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1 |Introduction 

From Plato's dialogues, where the question "What is knowledge?" was first posed, to the present day, 

questions about the nature of knowledge have puzzled philosophers for thousands of years. For more than 

2000 years philosophers such as Aristotle, Heraclitus, Descartes, and others have tried to describe the 

mechanism of learning, memorizing, sight, perception, and reasoning. At that time Aristotle laid down the 

rules of conventional logic in an attempt to clear things up. Aristotelian logic provided some rules for the 

foundations of logical inductive reasoning, but it failed to deal directly and satisfactorily with the vague nature 

of many things.  

Although researchers in mathematical logic had already worked with multi-valued logic, it wasn't until 1965 

that a scientific approach to the issue of ambiguity was mentioned. Science aims to make things as clear as 

possible and to provide convincing answers for the various phenomena of our world. Ambiguity was seen as 

the enemy, as the goal was to clarify anything unclear. To admit that something was questionable and to 

accept and treat it as such went against the aims of science. 
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In 1965, Zadeh introduced the idea of fuzzy logic and fuzzy sets [1]. Zadeh had to convince the scientific 

community that he was not proposing a way to compromise real problems but an ingenious new approach 

that could yield new results. Fuzzy logic is an extension of conventional logic. According to conventional 

logic, something is either completely true or completely false. However, there are many cases where this is 

not the case. In these instances, it would be better if we could use expressions like “almost true” or “almost 

false”.  

Information granulation plays a key role in both human and machine intelligence. It involves breaking down 

complex information into easier-to-comprehend, coarse-grained portions or granules. Within this framework, 

to enable computers to process and reason with imprecise and vague information similarly to how humans 

do, Zadeh proposed the computational theory of perceptions (CTP) [2]. This framework involves translating 

perceptions, expressed in natural language, into computational representations utilizing fuzzy logic.  

Neutrosophic logic, an advanced extension of classical and fuzzy logic, changes how we perceive and handle 

uncertainty, indeterminacy, and contradictions in complex systems [3]. Neutrosophic logic proposes three 

functions: truth-membership, indeterminacy-membership, and falsity-membership, to address limitations in 

classical logic when faced with incomplete, imprecise, or contradictory information. The ability of 

neutrosophic logic to capture and formalize this inherent complexity makes it a valuable tool in various fields, 

including artificial intelligence, decision sciences, engineering, and philosophy. 

Neutrosophic logic's versatility and ability to handle uncertainties, contradictions, and vague information find 

applications across various domains. It has been successfully applied to decision-making systems [4-6], 

medical diagnosis and healthcare [7-9], pattern recognition and image processing [10-11], control systems and 

robotics [12-13], engineering and risk management [14-16] and environmental studies [17-18]. 

This paper aims to introduce in related literature an extension of the fuzzy CTP, namely a neutrosophic CTP 

(n-CTP). Our proposed framework enhances the accuracy of information granulation by managing truth, 

untruth, and indeterminacy simultaneously. This leads to the creation of more precise and detailed granules 

that precisely represent the complexity of the real world. In addition, n-CTP improves decision-making by 

ensuring that granules are based on the underlying data and allows for greater flexibility in handling 

uncertainty. Its connection with human cognition enables the development of more intuitive and granular 

computer systems. 

2 |A Neutrosophic Computational Theory of Perceptions 

2.1 |The Need for a Neutrosophic Computational Theory of Perceptions 

Information granulation is important in human intelligence because it allows people to digest complicated 

information more effectively. By dividing enormous volumes of data into digestible, coarse-grained bits or 

granules, humans may concentrate on vital aspects while ignoring irrelevant information. This simplicity 

allows for greater comprehension, decision-making, and issue resolution. C-granular modes of information 

granulation (Figure 1) are essential in a variety of methodologies, approaches, and techniques, including 

interval analysis, qualitative process theory, decision trees, semantic networks, and constraint programming.   

