from classical 

set theory, fuzzy set theory, intuitionistic fuzzy set theory, and neutrosophic set theory respectively. 

Definition 2.1. A Set (or class) is any well-defined collection of objects. An object in a set is called an element 

or member of that set. This concept is due to G. Cantor (1845-1918), who was named the father of set theory. 

The relation between the domain of the sub-set of a universal set and the co-domain of set {0,1} is illustrated 

by the following definition.  

Definition 2.2. Let 𝑈 be a universal set and 𝐴 ⊆ 𝑈. The characteristics function (or degree of membership 

function) of 𝐴 is defined by: 𝜇𝐴(𝑥): 𝑋 ⟼ {0,1} such that:  

                                              𝜇𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴 
0, 𝑖𝑓 𝑥 ∉ 𝐴

 , the set of order paired  

𝜇𝐴(𝑥) = {(𝑥, 𝜇𝐴(𝑥)): ∀ 𝑥 ∈ 𝑈} ⊆ 𝑈 × {0,1} is called a crisp set. This class (or set) made the cornerstone of 

new mathematical systems. Of course,  it is a particular class in set theory or a conceptualization of the concept 

of a set within the framework of set theory. In 1965, a new era of fuzzy mathematics was introduced by Lotfi 

Zadeh, he extended the co-domain from set {0,1} into the interval [0,1] by the next definition.  

Definition 2.3. [11] Let 𝑋  be a non-empty set and 𝐴 ⊆ 𝑋. Define 𝑇𝐴(𝑥): 𝑋 ⟼ [0.1] such that 0 ≤ 𝑇𝐴(𝑥) ≤

1,  for all 𝑥 ∈ 𝑋. The set (or class) 𝐴𝐹𝑆 = {(𝑥, 𝑇𝐴(𝑥)): 𝑥 ∈ 𝑋} is called a fuzzy set (FS), and he created the 

Fuzzy Set theory that is associated with Fuzzy Logic. Where,  𝑇𝐴(𝑥) is called the membership function or 

grade of membership (also the degree of compatibility or degree of truth) of 𝑥 in 𝐴.  later on, Krassimir 

Atanassov added a new extension by adding the degree of falsity ( or degree of non-membership function) as 

the following: 

Definition 2.4. [12] Let 𝑋  be a non-empty set and 𝐴 ⊆ 𝑋. Define 𝑇𝐴(𝑥): 𝑋 ⟼ [0.1], and 𝐹𝐴(𝑥): 𝑋 ⟼

[0.1], such that 0 ≤ 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) ≤ 1, for all 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) ≤ 𝐹𝐴(𝑥), ∀𝑥 ∈ 𝑋,  and 0 ≤ 𝜇𝑇(𝑥) + 𝐹𝐴(𝑥) ≤

2. The set 𝐴𝐼𝐹𝑆 = {(𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) ): 𝑥 ∈ 𝑋} is called is called a Intutionstic Fuzzy Set(IFS), and he created 

the Intutionstic Fuzzy Set theory that is associated with Intuitionistic Fuzzy Logic. Where, 𝑇𝐴(𝑥) A has the 

previous description, and 𝐹𝐴(𝑥) is called the non-membership function or grade of non-membership (also a 

degree of incompatibility or degree of falsehood) of 𝑥 in 𝐴. We see that every 𝐴𝐹𝑆 has the form: 

𝐴𝐹𝑆 = {(𝑥, 𝑇𝐴(𝑥), 1 − 𝐹𝐴(𝑥) ): 𝑥 ∈ 𝑋}. The process of growth and development of the particular concept 

continues, but this time, through   Smarandache with a new extension when the idea of indeterminacy is third-

degree according to the following definition: 

Definition 2.5. [3, 13] Let 𝑋  be a non-empty set and 𝐴 ⊆ 𝑋. Define 𝑇𝐴(𝑥):𝑋 ⟼ [0.1], and 𝐼𝐴(𝑥):𝑋 ⟼

[0.1], and 𝐹𝐴(𝑥): 𝑋 ⟼ [0.1], such that 0 ≤ 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ≤ 1, for all 𝑥 ∈ 𝑋 and 0 ≤ 𝜇𝐴(𝑥) +

𝜇𝐴(𝑥) ≤ 3. The set 𝐴𝑆𝑉𝑁𝑆 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ): 𝑥 ∈ 𝑋} is called a single-valued neutrosophic 

set(SVNS), and he created the neutrosophic Set theory that is associated with neutrosophic Logic. Where, 

𝑇𝐴(𝑥)and 𝐹𝐴(𝑥) have the previous description, and 𝐼𝐴(𝑥) is called the indeterminacy for 𝑇𝐴(𝑥)or 𝐹𝐴(𝑥).  The 

original neutrosophic set is defined by  Smarandache by taking the co-domain as a non-standard interval such 

as ]0−, 1+[. The previous concepts give us a neutrosophic set according to degree functions. 

