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1 |Introduction    

In the realm of geometry, few concepts are as elegant and versatile as the notions of pole and polar with 

respect to a circle. These concepts, rooted in projective geometry, have found profound applications across 

various mathematical disciplines and beyond. In this paper, we explore two fascinating applications that 

highlight the beauty and utility of these concepts. 

The concept of pole and polar is deeply intertwined with the idea of duality in projective geometry. Duality, 

a fundamental principle, establishes a correspondence between points and lines in a plane, wherein statements 

about points translate to statements about lines and vice versa. This duality underpins the power of the pole-

polar relationship, allowing us to seamlessly transition between geometric entities [1]. 

Our exploration begins with a discussion on the basic definitions of pole and polar with respect to a circle. 

We then delve into our first application, which demonstrates how these concepts provide a geometric 

framework for understanding the orthogonality of circles. This application not only reveals the elegance of 

pole and polar but also showcases their utility in solving practical problems, such as determining the common 

tangents to two circles [2]. 

Moving forward, we shift our focus to the second application, which explores the use of poles and polars in 

constructing inversive transformations. Inversion, a powerful tool in geometry and complex analysis, can be 

elegantly described and analyzed using the concepts of pole and polar. Through this application, we highlight 

the deep connections between seemingly disparate areas of mathematics [3]. 
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This paper aims to illuminate the beauty and versatility of the concepts of pole and polar with respect to a 

circle. By showcasing their applications in the context of orthogonality of circles and inversive 

transformations, we hope to inspire further exploration and appreciation of these fundamental ideas. 

2 |Theoretical Concepts Regarding the Notions of Pole and Polar  

with Respect to a Circle  

Definition 1: Let Γ(0, 𝑟) be a given circle, and 𝑃 an external point to the circle. If a secant through 𝑃 intersects 

the circle at points 𝑀 and 𝑁, then the point 𝑄 that lies on the chord 𝑀𝑁 and satisfies the condition 
𝑃𝑀

𝑃𝑁
=

𝑄𝑀

𝑄𝑁
 

(1) is said to be the harmonic conjugate of point 𝑃 with respect to points 𝑀 and 𝑁 or that it is the harmonic 

conjugate of point 𝑃 with respect to the circle. 

It can also be said that point 𝑄 is the harmonic conjugate of 𝑃 with respect to the circle if condition (1) is 

met. 

Definition 2: If 𝑃 is a point in the plane of the circle Γ(𝑂, 𝑟), 𝑃 ≠ 𝑂 and 𝑄 is its conjugate with respect to 

the circle, then the line perpendicular to 𝑂𝑃 drawn from 𝑄 is said to be the polar of point 𝑃 with respect to 

the circle [4-5]. 

 

Figure 1. Polar of point P with respect to circle Γ(O,r). 

Observation 1: In Figure 1, the line 𝑝 is the polar of 𝑃 with respect to the circle. 

Remark 1:  

a) If 𝑃 ∈ Γ(0, 𝑟), the polar of 𝑃 is the tangent drawn at 𝑃 to the circle. 

b) If 𝑃 is an interior point of the circle, its polar is a line outside the circle. 

Proposition 1: If 𝑝 is the polar of point 𝑃 outside the circle Γ(𝑂, 𝑟) with respect to it, and 𝑃′ is the 

intersection of the polar with the line 𝑂𝑃, then: 𝑂𝑃 ∙ 𝑂𝑃′ = 𝑟2. 

Proof 

Let 𝑄 be the harmonic conjugate of 𝑃 with respect to the circle, then: 𝑄𝑃′ ⊥ 𝑂𝑃 and 
𝑃𝑀

𝑃𝑁
=

𝑄𝑀

𝑄𝑁
 (1) – see 

Figure 2. 
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Figure 2. Illustration for Proposition 1. Point P' is the intersection of the polar p with line OP. 

If 𝑅 is the point in which the circumscribed circle of the triangle 𝑀𝑂𝑁 re-intersects the line 𝑂𝑃, because 

∢𝑂𝑀𝑃 = ∢𝑂𝑅𝑀 (have the same supplement), ∢𝑂𝑀𝑁 = ∢𝑂𝑁𝑀 and ∢𝑀𝑂𝑃 = ∢𝑅𝑂𝑀, it follows that 

∆𝑂𝑀𝑃~∆𝑂𝑅𝑀. 

From here, we note that 
𝑂𝑀

𝑂𝑅
=

𝑂𝑃

𝑂𝑀
 , meaning that 𝑂𝑃 ∙ 𝑂𝑅 = 𝑟2 (2). 

From the inscriptible quadrilateral 𝑁𝑂𝑅𝑀 we have that ∢𝑀𝑅𝑃 = ∢𝑂𝑁𝑀 (3). 