Despite its major impact on numeric measurement-based approaches, crisp information granulation fails to 

reflect the fact that in most human reasoning and idea production, the granules are fuzzy (f-granular) rather 

than crisp. Fuzzy sets represent confusing concepts by enabling items to have varying degrees of membership 

in a set. To do this, each element is assigned a membership degree to the set, which ranges from 0 to 1, 

yielding a membership function. While the concept of fuzzy logic has proven useful in resolving ambiguities 

and imprecision, it has a fundamental flaw when dealing with scenarios that include not only uncertainty but 

also indeterminacy, as well as the coexistence of truth, falsehood, and indeterminacy within the same assertion. 

Smarandache [19] proposed Neutrosophy, a new discipline of philosophy based on many-valued logic that 

combines non-standard analysis with a tri-component logic/set/probability theory. Neutrosophy holds that 
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any idea/concept/thesis, etc., has a degree of truth, as well as untruth and indeterminacy, which must be 

addressed separately. As a result, he created the theory of neutrosophic logic (NL) as a generalization of many-

valued logic. Fuzzy logic is thought to be incapable of producing indeterminacy on its own, therefore NL was 

created to be more human-like. NL refers to the imprecision of information or linguistic inexactitude acquired 

by diverse observers, the uncertainty caused by inadequate knowledge or acquisition mistakes, and the 

vagueness caused by a lack of defined bounds or boundaries. 

In neutrosophic logic, propositions are represented using triples (T, I, F), where T represents the degree of 

truth, I represents the degree of indeterminacy, and F represents the degree of falsehood. These degrees range 

from 0 to 1, indicating the extent to which each component is present. Mathematically, a neutrosophic 

proposition can be represented as: 

Proposition  p =(T,I,F)                              (1) 

If we observe expression (1) in greater detail, it becomes clearer that this representation is closer to how the 

human mind thinks. The subsets T, I, and F represent imprecise knowledge or linguistic inexactitude obtained 

by various observers, as well as uncertainty caused by incomplete knowledge or acquisition errors. The 

presence of subset I is due to stochasticity, while subsets T, I, and F exist because of a lack of clear boundaries 

[20]. 

It should be emphasized that for engineering issues, the traditional unit interval [0, 1] is employed. When T, 

I, and F are independent, there is the opportunity for inadequate information (sum < 1), paraconsistent and 

contradicting information (sum > 1), or complete information (sum = 1) [21].  

In a more formal sense, let U be a universe of discourse and M a set within U. An element 𝑥 from U is marked 

concerning the set M as 𝑥(𝑇,𝐼,𝐹) and belongs to M in the following way: it is 𝑡% true in the set, 𝑖% 

indeterminate (unknown whether it is) in the set, and 𝑓% false. 

Thus, when we denote as p = (0.6,0.2,0.2) we mean  that proposition p belongs to M (which means, with a 

probability of 60% 𝑥 is in M, with a probability of 20% 𝑥 is not in M and the rest 20% is undecidable or 

undefined); 

In this perspective, we believe that the introduction of a n-CTP could be viewed as a new and promising 

direction of AI to address problems in which the information that decisions are based on is perceptual. 

 
Figure 1. Classification of modes of granulation. 

2.2 |Computing with Words in a Neutrosophic Environment 

Computing frequently involves manipulating numbers and symbols. Humans, on the other hand, typically 

employ words in computing and reasoning, obtaining conclusions expressed as words based on premises 

articulated in natural language or taking the form of mental impressions. 
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The following is a simple general problem in the process of calculating with words. The initial data set (IDS) 

comprises natural language assertions. Our objective is to derive an answer to a natural language query from 

the original dataset. The response, expressed in regular English, is known as the terminal data set (TDS). The 

difficulty is to derive TDS from IDS (Fig. 2), which was adopted and modified from the seminal work 

discussed in [22]. In our article, TDS refers to the needed actions that have to be undertaken to successfully 

compute with IDS. 

 IDS {p}           Computing with words                     TDS {q} 

p, q: propositions expressed in natural language 

Figure 2. Process of computing with words. 

To reason about perceptions, one must first have a way to describe their meaning in a form that can be 

computed. Conventional meaning representation languages based on predicate logic lack the expressive 

capability needed for this task. Towards this direction, Zadeh proposed a CTP based on fuzzy logic [2, 22]. 