3 |Neutrosphic-Sets of Type-1, Type-2, and Type-3 

In this section, we will begin our development of the axiomatic neutrosophic set theory that corresponds to 

the axiomatic set theory. In the literature philosophy of mathematical axiomatic systems, it consists of a set 

of undefined terms and axioms, axioms mean that a declarative sentence (or proposition) is assumed to be 

true. We will present three types of neutrosophic sets type-1, type-2, and type-3.  
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Definition 3.1 Let 𝑈 be a universal set, then: 

1. 𝑈1
𝑡[𝐼 ] = {𝑢1 + 𝑢2𝐼: 𝑢1, 𝑢2 ∈ 𝑈} is a unversial neutrosophic-set of type-1, where 𝐼 is an 

indeterminacy.  

2. 𝑈2
𝑡[𝐼] = {𝑢𝐼 ∪ {𝑢}: 𝑢 ∈ 𝑈} is a universal neutrosophic set of type-2, where 𝐼 is an indeterminacy. 

3. 𝑈3
𝑡[𝐼 ] = {(𝑢1 + 𝑢2𝐼) ∪ {𝑢1}: 𝑢1, 𝑢2 ∈ 𝑈} is a universal neutrosophic-set of type-3, where 𝐼 is an 

indeterminacy 

Definition 3.2 Let ∅ be the empty-set, then: 

1. ∅1
𝑡 [𝐼 ] = {𝑢1 + 𝑢2𝐼: 𝑢1, 𝑢2 ∈ ∅} = ∅ is an empty neutrosophic set of type-1, where 𝐼 is an 

indeterminacy.  

2. ∅2
𝑡 [𝐼] = {𝑢𝐼 ∪ {𝑢}: 𝑢 ∈ ∅} = ∅ is an empty neutrosophic set of type-2, where 𝐼 is an indeterminacy. 

3. ∅3
𝑡 [𝐼 ] = {(𝑢1 + 𝑢2𝐼) ∪ {𝑢1}: 𝑢1, 𝑢2 ∈ ∅} = ∅ is a empy neutrosophic-set of type-3, where 𝐼 is an 

indeterminacy 

Definition 3.3 Let 𝐻 ≠ ∅ ⊂ 𝑈 be a non-empty-set, then 𝐻1
𝑡[𝐼 ] = {ℎ1 + ℎ2𝐼: ℎ1, ℎ2 ∈ 𝐻} is a neutrosophic-

set of type-1, where 𝐼 is an indeterminacy.  

Definition 3.4 Let 𝐻 ≠ ∅ ⊂ 𝑈  be a non-empty-set, and 𝐻1
𝑡[𝐼 ] = {ℎ1 + ℎ2𝐼: ℎ1, ℎ2 ∈ 𝐻} is a neutrosophic-

set of type-1, Every classical-element ℎ ∈ 𝐻 is a neutrosophic-element of 𝐻1
𝑡[𝐼 ], if 0 ∈ 𝐻, because ℎ can be 

representative as ℎ = ℎ + 0𝐼, and consequently,  𝐻 ⊂ 𝐻1
𝑡[𝐼 ]. Otherwise,  𝐻 ⊈ 𝐻1

𝑡[𝐼 ]. 

Definition 5.5 Let 𝐻 ≠ ∅ ⊂ 𝑈  be a non-empty-set, then 𝐻2
𝑡[𝐼] = {𝑎𝐼 ∪ {𝑎}: 𝑎 ∈ 𝐻} is a neutrosophic set 

of type-2, where 𝐼 is an indeterminacy. It is clear that 𝐻 ⊂ 𝐻2
𝑡[𝐼]. 

Definition 3.6 Let 𝐻 ≠ ∅ ⊂ 𝑈  be a non-empty-set, then 𝐻3
𝑡[𝐼 ] = {(ℎ1 + ℎ2𝐼) ∪ {ℎ1}: ℎ1, ℎ2 ∈ 𝐻} is a 

neutrosophic-set of type-3, where 𝐼 is an indeterminacy, and  𝐻 ⊂ 𝐻3
𝑡[𝐼 ]. 

Example 3.1 Let 𝐻 be a set,  given  by  𝐻 = { 1,2,3}, Then: 

i). Then the neutrosophic set of type-1 as the form:  

𝐻1
𝑡[𝐼 ] = {ℎ1 + ℎ2𝐼: ℎ1, ℎ2 ∈ 𝐻} = 

{1 + 𝐼, 1 + 2I, 1 + 3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I} 

ii). The neutrosophic set of type-2 looks like this: 

𝐻2
𝑡[𝐼] = {𝑎𝐼 ∪ {𝑎}: 𝑎 ∈ 𝐻} = {1,2,3, 𝐼, 2𝐼, 3𝐼} 

iii). The neutrosophic-set of type-2 becomes like: 

𝐻3
𝑡[𝐼 ] = {(ℎ1 + ℎ2𝐼) ∪ {ℎ1}: ℎ1, ℎ2 ∈ 𝐻} = 

{1,2,3,1 + 𝐼, 1 + 2I, 1 + 3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I} 

