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1 |Introduction 

Rolling bearings are crucial and costly rotating elements found in various industrial machinery systems, such 

as high-speed railways, induction motors, and wind turbine drivetrain systems [1]. The advancement in 

manufacturing intelligence has led to an increased need for system reliability. Being a critical component of 

rotating machinery, the condition of rolling bearings significantly impacts equipment reliability. Failure of 

rolling bearings can result in significant financial losses and serious injuries [2; 3]. Research conducted by Rai 

and Upadhyay [4] indicates that around half of motor failures are attributed to faults in rolling bearings. 

Accurate prediction of remaining useful life (RUL) is essential to ensure the safe and steady operation of the 

system [5], enhance equipment reliability [6], and lower operation and maintenance expenses [7]. Bearings, as 

a key element supporting the operation of rotating machinery, play a crucial role in maintaining equipment 

stability. The condition and efficiency of bearings directly influence the safety and dependability of mechanical 

equipment. Therefore, it is imperative to thoroughly assess the reliability of bearings and enhance the methods 

for predicting the RUL of bearings [8]. Numerous scholarly research methodologies have been developed in 
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recent times for the examination of rolling bearings and the estimation of RUL. These methodologies are 

generally classified into two main groups: model-based techniques and data-driven approaches [9]. 

Model-based techniques commonly assess the deterioration trend of a specific component by employing 

mathematical or physical models, often represented as a set of ordinary and partial differential equations. 

Examples include the particle filter algorithm [10], Kalman filter algorithm [11], Weibull process model [12], 

Gamma process model [13], Paris-Erdogan model [14], Wiener process model [15], and Levy process model 

[16]. In a previous study [17], a method using an improved particle filter was introduced for predicting the 

Remaining Useful Life (RUL) of bearings. Furthermore, other researchers have utilized the proportional 

hazard model for RUL prediction, as seen in the works of Liao et al [18]. and Tian et al [19]. Chen and 

colleagues [20] presented an improved approach to forecast Remaining Useful Life (RUL) by employing a 

particle filter. This technique was created by combining the linear optimization resampling particle filter 

(LORPF) with the sliding-window gray model (SGM). Gai et al. [21] introduced a technique for estimating 

the fatigue lifespan by leveraging contact stress in accordance with the fatigue theoretical design approach. 

This method enables the determination of the peak contact stress given the specified radial and axial forces 

acting on the bearing, facilitating the derivation of the contact fatigue lifespan by referencing the contact 

fatigue life curve. Nevertheless, this empirical understanding is frequently based on universal principles, 

making it challenging to address various diverse degradation patterns that could arise. Wang et al. [22] 

introduced an enhanced exponential model (EM) for the estimation of the Remaining Useful Life (RUL) of 

bearings. In a separate study, Kumar et al. [23] put forward a new health deterioration metric for machinery 

using the concept of Kullback-Leibler divergence. Furthermore, model-based approaches often rely on a 

singular model for analyzing distinct datasets. These models commonly employ a series of equations to 

elucidate the failure mechanisms of bearings and deliver precise predictions. Nevertheless, as equipment 

becomes more intricate and intelligent, the failure mechanisms of bearings manifest varied and indirect traits, 

resulting in a rise in the quantity of parameters in the physical models and complicating the task of 

constructing precise physical models. Serious inaccuracies in RUL prediction arise from the constraints of 

model-based approaches when faced with dynamic environments and stochastic disturbances. Data-driven 

methodologies, in contrast to model-based techniques, offer an alternative for examining issues by 

establishing connections between monitoring indicators and RUL estimates without relying on universally 

adaptable models for intricate systems beyond individual cases. 

The second strategy entails the utilization of data-driven methodologies. In contrast to model-centric 

approaches, data-driven techniques do not necessitate the development of a sophisticated electrochemical 

model for rolling bearings. Instead, they primarily extract implicit information from capacity degradation data 

of rolling bearings to facilitate the RUL. Data-centric methodologies include Machine Learning (ML) and 

Deep Learning (DL) techniques. Machine learning methods have emerged as a potent tool in various domains, 

granting computers the capacity to learn from data without explicit programming, continually enhancing their 

performance. The capability of machine learning to derive insights from data and execute tasks autonomously 

is reshaping our lifestyles, professions, and interactions with technology. With further advancements in this 

domain, we can anticipate even more profound impacts on our global society. Machine learning techniques 

can utilize extensive sets of sensor data, operational parameters, and historical maintenance records. This 

data-driven approach empowers machine learning models to comprehend intricate relationships among 

various factors influencing the condition and degradation of machinery. several initial machine learning (ML) 

algorithms such as support vector machine (SVR) [24], random forest (RF) [25], Gaussian process regression 