However, due to the inherent limitation of fuzzy logic in efficiently handling indeterminacy, it lacks the 

capability for a more thorough analysis of ambiguous or incomplete information. 

In CTP, meaning representation entails capturing and recording the semantic content of perceptions in a 

computational form. This representation seeks to bridge the gap between human comprehension of language 

and machine analysis of data. Constraint-centered semantics in natural language processing (CSNL) [23] 

employs constraints to convey the meaning of linguistic expressions rather than standard formal semantics. 

It emphasizes the importance of limits in determining the meaning of words and phrases in a specific context, 

allowing for a more flexible and dynamic interpretation of natural language. 

The main ideas and assumptions behind CSNL can be summarized as follows [24]:  

 Natural-language propositions are used to describe perceptions. 

 A proposition, p, can be interpreted as a response to a question. 

 A proposition serves as a means of communication.  

 A proposition's meaning is expressed as a generalized constraint that determines the information it 

conveys.  

In this work, we propose an extension of CSNL, namely a neutrosophic CSNL (n-CSNL) which includes the 

following key concepts: 

 Constraint-Based Representations: language meanings are represented by constraints that encompass 

a variety of language events, including word meanings, syntactic structure, and pragmatic restrictions. 

Neutrosophic logic provides for the modeling of these restrictions using degrees of truth, 

indeterminacy, and falsity, which accommodates ambiguous and conflicting data. 

 Constraint Satisfaction: Interpreting language expressions requires meeting these constraints, ensuring 

that the meaning drawn from the statement is consistent with the limits imposed by the context. n-

CSNL enables flexible constraint satisfaction while accepting variable levels of uncertainty and 

ambiguity in the interpretation process. 

 Dynamic Interpretation: n-CSNL offers dynamic interpretation of verbal statements, allowing the 

interpretation process to adjust to changes in context or information availability. This dynamicity 

guarantees that the interpretation is both culturally appropriate and semantically meaningful. 

When calculating with words in n-CSNL, two major issues arise. The first challenge is encoding neutrosophic 

limitations. More specifically, how may neutrosophic restrictions that are implicit in claims expressed in 

common language be made explicit? The second issue is neutrosophic constraint transmission, which 
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investigates how neutrosophic constraints in premises, also known as antecedent constraints, may be spread 

to conclusions, or consequent constraints. These difficulties are addressed in the next subsection. 

2.3 |Representation of Neutrosophic Constraints and Generalized Constraints 

In a neutrosophic environment, generalized constraints are extended to handle the inherent uncertainty, 

indeterminacy, and inconsistency found in many real-world problems. A neutrosophic generalized constraint 

can be expressed as: 

 𝑋 𝑖𝑠 (𝑇, 𝐼, 𝐹)                                 (2) 

where:   X is the variable or quantity being constrained 

T is the degree of truth (how true the constraint is) 

I is the degree of indeterminacy (how indeterminate or unknown the constraint is) 

F is the degree of falsity (how false the constraint is) 

As a simple example consider the proposition p: The temperature in the room is moderate. In this case, there are 

two possible questions: (1) What is the temperature of the room? and (2) What temperature is moderate? 

Assuming that the question is the first one, the meaning of p could be represented as   

 p          Temperature (room) is moderate 

where Temperature (room) is the constrained variable; moderate is the considering relation and the constraint 

defines the neutrosophic possibility distribution  Πx of Temperature (room).  

In schematic form, adopted and modified from [21]: 

𝑋 𝑖𝑠 (𝑇, 𝐼, 𝐹)          𝛱𝑥 = (𝑇, 𝐼, 𝐹) 

                                            Poss (X=u) = (𝜇𝛵 (𝑢), 𝜇𝐼 (𝑢), 𝜇𝐹(𝑢))     

At this point, it is useful to define what we mean with the term neutrosophic possibility as first discussed in 

[25]. Assume p is represented as a neutrosophic proposition in the form X is P, where X takes values in a 

space U and P is a neutrosophic set in U with a given truth membership function μT, indeterminacy 

membership function μΙ, and falsity membership function μF. Assume F is represented as a neutrosophic 

statement of the form X is F, where F is a neutrosophic set in U, with a defined truth membership function 

(vT), indeterminacy membership function (νI), and falsity membership function (νF). Let u be a generic value 

of X. Denote the neutrosophic possibility that 

X =u as 𝑃𝑜𝑠𝑠𝑁 (X=u). 