 

Example 3.2 Let  ℕ = {0,1,2,… } be the set of natural numbers. Then: 

1) Then neutrosophic-natural numbers  of type-1 is given by:  

ℕ1
𝑡 [𝐼] = {

0, 0 + 𝐼, 0 + 2𝐼, 0 + 3𝐼, ⋯
1, 1 + 𝐼, 1 + 2𝐼, 1 + 3𝐼, ⋯
2, 2 + 𝐼 2 + 2𝐼 2 + 3𝐼, ⋯
⋮       ⋮              ⋮              ⋮  ⋯

} 
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2) Then neutrosophic-natural numbers of type-2 like:  

ℕ2
𝑡 [𝐼] = {

0, 0𝐼,
1, 1𝐼,
2, 2𝐼
⋮ ⋮

} 

Observation, since 0 ∈ ℕ, then  ℕ1
𝑡 [𝐼] = ℕ3

𝑡 [𝐼]. 

Example 3.3 Let  ℤ = {0,±1,±2,… } be the set of integers numbers. Then: 

1) Then neutrosophic-integer  numbers  of type-1 is given by:  

ℤ1
𝑡 [𝐼] = {

0, 0 ± 𝐼, 0 ± 2𝐼, 0 ± 3𝐼, ⋯
±1, ±1 ± 𝐼, ±1 ± 2𝐼, ±1 ± 3𝐼, ⋯
±2, ±2 ± 𝐼 ±2 ± 2𝐼 ±2 ± 3𝐼, ⋯
⋮       ⋮              ⋮              ⋮  ⋯

} 

2) Then neutrosophic-natural numbers of type-2 like:  

ℤ2
𝑡 [𝐼] = {

0, 0𝐼,
±1, ±1𝐼,
±2, ±2𝐼
⋮ ⋮

} 

Observation, since Since 0 ∈ ℤ, then ℤ1
𝑡 [𝐼] = ℤ3

𝑡 [𝐼]. 

Theorem 3.1 Let 𝐻1
𝑡[𝐼 ] = {ℎ1 + ℎ2𝐼: ℎ1, ℎ2 ∈ 𝐻} be a neutrosophic-set of type-1,if 𝑁 ⊂ 𝐻 , then 𝑁1

𝑡[𝐼] ⊂

𝐻1
𝑡[𝐼 ]. 

Proof.  Suppose that 𝑁 ⊂ 𝐻. Let  𝑛 ∈ 𝑁1
𝑡[𝐼] ⇒ ∃ 𝑛1, 𝑛2 ∈ 𝑁, and indeterminacy  𝐼 such that 𝑛 = 𝑛1 + 𝑛2𝐼 

         ⇒ 𝑛1, 𝑛2 ∈ 𝐻, and indeterminacy  𝐼 such that 𝑛 = 𝑛1 + 𝑛2𝐼    

         ⇒  𝑛 ∈ 𝐻1
𝑡[𝐼 ], hence 𝑁1

𝑡[𝐼] ⊂ 𝐻1
𝑡[𝐼 ].   

Example 3.4 Let 𝑁 = {1,2} and 𝐻 = {1,2,3} be two classical sets, clearly,  𝑁 ⊂ 𝐻. Then the neutrosophic 

set of type-1 of 𝑁1
𝑡[𝐼] = {𝑛1 + 𝑛2𝐼: 𝑛1, 𝑛2 ∈ 𝑁} = {1 + 1𝐼, 1 + 2𝐼, 2 + 1𝐼, 2 + 2𝐼}, and the  

neutrosophic set of type-1 of  𝐻1
𝑡[𝐼 ]is given by:  

𝐻1
𝑡[𝐼 ] = {ℎ1 + ℎ2𝐼: ℎ1, ℎ2 ∈ 𝐻} 

                                                                     = {
1 + 1𝐼, 1 + 2𝐼, 1 + 3𝐼,
2 + 1𝐼, 2 + 2𝐼, 2 + 3𝐼
3 + 1𝐼, 3 + 2𝐼, 3 + 3𝐼

}      

We see that, 𝑁1
𝑡[𝐼] ⊂ 𝐻1

𝑡[𝐼 ]. 

Theorem 3.2 Let 𝐻2
𝑡[𝐼] = {𝑎𝐼 ∪ {𝑎}: 𝑎 ∈ 𝐻} be a neutrosophic-set of type-2, if 𝑁 ⊂ 𝐻, then: 𝑁2

𝑡[𝐼] ⊂

𝐻2
𝑡[𝐼 ]. 

Proof. Let  𝑛 ∈ 𝑁2
𝑡[𝐼] ⇒ ∃ 𝑛′ ∈ 𝑁, and indeterminacy  𝐼 such that 𝑛 = 𝑛′𝐼 ∪ {𝑛′} 

                                     ⇒  𝑛′ ∈ 𝐻, and indeterminacy  𝐼 such that 𝑛 = 𝑛′𝐼 ∪ {𝑛′}    

                                     ⇒  𝑛 ∈ 𝐻2
𝑡[𝐼 ], hence 𝑁2

𝑡[𝐼] ⊂ 𝐻2
𝑡[𝐼 ]. 

