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1 |Introduction 

1.1 | Uncertain Graph 

Graph theory, a branch of mathematics, explores the study of graphs that model relationships between objects 

using vertices and edges [29]. It has found extensive applications in both mathematical and real-world contexts 

[38, 64, 74, 76, 94]. Recently, graph theory has also been widely utilized in artificial intelligence research [23 

96, 114, 119]. 

To address real-world uncertainty, concepts like Fuzzy Sets [116] were introduced, later extended to 

Neutrosophic Sets [98] and other frameworks, leading to various applications across multiple fields. This 

paper examines several models of uncertain graphs-namely, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, 

Turiyam, and Plithogenic Graphs-designed to handle uncertainty in diverse contexts. These models, 

collectively referred to as uncertain graphs, extend classical graph theory by integrating various levels of 

uncertainty. Due to their significance, numerous related graph classes and applications have been developed 

[37, 39, 41–44, 48, 50, 52–56]. In addition to graph models, foundational concepts like Fuzzy Sets and 

Neutrosophic Sets have been extensively explored and are widely recognized in the literature [10–14, 26, 30–

32, 34, 73, 75, 83, 98, 116, 117]. 

This paper specifically focuses on the Turiyam Neutrosophic Graph and the General Plithogenic Graph. The 

Turiyam Neutrosophic Graph represents uncertainty using four values for vertices and edges: truth, 

indeterminacy, falsity, and liberal state. Conversely, the Plithogenic Graph is a general structure in which 
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vertices and edges are characterized by degrees of appurtenance and contradiction across multiple attributes 

[45]. The General Plithogenic Graph is an extension of the Plithogenic Graph, providing a broader framework 

[45]. Note that the Turiyam Neutrosophic Set is actually a particular case of the quadripartitioned 

Neutrosophic Set, by replacing "Contradiction" with "Liberal" [97]. The corresponding graph concept known 

as quadripartitioned neutrosophic graphs is well-documented [67,68]. 

1.2 |Soft Expert Graph 

A Soft Expert Graph combines graph theory with expert evaluations, where vertices and edges are associated 

with fuzzy sets, and experts' inputs define uncertainty and relationships within the graph. Related concepts 

include the Fuzzy Soft Expert Graph [92], Intuitionistic Fuzzy Soft Expert Graph [109], and Neutrosophic 

Soft Expert Graph [111]. These models have been studied for applications such as multi-criteria decision-

making (e.g., [15, 33, 88, 106, 108]). Additionally, related concepts such as Soft Expert Sets are also well-

known [6, 9, 84, 91]. 

1.3 |Contributions 

Building upon the research of Uncertain Graphs and Soft Expert Graphs, this study introduces and analyzes 

new concepts of the General Plithogenic Soft Expert Graph and the Turiyam Neutrosophic Soft Expert 

Graph. The General Plithogenic Soft Expert Graph extends the existing Soft Expert Graph model into a 

more generalized framework. 

2 |Preliminaries and Definitions 

In this section, we present a brief overview of the definitions and notations used throughout this paper. 

2.1 |Basic Graph Concepts 

Here are a few basic graph concepts listed below. For more foundational graph concepts and notations, please 

refer to [27, 28-29, 64, 113]. 

Definition 1 (Graph). [29] A graph 𝐺 is a mathematical structure consisting of a set of vertices 𝑉(𝐺) and a 

set of edges 𝐸(𝐺) that connect pairs of vertices, representing relationships or connections between them. 

Formally, a graph is defined as 𝐺 = (𝑉, 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set. 

Definition 2 (Degree). [29] Let 𝐺 = (𝑉, 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted deg(𝑣), is 

the number of edges incident to 𝑣. Formally, for undirected graphs: 

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}| 

In the case of directed graphs, the in-degree deg−(𝑣) is the number of edges directed into 𝑣, and the out-

degree deg+(𝑣) is the number of edges directed out of 𝑣. 

2.2 |Uncertain Graph 

This paper addresses Fuzzy, Intuitionistic Fuzzy, Neutrosophic, Turiyam, and Plithogenic concepts within 

the framework of Unified Uncertain Graphs. Note that Turiyam Neutrosophic Set is actually a particular case 

of the Quadruple Neutrosophic Set, by replacing "Contradiction" with "Liberal" 97]. 

