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1 |Introduction 

The SuperHyperStructure and Neutrosophic SuperHyperStructure [2, 3], together with their particular cases 

such as:  

SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra (endowed with superHyperOperations and 

SuperHyperAxioms) [2016, 2022], SuperHyperGraph (including SuperHyperTree) and Neutrosophic 

SuperHyperGraph (including Neutrosophic SuperHyperTree) [2019-2022], SuperHyperSoft 

Set, SuperHyperFunction and Neutrosophic SuperHyperFunction [2022], SuperHyperTopology (that is 

a topology built on the powersets of P(H), or Pn(H), for n ≥ 1) and Neutrosophic SuperHyperTopology [2022] 

were founded by Smarandache [2, 3] and developed between 2016 - 2024. 

2 |Definition of the SuperHyperStructure 

A SuperHyperStructure is a structure built on the n-th PowerSet of a Set H, for n ≥ 1, as in our real world 

{because a set (or system) H (that may be a set of items, an organization, country, etc.) is composed by sub-

sets that are parts of P(H), which in their turn are organized in sub-sub-sets that are parts of P(P(H)) = P2(H), 

then in sub-sub-sub-sets that are parts of P3(H), and so on, Pn+1(H) = P(Pn(H) }. 

    The powerset P(H) means all non-empty and empty subsets of H, including the empty set ( ф ), which 

represents the indeterminacy that occurs into the set H (as in our real world where we deal with 

unclear/indeterminate information in any space/set); and similarly for Pn(H).  

    While P*(H) means all non-empty subsets of H, or P*(H) = P(H) - ф. And similarly for P*
n(H). 

        A structure built on P*
n(H) is called a SuperHyperStructure (has no indeterminacy), while built 

on Pn(H) it is called Neutrosophic SuperHyperStructure (does have indeterminacy). 
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          In a SuperHyperStructure we deal with SuperHyperAxioms, SuperHyperOperators, etc. 

3 |"Hyper" and "Super" Prefixes 

The prefix “Hyper” {Marty [1], 1934} stand for the codomain of the functions and operations to be P(H), or 

the powerset of the set H. While the prefix “Super” (Smarandache [2, 3], 2016) stands for using the Pn(H), n 

≥ 2, or the n-th PowerSet of the Set H {because a set (or system) H (that may be a set of items, a company, 

institution, country, region, etc.) is organized in sub-sets that are part of P(H), which in their turn are organized 

in sub-sub-sets, that are part of P(P(H)) = P2(H) and so on} in the domain and/or codomain of the functions 

and operations and axioms. 

4 |SuperHyperStructure 

A SuperHyperStructure [2, in 2016] is a structure built on the n-th powerset P*
n(H) of a non-empty set H, for 

integer n ≥ 1, whose SuperHyperOperators are defined as follows: 

      * *# :     
m

r n

SHS P H ― P H  

where  *

rP H is the r-powerset of H, for integer r ≥ 1, while similarly  *

nP H is the n-th powerset of H, and 

the SuperHyperAxioms act on it. 

Indeterminacy is not allowed on this structure. 

5 |Neutrosophic SuperHyperStructure 

A Neutrosophic SuperHyperStructure is a structure built on the n-th powerset Pn(H) of a non-empty set H, for 

integer n ≥ 1, whose Neutrosophic SuperHyperOperators are defined as follows: 

#SHS :  (P r(H))m ―> P n(H), 

where P r(H) is the r-powerset of H, for integer r ≥ 1, while similarly  

P n(H) is the n-th powerset of H, and the SuperHyperAxioms act on it. 

Indeterminacy is allowed on this structure and represented by the empty-set ( ). 

6 |Theorem 1 (with indeterminacy) 

Let 𝐻 = {𝑎1, 𝑎2, … , 𝑎𝑛}, 𝑛 ≥ 1, a set. 

𝐶𝑎𝑟𝑑(𝐻) = 𝑛, where 𝐶𝑎𝑟𝑑 means cardinal of 𝐻, or the number of elements of 𝐻. 

𝒫(𝐻) is the powerset of 𝐻, including the empty set ∅ (which represents indeterminacy): 

𝒫(𝐻) = {∅; 𝑎1, 𝑎2, … , 𝑎𝑛;  {𝑎1, 𝑎2}, … ; {𝑎1, 𝑎2, 𝑎3}, … ; … } 

The cardinal of 𝒫(𝐻) is: 

𝐶𝑎𝑟𝑑(𝒫(𝐻)) = 𝐶𝑛
0 + 𝐶𝑛

1 + 𝐶𝑛
2 + ⋯ + 𝐶𝑛

𝑛 = (1 + 1)𝑛 = 2𝑛. 