[26], hidden Markov model (HMM) [27], and artificial neural networks (ANN) [28] have been employed in 

predicting RUL for machinery, yielding significant results. Berghout et al. [29] outlined the essential 

procedures for predicting the remaining operational lifespan using machine learning and methodically 

discussed the potential opportunities and obstacles that lie ahead. Centered on the concepts of monotonicity 

and trend, Javed et al. [30] identified features from raw vibration data to forecast the remaining lifespan of 

cutting tools and bearings using extreme learning machines. Mejia et al. [28] extracted the wavelet packet 

decomposition coefficients from the raw sensor data and employed a mixture of Gaussians Hidden Markov 
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  Model (HMM) to assess the current health condition of the equipment. The model was also used to predict 

the RUL value along with the associated level of certainty. Machine learning algorithms have progressed in 

the prediction of RUL for rolling bearings; nonetheless, numerous of these methods require substantial 

feature engineering to recognize crucial characteristics. In addition, the moderate intricacy of these models 

limits their capacity to effectively capture data and exhibit robust generalization capabilities. 

Deep learning, a significant component of machine learning, has brought about significant transformations 

in numerous facets of our everyday lives through the utilization of artificial neural networks consisting of 

multiple layers to handle information in a manner that emulates the cognitive processes of the human brain. 

The progress in deep learning methodologies is largely credited to their adaptability, as they obviate the 

necessity for manual feature engineering by independently deriving feature representations. commonly used 

deep learning architectures such as Convolutional Neural Networks (CNNs) [31-33] and long short-term 

memory (LSTM) [34-36] are frequently employed in forecasting the RUL of Rolling Bearings. Wang et al. [33] 

introduced the spatiotemporal non-negative projected convolutional network (SNPCN) approach as a means 

to identify the deterioration characteristics present in neighboring matrices, leveraging a three-dimensional 

convolutional neural network (3DCNN). They subsequently confirmed the efficacy of this model on the 

PRONOSTIA platform. Wang et al. [37] introduced a deep separable convolutional network (DSCN) for 

predicting the Remaining Useful Life (RUL) of rolling bearings. This network utilizes the condition 

monitoring data from different sensors as its direct input. Yang et al. [38] developed a dual-CNN model for 

predicting RUL. The first CNN is responsible for pinpointing the initial failure point, while the second CNN 

is utilized for forecasting the RUL value. Zhou et al. [3] developed an unsupervised health indicator (HI) 

using a Gaussian mixture model (GMM) and Kullback-Leibler divergence (KLD). By integrating this with a 

GRU network, they conducted predictions on time series data. Their findings suggest that the utilization of 

this intelligent prediction approach holds promise for applications within the realm of engineering. An et al. 

[39] outlined a CNN that utilized a combination of stacked bi-directional and uni-directional LSTM networks 

for the purpose of predicting the RUL of tools. Xia et al. [40] utilized a CNN for the extraction of specific 

degradation features from the tool's sensor data. Subsequently, they identified the temporal relationships 

among these features using bi-directional long short-term memory (BLSTM) networks. Finally, the Remaining 

Useful Life (RUL) of the tools was forecasted through a fully connected layer. 

The aforementioned deep learning-based methods for RUL prediction have significantly advanced the field 

of mechanical RUL forecasting. Nevertheless, these methods are constrained by certain drawbacks: firstly, 

while CNNs are effective at extracting features, their receptive field is restricted by the convolution kernels' 

volume when used in isolation. Secondly, recurrent networks require computations to progress from the 

beginning to the end. As the sequence length increases, the computation time of these networks grows 

notably, and the vanishing gradient issue makes it challenging for the model to learn long-term dependencies 

effectively. 

This study introduces a new data-driven methodology that integrates the CNN network, LSTM network, and 

attention mechanism (CNN-ALSTM) to enhance the accuracy of RUL prediction for rolling bearings. The 

time-domain input data is fed into the CNN network for feature extraction. An attention mechanism has 

been incorporated within the LSTM architecture to assign weight values to the extracted features, thus 

highlighting important information and improving the RUL prediction of the model. The effectiveness of the 

CNN-ALSTM model is evaluated on the widely used IEEE PHM 2012 Challenge Dataset [41] for forecasting 

the RUL of Rolling Bearings. Our experimental results indicate that the proposed method reduces uncertainty 

in multi-step prediction tasks and outperforms other existing models in terms of accuracy. The major 

contributions of this paper are listed as follows: 

 A novel method is suggested for predicting the RUL of Rolling Bearings. This approach entails 

employing CNN for extracting features from aging data, then utilizing LSTM to capture detailed 

temporal patterns from the extracted features, and finally reconstructing the output state through the 

application of layers of attention mechanism. 
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 An attention mechanism was created to improve the accuracy of predicting the RUL by selectively 

filtering input features and assigning higher significance to key attributes. 

 The validation of the model was carried out using the IEEE PHM 2012 Challenge Dataset, 

showcasing its superior performance in predicting RUL in comparison to alternative models. 