Definition 3 (Unified Uncertain Graphs Framework). (cf.[51]) Let 𝐺 = (𝑉, 𝐸) be a classical graph with a set 

of vertices 𝑉 and a set of edges 𝐸. Depending on the type of graph, each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 is 

assigned membership values to represent various degrees of truth, indeterminacy, falsity, and other nuanced 

measures of uncertainty. 

1. Fuzzy Graph [18,40,60,61,72,77,80,89,90,104,112]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0,1]. 
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 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0,1]. 

2. Intuitionistic Fuzzy Graph (IFG) 1 1, 17, 24, 70,78,107,110,118: 

 Each vertex 𝑣 ∈ 𝑉 is assigned two values: 𝜇𝐴(𝑣) ∈ [0,1] (degree of membership) and 

𝑣𝐴(𝑣) ∈ [0,1] (degree of non-membership), such that 𝜇𝐴(𝑣) + 𝑣𝐴(𝑣) ≤ 1. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned two values: 𝜇𝐵(𝑢, 𝑣) ∈ [0,1] and 𝑣𝐵(𝑢, 𝑣) ∈ [0,1], 

with 𝜇𝐵(𝑢, 𝑣) + 𝑣𝐵(𝑢, 𝑣) ≤ 1. 

3. Neutrosophic Graph [4,5,22,35,36,45,47,49,53,56,65,66,71,93,101,102]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a triplet 𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)), where 

𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣) ∈ [0,1] and 𝜎𝑇(𝑣) + 𝜎𝐼(𝑣) + 𝜎𝐹(𝑣) ≤ 3. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a triplet 𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)). 

4. Turiyam Neutrosophic Graph [57-59]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple 𝜎(𝑣) = (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)), where 

each component is in [0,1] and 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is similarly assigned a quadruple. 

5. Vague Graph [2, 3, 19, 21, 86, 87, 95]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a pair (𝜏(𝑣), 𝜙(𝑣)), where 𝜏(𝑣) ∈ [0,1] is the degree of 

truthmembership and 𝜙(𝑣) ∈ [0,1] is the degree of false-membership, with 𝜏(𝑣) +

𝜙(𝑣) ≤ 1. 

 The grade of membership is characterized by the interval [𝜏(𝑣),1 − 𝜙(𝑣)]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a pair (𝜏(𝑒), 𝜙(𝑒)), satisfying: 

𝜏(𝑒) ≤ min{𝜏(𝑢), 𝜏(𝑣)},  𝜙(𝑒) ≥ max{𝜙(𝑢), 𝜙(𝑣)} 

6. Hesitant Fuzzy Graph [16, 63, 81, 82,115]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a hesitant fuzzy set 𝜎(𝑣), represented by a finite subset of 

[0,1], denoted 𝜎(𝑣) ⊆ [0,1]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a hesitant fuzzy set 𝜇(𝑒) ⊆ [0,1]. 

 Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle the 

hesitation in membership degrees. 

7. Single-Valued Pentapartitioned Neutrosophic Graph [25, 67, 69, 85]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple 𝜎(𝑣) = (𝑇(𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹(𝑣)), 

where: 

- 𝑇(𝑣) ∈ [0,1] is the truth-membership degree. 

- 𝐶(𝑣) ∈ [0,1] is the contradiction-membership degree. 

- 𝑅(𝑣) ∈ [0,1] is the ignorance-membership degree. 

- 𝑈(𝑣) ∈ [0,1] is the unknown-membership degree. 

- 𝐹(𝑣) ∈ [0,1] is the false-membership degree. 

- 𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5. 
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 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a quintuple 𝜇(𝑒) =

(𝑇(𝑒), 𝐶(𝑒), 𝑅(𝑒), 𝑈(𝑒), 𝐹(𝑒)), satisfying: 

{
 
 

 
 
𝑇(𝑒) ≤ min{𝑇(𝑢), 𝑇(𝑣)}
𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)}
𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)}
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)}
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}

 

Definition 4. [62, 99, 100, 103, 105] Let 𝐺 = (𝑉, 𝐸) be a crisp graph where 𝑉 is the set of vertices and 

𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. A Plithogenic Graph 𝑃𝐺 is defined as: 

𝑃𝐺 = (𝑃𝑀, 𝑃𝑁) 

where: 

1. Plithogenic Vertex Set 𝑃𝑀 = (𝑀, 𝑙,𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓) : 

 𝑀 ⊆ 𝑉 is the set of vertices. 