Let us rename the elements of 𝒫(𝐻) to easily compute the cardinal of 𝒫2(𝐻) = 𝒫(𝒫(𝐻)), as 𝒫(𝐻) =

{𝛼1, 𝛼2, … , 𝛼2𝑛} 

𝐶𝑎𝑟𝑑 (𝒫(𝒫(𝐻))) = 𝐶2𝑛
0 + 𝐶2𝑛

1 + 𝐶2𝑛
2 + ⋯ + 𝐶2𝑛

2𝑛
= (1 + 1)2𝑛

= 22𝑛
} two 2’s 

or 𝐶𝑎𝑟𝑑(𝒫2(𝐻)) = 22𝑛
. 

Similarly,  



   Smarandache, F. | Syst. Assess. Eng. Manage. 2 (2024) 19-22 

 

02 

𝐶𝑎𝑟𝑑(𝒫3(𝐻)) = 222𝑛

} three 2’s 

By induction, it is easily proved that: 

𝐶𝑎𝑟𝑑(𝒫𝑚(𝐻)) = 22…2𝑛

} 𝑚 2’s 

or the cardinal of the 𝑚-powerset of a set of 𝑛 elements, for integers 𝑚 ≥ 1 and 𝑛 ≥ 1 is equal to: 

22…2𝑛

}  𝑚 𝑜𝑓 2’s. 

7 |Example of Cardinality (with indeterminacy) of a 2-powerset of a Set 

of 3 Elements 

H = {a1, a2, a3}. 

For m = 3 and n = 3, in the above formula, one gets:  

𝐶𝑎𝑟𝑑(𝒫2(𝐻)) = 
 3

3 22 82 2 2 256   elements. 

8 |Theorem 2 (without indeterminacy) 

Let 𝐻 = {𝑎1, 𝑎2, … , 𝑎𝑛}, 𝑛 ≥ 1, a set. 

𝐶𝑎𝑟𝑑(𝐻) = 𝑛. 

( )P H  is the powerset of 𝐻, excluding the empty set ∅ (which represents indeterminacy): 

( )P H  {𝑎1, 𝑎2, … , 𝑎𝑛;  {𝑎1, 𝑎2}, … ; {𝑎1, 𝑎2, 𝑎3}, … ; … } 

The cardinal of ( )P H  is: 

𝐶𝑎𝑟𝑑 ( ( )P H ) = 𝐶𝑛
1 + 𝐶𝑛

2 + ⋯ + 𝐶𝑛
𝑛 = (1 + 1)𝑛 = 2𝑛 − 1. 

Let us rename the elements of ( )P H , to easily compute the cardinal of 2( ) ( ( ))P H P P H   , as 

1 2 2 1
( ) { , ,..., }nP H    

 , then: 

Card( 2( )P H
) = Card(

1 2 2 1
({ , ,..., })nP    

) = 

                      = 1 2 2 1 2 1 2 1

2 1 2 1 2 1
... (1 1) 1 2 1

n n n

n n nC C C   

  
        . 

Similarly, let’s rename 
2 1

2

1 2
2 1

( ) { , ,..., }nP H   



  

2 1

2 1 2 1 2 1 2 1

2 1 2 1

3 2 1 2 2 1

1 2
2 1 2 1 2 1 2 1

2 1 2 1

( ( )) ( ( ( ))) ( ({ , ,..., })) ...

(1 1) 1 2 1

n

n n n n

n n

Card P H Card P P H Card P C C C  


   

 



   
   

 

      

    

 

Then by mathematical induction we find the general formula for the cardinal of ( )mP H
: 
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Where, in the above formula, one has m of 2’s, and m of -1’s. 

9 |Example 2 

Same set H = {a1, a2, a3}, with n = 3.  

For m = 2, one has 
32 2 1 8 1 7( ( )) 2 1 2 1 2 1 127Card P H  

        . 

10 |Conclusion 

In this paper we calculated the cardinals of the m-powerset of a set of n elements, when indeterminacy (empty-

set) was included, but also for the case when the indeterminacy (empty-set) was not included. 

These m-powersets Pm(H) are used in the Neutrosophic SuperHyperStructures (when the indeterminacy does 

exist), while ( )mP H
 are used in the SuperHyperStructures (when indeterminacy does not exist). 
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