Example 3.5 Let 𝑁 = {2,4} and 𝐻 = {2,4,6} be two classical sets, obviously, 𝑁 ⊂ 𝐻. Then the 

neutrosophic set of type-2 of 𝑁2
𝑡[𝐼] = {𝑛𝐼 ∪ {𝑛}: 𝑛 ∈ 𝑁} = {2,2𝐼, 4,4𝐼}, and the  

neutrosophic set of type-2 of  𝐻2
𝑡[𝐼 ] is given by:  𝐻2

𝑡[𝐼] = {𝑎𝐼 ∪ {𝑎}: 𝑎 ∈ 𝐻} 
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                                                                         = { 
2,
4,
6,

2𝐼
4𝐼
6𝐼
}      

We see that, 𝑁2
𝑡[𝐼] ⊂ 𝐻2

𝑡[𝐼 ].  

Theorem 3.3 Let 𝐻3
𝑡[𝐼 ] = {(ℎ1 + ℎ2𝐼) ∪ {ℎ1}: ℎ1, ℎ2 ∈ 𝐻} be a neutrosophic-set of type-3, if ⊂ 𝐻 , then  

𝑁3
𝑡[𝐼] ⊂ 𝐻3

𝑡[𝐼 ]. 

Proof. Suppose that 𝑁 ⊂ 𝐻.  Let  𝑛 ∈ 𝑁3
𝑡[𝐼] ⇒ ∃ 𝑛1, 𝑛2 ∈ 𝑁, and indeterminacy  𝐼 such that 𝑛 =

(𝑛1 + 𝑛2𝐼) ∪ {𝑛1} 

                  ⇒ 𝑛1, 𝑛2 ∈ 𝐻, and indeterminacy  𝐼 such that   𝑛 = (𝑛1 + 𝑛2𝐼) ∪ {𝑛1}    

                 ⇒  𝑛 ∈ 𝑁3
𝑡[𝐼], hence 𝑁3

𝑡[𝐼] ⊂ 𝐻3
𝑡[𝐼 ].   

Example 3.6 Let 𝑁 = {𝑎, 𝑏} and 𝐻 = {𝑎, 𝑏, 𝑐} be two classical sets, evidently,   𝑁 ⊂ 𝐻. Then the 

neutrosophic set of type-3 of 𝑁3
𝑡[𝐼] = {(𝑛1 + 𝑛2𝐼) ∪ {𝑛1}: 𝑛1, 𝑛2 ∈ 𝑁}  = {

𝑎, 𝑎 + 𝑎𝐼 𝑎 + 𝑏𝐼
𝑏, 𝑏 + 𝑎𝐼 𝑏 + 𝑏𝐼

}  and the 

neutrosophic set of type-3 of  𝑁3
𝑡[𝐼] is given by:  𝑁3

𝑡[𝐼] = {(ℎ1 + ℎ2𝐼) ∪ {ℎ1}: ℎ1, ℎ2 ∈ 𝐻} 

                                                              = {
𝑎. 𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼, 𝑎 + 𝑐𝐼,
𝑏, 𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼, 𝑏 + 𝑐𝐼,
𝑐, 𝑐 + 𝑎𝐼, 𝑎 + 𝑎𝐼, 𝑎 + 𝑎𝐼,

}      

We see that, 𝑁3
𝑡[𝐼] ⊂ 𝐻3

𝑡[𝐼 ]. 

 

Definition 3.7  Let 𝐻1
𝑡[𝐼 ], 𝑁1

𝑡[𝐼 ], 𝐻2
𝑡[𝐼 ], 𝑁2

𝑡[𝐼 ], 𝐻3
𝑡[𝐼 ], and 𝑁3

𝑡[𝐼 ] be six neutrosophic-sets of type-1, 
type-2, and type-3, respectively. Then : 

i. 𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ], if  𝐻 = 𝑁,  
ii. 𝐻2

𝑡[𝐼 ] = 𝑁2
𝑡[𝐼 ], if  𝐻 = 𝑁, and 

iii. 𝐻3
𝑡[𝐼 ] = 𝑁3

𝑡[𝐼 ], if  𝐻 = 𝑁. 
 