The subsequent sections of this paper are structured as follows. The materials and methods are outlined in 

Section 2. Subsequently, the proposed model will be discussed in Section 3. This will be followed by the 

presentation of experiments and results in Section 4. Followed by applications in section 5. Lastly, the 

conclusions will be presented in Section 6. 

2 |Materials and Methods 

2.1 |IEEE PHM 2012 Challenge Dataset 

This portion of the study utilizes the IEEE PHM 2012 dataset to verify the proposed deep model. The dataset 

was gathered through a laboratory experimental setup called PRONOSTIA, designed to hasten the 

deterioration of bearings under both steady and changing operational conditions. It also gathers real-time 

health monitoring information such as vibration, temperature, rotational speed, and load force [41]. The 

experimental setup is capable of simulating the degradation of bearings in a short period, providing authentic 

experimental data, and outlining the deterioration process of the ball bearing over its lifespan. Figure 1 displays 

a depiction of the machinery. The vibration signals, both horizontal and vertical, are sampled at a frequency 

of 25.6 kHz, resulting in 25600 samples being captured per second. For this particular investigation, a total 

of 1560 samples have been selected, as illustrated in Figure 2. These samples provide data on three working 

conditions: 1800 rpm and 4000 N, 1650 revolutions per minute and 4200 N, and 1500 rpm along with 5000 

N. Further specifics can be found in Table 1. Figure 3 depicts the vibration signals of both horizontal and 

vertical acceleration for Dataset Bearing1_3. 

 

Figure 1. PRONOSTIA experimental platform 

[41]. 

 

 

Figure 2. Illustration of acquisition parameters for 

vibration signals. 
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(a) 

 

(b) 

Figure 3. 1d horizontal (top plot) and vertical (bottom plot) vibration signals. 

 

Table 1. Data on three working conditions. 

Datasets 
Operating conditions 

Condition_1 Condition_2 Condition_3 

Rotating speed 2100 2250 2400 

Radial force 1200 1100 1000 

Learning sets 
Bearing 1_1 Bearing 2_1 Bearing 3_1 

Bearing 1_2 Bearing 2_2 Bearing 3_2 

Test sets 

Bearing 1_3 Bearing 2_3 Bearing 3_3 

Bearing 1_4 Bearing 2_4 Bearing 3_4 

Bearing 1_5 Bearing 2_5 Bearing 3_5 

 

2.2 |Convolutional Neural Network (CNN) 

Convolutional Neural Networks are unlikely to possess the ability to automatically detect significant attributes 

from raw time series information, eliminating the requirement for manual feature extraction. This eliminates 

the requirement for domain-specific knowledge in selecting features and empowers the model to expose 

patterns that might not be discernible to humans. Similar to their application in image data, CNNs can identify 

low-level features like local patterns and trends in initial layers and high-level features such as temporal 

patterns and complex dependencies in deeper layers. This hierarchical feature learning ability enables CNNs 

to capture both local and global characteristics of time series data, including local patterns and dependencies. 

By utilizing convolutional filters with small receptive fields, CNNs can identify temporal patterns like 

recurring motifs, spikes, or abrupt changes in the time series. This capacity to capture local patterns is crucial 

for recognizing relevant features that could indicate significant events or anomalies in the data. CNNs employ 

parameter sharing, where the same set of weights (filters) is used across various temporal positions in the time 

series. This sharing of parameters reduces the number of trainable parameters in the network, resulting in 

more effective learning and enhanced generalization. Moreover, techniques such as pooling and dropout 

regularization can enhance the network's resilience to noise and overfitting. In certain scenarios, CNNs may 

offer quicker training on time series data due to their ability to process data simultaneously, leveraging GPU 

capabilities for efficient feature extraction. 

2.3 |Long Short-Term Memory (LSTM) 

The LSTM presents a new version of the recurrent neural network (RNN) structure, specifically crafted to 

address the issue of disappearing gradients in traditional RNNs, focusing on handling the challenges posed 

by long-term dependencies in predictive tasks. This innovative design features a complex memory cell 

arrangement that distinguishes itself by its capacity to effectively retain and utilize information across 
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extended sequences, making it well-suited for tasks requiring the prediction of long-term dependencies, such 

as Remaining Useful Life (RUL) prediction in Rolling Bearings. The LSTM cell structure is depicted in Figure 

4. In the LSTM model, the forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡 form the three fundamental 

components that manage information flow and control interactions within the network. The forget gate 𝑓𝑡 

decides which information to exclude from the previous cell state. By considering the current input and 

previous hidden state, the forget gate 𝑓𝑡 produces an output value between 0 (complete forgetfulness) and 1 