 𝑙 is an attribute associated with the vertices. 

 𝑀𝑙 is the range of possible attribute values. 

 adf : 𝑀 ×𝑀𝑙 → [0,1]𝑠 is the Degree of Appurtenance Function (DAF) for vertices. 

 𝑎𝐶𝑓:𝑀𝑙 ×𝑀𝑙 → [0,1]𝑡 is the Degree of Contradiction Function (DCF) for vertices. 

2. Plithogenic Edge Set 𝑃𝑁 = (𝑁,𝑚,𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓) : 

 𝑁 ⊆ 𝐸 is the set of edges. 

 𝑚 is an attribute associated with the edges. 

 𝑁𝑚 is the range of possible attribute values. 

 bdf: 𝑁 × 𝑁𝑚 → [0,1]𝑠 is the Degree of Appurtenance Function (DAF) for edges. 

 bCf: Nm × 𝑁𝑚 → [0,1]𝑡 is the Degree of Contradiction Function (DCF) for edges. 

 

The Plithogenic Graph 𝑃𝐺 must satisfy the following conditions: 

1. Edge Appurtenance Constraint: For all (𝑥, 𝑎), (𝑦, 𝑏) ∈ 𝑀 ×𝑀𝑙 : 

𝑏𝑑𝑓((𝑥𝑦), (𝑎, 𝑏)) ≤ min{𝑎𝑑𝑓(𝑥, 𝑎), 𝑎𝑑𝑓(𝑦, 𝑏)} 

where 𝑥𝑦 ∈ 𝑁 is an edge between vertices 𝑥 and 𝑦, and (𝑎, 𝑏) ∈ 𝑁𝑚 × 𝑁𝑚 are the corresponding attribute 

values. 

2. Contradiction Function Constraint: For all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑁𝑚 ×𝑁𝑚: 

𝑏𝐶𝑓((𝑎, 𝑏), (𝑐, 𝑑)) ≤ min{𝑎𝐶𝑓(𝑎, 𝑐), 𝑎𝐶𝑓(𝑏, 𝑑)} 

3. Reflexivity and Symmetry of Contradiction Functions: 

𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

 

Example 5. (cf. 45 51]) The following examples are provided. 



   Fujita and Smarandache|Plithogenic Log. Comp. 2 (2024) 107-121 

 

888 

 When 𝑠 = 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Fuzzy Graph. 

 When 𝑠 = 2, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Intuitionistic Fuzzy Graph. 

 When 𝑠 = 3, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Neutrosophic Graph. 

 When 𝑠 = 4, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Turiyam Neutrosophic Graph. 

The General Plithogenic Graph is a generalization of the Plithogenic Graph (cf.[35, 45, 79]). 

 

Definition 6 (General Plithogenic Graph). [45] Let 𝐺 = (𝑉, 𝐸) be a classical graph, where 𝑉 is a finite set of 

vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. 

A General Plithogenic Graph 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁) consists of: 

1. General Plithogenic Vertex Set PM: 

𝑃𝑀 = (𝑀, 𝑙,𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓) 

Where: 

 𝑀 ⊆ 𝑉 : Set of vertices. 

 𝑙 : Attribute associated with the vertices. 

 𝑀𝑙 : Range of possible attribute values. 

 𝑎𝑑𝑓:𝑀 ×𝑀𝑙 → [0,1]𝑠: Degree of Appurtenance Function (DAF) for vertices. 

 𝑎𝐶𝑓:𝑀𝑙 × 𝑀𝑙 → [0,1]𝑡 : Degree of Contradiction Function (DCF) for vertices. 

2. General Plithogenic Edge Set PN: 

𝑃𝑁 = (𝑁,𝑚,𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓) 

Where: 

 𝑁 ⊆ 𝐸 : Set of edges. 

 𝑚 : Attribute associated with the edges. 

 Nm: Range of possible attribute values. 

