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1 |Introduction 

Since Smarandache introduced Neutrosophy to study the basis, nature, and range of neutralities as well as 

their contact with ideational spectra in the 1990s [1], we have seen the emergence of neutrosophic algebraic 

structures such as neutrosophic groups and rings [2], neutrosophic numbers [3], single-valued neutrosophic 

sets (SVNSs) [4], Neutrosophic number theory [5], and several applications[6]. Kandasamy and Smarandache 

[2] defined Neutrosophic algebraic structures and inserted the algebraic symbol indeterminacy (I) with the 

logical property I2 = I.  

The inception of neutrosophic number theory occurred in 2020 [5]. This nascent field witnessed the 

exploration of fundamental concepts including neutrosophic greatest common divisor (GCD) [7], 

neutrosophic Diophantine equations [8], neutrosophic Euler’s function, and neutrosophic congruence [9]. 

Merkepci et al. suggested for the first time the idea of using neutrosophic numbers in cryptography [10]. In 

recent years, researchers have been actively developing neutrosophic versions of well-known cryptographic 

systems with the potential to enhance security, such as RSA [11], El Gamal [12], and Diffie-Hellman key 

exchange [13]. The Neutrosophic community has made significant progress, yet there remains substantial 

potential for advancing neutrosophic cryptography, especially considering the growing threats to traditional 

cryptographic systems and protocols. 

Traditional cryptographic systems, such as those based on prime factorization (RSA) [14], discrete logarithm 

problem (DLP) [15], and elliptic curve cryptography (ECC) [16, 17], including TLS protocols [18], are 

susceptible to quantum attacks [19]. In this context, organizations like NIST (National Institute of Standards 

and Technology) proposed new algorithms that are potentially quantum resistant [20]. Unfortunately, the 

threats posed to cryptographic protocols by the emerging computing paradigm, MemComputing [21, 22], are 
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not widely recognized yet. Unlike quantum computers, digital MemComputing machines (DMMs) can be 

constructed using standard electronic components [23]. 

None of the mentioned cryptographic systems were developed with Neutrosophic numbers. Since 

neutrosophic number theory emerged in 2020, it should be devised to start exploring ZKP protocols in the 

realm of Neutrosophic number theory. 

In this paper, we explore a simple and efficient Zero-Knowledge Proof protocol (ZKP), the One-Round 

ZKP developed by Almuhammadi and Neuman [24], which basis resides in the Discrete Logarithm Problem 

(DLP) [24]. Historically, the DLP was used by Diffie-Hellman key exchange [15] marking the beginning of 

asymmetric cryptography in the 1970s. And considering this historic algorithm we chose it to start exploring 

the use of Neutrosophic numbers in the realm of ZKP. We intend to explore more modern approaches as 

lattices among others in the future. 

The next section presents an overview of Neutrosophic number theory and section 3 presents a brief 

introduction to ZKP and the One-Round ZKP. In section 4, we introduce the Neutrosophic One-Round 

ZKP. 

2 |Some Elements of Neutrosophic Number Theory 

Definition 2.1. [25] Let Z be the ring of integers, we say that (I) = {a + bI; a b ∈Z} is the neutrosophic ring 

of integers. 

Definition 2.2. [25] 

a) let a +bI, and c + dI be two neutrosophic integers, then: 

a + bI ≤ c + dI if and only if a ≤ a + b ≤ c + d. 

b) a + bI is called positive neutrosophic integer if a > 0 and a + b >0. 

Example 2.3. 5 + 2I is a positive neutrosophic integer, that is because 5 >0, 5 + 2 = 7 >0. 

Definition 2.4. [25] (Addition) Let a + bI, c + dI: (a + bI) + (c + dI) = (a + c) + (b + d)I        (1) 

Definition 2.5. [25] (Multiplication) Let a + bI, c + dI: (a + bI) * (c + dI) = ac + I(ad + bc + bd)       (2) 

Scalar Multiplication; Let x be a scalar (real number). Then:  

α*(a + bI) = αa + αbI                      (3) 

The AH-Isometry (Abobala-Hatip): [38] Let a + bI, the AH-Isometry relation is given by: f(a + bI) = f(a) + 

I [ f(a + b) - f(a) ] 

Definition 2.6. [25] (Neutrosophic Exponentiation); Let a + bI, c + dI: (𝑎 + 𝑏𝐼)(𝑐+𝑑𝐼) =  𝑎𝑐 +

𝐼[ (𝑎 + 𝑏)𝑐+𝑑 −  𝑎𝑐  ]                 (4) 

Definition 2.7. [25] (Division) 

