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1 |Introduction 

1.1 |Uncertain Graph Theory 

Graph theory is a fundamental branch of mathematics that uses vertices (nodes) and edges (connections) to 

model networks, effectively capturing relationships within various systems [34, 38, 63,154, 162, 229]. 

This paper explores various models of uncertain graphs, such as Fuzzy, Intuitionistic Fuzzy, Neutrosophic, 

Turiyam, and Plithogenic Graphs. These models extend classical graph theory by incorporating different 

levels of uncertainty, enabling the analysis of complex and ambiguous relationships. The development of 

uncertain graph models has led to a wide range of applications in real-world contexts and has inspired the 

creation of many related graph classes [72, 73, 75-78, 80, 81, 83-87]. Core concepts like Fuzzy Sets and 

Neutrosophic Sets form the foundation of these models and are well-documented in the literature [20-24, 56, 

65-67, 70, 125, 129, 159, 190, 219-224, 227]. 

Given the extensive literature and diverse applications, the study of uncertain graphs is highly significant for 

advancing our understanding of uncertain networks. For an in-depth exploration of these concepts, readers 

are encouraged to refer to the existing survey papers [79, 81, 83]. 

1.2 |Uncertain Incidence and Threshold Graph 

Among the graph classes in Uncertain Graph Theory, Fuzzy Incidence Graph [1, 112, 140, 141, 148, 151, 

152, 163, 170, 174, 179], Fuzzy Threshold Graph [3, 10, 104, 139, 155, 214], Neutrosophic Incidence Graph 

[11, 18, 110, 143, 144, 196], and Neutrosophic Fuzzy Threshold Graph [123] have been extensively studied. 

Incidence Graph Represents connections between vertices and edges, using incidence pairs to show 
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relationships. The Incidence Graph in classical graph theory is a graph concept extended to Uncertain Graphs 

[201]. Threshold Graph is characterized by vertex weights and thresholds, forming cliques or independent 

sets. Threshold Graph in classical graph theory is a graph concept extended to Uncertain Graphs [52, 60, 113, 

213]. These graphs are explored from various perspectives, including their applications and mathematical 

structures. 

1.3 |Contributions 

We explore the concepts of the Pentapartitioned Neutrosophic Incidence Graph and the Turiyam 

Neutrosophic Incidence Graph, as well as the Pentapartitioned Neutrosophic Fuzzy Threshold Graph and 

the Turiyam Neutrosophic Fuzzy Threshold Graph. Turiyam Neutrosophic Graphs enhance the traditional 

graph framework by integrating four membership values-truth, indeterminacy, falsity, and liberal state-at each 

vertex and edge, offering a more detailed representation of complex relationships [79, 81, 88, 187]. Meanwhile, 

the Pentapartitioned Neutrosophic Graph assigns five degrees (truth, contradiction, ignorance, unknown, 

falsity) to each vertex and edge, effectively capturing complex uncertainty [54,109, 111, 167]. Related concepts 

include the Turiyam Neutrosophic Set [27, 81, 89, 90, 183, 186, 188] and the Pentapartitioned Neutrosophic 

Set [33, 55, 138, 168]. 

2 |Preliminaries and Definitions 

This section provides an overview of the fundamental definitions and notations used throughout the paper. 

2.1 |Basic Graph Concepts 

Below are some of the foundational concepts in graph theory. For more comprehensive information on graph 

theory and its notations, refer to [61 63, 100 206]. 

Definition 1 (Graph). [63] A graph 𝐺 is a mathematical structure that represents relationships between 

objects. It consists of a set of vertices 𝑉(𝐺) and a set of edges 𝐸(𝐺), where each edge connects a pair of 

vertices. Formally, a graph is represented as 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of 

edges. 

Definition 2 (Degree). [63] Let 𝐺 = (𝑉, 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉, denoted deg(𝑣), is 

defined as the number of edges connected to 𝑣. For undirected graphs, the degree is given by: 

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}| 

For directed graphs, the in-degree deg−(𝑣) refers to the number of edges directed towards 𝑣, while the out-

degree deg+(𝑣) represents the number of edges directed away from 𝑣. 