 𝑏𝑑𝑓:𝑁 × 𝑁𝑚 → [0,1]𝑠: Degree of Appurtenance Function (DAF) for edges. 

 𝑏𝐶𝑓:𝑁𝑚 × 𝑁𝑚 → [0,1]𝑡 : Degree of Contradiction Function (DCF) for edges. 

The General Plithogenic Graph 𝐺𝐺𝑃 Only needs to satisfy the following Reflexivity and Symmetry properties 

of the Contradiction Functions: 

 Reflexivity and Symmetry of Contradiction Functions: 

𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

 

2.3 |Soft Expert Graph 

The definitions of the Intuitionistic Fuzzy Soft Expert Graph and the Neutrosophic Soft Expert Graph are 

provided below. 
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Definition 7. [109] An Intuitionistic Fuzzy Soft Expert Graph (IFSEG) is defined over a simple graph 𝐺∗ = 

(𝒱, ℰ), where: 

 𝒱 is a set of vertices, 

 ℰ is a set of edges, 

 𝑦 is a set of parameters, 

 𝑋 is a set of experts, 

 𝑂 = {1 = agree, 0 = disagree } is a set of opinions, and 

 𝑍 = 𝒴 ×𝒳 × 𝑂 is the Cartesian product of the sets. 

Let 𝐴 ⊆ 𝑍 and let IFSE(𝒱) denote the set of all intuitionistic fuzzy sets in 𝒱. The IFSEG is represented as a 

4-tuple: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) 

where: 

 𝑓: 𝐴 → IFSE(𝒱) is a function mapping each parameter in 𝐴 to an intuitionistic fuzzy set of vertices, 

 𝑔:𝐴 → IFSE(𝒱 × 𝒱) is a function mapping each parameter in 𝐴 to an intuitionistic fuzzy set of 

edges. 

The mappings 𝑓 and 𝑔 are defined as: 

𝑓(𝛼) = 𝑓𝛼 = {⟨𝑥, 𝜇𝑓𝛼(𝑥), 𝑣𝑓𝛼(𝑥)⟩: 𝑥 ∈ 𝒱}

𝑔(𝛼) = 𝑔𝛼 = {⟨(𝑥, 𝑦), 𝜇𝑔𝛼(𝑥, 𝑦), 𝑣𝑔𝛼(𝑥, 𝑦)⟩: (𝑥, 𝑦) ∈ 𝒱 × 𝒱}
 

where: 

 𝜇𝑓𝛼(𝑥) and 𝑣𝑓𝛼(𝑥) represent the membership and non-membership degrees of vertex 𝑥 under 

parameter 𝛼, respectively. 

 𝜇𝑔𝛼(𝑥, 𝑦) and 𝑣𝑔𝛼(𝑥, 𝑦) represent the membership and non-membership degrees of the edge (𝑥, 𝑦) 

under parameter 𝛼, respectively. 

These mappings satisfy the following conditions for all (𝑥, 𝑦) ∈ 𝒱 × 𝒱 and 𝛼 ∈ 𝐴 : 

𝜇𝑔𝛼(𝑥, 𝑦) ≤ min{𝜇𝑓𝛼(𝑥), 𝜇𝑓𝛼(𝑦)}

𝑣𝑔𝛼(𝑥, 𝑦) ≤ min{𝑣𝑓𝛼(𝑥), 𝑣𝑓𝛼(𝑦)}
 

The IFSEG can also be denoted as: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) = {IFSE(𝛼): 𝛼 ∈ 𝐴} 

where IFSE(𝛼) represents a family of parameterized intuitionistic fuzzy soft expert graphs. 