Definition 1 [25]. 𝑃𝑜𝑠𝑠𝑁 (X=u) is defined as the grade of (t, i, f)-membership of u in P, i.e. 

                                   𝑃𝑜𝑠𝑠𝑁 (X=u) = (𝜇𝛵 (𝑢), 𝜇𝐼 (𝑢), 𝜇𝐹(𝑢))                         (3) 

If we return to the above example and if we assume that the truth membership function of, say, 20oC in 

moderate is 0.7, the indeterminacy membership function and falsity membership function are 0.1 and 0.2 

respectively, then the possibility that the temperature of the room is 20oC given that the temperature is (0.7, 

0.1, 0.2)-moderate. 

If the question is the second one, the meaning of p would be represented as 

p            (moderate)  is V (temperature in room) 

in which the constrained variable is (moderate), and is V is a veristic constraint. Thus, if the temperature of the 

room is 20oC and the grade of truth/indeterminacy/falsity membership of 20oC in moderate is (0.7, 0.1, 0.2), 

then the neutrosophic verity of the proposition “the temperature of the room is moderate” is (0.7, 0.1, 0.2). 
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2.4 |Reasoning with Perceptions Based on Neutrosophic Generalized Constraint 

Propagation 

When reasoning with perceptions using neutrosophic generalized constraint propagation, the goal is to handle 

indeterminacy and uncertainty more effectively. Perceptions are expressed using neutrosophic logic, allowing 

each perception to be associated with degrees of truth, indeterminacy, and falsity. These perceptions are then 

formulated as generalized constraints. For example, the perception "The room temperature is high" can be 

expressed as a constraint (room) is High.  

The generalized constraints are propagated through a system of rules or models. This involves combining 

constraints using logical operations (AND, OR, NOT) and other operators specific to neutrosophic logic. 

For example, if we know "If the temperature is high, then the air conditioner should be on," we can propagate 

the constraint related to temperature to derive the constraint related to the air conditioner’s state. 

Consider the following example to illustrate this process: 

Proposition p: "It feels warm in the room." 

This can be represented in neutrosophic terms as Warm room (𝑇𝑊,,𝑊) where T, I, and F represent the degrees of 

truth, indeterminacy, and falsity respectively. 

Generalized Constraint: (room) is Warm 

Propagation Rule: "If (room) is Warm, then ACstate is On." 

To better understand the propagation rule let us delve into the detailed steps involved: 

Let (room) is Warm be represented as (𝑇𝑊,,𝑊) where 𝑇𝑊, 𝐼𝑊, and 𝐹𝑊 are the truth, indeterminacy, and falsity 

values, respectively. Similarly, let ACstate is On be represented as (𝑇𝐴𝐶,𝐼𝐴𝐶,𝐹𝐴𝐶) 

Establish a rule that links the perception to the action. For example, the rule can be expressed as IF T(room)

 is Warm THEN ACstate is On 

Given the rule, if (𝑇room) is Warm is represented by (𝑇 , 𝐹𝑊), then the corresponding ACstate is On can be 

represented by a similar neutrosophic triplet (𝑇𝐴𝐶,𝐼𝐴𝐶,𝐹𝐴𝐶). 

The transformation typically follows some predefined logic that dictates how the truth, indeterminacy, and 

falsity values propagate through the rule. For simplicity, let's assume the transformation preserves the levels 

of uncertainty, meaning: 𝑇𝐴𝐶=𝑇𝑊, 𝐼𝐴𝐶=𝐼𝑊  , and 𝐹𝐴𝐶=𝐹𝑊. This implies that the truth, indeterminacy, and 

falsity of the room being warm directly map to the truth, indeterminacy, and falsity of the AC being on. 