But 𝑂𝑁 = 𝑂𝑀, therefore ∢𝑂𝑁𝑀 = ∢𝑂𝑀𝑁 (4). 

We also have ∢𝑁𝑅𝑂 = ∢𝑂𝑀𝑁 (5). 

The relations (3), (4) and (5) lead to ∢𝑀𝑅𝑃 = ∢𝑁𝑅𝑂, which shows that 𝑅𝑃 is the external angle bisector 

∢𝑀𝑅𝑁. 

If we denote by 𝑄′ the foot of the internal angle bisector ∢𝑀𝑅𝑁, we obtain that 
𝑄′𝑀

𝑄′𝑁
=

𝑅𝑀

𝑅𝑁
. 

But 
𝑃𝑀

𝑃𝑁
=

𝑅𝑀

𝑅𝑁
 (angle bisector theorem), we also have 

𝑃𝑀

𝑃𝑁
=

𝑄′𝑀

𝑄′𝑁
 (6). 

The relations (6) and (1) show that 𝑄′ = 𝑄, therefore 𝑄𝑅 ⊥ 𝑅𝑃. 

But since 𝑄𝑃′ ⊥ 𝑂𝑃, from the uniqueness of the perpendicular drawn from a point to a line, it follows that 

points 𝑅 and 𝑃′ coincide. Then relation (2) becomes 𝑂𝑃 ∙ 𝑂𝑃′ = 𝑟2, which is what needed to be proven. 

Remark 2: 

a) From the proof of this property, it follows that the harmonic conjugate points of 𝑃 with respect to 

the circle 𝛤(𝑂, 𝑟) belong to the polar of point 𝑃. 

b) If 𝑃𝑈 and 𝑃𝑉 are the tangents drawn from 𝑃 to the circle Γ(𝑂, 𝑟) and 𝑈𝑉 ∩ 𝑂𝑃 = {𝑃′}, then from 

the cathetus theorem applied in the right triangles 𝑃𝑂𝑈 and 𝑃𝑂𝑉, we have 𝑂𝑈2 = 𝑂𝑉2 = 𝑟2 =

𝑂𝑃 ∙ 𝑂𝑃′, so points 𝑈 and 𝑉 belong to the polar of 𝑃 with respect to the circle. 

This remark justifies the construction of the polar 𝑝 of 𝑃 with respect to circle Γ(𝑂, 𝑟) as the line determined 

by the points of contact of the tangents drawn from 𝑃 to the circle [6]. 
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Figure 3. Illustration showing the point P' as the harmonic conjugate of P with respect to the circle Γ(O,r). 

 

c) The point 𝑃′ in Figure 3 is the harmonic conjugate of 𝑃 with respect to the circle. 

Indeed, if we denote by 𝐾 and 𝐿 the intersection of the secant 𝑃𝑂 with the circle Γ and 𝑂𝑃 = 𝑑, 

𝑂𝑃′ = 𝑥, therefore 𝑃𝐿 = 𝑑 + 𝑟, 𝑃𝐾 = 𝑑 − 𝑟, 𝑃′𝐾 = 𝑟 − 𝑥. 

We know that 𝑂𝑃 ∙ 𝑂𝑃′ = 𝑟2, therefore 𝑑 ∙ 𝑥 = 𝑟2. 

𝑃𝐾

𝑃𝐿
=

𝑑−𝑟

𝑑+𝑟
 , 
𝑃′𝐾

𝑃′𝐿
=

𝑟−𝑥

𝑟+𝑥
 . 

𝑃𝐾

𝑃𝐿
= 

𝑃′𝐾

𝑃′𝐿
 ⟺ 

𝑑−𝑟

𝑑+𝑟
=

𝑟−𝑥

𝑟+𝑥
 ⇔ 𝑑 ∙ 𝑥 = 𝑟2. 

d) From the demonstrated results, it follows that the polar of a point contains the harmonic conjugates 

of that point with respect to the circle. 

Theorem 1 (Characterization of the Polar) 

The point 𝑀 belongs to the polar of point 𝑃 with respect to circle Γ(𝑂, 𝑟) if and only if 𝑀𝑂2 −𝑀𝑃2 =

2𝑟2 − 𝑂𝑃2 (1). 

Proof 

We denote by 𝑝 the polar of 𝑃 with respect to Γ (see Figure 4) and let 𝑃′ be the projection of 𝑀 pe 𝑂𝑃. Then 

𝑀𝑂2 −𝑀𝑃2 = 𝑃′𝑂2 − 𝑃′𝑃2 = 𝑂𝑈2 − 𝑈𝑃2 = 𝑟2 − (𝑂𝑃2 − 𝑟2) = 2𝑟2 − 𝑂𝑃2. 𝑈 is the point of contact 

between Γ(𝑂, 𝑟) and the tangent drawn from 𝑃. 

 
Figure 4. Illustration showing the polar p of point P with respect to circle Γ. 