2.2 |Uncertain Graph 

This paper addresses Fuzzy, Intuitionistic Fuzzy, Neutrosophic, Turiyam, and Plithogenic concepts. Note 

that Turiyam Neutrosophic Set is actually a particular case of the Quadruple Neutrosophic Set, by replacing 

"Contradiction" with "Liberal" [189]. 

Definition 3 (Unified Uncertain Graphs Framework). (cf. [82]) Let 𝐺 = (𝑉, 𝐸) be a classical graph with a set 

of vertices 𝑉 and a set of edges 𝐸. Depending on the type of graph, each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸 is 

assigned membership values to represent various degrees of truth, indeterminacy, falsity, and other nuanced 

measures of uncertainty. 

1. Fuzzy Graph [32, 74, 91, 95, 122, 147, 156, 175, 176, 197, 205]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0,1]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0,1]. 

2. Intuitionistic Fuzzy Graph (IFG) [4, 31, 53, 114, 149, 199, 200, 231]: 
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 Each vertex 𝑣 ∈ 𝑉 is assigned two values: 𝜇𝐴(𝑣) ∈ [0,1] (degree of membership) and 𝑣𝐴(𝑣) ∈ [0,1] 

(degree of non-membership), such that 𝜇𝐴(𝑣) + 𝑣𝐴(𝑣) ≤ 1. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned two values: 𝜇𝐵(𝑢, 𝑣) ∈ [0,1] and 𝑣𝐵(𝑢, 𝑣) ∈ [0,1], with 

𝜇𝐵(𝑢, 𝑣) + 𝑣𝐵(𝑢, 𝑣) ≤ 1. 

3. Neutrosophic Graph [10, 12, 39, 79, 84, 102, 108, 119, 180, 192, 195]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a triplet 𝜎(𝑣) = (𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣)), where 𝜎𝑇(𝑣), 𝜎𝐼(𝑣), 𝜎𝐹(𝑣) ∈ 

[0,1] and 𝜎𝑇(𝑣) + 𝜎𝐼(𝑣) + 𝜎𝐹(𝑣) ≤ 3. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a triplet 𝜇(𝑒) = (𝜇𝑇(𝑒), 𝜇𝐼(𝑒), 𝜇𝐹(𝑒)). 

4. Turiyam Neutrosophic Graph [88-90]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple 𝜎(𝑣) = (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)), where each 

component is in [0,1] and 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is similarly assigned a quadruple. 

5. Vague Graph [7, 8, 35-37, 172, 173, 181]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a pair (𝜏(𝑣), 𝜙(𝑣)), where 𝜏(𝑣) ∈ [0,1] is the degree of truth 

membership and 𝜙(𝑣) ∈ [0,1] is the degree of false-membership, with 𝜏(𝑣) + 𝜙(𝑣) ≤ 1. 

 The grade of membership is characterized by the interval [𝜏(𝑣),1 − 𝜙(𝑣)]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a pair (𝜏(𝑒), 𝜙(𝑒)), satisfying: 

𝜏(𝑒) ≤ min{𝜏(𝑢), 𝜏(𝑣)},  𝜙(𝑒) ≥ max{𝜙(𝑢), 𝜙(𝑣)} 

6. Hesitant Fuzzy Graph [26 96 157, 158, 210]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a hesitant fuzzy set 𝜎(𝑣), represented by a finite subset of [0,1], 

denoted 𝜎(𝑣) ⊆ [0,1]. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a hesitant fuzzy set 𝜇(𝑒) ⊆ [0,1]. 

 Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle the hesitation in 

membership degrees. 

7. Single-Valued Pentapartitioned Neutrosophic Graph [54, 109, 111, 167]: 

 Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple 𝜎(𝑣) = (𝑇(𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹(𝑣)), where: 

- 𝑇(𝑣) ∈ [0,1] is the truth-membership degree. 