Let a + bI, c + dI: 
𝑎+𝑏𝐼

𝑐+𝑑𝐼
=  

𝑎

𝑐
+ 𝐼[ 

𝑎+𝑏

𝑐+𝑑
−  

𝑎

𝑐
 ]                (5) 

Definition 2.8. [25] (Root Index n) Let a + bI, its Root index n is given by: 

√𝑎 + 𝑏𝐼
𝑛

 = √𝑎
𝑛

 + I [ √𝑎 + 𝑏𝐼
𝑛

 - √𝑎
𝑛

  ]                (6) 

3 |Zero-Knowledge Proofs Protocols 

Zero-knowledge proofs (ZKPs) are cryptographic tools that enable one party, known as the prover, to prove 

to another party, the verifier, that a certain statement is true without revealing any information beyond the 

validity of the statement itself [26]. 
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Since Goldwasser, Micali, and Rackoff laid the groundwork for ZKPs in the 1980s [26, 27, 28], other 

important properties as succinctness [29], non-interactive [30] were incorporated in the realm of ZKP paving 

the way to the emergence of several cryptographic primitives as ZK-SNARKS [31], Bulletproofs [32], ZK-

STARKS [33] among others described on ZKP surveys [34-36]. 

The cornerstone upon which ZKPs applications are built is the verifiable computation, i.e., the ability to 

prove that an external computation was performed correctly without revealing the inputs or the computation 

process. This foundational attribute of ZKPs serves as a gateway to their two practical value propositions: 

succinctness and privacy [36].  

Succinctness in ZKPs allows for the quick verification of the correctness of a computation without the 

extensive resources typically required for direct computation execution. Privacy, the second major value 

proposition, emerges from the intrinsic nature of ZKPs to prove the correctness of information without 

revealing the information itself. This characteristic is particularly transformative in scenarios where sensitive 

or confidential data is involved [36]. 

The ZKPs became important cryptographic methods in multiple areas, specifically, blockchain [35, 37] and 

non-blockchain applications [36]. 

3.1 |One-Round Zero-Knowledge Proof 

Almuhammadi and Neuman [24] developed the One-Round ZKP (1-Round ZKP) for the Discrete 

Logarithm (DL) problem. That is, given a prime p, a generator g for the multiplicative group Zp, and b ∈ Zp, 

Peggy wants to prove in zero-knowledge that she knows x such that, 𝑔𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑝). She proves to Victor 

that her claim is true without revealing the ‘x’ value through the steps described in Table 1. 

Table 1. One-round ZKP of DL problem. 

Step  Peggy(P) Victor(V) 

0 Setup g, p, b, x g, p, b 

1 V generates a random y  y 

2 V sends 𝑐 ≡ 𝑔𝑦(𝑚𝑜𝑑 𝑝) to P c 𝑐 ≡ 𝑔𝑦(𝑚𝑜𝑑 𝑝) 

3 P sends 𝑟 ≡ 𝑐𝑥(𝑚𝑜𝑑 𝑝) to V 𝑟 ≡ 𝑐𝑥(𝑚𝑜𝑑 𝑝) r 

4 V verifies that 𝑟 ≡ 𝑏𝑦(𝑚𝑜𝑑 𝑝)   

 

This is a one-round proof based on the framework. All parameters are set up at Step 0. There are no more 

auxiliary messages needed for this protocol [24]. The authors provide the proof of correctness:  

Assuming Peggy knows the secret x, she just computes 𝑟 ≡ 𝑐𝑥(𝑚𝑜𝑑 𝑝) and sends r to Victor. Since Victor 

knows y, he can verify that: 

𝑟 ≡ 𝑏𝑦(𝑚𝑜𝑑 𝑝) ≡ gxy ≡ (gx)y ≡ 𝑏𝑦(𝑚𝑜𝑑 𝑝). 

If Peggy does not know x, Victor can verify easily that her claim is false [24]. 

The one-round protocol definitively establishes Peggy's knowledge of 'x' without divulging any information 

about 'x' to Victor. Almuhammadi and Neuman have demonstrated that non-interactive ZKPs offer superior 

efficiency in terms of computational resources and communication overhead. By eliminating the need for 

multiple rounds of interaction, these protocols accelerate execution and minimize latency [24]. 