Reciprocal: If 𝑀 is a point in the plane of the circle Γ(𝑂, 𝑟) and it satisfies the relation (1), denoting by 𝑀′ =

𝑝𝑟𝑂𝑃
𝑀 , we have: 𝑀′𝑂2 −𝑀′𝑃2 = (𝑀𝑂2 −𝑀′𝑀2) − (𝑀𝑃2 −𝑀′𝑀2) = 𝑀𝑂2 −𝑀𝑃2 = 2𝑟2 − 𝑂𝑃2 (2). 
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On the other hand, 𝑃′𝑂2 − 𝑃′𝑃2 = 2𝑟2 − 𝑂𝑃2 (3).  

The relations (2) and (3) show that 𝑀′ = 𝑃′, therefore 𝑀 belongs to the polar 𝑝 of 𝑃 with respect to Γ. 

Theorem 2 (Philippe de La Hire) 

If 𝑃, 𝑄, 𝑅 are points in the plane of circle Γ(𝑂, 𝑟), and 𝑝, 𝑞, 𝑟 are their respective polars, then: 

1. 𝑃 ∈ 𝑞 ⟺ 𝑄 ∈ 𝑝 (If a point belongs to the polar of another point, then this second point belongs to the 

polar of the first point). 

2. If 𝑅 ∈ 𝑝 ∩ 𝑞 ⟺ 𝑃𝑄 = 𝑟 (The pole of a line determined by two points is the intersection of the polars 

of these points with respect to a given circle). 

Proof: 

From Theorem 1, if 𝑃 ∈ 𝑞 ⇔ 𝑃𝑂2 − 𝑃𝑄2 = 2𝑟2 − 𝑂𝑄2. This relationship is equivalent to 𝑄𝑂2 − 𝑃𝑂2 =

2𝑟2 − 𝑂𝑃2 ⟺𝑄 ∈ 𝑃. 

From 𝑅 ∈ 𝑝 ∩ 𝑞 and (1), it follows that 𝑃 ∈ 𝑟 and 𝑄 ∈ 𝑟, therefore 𝑟 = 𝑃𝑄. 

Remark 3: From this theorem, we note: 

a) The polar of a point, which is the intersection of two lines, is determined by the poles of these lines 

with respect to a given circle. 

b) The poles of concurrent lines are collinear points, and conversely: the polars of collinear points are 

concurrent lines. 

Theorem 3: Let 𝐴𝐵𝐶𝐷 be a convex quadrilateral inscribed in the circle 𝛤. Let 𝑃 be the intersection of the 

lines 𝐴𝐵 and 𝐴𝐶, 𝑄 the intersection of the lines 𝐵𝐶 and 𝐴𝐷, and {𝑅} = 𝐴𝐶 ∩ 𝐵𝐷. Let 𝑈 and 𝑉 be the points 

of contact between 𝛤 and the tangents drawn from 𝑃, and 𝐾 and 𝐿 the intersections of the tangents drawn 

at 𝐴 and 𝐵, respectively at 𝐶 and 𝐷, with 𝛤. 

Then the points 𝑄, 𝐾, 𝑈, 𝑅, 𝑉 and 𝐿 belong to the polar of point 𝑃 with respect to the circle. 

 

Figure 5. Illustration of the quadrilateral ABCD inscribed in circle Γ. 

Proof 

We denote by {𝑀} = 𝑄𝑅 ∩ 𝐴𝐵 and {𝑁} = 𝑄𝑅 ∩ 𝐶𝐷 (see Figure 5). We prove that 𝑀 is the conjugate of 𝑃 

with respect to 𝐴 and 𝐵 and that 𝑁 is the conjugate of 𝑃 with respect to 𝐷 and 𝐶. 

R 

B 
A 

U 

P 

C 

M 

N D 

V 

Q 

L 

K 



Two Applications of the Concepts of Pole and Polar with Respect to a Circle 

 

6

 

  

It is sufficient to show that 
𝑃𝐴

𝑃𝐵
=

𝑀𝐴

𝑀𝐵
 . We apply Ceva’s theorem and Menelaus’ theorem in triangle 𝑄𝐴𝐵 for 

the transversal 𝑃 − 𝐷 − 𝐶. We have:  

𝑀𝐴

𝑀𝐵
∙
𝐶𝐵

𝑄𝐶
∙
𝐷𝑄

𝐷𝐴
= 1, (1) 

𝑃𝐴

𝑃𝐵
∙
𝐵𝐶

𝑄𝐶
∙
𝐷𝑄

𝐷𝐴
= 1. (2) 

From the relations (1) and (2) we obtain that  
𝑃𝐴

𝑃𝐵
=

𝑁𝐴

𝑀𝐵
 . 

Similarly, it can be shown that  
𝑃𝐷

𝑃𝐶
=

𝑁𝐷

𝑁𝐶
 . 