- 𝐶(𝑣) ∈ [0,1] is the contradiction-membership degree. 

- 𝑅(𝑣) ∈ [0,1] is the ignorance-membership degree. 

- 𝑈(𝑣) ∈ [0,1] is the unknown-membership degree. 

- 𝐹(𝑣) ∈ [0,1] is the false-membership degree. 

- 𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5. 

 Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a quintuple 𝜇(𝑒) = (𝑇(𝑒), 𝐶(𝑒), 𝑅(𝑒), 𝑈(𝑒), 𝐹(𝑒)), 

satisfying: 
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{
 
 

 
 
𝑇(𝑒) ≤ min{𝑇(𝑢), 𝑇(𝑣)}
𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)}
𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)}
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)}
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}

 

2.3 |Fuzzy Incidence Graph and Single-Valued Neutrosophic Incidence Graph 

The definition of the already known Incidence Graph is described as follows. 

Definition 4 (Fuzzy Incidence Graph). [1, 140] Let 𝐺′ = (𝑉, 𝐸, 𝐼) be an incidence graph, where: 

 𝑉 is a non-empty set of vertices, 

 𝐸 is a set of edges, 

 𝐼 ⊆ 𝑉 × 𝐸 is a set of incidence pairs. 

A fuzzy incidence graph of 𝐺′, denoted as �̃� = (𝜇, 𝜆, 𝜓), is defined as an ordered triplet where: 

 𝜇: 𝑉 → [0,1] is a fuzzy subset of the vertex set 𝑉, 

 𝜆: 𝐸 → [0,1] is a fuzzy relation on the edge set 𝐸, 

 𝜓: 𝐼 → [0,1] is a fuzzy subset of the incidence set 𝐼. 

The fuzzy incidence graph �̃� satisfies the following condition: 

𝜓(𝑥, 𝑥𝑦) ≤ min{𝜇(𝑥), 𝜆(𝑥𝑦)},  ∀𝑥 ∈ 𝑉, 𝑥𝑦 ∈ 𝐸 

where 𝜓(𝑥, 𝑥𝑦) represents the degree of incidence between a vertex 𝑥 and an edge 𝑥𝑦. 

Definition 5 (Single-Valued Neutrosophic Incidence Graph). [11] Let 𝐺′ = (𝑉, 𝐸, 𝐼) be an incidence graph, 

where: 

 𝑉 is a non-empty set of vertices, 

 𝐸 is a set of edges, 

 𝐼 ⊆ 𝑉 × 𝐸 is a set of incidence pairs. 

A single-valued neutrosophic incidence graph (SVNIG) of 𝐺′, denoted as �̃� = (𝐴, 𝐵, 𝐶), is defined as an 

ordered triplet where: 

 𝐴 is a single-valued neutrosophic set on the vertex set 𝑉, with 𝐴(𝑥) = (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)), where: 

- 𝑇𝐴(𝑥) ∈ [0,1]: Truth-membership of vertex 𝑥, 

- 𝐼𝐴(𝑥) ∈ [0,1] : Indeterminacy-membership of vertex 𝑥, 

- 𝐹𝐴(𝑥) ∈ [0,1] : Falsity-membership of vertex 𝑥. 

 𝐵 is a single-valued neutrosophic relation on the edge set 𝐸, with 𝐵(𝑥𝑦) =

(𝑇𝐵(𝑥𝑦), 𝐼𝐵(𝑥𝑦), 𝐹𝐵(𝑥𝑦)), where: 

- 𝑇𝐵(𝑥𝑦) ∈ [0,1]: Truth-membership of edge 𝑥𝑦, 

- 𝐼𝐵(𝑥𝑦) ∈ [0,1] : Indeterminacy-membership of edge 𝑥𝑦, 

- 𝐹𝐵(𝑥𝑦) ∈ [0,1] : Falsity-membership of edge 𝑥𝑦. 