(full retention). The mathematical representation of 𝑓𝑡 is described by Eq. (1). The input gate 𝑖𝑡 is responsible 

for selecting new data to retain in the cell state. By analyzing the current input and preceding hidden state, it 

generates an output between 0 and 1, along with a new candidate value for inclusion in the cell state. The 

mathematical representation of 𝑖𝑡 is determined by Eq. (2). The output gate 𝑜𝑡 controls the information to 

be transmitted as the hidden state of the current LSTM cell, based on the current input and previous hidden 

state. Its output ranges from 0 to 1. The mathematical representation of  𝑜𝑡 is provided by Eq. (3). The 

candidate value 𝑐′𝑡 signifies new data that may be added to the cell state at the current time step (t), generated 

by the input gate considering the current input and previous hidden state. The mathematical representation 

of 𝑐′𝑡 is given by Eq. (4). Following this, the 𝑐𝑡 value representing the unit state at time t is determined 

through Eq. (5). Subsequently, the ℎ𝑡 value representing the hidden state at time t is ascertained using 

mathematical Eq. (6). 

𝑓𝑡 = 𝜎(𝑊𝑓 𝑥𝑡 +  𝑈𝑓  ℎ𝑡−1 +  𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 𝑥𝑡 + 𝑈𝑖  ℎ𝑡−1 +  𝑏𝑖)  (2) 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥𝑡 +  𝑈𝑜 ℎ𝑡−1 +  𝑏𝑜)  (3) 

𝑐′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎  𝑥𝑡 + 𝑈𝑎  ℎ𝑡−1 +  𝑏𝑎)  (4) 

𝑐𝑡 = 𝑓𝑡 ∙  𝑐𝑡−1 +  𝑖𝑡 ∙  𝑐′𝑡   (5) 

ℎ𝑡 = 𝑜𝑡  ∙  tanh(𝑐𝑡)  (6) 

Where the symbol 𝜎 denotes the sigmoid function, t represents the time step, 𝑥𝑡 signifies the input feature at 

time t, ℎ𝑡−1 denotes the output hidden state from the previous time sample, the parameters 

𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜, 𝑊𝑎 , 𝑈𝑓 , 𝑈𝑖 , 𝑈𝑜, 𝑈𝑎 , 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑎 are optimized during the training process. 

2.4 |Scaled Dot-Product Attention 

In the realm of time series analysis, the most recent data holds significant importance in accurately predicting 

future values. Scaled dot-product attention is a technique that assists in emphasizing these recent segments 

of the LSTM output by assigning greater significance to their respective key vectors during the scoring 

process. Scaled dot-product attention serves as a fundamental component utilized in various attention 

mechanisms. Integrating it post-LSTM enables the model to concentrate on specific segments of the LSTM 

output sequence that are deemed most pertinent for prediction purposes. The LSTM output undergoes 

projection into three distinct vector spaces - Query, Key, and Value - through linear transformations. The 

query vector (Q) denotes the focal point of the model at each time step. The key vector (K) embodies the 

available information at each time step within the sequence, while the value vector (V) contains the factual 

data content for each time step. A score is computed by conducting a scaled dot product between the query 

vector (Q) and each key vector (K) throughout the sequence, as depicted in Eq. (7). Subsequently, a softmax 

function is applied to these scores, transforming them into a probability distribution denoted as the attention 

weights (A) in Eq. (8). These weights signify the relative significance of each time step in the sequence 

concerning the current prediction (based on the query vector). Ultimately, the attention weights (A) are 

utilized to assign weight to the corresponding value vectors (V) by Eq. (9). This process generates a context 
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  vector summarizing the most pertinent information from the entire sequence based on the current focus 

(query). 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒𝑠 =  
𝑄  .  𝐾𝑇

√𝑑𝑘

 (7) 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒𝑠) (8) 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑣𝑒𝑐𝑡𝑜𝑟 =  𝐴  .  𝑉 (9) 

Where 𝑑𝑘 is the dimensionality of the key vectors, and √𝑑𝑘 represents a scaling factor to stabilize the 

gradients. 

 

Figure 4. LSTM cell architecture. 

3 |The Proposed Model 

The estimation of Remaining Useful Life (RUL) for Rolling Bearings is viewed as a supervised regression 

challenge, which involves utilizing data sourced from the PRONOSTIA platform to train and assess various 

deep-learning models. This study presents a new Deep Learning model named CNN-ALSTM, which 

integrates CNN, LSTM, and an attention mechanism to predict the RUL of Rolling Bearings, as depicted in 