Theorem 3.4  Let 𝐻1
𝑡[𝐼 ], 𝑁1

𝑡[𝐼 ], 𝐻2
𝑡[𝐼 ], 𝑁2

𝑡[𝐼 ], 𝐻3
𝑡[𝐼 ], and 𝑁3

𝑡[𝐼 ] be six neutrosophic-sets of type-1, 
type-2, and type-3, respectively. Then : 

i. 𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ]  ⇔  𝐻1
𝑡[𝐼 ] ⊂ 𝑁1

𝑡[𝐼 ] ∧ 𝑁1
𝑡[𝐼 ] ⊂ 𝐻1

𝑡[𝐼 ].  
ii. 𝐻2

𝑡[𝐼 ] = 𝑁2
𝑡[𝐼 ]  ⇔  𝐻2

𝑡[𝐼 ] ⊂ 𝑁2
𝑡[𝐼 ] ∧ 𝑁2

𝑡[𝐼 ] ⊂ 𝐻2
𝑡[𝐼 ].  

iii. 𝐻3
𝑡[𝐼 ] = 𝑁3

𝑡[𝐼 ]  ⇔ 𝐻3
𝑡[𝐼 ] ⊂ 𝑁3

𝑡[𝐼 ] ∧ 𝑁3
𝑡[𝐼 ] ⊂ 𝐻3

𝑡[𝐼 ].  

Proof. (i).  Suppose that  𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ] ⇔ 𝐻 = 𝑁                                                                   

                                                                         ⇔ (𝐻 ⊂ 𝑁) ∧ (𝑁 ⊂ 𝐻)                                              
                                                                         ⇔ (𝐻1

𝑡[𝐼 ] ⊂ 𝑁1
𝑡[𝐼 ]) ∧ (𝑁1

𝑡[𝐼 ] ⊂ 𝐻1
𝑡[𝐼 ]).              

(ii) and (iii) by the same argument. 
 

Theorem 3.5  Let  ∅1
𝑡 [𝐼 ], ∅2

𝑡 [𝐼 ], and ∅3
𝑡 [𝐼 ] be three emptyl neutrosophic-sets of type-1, type-2, and type-

3 respectevely, then : 

1. ∅1
𝑡 [𝐼 ] ⊂ 𝐻1

𝑡[𝐼 ],   
2. ∅2

𝑡 [𝐼 ] ⊂ 𝐻2
𝑡[𝐼 ], 

3. ∅3
𝑡 [𝐼 ] ⊂ 𝐻3

𝑡[𝐼 ], where 𝐻 is any arbitrary classical set. 
4. The empty neutrosophic sets of type-1, type-2, and type-3 are unique. 

 

Proof. (1). Suppose that ∅1
𝑡 [𝐼 ] ⊄ 𝐻1

𝑡[𝐼 ] ⇒ ∃ 𝑥 ∈ ∅1
𝑡 [𝐼 ] ∧  𝑥 ∉  𝐻1

𝑡[𝐼 ]                                                                          
                                                                    ⇒ ∃ 𝑥1, 𝑥2   ∈ ∅, and indeterminacy 𝐼, this led to a 

contradiction, since ∅ is an empty set. Proof (2) and (3) by the same argument. 
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             (4). To prove that uniqueness. Suppose that  ∅1
𝑡 [𝐼 ]⏟  
1

 and ∅1
𝑡 [𝐼 ]⏟  
2

 are two empty neutrosophic sets of 

type-1, then by part (1) in theorem 2.5, we have ∅1
𝑡 [𝐼 ]⏟  
1

⊂ ∅1
𝑡 [𝐼 ]⏟  
2

 and ∅1
𝑡 [𝐼 ]⏟  
2

⊂ ∅1
𝑡 [𝐼 ]⏟  
1

, therefore  

∅1
𝑡 [𝐼 ]⏟  
1

= ∅1
𝑡 [𝐼 ]⏟  
2

  by theorem 3.4. 

 

Definition 3.8  Let 𝐻1
𝑡[𝐼 ],  𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ],  be three  neutrosophic-sets of type-1, type-2, and type-3, 

respectively. The neutrosophic complment-sets of of type-1, type-2, and type-3 denoted by 𝐻1
𝑡[𝐼 ]⏞  
𝑐

, 𝐻2
𝑡[𝐼 ]⏞  
𝑐

, 

and 𝐻3
𝑡[𝐼 ]⏞  
𝑐

, and defined by: 

1. 𝐻1
𝑡[𝐼 ]⏞  
𝑐

= {𝑥: 𝑥 ∉ 𝐻1
𝑡[𝐼 ]  ∧ 𝑥 ∈ 𝑈1

𝑡[𝐼 ] } = {𝑥: 𝑥 ∉ 𝐻 ∧ 𝑥 ∈ 𝑈}, 

2. 𝐻2
𝑡[𝐼 ]⏞  
𝑐

= {𝑥: 𝑥 ∉ 𝐻2
𝑡[𝐼 ]  ∧ 𝑥 ∈ 𝑈2

𝑡[𝐼 ]} = {𝑥: 𝑥 ∉ 𝐻 ∧ 𝑥 ∈ 𝑈}, and 

3. 𝐻3
𝑡[𝐼 ]⏞  
𝑐

= {𝑥: 𝑥 ∉ 𝐻3
𝑡[𝐼 ] ∧ 𝑥 ∈ 𝑈3

𝑡[𝐼 ] } = {𝑥: 𝑥 ∉ 𝐻 ∧ 𝑥 ∈ 𝑈}. 
 