Suppose we have the following neutrosophic values for the perception "Warm": (𝑇𝑊=0.7, 𝐼𝑊=0.2 𝐹𝑊=0.1). 

Given the rule: IF (room) is Warm THEN ACstate is On. The propagation results in: (𝑇𝐴𝐶=0.7, 𝐼𝐴𝐶=0.2, 𝐹𝐴𝐶=0.1) 

So, the propagated constraint for the air conditioner's state being "On" is: ACstate is On ≡ (0.7,0.2,0.1) 

In more complicated situations, the propagation rules use sophisticated transformations to account for the 

various linkages and interactions between multiple perceptions and actions. This complexity stems from the 

necessity to deal with the combined ambiguity, indeterminacy, and vagueness of various perceptions and how 

they impact each other in a more nuanced way. 

For instance, in the above example, the decision to turn on an air conditioner might depend on both the 

room temperature and humidity levels so on this occasion we will have the following propositions: 

p1: T(room) is Warm 

p2: H(room) is Humid  and 

q: ACstate is On 
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The rule in this instance might be: If p1 AND p2 THEN q                                   (4) 

In order to compute the above rule we will first need to define the neutrosophic conjunction connective to 

handle neutrosophic values. 

Definition 2 [26]. Given two sentences p1, p2 and a neutrosophic valuation v such that v (p1) = (t1, i1, f1) ∈ 

N , and v(p2) = (t2, i2, f2) ∈ 𝒩 , the truth value of the conjunction p1 ∧ p2 may be defined as: 

v(p1 ∧ p2) = (min(t1, t2), max(i1, i2), max(f1, f2))                                                            (5) 

Now, if we assume that we have: 

p1: T(room) is Warm = (0,7, 0.2, 0.1) and 

p2: H(room) is Humid = (0.6,0.3, 0.1) then by applying equation (5) we have  

v (p1 ∧ p2) = ( min (0.7, 0.6), max (0.2, 0.3), max (0.1, 0.1)) = (0.6, 0.3, 0.1) 

So the propagated constraint for the air conditioner’s state being "On”, based on the if-then rule shown in 

(4), would be, q: ACstate is On = (0.6, 0.3, 0.1). 

3 |Concluding Remarks 

The integration of neutrosophic logic into the computational theory of perceptions (n-CTP) represents a 

major advancement in artificial intelligence, specifically in enhancing its ability to mimic human cognitive 

processes. We introduce a framework that adequately manages the inherent uncertainties, vagueness, and 

indeterminacies present in real-world data by introducing the notion of neutrosophic granular (n-granular) 

information and formulating neutrosophic constraint-centered semantics of natural languages (n-CSNL). 

Unlike prior suggested methods, which rely primarily on crisp (c-granular) or fuzzy (f-granular) approaches, 

n-CTP uses three-valued neutrosophic logic of truth, falsity, and indeterminacy. This allows for a more 

intricate and comprehensive representation and processing of information, which is similar to how people 

naturally perceive and reason about their surroundings. The versatility of neutrosophic logic to deal with 

varying degrees of uncertainty makes it an ideal conceptual instrument for dealing with the specifics of 

perceptional knowledge. This advancement has far-reaching implications for a wide range of applications, 

including natural language processing and decision-making systems, in which understanding and interpreting 

complicated human perspectives is crucial. 

However, this article only outlines the basic key concepts of a computational theory of perceptions under a 

neutrosophic environment. In more complex scenarios, the propagation rules involve even more 

sophisticated transformations to account for the intricate relationships and interactions between multiple 

perceptions and actions. Actions may be influenced not just by present perceptions but also by their history 

and evolution over time. In the latter, temporal dynamics provide a further layer of complexity, as propagation 

algorithms must account for trends and rates of change. In other cases, there may be conditional dependencies 

and nonlinear interactions between perceptions and actions. For example, the feeling of comfort might be 

influenced by both temperature and humidity, but with distinct weights and perhaps non-linear interactions 

that represent how humans experience comfort. 
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