Figure 5. The CNN component is employed for extracting features from the time domain input data. It 

comprises three convolution blocks, each consisting of a convolution layer, a RELU activation function layer, 

and a dropout layer to mitigate overfitting, as demonstrated in Figure 6. The output from the CNN is then 

passed to the LSTM, which comprises two LSTM layers. Each LSTM layer in the sequence processes the 

input sequentially, transmitting information through memory cells and gates. The output of one LSTM layer 

acts as the input for the next layer, facilitating the model in capturing hierarchical representations of the input 

data. The inclusion of multiple LSTM layers enables the model to capture complex temporal relationships 

and develop more abstract data representations. In this work, a network architecture involving a CNN for 

feature extraction and two LSTM layers is employed to analyze the time sequence information extracted 

iteratively by the CNN, allowing for a comprehensive integration of the input data samples. Following the 

final LSTM layer, an attention mechanism layer is introduced to calculate the neuron weights of the hidden 

state layer. This layer plays a crucial role in computing the output through the LSTM, thereby assigning weight 

coefficients and reconstructing data to identify the essential aspects of the extracted features. The processed 

data from the hidden layer is merged and forwarded to the fully connected (FC) layer for the final RUL 

prediction. Lastly, Algorithm 1 outlines the pseudocode of the proposed model. 
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As delineated in Algorithm 1, the proposed framework undergoes a sequence of procedures to handle the 

input data. Initially, the input data goes through preprocessing before being forwarded to the input layer. This 

layer then transmits the data to a network structure comprising three convolution blocks aimed at extracting 

features. Each convolution block comprises a convolution layer with 32 filters, a RELU activation function 

layer, and a dropout layer with a dropout rate of 0.5. Subsequently, the output from the CNN network is 

input into the LSTM network, which features two LSTM layers with 128 neurons each, in addition to a Tanh 

activation function. This framework is crafted to examine the temporal sequence information iteratively, 

facilitating a thorough assimilation of the input data samples. Following this, the network's output is 

channeled to the Scaled dot-product attention mechanism to compute the weights of the neurons within the 

hidden state layer. The resultant attention output is then funneled into a fully connected layer with a single 

neuron to predict the remaining useful life of rolling bearings. 

Algorithm 1 Pseudo-code of CNN-ALSTM 

Input: Input data (D), batch size (Bs),  maximum epoch (T), and learning rate (lr) 

Output: loss (MSE),RMSE 
 
1: Conducting the preprocessing step 

2: Input: Construct an input layer to receive the input data 
/* Feature extraction based on the CNN */ 

/*First Convolution block*/ 

3: x: Create a Conv layer with 32 filters and a kernel size of 2 to take the data from the input layer. 

4: x: Add RELU activation function layer to x. 

5: x: Add a Dropout layer with a dropout rate of 0.5 to x. 
/*Second Convolution block*/ 

6: x: Create a Conv layer with 32 filters and a kernel size of 2 to take the data from the First 

Convolution block. 

7: x: Add RELU activation function layer to x. 

8: x: Add a Dropout layer with a dropout rate of 0.5 to x. 

/*Third Convolution block*/ 

1: x: Create a Conv layer with 32 filters and a kernel size of 2 to take the data from the Second 

Convolution block. 

2: x: Add RELU activation function layer to x. 

3: x: Add a Dropout layer with a dropout rate of 0.5 to x. 

/* LSTM network*/ 

4: x: Add an LSTM layer with 128 units to x. 

5: x: Add an LSTM layer with 128 units to x. 

6: attention_output: Add Scaled dot-product attention to x. 
/* Prediction Block */ 

7: x: Add a Linear layer with 1 node to x. 
/* Optimization process */ 

8: N = Size(D)/Bs /* Estimate the number of batches */ 

9: 𝒕 =  𝟎, Current epoch 

10: while 𝑡 < 𝑇 

11:        𝒊 =  𝟎, the current batch size. 

12:        while 𝒊 <  𝑵 

13:   Compute the Score function using the 𝒊𝒕𝒉 batch. 
Update the weights based on the Adam to optimize the score function. 

14:   𝒊 = 𝒊 + 𝟏  
15:        end while. 

16:        𝒕 = 𝒕 + 𝟏  
17: end while 
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Figure 5. Flowchart of the proposed CNN-ALSTM. 

 
Figure 6. Conv block architecture. 

 

4 |Experiments and Results 

4.1 |Data Preprocessing 

Within the domain of data processing, the dataset employed in the IEEE PHM 2012 Challenge encompasses 

a range of attributes with different magnitudes, which can potentially compromise the efficacy of Deep 

Learning (DL) models during the training phase. It is imperative that the inputs to the deep learning model 

exhibit uniformity, as any notable disparity could have detrimental effects on the model's performance. As a 

result, vibration signals gathered at each time interval should undergo normalization before their utilization 

in the model. One common technique for this is z-score normalization, also referred to as standardization, 

which serves to standardize the values of these attributes. This method of scaling holds significant importance 

in the realm of machine learning, especially when confronted with features that possess diverse scales or units. 

By adjusting the data to a standardized range, this technique ensures that the features are rescaled to yield a 

mean of 0 and a standard deviation of 1. The mathematical formula for min-max scaling is presented as Eq. 

(10). where 𝜇𝑗 , 𝑎𝑛𝑑 𝜎𝑗 donate to the mean and standard deviation of the 𝑗𝑡ℎ feature, respectively. 