4 |Neutrosophic One-Round ZKP 

The Neutrosophic 1-Round ZKP to the Discrete Logarithm problem is an extension of the previous protocol 

in the realm of Neutrosophic numbers. Given the following neutrosophic numbers (in bold), p, g, b, x, where: 

 p is a neutrosophic prime number, p = p1 + p2I > 0, i.e., p1, p1 + p2I > 0 
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 g is a generator, g = g1 + g2I, i.e., g1, g1 + g2I > 0 

 b is given by, b = b1 + b2I 

 x is given by, x = x1 + x2I 

Peggy claims knowing x = x1 + x2I, such that: 𝒈𝒙 ≡ 𝒃 (𝑚𝑜𝑑 𝒑). From the Neutrosophic exponentiation 

[25], it follows that 𝒈𝒙 ≡ 𝒃 (𝑚𝑜𝑑 𝒑), is given by: 

(𝑔1 + 𝑔2𝐼)(𝑥1+𝑥2𝐼) =  𝑔1
𝑥1(𝑚𝑜𝑑 𝑝1) + 𝐼[ (𝑔1 + 𝑔2)𝑥1+𝑥2(𝑚𝑜𝑑 𝑝1 +  𝑝2) −  𝑔1

𝑥1(𝑚𝑜𝑑 𝑝1) ] 

She proves to Victor that her claim is true without revealing the ‘x’ value through the steps described in Table 

2. 

Table 2. Neutrosophic One-Round ZKP of DL problem. 

Step  Peggy(P) Victor(V) 

0 Setup g, p, b, x g, p, b 

1 V generates a random y  y 

2 V sends 𝒄 ≡ 𝒈𝒚(𝑚𝑜𝑑 𝒑) to P c 𝒄 ≡ 𝒈𝒚(𝑚𝑜𝑑 𝒑) 

3 P sends 𝒓 ≡ 𝒄𝒙(𝑚𝑜𝑑 𝒑) to V 𝒓 ≡ 𝒄𝒙(𝑚𝑜𝑑 𝒑) r 

4 V verifies that 𝒓 ≡ 𝒃𝒚(𝑚𝑜𝑑 𝒑)   

 

Step 1. Given the neutrosophic numbers (described previously): p, g, b, x. 

Step 2. Victor chooses a neutrosophic number y = y1 + y2I. 

Step 3. Victor computes 𝒄 ≡ 𝒈𝒚(𝑚𝑜𝑑 𝒑), and sends c to Peggy. c is given by: 

(𝑔1 + 𝑔2𝐼)(𝑦1+𝑦2𝐼) =  𝑔1
𝑦1(𝑚𝑜𝑑 𝑝1) + 𝐼[ (𝑔1 + 𝑔2)𝑦1+𝑦2(𝑚𝑜𝑑 𝑝1 + 𝑝2) − 𝑔1

𝑦1(𝑚𝑜𝑑 𝑝1) ] 

Step 4. Peggy sends to Victor, r, 𝒓 ≡ 𝒄𝒙(𝑚𝑜𝑑 𝒑) 

Step 5. Victor verifies that 𝒓 ≡ 𝒃𝒚(𝑚𝑜𝑑 𝒑) 

𝒓 ≡ 𝒄𝒙(𝑚𝑜𝑑 𝒑) ≡ 𝒈𝒚𝒙(𝑚𝑜𝑑 𝒑) ≡ 𝒈𝒙𝒚(𝑚𝑜𝑑 𝒑) ≡ 𝒃𝒚(𝑚𝑜𝑑 𝒑) 

𝒓 ≡  𝑔1
𝑦1𝑥1(𝑚𝑜𝑑 𝑝1) + 𝐼[ (𝑔1 + 𝑔2)(𝑦1+𝑦2)(𝑥1+𝑥2)(𝑚𝑜𝑑 𝑝1 + 𝑝2) − 𝑔1

𝑦1𝑥1(𝑚𝑜𝑑 𝑝1) ] 

𝒓 ≡  𝑔1
𝑥1𝑦1(𝑚𝑜𝑑 𝑝1) + 𝐼[ (𝑔1 + 𝑔2)(𝑥1+𝑥2)(𝑦1+𝑦2)(𝑚𝑜𝑑 𝑝1 + 𝑝2) − 𝑔1

𝑥1𝑦1(𝑚𝑜𝑑 𝑝1) ] 

𝒓 ≡ 𝒃𝒚(𝑚𝑜𝑑 𝒑) 

The Neutrosophic One-Round ZKP is the first ZKP using Neutrosophic number theory, and it opens a new 

research area to evaluate the potentiality of Neutrosophic cryptographic ZKP schemes against quantum-

computer attacks, as well as, MemComputing digital machines attacks. 

5 |Conclusion 

We introduced the first Neutrosophic ZK protocol, the Neutrosophic One-Round Zero Knowledge Proof 

considering the Discrete Logarithm Problem. The use of Neutrosophy in the field of ZKP can, potentially, 

help improve the privacy and security of communications under insecure channels. 
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