Definition 8. [111] A Neutrosophic Soft Expert Graph (NSEG) is defined over a simple graph 𝐺∗ = (𝑉, 𝐸), 

where 𝑉 is the set of vertices, 𝐸 is the set of edges, 𝐴 is a set of parameters, and 𝑋 is a set of experts. Let 

𝑁(𝑉) denote the set of all neutrosophic sets in 𝑉. The NSEG is represented as a 4-tuple: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) 

Where: 

 𝑓: 𝐴 → 𝑁(𝑉) is a function mapping each parameter in 𝐴 to a neutrosophic set of vertices, 

 𝑔:𝐴 → 𝑁(𝑉 × 𝑉) is a function mapping each parameter in 𝐴 to a neutrosophic set of edges. 
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The mappings 𝑓 and 𝑔 are defined as: 

𝑓(𝛼) = {𝑥, 𝜇𝑓(𝑥), 𝑣𝑓(𝑥), 𝜋𝑓(𝑥): 𝑥 ∈ 𝑉}

𝑔(𝛼) = {(𝑥, 𝑦), 𝜇𝑓(𝑥, 𝑦), 𝑣𝑓(𝑥, 𝑦), 𝜋𝑓(𝑥, 𝑦): (𝑥, 𝑦) ∈ 𝑉 × 𝑉}
 

Where: 

 𝜇𝑓(𝑥), 𝑣𝑓(𝑥), and 𝜋𝑓(𝑥) represent the truth, indeterminacy, and falsity membership degrees of 

vertex 𝑥, respectively. 

 𝜇𝑓(𝑥, 𝑦), 𝑣𝑓(𝑥, 𝑦), and 𝜋𝑓(𝑥, 𝑦) represent the truth, indeterminacy, and falsity membership degrees 

of the edge (𝑥, 𝑦), respectively. 

These mappings satisfy the following conditions for all (𝑥, 𝑦) ∈ 𝑉 × 𝑉 and 𝛼 ∈ 𝐴 : 

𝜇𝑔(𝑥, 𝑦) ≤ min{𝜇𝑓(𝑥), 𝜇𝑓(𝑦)}

𝑣𝑔(𝑥, 𝑦) ≤ min{𝑣𝑓(𝑥), 𝑣𝑓(𝑦)}

𝜋𝑔(𝑥, 𝑦) ≥ max{𝜋𝑓(𝑥), 𝜋𝑓(𝑦)}

 

The NSEG can also be denoted as: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) = {𝑁(𝛼): 𝛼 ∈ 𝐴} 

Where 𝑁(𝛼) represents a family of parameterized neutrosophic graphs. 

3 |Result in this Paper 

In this section, we present the results of this paper. 

3.1 |Turiyam Neutrosophic Soft Expert Graph 

Definition 9. A Turiyam Neutrosophic Soft Expert Graph (TSEG) is defined over a simple graph 𝐺∗ =

(𝑉, 𝐸), where: 

 𝑉 is a set of vertices, 

 𝐸 is a set of edges, 

 𝑌 is a set of parameters, 

 𝑋 is a set of experts, 

 𝑂 = {1 = agree, 0 = disagree } is a set of opinions, 

 𝑍 = 𝑌 × 𝑋 × 𝑂 is the Cartesian product of the sets. 

Let 𝐴 ⊆ 𝑍 and let 𝑇(𝑉) denote the set of all Turiyam Neutrosophic sets in 𝑉. The TSEG is represented as a 

4-tuple: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) 

where: 

 𝑓: 𝐴 → 𝑇(𝑉) is a function mapping each parameter in 𝐴 to a Turiyam Neutrosophic set of vertices, 

 𝑔:𝐴 → 𝑇(𝑉 × 𝑉) is a function mapping each parameter in 𝐴 to a Turiyam Neutrosophic set of 

edges. 

The mappings 𝑓 and 𝑔 are defined as: 
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𝑓(𝛼) = {𝑥, 𝑡𝑓(𝑥), 𝑖𝑣𝑓(𝑥), 𝑓𝑣𝑓(𝑥), 𝑙𝑣𝑓(𝑥) ∣ 𝑥 ∈ 𝑉}

𝑔(𝛼) = {(𝑥, 𝑦), 𝑡𝑓(𝑥, 𝑦), 𝑖𝑣𝑓(𝑥, 𝑦), 𝑓𝑣𝑓(𝑥, 𝑦), 𝑙𝑣𝑓(𝑥, 𝑦) ∣ (𝑥, 𝑦) ∈ 𝑉 × 𝑉}.
 

where: 

 𝑡𝑓(𝑥), 𝑖𝑣𝑓(𝑥), 𝑓𝑣𝑓(𝑥), and 𝑙𝑣𝑓(𝑥) represent the truth, indeterminacy, falsity, and liberal state 

membership degrees of vertex 𝑥, respectively. 