𝑥′
𝑖,𝑗 =  

𝑥𝑖,𝑗 −  𝜇𝑗

𝜎𝑗
 (10) 
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In the context of monitoring time series problems, it is imperative to consider the significance of historical 

data. The utilization of time window embedding has been shown to significantly enhance the effectiveness of 

the model [42] by incorporating valuable temporal information. Nonetheless, the incorporation of time 

window embedding results in an exponential growth in model size as it scales proportionally with the length 

of the sequence data. The implementation of the sliding window approach is a fundamental technique utilized 

in various applications of signal processing and machine learning, particularly when dealing with sequential 

data like time series. This approach involves breaking down a continuous stream of data points into smaller, 

partially overlapping (or non-overlapping) segments for subsequent analysis. During this procedure, a sliding 

window is utilized to segment the input data. Assuming d represents the initial value of the sliding window, 

and the total number of samples in the training data is n, the vector 𝑥(𝑖) within the sliding window can be 

described as follows: 

𝑥(𝑖) =  [𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑑−1], 𝑖 = 1 →  𝑛 − 𝑑 (11) 

After establishing the most suitable embedding dimension, the training set 𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 can be structured 

accordingly. These collections are depicted as: 

𝐷𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 =  [(𝑥(1), 𝑥𝑑+1), … , (𝑥(𝑖), 𝑥𝑑+𝑖), … , (𝑥(𝑛−𝑑), 𝑥𝑛)], 𝑖 = 1 →  𝑛 − 𝑑 (12) 

Where 𝑥𝑑+𝑖 is the label for input data, and the testing set follows the same technique. 

4.2 |Evaluation Metrics 

In this article, the Adam [43] optimization algorithm and mean square error (MSE) loss, calculated using Eq. 

(13), are utilized to optimize the network parameters. The introduction of root mean square error (RMSE) is 

used as an evaluation metric for the proposed model [44]. This is done by comparing RMSE values between 

the actual and predicted labels of all instances in the dataset. The RMSE value is computed mathematically as 

outlined in Eq. (14), where N represents the number of samples, and  𝑦𝑖 and 𝑦′𝑖 represent the true and 

predicted labels of the ith sample, respectively. The goal is to minimize both MSE and RMSE to improve the 

accuracy of predicting the Remaining Useful Life (RUL) of Rolling Bearings. 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 −  𝑦′

𝑖
)

2
𝑁

𝑖=1

 (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦′

𝑖
)

2
𝑁

𝑖=1

 (14) 

4.3 |Hyperparameter Tuning 

The CNN_ALSTM model introduced in this study incorporates various hyper-parameters, such as the 

number of LSTM layers, the number of filters, kernel size, learning rate, and window size, etc., that need 

precise calibration to enhance efficiency and minimize the RMSE. Consequently, a sequence of experiments 

is conducted to investigate different configurations for each parameter to pinpoint the optimal values that 

result in a significant improvement in the model's performance, as illustrated in Table 2. Notably, the model's 

efficacy is influenced by the quantity of hidden units within each LSTM layer. Therefore, multiple experiments 

were executed to identify the most suitable number of hidden dimensions for the LSTM layer, ranging from 

64, 128, 256, to 512. The impact of the number of hidden dimensions is depicted in Figure 7. The findings 

of these experiments reveal that the ideal number of hidden dimensions for the LSTM layer is 128. Likewise, 

a series of experiments were performed using window sizes of 8, 16, 32, and 64 to ascertain the optimal 

window size. The outcomes demonstrate that a window size of 32 is the most appropriate for the specific 

dataset. The effect of the window size is visualized in Figure 8. The learning rate plays a critical role in the 
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  training process, affecting the convergence speed, model effectiveness, and training process stability. The 

experiments indicate that a learning rate of 0.001 produces the best performance. The impact of different 

learning rate values is illustrated in Figure 9. 

Table 2. Experimental analysis of the influence of parameters on prediction results. 

Bearings 1_3 1_4 1_5 2_3 2_4 2_5 3_3 

H
id

d
e
n

 d
im

 

o
f 

L
S

T
M

 64 0.083 0.111 0.155 0.213 0.179 0.131 0.221 

128 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

256 0.062 0.095 0.121 0.182 0.163 0.102 0.197 

512 0.071 0.098 0.141 0.189 0.174 0.105 0.201 

W
in

d
o

w
 s

iz
e
 

8 0.071 0.107 0.145 0.198 0.187 0.124 0.215 

16 0.057 0.098 0.121 0.185 0.160 0.110 0.203 

32 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

64 0.052 0.095 0.119 0.181 0.154 0.101 0.195 

N
o

. 
o

f 

L
S

T
M

 1 0.114 0.194 0.210 0.278 0.204 0.164 0.235 

2 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

3 0.081 0.103 0.147 0.193 0.184 0.115 0.202 

L
e
a
rn

in
g

 r
a
te

 