 Example 3.7 Let 𝑈 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝐻 = {𝑎, 𝑏, 𝑑} be two classical sets, then, 𝑥 ∉ 𝐻, implies that  

𝑥 ∈ 𝐻𝑐 = {𝑐, 𝑒}, we have, 

1. 𝐻1
𝑡[𝐼 ]⏞  
𝑐

= {
𝑐 + 𝑐𝐼, 𝑐 + 𝑒𝐼
𝑒 + 𝑐𝐼, 𝑒 + 𝑒𝐼

}, where 𝑈1
𝑡[𝐼 ] = {

𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼, 𝑎 + 𝑑𝐼,
𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼 𝑏 + 𝑑𝐼
𝑑 + 𝑎𝐼, 𝑑 + 𝑏𝐼 𝑑 + 𝑑𝐼,

},  

2. 𝐻2
𝑡[𝐼 ]⏞  
𝑐

= {
𝑐, 𝑐𝐼
𝑒 𝑒𝐼

}, where 𝐻2
𝑡[𝐼 ] = {

𝑎, 𝑎𝐼
𝑏, 𝑏𝐼
𝑐 𝑐,

}, and 

3. 𝐻3
𝑡[𝐼 ]⏞  
𝑐

= { 
𝑐, 𝑐 + 𝑐𝐼 𝑐 + 𝑒𝐼
𝑒, 𝑒 + 𝑐𝐼, 𝑒 + 𝑒𝐼

}, where 𝑈3
𝑡[𝐼 ] = {

𝑎, 𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼, 𝑎 + 𝑑𝐼,
𝑏, 𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼 𝑏 + 𝑑𝐼
𝑑, 𝑑 + 𝑎𝐼, 𝑑 + 𝑏𝐼 𝑑 + 𝑑𝐼,

}. 

Theorem 3.6  Let  𝐻1
𝑡[𝐼 ], 𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ] be three neutrosophic-sets of type-1, type-2, and type-3 

respectevely, then : 

1. 𝐻1
𝑡[𝐼 ]⏞  
𝑐𝑐

= 𝐻1
𝑡[𝐼 ],   

2. 𝐻2
𝑡[𝐼 ]⏞  
𝑐𝑐

= 𝐻2
𝑡[𝐼 ], 

3. 𝐻3
𝑡[𝐼 ]⏞  
𝑐𝑐

= 𝐻3
𝑡[𝐼 ],  

4. ∅1
𝑡 [𝐼 ]⏞  
𝑐

= 𝑈1
𝑡[𝐼 ],  

5.  ∅2
𝑡 [𝐼 ]⏞  
𝑐

= 𝑈2
𝑡[𝐼 ],  

6. ∅3
𝑡 [𝐼 ]⏞  
𝑐

= 𝑈3
𝑡[𝐼 ], 

7. 𝑈1
𝑡[𝐼 ]⏞  
𝑐

= ∅1
𝑡 [𝐼 ],  

8. 𝑈2
𝑡[𝐼 ]⏞  
𝑐

= ∅2
𝑡 [𝐼 ], and 

9. 𝑈3
𝑡[𝐼 ]⏞  
𝑐

= ∅3
𝑡 [𝐼 ], where 𝐻 is any arbitrary classical set and 𝑈 is any arbitrary universal 

classical set. 
 

Proof. Suppose that 𝑈1
𝑡[𝐼 ] is any arbitrary universal neutrosophic set, where 𝑈 is any arbitrary universal 

classical set such that 𝐻1
𝑡[𝐼 ] ⊂ 𝑈1

𝑡[𝐼 ], when  𝐻 ⊂ 𝑈. To show that 𝐻1
𝑡[𝐼 ]⏞  
𝑐𝑐

= 𝐻1
𝑡[𝐼 ] 
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Suppose that  𝑥 ∈ 𝐻1
𝑡[𝐼 ]⏞  
𝑐𝑐

⇒ 𝑥 ∉ 𝐻1
𝑡[𝐼 ]⏞  
𝑐

⇒ 𝑥 ∈ 𝐻1
𝑡[𝐼 ] ⇒ 𝐻1

𝑡[𝐼 ]⏞  
𝑐𝑐

⊂ 𝐻1
𝑡[𝐼 ]. Conversely, assume that 

𝑥 ∈ 𝐻1
𝑡[𝐼 ] ⇒ 𝑥 ∉ 𝐻1

𝑡[𝐼 ]⏞  
𝑐

⇒ 𝑥 ∈ 𝐻1
𝑡[𝐼 ]⏞  
𝑐𝑐

⇒ 𝐻1
𝑡[𝐼 ] ⊂ 𝐻1

𝑡[𝐼 ]⏞  
𝑐𝑐

 , hence 𝐻1
𝑡[𝐼 ]⏞  
𝑐𝑐

= 𝐻1
𝑡[𝐼 ], by theorem 3.4 part-

1, for  (2) and (3) by similar method and theorem 3.4 part-2 and part-3, respectively. 