 𝐶 is a single-valued neutrosophic subset of the incidence set 𝐼, with 𝐶(𝑥, 𝑥𝑦) =

(𝑇𝐶(𝑥, 𝑥𝑦), 𝐼𝐶(𝑥, 𝑥𝑦), 𝐹𝐶(𝑥, 𝑥𝑦)), where: 
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- 𝑇𝐶(𝑥, 𝑥𝑦) ≤ min{𝑇𝐴(𝑥), 𝑇𝐵(𝑥𝑦)}: Truth-membership condition, 

- 𝐼𝐶(𝑥, 𝑥𝑦) ≤ min{𝐼𝐴(𝑥), 𝐼𝐵(𝑥𝑦)}: Indeterminacy-membership condition, 

- 𝐹𝐶(𝑥, 𝑥𝑦) ≥ max{𝐹𝐴(𝑥), 𝐹𝐵(𝑥𝑦)}: Falsity-membership condition, 

for all 𝑥 ∈ 𝑉 and 𝑥𝑦 ∈ 𝐸. 

Example 6 (Single-Valued Neutrosophic Incidence Graph). [11] Consider an incidence graph 𝐺 = (𝑉, 𝐸, 𝐼), 

where: 

 The vertex set is 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}. 

 The edge set is 𝐸 = {𝑎𝑏, 𝑏𝑐, 𝑏𝑑, 𝑐𝑑, 𝑎𝑑}. 

 The incidence set is  

𝐼 = {(𝑎, 𝑎𝑏), (𝑏, 𝑎𝑏), (𝑏, 𝑏𝑐), (𝑐, 𝑏𝑐), (𝑏, 𝑏𝑑), (𝑑, 𝑏𝑑), (𝑐, 𝑐𝑑), (𝑑, 𝑐𝑑), (𝑑, 𝑎𝑑), (𝑎, 𝑎𝑑)}. 

Let �̃� = (𝐴, 𝐵, 𝐶) be a Single-Valued Neutrosophic Incidence Graph (SVNIG) associated with 𝐺, 

where: 

 The single-valued neutrosophic set 𝐴 on the vertex set 𝑉 is defined as: 

𝐴 = {(𝑎, 0.2,0.5,0.8), (𝑏, 0.3,0.5,0.1), (𝑐, 0.9,0.9,0.1), (𝑑, 0.8,0.1,0.2)} 

Here, each vertex 𝑥 ∈ 𝑉 is represented by a triplet (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)), indicating the truth, indeterminacy, 

and falsity memberships, respectively. 

 The single-valued neutrosophic relation 𝐵 on the edge set 𝐸 is defined as: 

𝐵 = {(𝑎𝑏, 0.2,0.4,0.7), (𝑏𝑐, 0.3,0.4,0.1), (𝑏𝑑, 0.1,0.1,0.1), (𝑐𝑑, 0.7,0.1,0.2), (𝑎𝑑, 0.1,0.1,0.5)} 

Each edge 𝑥𝑦 ∈ 𝐸 is represented by a triplet (𝑇𝐵(𝑥𝑦), 𝐼𝐵(𝑥𝑦), 𝐹𝐵(𝑥𝑦)), indicating the truth, indeterminacy, 

and falsity memberships, respectively. 

 The single-valued neutrosophic subset 𝐶 of the incidence set 𝐼 is defined as: 

𝐶 = {((𝑎, 𝑎𝑏),0.2,0.3,0.7), ((𝑏, 𝑎𝑏),0.1,0.4,0.6), ((𝑏, 𝑏𝑐),0.3,0.3,0.1), ((𝑐, 𝑏𝑐),0.2,0.3,0.1),

 ((𝑏, 𝑏𝑑),0.1,0.1,0.1), ((𝑑, 𝑏𝑑),0.1,0.1,0.2), ((𝑐, 𝑐𝑑),0.7,0.1,0.2), ((𝑑, 𝑐𝑑),0.7,0.1,0.2)

 ((𝑑, 𝑎𝑑),0.1,0.1,0.4), ((𝑎, 𝑎𝑑),0.1,0.1,0.5)}

 

Each incidence pair (𝑥, 𝑥𝑦) ∈ 𝐼 is represented by a triplet (𝑇𝐶(𝑥, 𝑥𝑦), 𝐼𝐶(𝑥, 𝑥𝑦), 𝐹𝐶(𝑥, 𝑥𝑦)), indicating the 

truth, indeterminacy, and falsity memberships, respectively. 