0.0001 0.152 0.138 0.209 0.274 0.203 0.198 0.244 

0.001 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

0.002 0.067 0.099 0.127 0.192 0.164 0.102 0.204 

0.01 0.197 0.254 0.386 0.399 0.272 0.216 0.315 

K
e
rn

e
l 

si
z
e
 1 0.154 0.214 0.295 0.304 0.284 0.201 0.311 

2 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

3 0.092 0.136 0.199 0.251 0.207 0.182 0.261 

N
o

. 
o

f 
fi

lt
e
rs

 

8 0.102 0.182 0.193 0.214 0.201 0.189 0.257 

16 0.084 0.105 0.164 0.191 0.184 0.127 0.211 

32 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

64 0.092 0.151 0.172 0.199 0.193 0.135 0.224 

 

Table 3. The CNN_ALSTM hyperparameters. 

Parameter value 

No. of LSTM layer 2 

No. of Conv blocks 3 

Hidden dim of LSTM 128 

No. of filters 32 

Kernal size 2 

Window size 32 

Dropout rate 0.5 

Learning rate 0.001 

Max no. of epoch 1000 

Loss MSE 

Optimizer Adam 

 
The number of filters present in the layers of CNN plays a crucial role as a hyperparameter that affects the 

network's capacity, feature representation, generalization ability, and computational efficiency. It is imperative 

to meticulously adjust the number of filters according to the task's complexity, the attributes of the input data, 

and the computational resources available to achieve optimal results. Subsequently, a series of experiments 

were conducted to identify the ideal number of filters for the CNN layer, with variations such as 8, 16, 32, 

and 64. The results of these experiments demonstrate that the most appropriate number of filters for the 
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CNN layer is 32. The impact of different numbers of filters is illustrated in Figure 10. Similarly, the size of 

the kernel in a CNN layer is a critical hyperparameter that has a direct influence on the network's capacity to 

extract features from input data. Consequently, multiple experiments were carried out to establish the optimal 

kernel size for the CNN layer, with options including 1, 2, and 3. The findings of these experiments reveal 

that the most suitable kernel size for the CNN layer is 2. The impact of different kernel size values is illustrated 

in Figure 11. Despite the advantages of deeper networks, such architectures may lead to overfitting and 

heightened computational complexity, necessitating various experiments to ascertain the best number of Long 

Short-Term Memory (LSTM) layers. Empirical evidence suggests that a network comprising 2 LSTM layers 

demonstrates superior performance, as depicted in Table 2. The impact of different numbers of LSTM layers 

is illustrated in Figure 12. The final hyperparameters of the proposed model are detailed in Table 3. 

 
Figure 7. The representation of the number of hidden dimensions acquired through experiments. 

 

 
Figure 8. The representation of window size values acquired through experiments. 

 

 
Figure 9. The representation of learning rate values acquired through experiments. 
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Figure 10. The representation of the number of filter values acquired through experiments. 

 

 
Figure 11. The representation of kernel size values acquired through experiments. 

 

 
Figure 12. The representation of the number of LSTM layers acquired through experiments. 
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framework integrating the CNN, LSTM, and Scaled dot-product attention mechanism models. The main 

objective is to analyze the impact of each component on predicting the RUL of Rolling Bearings and to 
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mechanism on the model's performance. Findings are displayed in a table revealing forecast errors for CNN, 

LSTM, CNN+LSTM, CNN+Attention, LSTM+Attention, and CNN+LSTM+Attention (CNN_ALSTM). 

All outcomes are delineated in Table 4 and depicted in Figure 13. The integration of CNN excels in 

autonomously acquiring pertinent features directly from raw data, rendering them essential tools for diverse 

feature extraction tasks. Their capacity to capture local patterns and global structures in data has contributed 

to their widespread acceptance and success in various applications. The integration of LSTM is crucial in time 

series scenarios due to its capability to capture long-term dependencies, manage sequences of varying lengths, 

learn intricate temporal patterns, and effectively handle noisy and incomplete data. Their efficacy in modeling 

sequential data renders them valuable for a variety of time series forecasting tasks. The integration of the 

attention mechanism embedding leads to a noteworthy decrease in errors. Experimental results indicate that 

incorporating an attention mechanism significantly enhances the model's predictive performance. 

Furthermore, the method's performance improves gradually as the attention mechanism is reinforced, 

providing additional evidence of its efficacy. 

Table 4. The results of the ablation study. 

Bearing 1_3 1_4 1_5 2.3 2_4 2_5 3_3 

CNN 0.124 0.134 0.187 0.341 0.332 0.162 0.384 

LSTM 0.103 0.112 0.146 0.255 0.241 0.196 0.298 

CNN+LSTM 0.084 0.105 0.131 0.205 0.188 0.125 0.231 

CNN+Attention 0.081 0.094 0.129 0.194 0.178 0.109 0.208 

LSTM+Attention 0.062 0.089 0.121 0.185 0.159 0.102 0.195 

CNN+LSTM+Attention(CNN_ALSTM) 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

 

 
Figure 13. The representation of RMSE values acquired through ablation experiments. 