(4). Suppose that ∅1
𝑡 [𝐼 ]⏞  
𝑐

≠ 𝑈1
𝑡[𝐼 ] ⇒ ∃ 𝑥 ∉ ∅1

𝑡 [𝐼 ]⏞  
𝑐

 ∧ 𝑥 ∈  𝑈1
𝑡[𝐼 ] 

                                                           ⇒ ∃ 𝑥 ∈ ∅1
𝑡 [𝐼 ]  ∧ 𝑥 ∈  𝑈1

𝑡[𝐼 ] 
                                                           ⇒ ∃ 𝑥 ∈ ∅ ∧ 𝑥 ∈  𝑈. 

                                                           ⇒  𝑥 ∈ ∅, this contradiction, hence ∅1
𝑡 [𝐼 ]⏞  
𝑐

= 𝑈1
𝑡[𝐼 ]. 

Prove (5),(6),(7),(8), and (9) by a similar argument.     
 

Definition 3.9  Let 𝐻1
𝑡[𝐼 ],  𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ],  be three neutrosophic sets of type-1, type-2, and type-3, 

respectively, where 𝐻 is any arbitrary classical set, either  𝐻 is a finite set, then 𝐻1
𝑡[𝐼 ],  𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ] 

are finite neutrosophic sets, the number of all neutrosophic elements is called neutrosophic-order, and 

denoted by 𝜓(𝐻1
𝑡[𝐼 ]), 𝜓(𝐻2

𝑡[𝐼 ]), and  𝜓(𝐻3
𝑡[𝐼 ]) respectively or 𝐻 is an infinite set, and consequently, 

𝐻1
𝑡[𝐼 ],  𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ] have an infinite neutrosophic order. 

 

Definition 3.10  Let 𝐻1
𝑡[𝐼 ],  𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ],  be three  neutrosophic-sets of type-1, type-2, and type-3, 

respectively. The neutrosophic power-sets of of type-1, type-2, and type-3 , then:  

1. ℑ (𝐻1
𝑡[𝐼 ]) = {𝑁1

𝑡[𝐼 ] : ⊆ 𝐻1
𝑡[𝐼 ]} is a neutrosophic power set of type-1,  

2. ℑ (𝐻2
𝑡[𝐼 ]) = {𝑁2

𝑡[𝐼 ] : ⊆ 𝐻2
𝑡[𝐼 ]} is a neutrosophic power set of type-2, and 

3. ℑ (𝐻3
𝑡[𝐼 ]) = {𝑁3

𝑡[𝐼 ] : ⊆ 𝐻3
𝑡[𝐼 ]} is a neutrosophic power set of type-3. 

 

Example 2.8 Let  𝐻 = {𝑎, 𝑏, 𝑐} be two classical-set, the neutrosophic-sets of type-1, type-2, and type-3, 

with  neutrosophic-order, and the number of all  neutrosophic-subsets of 𝐻1
𝑡[𝐼 ], 𝐻2

𝑡[𝐼 ], and 𝐻3
𝑡[𝐼 ] such 

as: 
 

𝐻1
𝑡[𝐼 ] = {

𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼, 𝑎 + 𝑐𝐼,
𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼, 𝑏 + 𝑐𝐼
𝑐 + 𝑎𝐼, 𝑐 + 𝑏𝐼, 𝑐 + 𝑐𝐼

}, 𝜓(𝐻1
𝑡[𝐼 ]) = 9 and 𝜓(ℑ (𝐻2

𝑡[𝐼 ])) = 512, 

𝐻2
𝑡[𝐼 ] = {

𝑎, 𝑎𝐼
𝑏, 𝑏𝐼
𝑐, 𝑐𝐼

}, 𝜓(𝐻2
𝑡[𝐼 ]) = 6 and 𝜓(ℑ (𝐻1

𝑡[𝐼 ])) = 64, 

𝐻3
𝑡[𝐼 ] = {

𝑎, 𝑎 + 𝑎𝐼, 𝑎 + 𝑏𝐼, 𝑎 + 𝑐𝐼,
𝑏, 𝑏 + 𝑎𝐼, 𝑏 + 𝑏𝐼, 𝑏 + 𝑐𝐼
𝑐, 𝑐 + 𝑎𝐼, 𝑐 + 𝑏𝐼, 𝑐 + 𝑐𝐼

}, 𝜓(𝐻2
𝑡[𝐼 ]) = 12 and 𝜓(ℑ (𝐻2

𝑡[𝐼 ])) = 4096, 

 

Observations. The neutrosophic order of  𝜓(𝐻i
𝑡[𝐼 ]), 𝑖 = 1,2,3 does not dvide the 𝜓(ℑ (𝐻i

𝑡[𝐼 ])) , 𝑖 =

1,2,3. 