 𝑡𝑓(𝑥, 𝑦), 𝑖𝑣𝑓(𝑥, 𝑦), 𝑓𝑣𝑓(𝑥, 𝑦), and 𝑙𝑣𝑓(𝑥, 𝑦) represent the corresponding membership degrees of 

the edge (𝑥, 𝑦). 

These mappings satisfy the following conditions for all (𝑥, 𝑦) ∈ 𝑉 × 𝑉 and 𝛼 ∈ 𝐴 : 

𝑡𝑔(𝑥, 𝑦) ≤ min{𝑡𝑓(𝑥), 𝑡𝑓(𝑦)}

𝑖𝑣𝑔(𝑥, 𝑦) ≤ min{𝑖𝑣𝑓(𝑥), 𝑖𝑣𝑓(𝑦)}

𝑓𝑣𝑔(𝑥, 𝑦) ≥ max{𝑓𝑣𝑓(𝑥), 𝑓𝑣𝑓(𝑦)}

𝑙𝑣𝑔(𝑥, 𝑦) ≤ min{𝑙𝑣𝑓(𝑥), 𝑙𝑣𝑓(𝑦)}

 

The TSEG can also be denoted as: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) = {𝑇(𝛼) ∣ 𝛼 ∈ 𝐴} 

Where 𝑇(𝛼) represents a family of parameterized Turiyam Neutrosophic soft graphs. 

 

Theorem 10. The Turiyam Neutrosophic Soft Expert Graph (TSEG) can be transformed into the following 

graphs under appropriate parameter settings: 

i). Turiyam Neutrosophic Graph (TG) 

ii). Neutrosophic Soft Expert Graph (NSEG) 

iii). Neutrosophic Graph ( 𝑁𝐺) 

iv). Intuitionistic Fuzzy Soft Expert Graph (IFSEG) 

Proof. We will demonstrate that by adjusting the parameters of a TSEG, it can be reduced to each of the 

specified graph types. 

We consider Transformation to Turiyam Neutrosophic Graph (TG). By considering a single parameter and 

a single expert, and ignoring the soft expert structure, the TSEG reduces to a Turiyam Neutrosophic Graph. 

 Let 𝐴 be a singleton set: 𝐴 = {𝛼}. 

 Let 𝑋 be a singleton set: 𝑋 = {𝑥0}. 

 The opinion set 𝑂 = {1}, indicating agreement only. 

Under these settings, the set 𝑍 = 𝑌 × 𝑋 × 𝑂 simplifies, and the TSEG becomes: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) 

Where: 

 𝑓: 𝐴 → 𝑇(𝑉) assigns Turiyam Neutrosophic membership degrees to vertices. 

 𝑔:𝐴 → 𝑇(𝑉 × 𝑉) assigns Turiyam Neutrosophic membership degrees to edges. 

Since there's only one parameter and one expert, the soft expert aspect is eliminated, resulting in a standard 

Turiyam Neutrosophic Graph. 
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We consider Transformation to Neutrosophic Soft Expert Graph (NSEG). By setting the liberal state 

membership degree 𝑙𝑣𝑓(𝑥) = 0 for all vertices and edges, the TSEG reduces to an NSEG. 

 For all 𝑥 ∈ 𝑉 and (𝑥, 𝑦) ∈ 𝐸, set 𝑙𝑣𝑓(𝑥) = 0 and 𝑙𝑣𝑔(𝑥, 𝑦) = 0. 

 The Turiyam Neutrosophic membership degrees become 𝑡𝑓(𝑥), 𝑖𝑣𝑓(𝑥), and 𝑓𝑣𝑓(𝑥). 

 These correspond to the truth-membership, indeterminacy-membership, and falsity-membership 

degrees in a neutrosophic set. 