The points 𝑀 and 𝑁 belong to the polar of the point 𝑃, so this is the line 𝑄𝑅. 

From Theorem 2, we know that the polar of point {𝑃} = 𝐴𝐵 ∩ 𝐶𝐷 is the line determined by the poles of 

lines 𝐴𝐵 and 𝐶𝐷, namely 𝐾 and 𝐿. Therefore, points 𝐾 and 𝐿 are also on the polar of 𝑃 with respect to circle 

𝛤. On the other hand, we have seen that the polar of 𝑃 is determined by the points of contact of the tangents 

drawn from 𝑃 to 𝛤, which are points 𝑈 and 𝑉. Since the polar of a point with respect to a circle is a unique 

line, it follows that the aforementioned points are collinear. 

Observation 2: 

From Theorem 2, it follows that the polar of point 𝑄 is line 𝑃𝑅, and the polar of point 𝑅 is line 𝑃𝑄. 

3 |Applications of the Concepts of Pole and Polar with Respect to a 

Circle 

Theorem 4 (I. Newton): If 𝐴𝐵𝐶𝐷 is a quadrilateral such that its sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐷 and 𝐷𝐴 are tangent at 

𝑀, 𝑁, 𝑃, and 𝑄, respectively to a circle 𝛤, then 𝐴𝐶, 𝐵𝐷, 𝑀𝑃 and 𝑁𝑄 are concurrent. 

Proof: Let 𝐴𝐵 ∩ 𝐶𝐷 = {𝑅}, 𝐴𝐷 ∩ 𝐵𝐶 = {𝑆}, 𝐴𝐶 ∩ 𝐵𝐷 = {𝐼} – see Figure 6. Then the polar of 𝑅 is 𝑆𝐼 and 

also the polar of 𝑅 is 𝑃𝑀. From the uniqueness of the polar of a point with respect to a circle, we get that 

the points 𝑆, 𝑃, 𝐼, 𝑀 are collinear (1). Similarly, the polar of 𝑆 is 𝑅𝐼 and the polar of 𝑆 is 𝑄𝑀, resulting in the 

points 𝑅, 𝑄, 𝐼, 𝑁 being collinear (2). From relations (1) and (2), we find that the lines 𝐴𝐶, 𝐵𝐷, 𝑃𝑀 and 𝑁𝑄 

are concurent. 

 
Figure 6. Illustration demonstrating Theorem 4 by I. Newton. 
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Theorem 5: Let 𝐴𝐵𝐶𝐷 be a quadrilateral inscribed in the circle 𝛤(𝑂, 𝑟), with {𝐼} = 𝐴𝐶 ∩ 𝐵𝐷. Let {𝑅} =

𝐴𝐵 ∩ 𝐶𝐷, {𝑆} = 𝐴𝐷 ∩ 𝐵𝐶, 𝑄 be the intersection of the tangents drawn at 𝐴 and 𝐶 to the circle 𝛤, and 𝑃 be 

the intersection of the tangents drawn at 𝐵 and 𝐷 to the circle 𝛤. Then the points 𝑃, 𝑄, 𝑅, 𝑆 are collinear. 

Proof: The polar of point 𝑃 is 𝐵𝐷. The polar of point 𝑄 is 𝐴𝐶. The polar of point 𝑆 is line 𝑅𝐼, and the polar 

of point 𝑅 is 𝑆𝐼. Since the polars 𝐴𝐶, 𝐵𝐷, 𝑅𝐼, and 𝑆𝐼 are concurrent lines at point 𝐼, then, according to 

Theorem 2, it follows that their poles, that is, the points 𝑄, 𝑃, 𝑆 and 𝑅, are collinear points. 

 
Figure 7. Illustration demonstrating the collinearity of points P, Q, R, and S in quadrilateral ABCD inscribed in circle 

Γ(O,r). 

4 |Conclusion 

The concepts of pole and polar with respect to a circle emerge as powerful tools in the study of geometry, 

offering elegant  solutions  to  a  diverse  array  of  problems.  Through  our  exploration  of  various  

applications,  from determining the orthogonality of circles to establishing the concurrence of lines in 

inscribed quadrilaterals, we have witnessed the versatility and beauty of these concepts. Whether applied to 

classic theorems or contemporary problems,  pole  and  polar  relationships  illuminate  the  inherent  structure  

and  symmetry  within  geometric configurations. Moreover, their connections  to harmonic  conjugates, 

inversive  transformations,  and projective geometry underscore their significance beyond the realm of pure 

mathematics, extending their utility to fields such  as  physics,  engineering,  and  computer  science.  As  we  

conclude  this  endeavor,  we  are  reminded  of  the enduring relevance and timeless elegance of these 

fundamental concepts, inviting further inquiry and exploration into the depths of geometric theory and its 

myriad applications. 
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