Theorem 3.7  Let 𝐻1
𝑡[𝐼 ], 𝑁1

𝑡[𝐼 ], 𝐻2
𝑡[𝐼 ], 𝑁2

𝑡[𝐼 ], 𝐻3
𝑡[𝐼 ], and 𝑁3

𝑡[𝐼 ] be six neutrosophic-sets of type-1, 
type-2, and type-3, respectively. Then : 

i. 𝐻1
𝑡[𝐼 ] = 𝐻1

𝑡[𝐼 ],   
ii. 𝐻2

𝑡[𝐼 ] = 𝐻2
𝑡[𝐼 ],    

iii. 𝐻3
𝑡[𝐼 ] = 𝐻3

𝑡[𝐼 ],    
iv. 𝐻1

𝑡[𝐼 ] = 𝑁1
𝑡[𝐼 ] ⇒ 𝑁1

𝑡[𝐼 ] = 𝐻1
𝑡[𝐼 ],   

v. 𝐻2
𝑡[𝐼 ] = 𝑁2

𝑡[𝐼 ] ⇒ 𝑁2
𝑡[𝐼 ] = 𝐻2

𝑡[𝐼 ], and 

vi. 𝐻3
𝑡[𝐼 ] = 𝑁3

𝑡[𝐼 ] ⇒ 𝑁3
𝑡[𝐼 ] = 𝐻3

𝑡[𝐼 ].  

Proof. (i).  Suppose that  𝐻1
𝑡[𝐼 ] = 𝐻1

𝑡[𝐼 ] ⇔ 𝐻 = 𝐻                                                                       

                                                                         ⇔ (𝐻 ⊂ 𝐻) ∧ (𝐻 ⊂ 𝐻)                                                
                                                                         ⇔ (𝐻1

𝑡[𝐼 ] ⊂ 𝑁1
𝑡[𝐼 ]) ∧ (𝑁1

𝑡[𝐼 ] ⊂ 𝐻1
𝑡[𝐼 ]).                 

            (ii). and (iii) by similar method. 
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            (iv). Suppose that  𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ] ⇒ 𝐻 = 𝑁 

                                                                   ⇒ (𝑁 ⊂ 𝐻) ∧ (𝐻 ⊂ 𝑁) 
                                                                          ⇒ (𝑁1

𝑡[𝐼 ] ⊂ 𝐻1
𝑡[𝐼 ]) ∧ (𝐻1

𝑡[𝐼 ] ⊂ 𝑁1
𝑡[𝐼 ]) 

                                                                          ⇒ 𝑁1
𝑡[𝐼 ] = 𝐻1

𝑡[𝐼 ]. 
            (v). and (iv) by similar method. 
 

Theorem 3.8   Let 𝐻1
𝑡[𝐼 ], 𝑁1

𝑡[𝐼 ], and  𝑀1
𝑡[𝐼 ] be three neutrosophic sets of type-1. Then   

        𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ] ∧ 𝑁1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ] ⇒ 𝐻1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ]. 

Proof.  Assume that  𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ] ∧ 𝑁1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ] 
∵ 𝐻1

𝑡[𝐼 ] = 𝑁1
𝑡[𝐼 ] ⇒ 𝐻 = 𝑁 

∵ 𝑁1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ] ⇒ 𝑁 = 𝑀 

                                 ⇒  𝐻 = 𝑀 

                                 ⇒ 𝐻1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ]. 
 

Theorem 3.9   Let 𝐻1
𝑡[𝐼 ], 𝑁1

𝑡[𝐼 ], and  𝑀1
𝑡[𝐼 ] be three neutrosophic sets of type-2. Then   

        𝐻1
𝑡[𝐼 ] = 𝑁1

𝑡[𝐼 ] ∧ 𝑁1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ] ⇒ 𝐻1
𝑡[𝐼 ] = 𝑀1

𝑡[𝐼 ]. 

Theorem 3.10   Let 𝐻3
𝑡[𝐼 ], 𝑁3

𝑡[𝐼 ], and  𝑀3
𝑡[𝐼 ] be three neutrosophic sets of type-3. Then   

        𝐻3
𝑡[𝐼 ] = 𝑁3

𝑡[𝐼 ] ∧ 𝑁3
𝑡[𝐼 ] = 𝑀3

𝑡[𝐼 ] ⇒ 𝐻3
𝑡[𝐼 ] = 𝑀3

𝑡[𝐼 ]. 

The proof of theorems 2.7 and 2.8 is like theorem 3.6, and we note that the relation of equality for three 
types of neutrosophic sets is a transitive relation.  

4 |Conclusion 

This paper is devoted to introducing the basic introduction to neutrosophic set theory. Neutrosophic laws 

defined by the partial algebra are totally (100%) true. We study three types of neutrosophic sets 𝐻1
𝑡[𝐼 ],  𝐻2

𝑡[𝐼 ], 

and 𝐻3
𝑡[𝐼 ], and defined the notions of empty neutrosophic set, universal neutrosophic set, equality of 

neutrosophic set,  neutrosophic subsets, complement of neutrosophic set, and their properties. 
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