Thus, the Single-Valued Neutrosophic Incidence Graph �̃� = (𝐴, 𝐵, 𝐶) accurately represents the uncertain 

relationships among the vertices, edges, and incidence pairs in the original incidence graph 𝐺. 

The following holds obviously. 

Proposition 7. Every Single-Valued Neutrosophic Incidence Graph (SVNIG) can be transformed into a 

Fuzzy Incidence Graph (FIG). 

Proof. Let �̃� = (𝐴, 𝐵, 𝐶) be a given Single-Valued Neutrosophic Incidence Graph. To transform �̃� into a 

Fuzzy Incidence Graph �̃�′ = (𝜇, 𝜆, 𝜓), we define the following mappings: 

 For the vertex set 𝑉, define: 

𝜇(𝑥) = 𝑇𝐴(𝑥),  ∀𝑥 ∈ 𝑉 

This mapping assigns the truth-membership of each vertex in the SVNIG to the fuzzy membership 

of the corresponding vertex in the FIG. 
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 For the edge set 𝐸, define: 

𝜆(𝑥𝑦) = 𝑇𝐵(𝑥𝑦),  ∀𝑥𝑦 ∈ 𝐸. 

This mapping assigns the truth-membership of each edge in the SVNIG to the fuzzy membership of 

the corresponding edge in the FIG. 

 For the incidence set 𝐼, define: 

𝜓(𝑥, 𝑥𝑦) = 𝑇𝐶(𝑥, 𝑥𝑦),  ∀(𝑥, 𝑥𝑦) ∈ 𝐼. 

This mapping assigns the truth-membership of each incidence pair in the SVNIG to the fuzzy 

membership of the corresponding incidence pair in the FIG. 

To verify that �̃�′ = (𝜇, 𝜆, 𝜓) satisfies the conditions of a Fuzzy Incidence Graph, we need to check 

the incidence constraint: 

𝜓(𝑥, 𝑥𝑦) ≤ min{𝜇(𝑥), 𝜆(𝑥𝑦)},  ∀𝑥 ∈ 𝑉, 𝑥𝑦 ∈ 𝐸 

From the definition of �̃�, we know that: 

𝑇𝐶(𝑥, 𝑥𝑦) ≤ min{𝑇𝐴(𝑥), 𝑇𝐵(𝑥𝑦)},  ∀𝑥 ∈ 𝑉, 𝑥𝑦 ∈ 𝐸. 

By substituting the mappings for 𝜇(𝑥), 𝜆(𝑥𝑦), and 𝜓(𝑥, 𝑥𝑦), we get: 

𝜓(𝑥, 𝑥𝑦) = 𝑇𝐶(𝑥, 𝑥𝑦) ≤ min{𝑇𝐴(𝑥), 𝑇𝐵(𝑥𝑦)} = min{𝜇(𝑥), 𝜆(𝑥𝑦)},  ∀𝑥 ∈ 𝑉, 𝑥𝑦 ∈ 𝐸. 

Thus, the transformed graph �̃�′ = (𝜇, 𝜆, 𝜓) satisfies the conditions of a Fuzzy Incidence Graph. 

Therefore, every Single-Valued Neutrosophic Incidence Graph can be transformed into a Fuzzy Incidence 

Graph. 

2.4 |Intuitionistic Fuzzy Threshold Graph and Neutrosophic Fuzzy Threshold 

Graph 

The definition of the already known Threshold Graph is described as follows. 