5 |Application 

This section presents the results achieved by the proposed At-LSTM model and various competing models 

for Bearing 1_3, Bearing 1_4, Bearing 1_5, Bearing 2_3, Bearing 2_4, Bearing 2_5, and Bearing 2_3 sourced 

from the IEEE PHM 2012 Challenge dataset. These results are evaluated using the RMSE metric to 

demonstrate the models' effectiveness in reducing the discrepancy between the predicted and target RUL. 

The outcomes of CNN_ALSTM Bearing 1_3, Bearing 1_4, Bearing 1_5, Bearing 2_3, Bearing 2_4, Bearing 

2_5, and Bearing 2_3 sourced from the IEEE PHM 2012 Challenge dataset are compared with five competing 

models to demonstrate its effectiveness and efficiency. A comprehensive comparison is conducted between 

the outcomes of CNN_ALSTM and several rival models, including SVM [45], LSTM [46], ALSTM, 

CONVLSTM [47], and TCN, to showcase its superior performance. These results are displayed in the RMSE 

values as indicated in the Table 5.  
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Table 5. The precise specifications of the chosen Bearings from the IEEE PHM 2012 Challenge dataset. 

Bearing 1_3 1_4 1_5 2.3 2_4 2_5 3_3 

SVM 0.11 0.177 0.186 0.298 0.178 0.165 0.268 

LSTM 0.083 0.138 0.15 0.169 0.165 0.145 0.23 

ALSTM 0.065 0.122 0.126 0.139 0.161 0.139 0.221 

CONVLSTM 0.055 0.103 0.131 0.224 0.154 0.134 0.209 

TCN 0.046 0.088 0.114 0.174 0.149 0.095 0.193 

Proposed method 0.043 0.086 0.108 0.170 0.146 0.094 0.188 

 

 

Figure 14. illustrates the representation of RMSE values acquired from different models. 

 

The superior results are emphasized in bold font. CNN_ALSTM outperforms other methodologies with the 

RMSE metric. The data presented in the table indicates that CNN_ALSTM has the potential to surpass all 

the models under consideration in terms of RMSE for the specified bearings, achieving RMSE values of 

0.043, 0.086, 0.108, 0.170, 0.146, 0.094, and 0.188 for Bearing 1_3, Bearing 1_4, Bearing 1_5, Bearing 2_3, 

Bearing 2_4, Bearing 2_5, and Bearing 2_3, respectively. This performance significantly exceeds that of the 

comparison methods under similar conditions. Upon comparison of our findings with the best outcomes 

achieved by the various models mentioned, our proposed model demonstrates a reduction in RMSE by 6.5%, 

2.3%, 5.3%, 2.3%, 2%, 1.1%, and 2.6% for the IEEE PHM 2012 Challenge dataset for Bearing 1_3, Bearing 

1_4, Bearing 1_5, Bearing 2_3, Bearing 2_4, Bearing 2_5, and Bearing 2_3, respectively. This suggested model 

is considered a robust solution for addressing this problem due to its ability to excel in the RMSE metric, 

which places equal emphasis on early and late predictions. To visually demonstrate the superiority of our 

model, Figure 14 is provided to showcase the RMSE values obtained by various algorithms for Bearing 1_3, 

Bearing 1_4, Bearing 1_5, Bearing 2_3, Bearing 2_4, Bearing 2_5, and Bearing 2_3. 

6 |Conclusions 

Bearings are commonly utilized in rotating machinery, and accurately predicting the RUL is crucial for making 

informed maintenance decisions to prevent unexpected downtime and ensure the safety of machinery. A new 

method known as CNN-ALSTM is proposed for forecasting the RUL of rolling bearings. This model 

combines CNN, LSTM, and a Scaled dot-product attention mechanism, with CNN used for extracting 

features from time domain input data. LSTMs are employed to capture and preserve patterns over long 

sequences, making them suitable for capturing complex temporal relationships in time series data. 

Additionally, an attention mechanism is integrated to align input and output sequences by considering the 

context or significance of the input sequence. The final RUL predictions are generated through a Fully 

Connected (FC) layer. Our experimental analysis utilized the IEEE PHM 2012 Challenge dataset. Comparison 

with the top-performing models referenced in literature showed that our proposed model achieved a 

reduction in RMSE of 6.5%, 2.3%, 5.3%, 2.3%, 2%, 1.1%, and 2.6% for the respective bearings (Bearing 1_3, 
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Bearing 1_4, Bearing 1_5, Bearing 2_3, Bearing 2_4, Bearing 2_5, and Bearing 2_3) in the IEEE PHM 2012 

Challenge dataset. 
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