Therefore, the TSEG simplifies to a Neutrosophic Soft Expert Graph with mappings: 

𝑓(𝛼) = {𝑥, 𝜇𝑓(𝑥), 𝑣𝑓(𝑥), 𝜋𝑓(𝑥) ∣ 𝑥 ∈ 𝑉}

𝑔(𝛼) = {(𝑥, 𝑦), 𝜇𝑔(𝑥, 𝑦), 𝑣𝑔(𝑥, 𝑦), 𝜋𝑔(𝑥, 𝑦) ∣ (𝑥, 𝑦) ∈ 𝐸}
 

Where: 

 𝜇𝑓(𝑥) = 𝑡𝑓(𝑥), 

 𝑣𝑓(𝑥) = 𝑖𝑣𝑓(𝑥), 

 𝜋𝑓(𝑥) = 𝑓𝑣𝑓(𝑥). 

We consider Transformation to a Neutrosophic Graph (NG). By considering a single parameter and a single 

expert in an NSEG, it reduces to an NG. 

 Let 𝐴 = {𝛼} and 𝑋 = {𝑥0}. 

The NSEG becomes: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔), 

With 𝑓 and 𝑔 mapping to neutrosophic sets over 𝑉 and 𝐸, respectively. Without the soft expert framework, 

this structure aligns with the definition of a Neutrosophic Graph. 

We consider transformation to Intuitionistic Fuzzy Soft Expert Graph (IFSEG). By setting 𝑖𝑣𝑓(𝑥) = 0 and 

𝑙𝑣𝑓(𝑥) = 0 for all vertices and edges, the TSEG reduces to an IFSEG. 

 For all 𝑥 ∈ 𝑉 and (𝑥, 𝑦) ∈ 𝐸, set 𝑖𝑣𝑓(𝑥) = 0, 𝑙𝑣𝑓(𝑥) = 0, 𝑖𝑣𝑔(𝑥, 𝑦) = 0, and 𝑙𝑣𝑔(𝑥, 𝑦) = 0. 

 The remaining membership degrees are 𝑡𝑓(𝑥) and 𝑓𝑣𝑓(𝑥). 

 Define: 

𝜇𝑓(𝑥) = 𝑡𝑓(𝑥)

𝑣𝑓(𝑥) = 𝑓𝑣𝑓(𝑥)
 

satisfying 𝜇𝑓(𝑥) + 𝑣𝑓(𝑥) ≤ 1. 

 Similarly for edges. 

This conforms to the definition of an Intuitionistic Fuzzy Soft Expert Graph. 

3.2 |General Plithogenic Soft Expert Graph 

Definition 11. A General Plithogenic Soft Expert Graph (GPSEG) is defined over a simple graph 𝐺∗ =

(𝑉, 𝐸), where: 

 𝑉 is a set of vertices, 

 𝐸 is a set of edges, 
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 𝑌 is a set of parameters, 

 𝑋 is a set of experts, 

 𝑂 = {1 = agree, 0 = disagree } is a set of opinions, 

 𝑍 = 𝑌 × 𝑋 × 𝑂 is the Cartesian product of the sets. 

Let 𝐴 ⊆ 𝑍 and let 𝑃(𝑉) denote the set of all Plithogenic sets in 𝑉. The GPSEG is represented as a 

4-tuple: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔), 

Where: 

 𝑓: 𝐴 → 𝑃(𝑉) maps each parameter to a Plithogenic set of vertices, 

 𝑔:𝐴 → 𝑃(𝑉 × 𝑉) maps each parameter to a Plithogenic set of edges. 

The mappings 𝑓 and 𝑔 are defined as: 

𝑓(𝛼) = {𝑥, DAF(𝑥), DCF(𝑥) ∣ 𝑥 ∈ 𝑉},
𝑔(𝛼) = {(𝑥, 𝑦), DAF(𝑥, 𝑦), DCF(𝑥, 𝑦) ∣ (𝑥, 𝑦) ∈ 𝑉 × 𝑉}.

 

The GPSEG can also be denoted as: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔) = {𝑃(𝛼) ∣ 𝛼 ∈ 𝐴}, 

Where 𝑃(𝛼) represents a family of parameterized Plithogenic soft graphs. 

Theorem 12. The General Plithogenic Soft Expert Graph (GPSEG) can be transformed into the following 

graphs under appropriate parameter settings: 

i). General Plithogenic Graph (GPG) 

ii). Turiyam Neutrosophic Soft Expert Graph (TSEG) 

iii). Turiyam Neutrosophic Graph (TG) 

iv). Neutrosophic Soft Expert Graph (NSEG) 

v). Intuitionistic Fuzzy Soft Expert Graph (IFSEG) 

Proof. We will demonstrate that by adjusting the parameters and settings of a GPSEG, it can be reduced to 

each of the specified graph types. 

We consider Transformation to be a General Plithogenic Graph (GPG). By considering a single parameter 

and a single expert, and eliminating the soft expert structure, the GPSEG reduces to a General Plithogenic 

Graph. 

 Let 𝐴 be a singleton set: 𝐴 = {𝛼}. 

 Let 𝑋 be a singleton set: 𝑋 = {𝑥0}. 

 The opinion set 𝑂 = {1}, indicating agreement only. 

Under these settings, the set 𝑍 = 𝑌 × 𝑋 × 𝑂 simplifies, and the GPSEG becomes: 

𝐺 = (𝐺∗, 𝐴, 𝑓, 𝑔), 

Where: 

 𝑓: 𝐴 → 𝑃(𝑉) assigns Plithogenic membership degrees to vertices. 

 𝑔:𝐴 → 𝑃(𝑉 × 𝑉) assigns Plithogenic membership degrees to edges. 
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Since there's only one parameter and one expert, and opinions are fixed, the soft expert aspect is eliminated, 

resulting in a standard General Plithogenic Graph. 

We consider Transformation to Turiyam Neutrosophic Soft Expert Graph (TSEG). By setting the Degree of 

Appurtenance Function (DAF) to correspond to Turiyam Neutrosophic membership degrees and adjusting 

the Degree of Contradiction Function (DCF) accordingly, the GPSEG reduces to a TSEG. 

 Set 𝑠 = 4 and 𝑡 = 1 in the GPSEG, where [0,1]𝑠 Corresponds to the Turiyam Neutrosophic 

membership degrees. 

 The DAF for vertices and edges becomes: 

 DAF : 𝑀 ×𝑀𝑙 → [0,1]4 

which aligns with the quadruple membership degrees (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)) in the Turiyam 

Neutrosophic set. 

 The DCF is adjusted to match the Turiyam Neutrosophic logic. 

Therefore, the GPSEG becomes a Turiyam Neutrosophic Soft Expert Graph. 

We consider Transformation to Turiyam Neutrosophic Graph (TG). By considering a single parameter and 

a single expert, and eliminating the soft expert structure from the TSEG obtained in step 2, we get a Turiyam 

Neutrosophic Graph. 

 Let 𝐴 = {𝛼} and 𝑋 = {𝑥0}. 

The TSEG reduces to a Turiyam Neutrosophic Graph with Turiyam Neutrosophic membership degrees 

assigned directly to vertices and edges. 

We consider Transformation to a Neutrosophic Soft Expert Graph (NSEG). By setting the liberal state 

membership degree to zero in the GPSEG configured as a TSEG, the GPSEG reduces to an NSEG. 

 In the GPSEG, set 𝑠 = 4, 𝑡 = 1, and for all vertices and edges, set the fourth component of the 

DAF to zero: 

𝑙𝑣𝑓(𝑥) = 0,  𝑙𝑣𝑔(𝑒) = 0 

 The remaining components correspond to the truth, indeterminacy, and falsity membership degrees 

of the Neutrosophic set. 

Adjust the DCF accordingly. 

Thus, the GPSEG reduces to a Neutrosophic Soft Expert Graph. 

We consider Transformation to Intuitionistic Fuzzy Soft Expert Graph (IFSEG). By setting the 

indeterminacy and liberal state membership degrees to zero in the GPSEG, we can reduce it to an IFSEG. 

 In the GPSEG, set 𝑠 = 4, 𝑡 = 1, and for all vertices and edges, set: 

𝑖𝑣𝑓(𝑥) = 0,  𝑙𝑣𝑓(𝑥) = 0,  𝑖𝑣𝑔(𝑒) = 0,  𝑙𝑣𝑔(𝑒) = 0 

 The remaining components 𝑡𝑓(𝑥) and 𝑓𝑣𝑓(𝑥) correspond to the membership and non-membership 

degrees in an intuitionistic fuzzy set. 

 Adjust the DCF accordingly. 

Therefore, the GPSEG reduces to an Intuitionistic Fuzzy Soft Expert Graph. 
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