Definition 8. [214] An Intuitionistic Fuzzy Threshold Graph (IFTG) is a special type of Intuitionistic Fuzzy 

Graph (IFG) defined by two threshold parameters 𝑡1 and 𝑡2. An IFTG is represented as 𝐺 = (𝐴, 𝐵; 𝑡1, 𝑡2), 

where: 

 𝐺 = (𝐴, 𝐵) is an Intuitionistic Fuzzy Graph, where: 

- 𝐴 = (𝜇𝐴, 𝑣𝐴) is an Intuitionistic Fuzzy Set (IFS) on the set of vertices 𝑉∗, with: 

𝜇𝐴: 𝑉
∗ → [0,1]

𝑣𝐴: 𝑉
∗ → [0,1]

 

satisfying: 

𝜇𝐴(𝑢) + 𝑣𝐴(𝑢) ≤ 1,  ∀𝑢 ∈ 𝑉
∗ 

- 𝐵 = (𝜇𝐵 , 𝑣𝐵) is an Intuitionistic Fuzzy Relation (IFR) on the set of edges 𝐸∗, with: 

𝜇𝐵: 𝐸
∗ → [0,1],

𝑣𝐵: 𝐸
∗

 → [0,1],

 

satisfying: 

𝜇𝐵(𝑢, 𝑣) + 𝑣𝐵(𝑢, 𝑣) ≤ 1,  ∀(𝑢, 𝑣) ∈ 𝐸
∗ 

 𝑡1 > 0 and 𝑡2 > 0 are the threshold parameters. 
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The graph 𝐺 is called an IFTG if and only if the following conditions hold: 

∑  

𝑢∈𝑈

𝜇𝐴(𝑢) ≤ 𝑡1  and  ∑  

𝑢∈𝑈

(1 − 𝑣𝐴(𝑢)) ≤ 𝑡2 

for any subset 𝑈 ⊆ 𝑉∗, where 𝑈 is an independent set in the underlying graph 𝐺∗ of 𝐺. 

Example 9 (Example of an Intuitionistic Fuzzy Threshold Graph (IFTG)). [214] Consider a graph 𝐺∗ =

(𝑉∗, 𝐸∗) with the following sets of vertices and edges: 

𝑉∗ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}
𝐸∗ = {(𝑎, 𝑏), (𝑏, 𝑒), (𝑒, 𝑑), (𝑏, 𝑑), (𝑏, 𝑐), (𝑐, 𝑑)}

 

Let 𝐴 be an intuitionistic fuzzy subset on 𝑉∗ and 𝐵 be an intuitionistic fuzzy subset on 𝐸∗. The intuitionistic 

fuzzy membership degrees for vertices and edges are as follows: 

Vertices: 

Vertex 𝝁𝑨 𝒗𝑨 

𝑎 0.1 0.9 

𝑏 0.5 0.4 

𝑐 0.2 0.7 

𝑑 0.4 0.6 

𝑒 0.2 0.8 

 

Edges: 

Edge 𝝁𝑩 𝒗𝑩 

(𝑎, 𝑏) 0.1 0.9 

(𝑏, 𝑐) 0.2 0.7 

(𝑏, 𝑑) 0.4 0.6 

(𝑏, 𝑒) 0.2 0.8 

(𝑒, 𝑑) 0.2 0.7 

(𝑐, 𝑑) 0.2 0.6 

 

Now, based on the intuitionistic fuzzy sets 𝐴 and 𝐵, we define the Intuitionistic Fuzzy Threshold Graph 𝐺 =

(𝐴, 𝐵; 𝑡1, 𝑡2) with thresholds: 

𝑡1 = 0.5,  𝑡2 = 0.6 

The graph 𝐺 is called an Intuitionistic Fuzzy Threshold Graph (IFTG) if, for any subset 𝑈 ⊆ 𝑉∗ that is an 

independent set in 𝐺∗, the following conditions hold: 

∑  

𝑢∈𝑈

𝜇𝐴(𝑢) ≤ 𝑡1  and  ∑  

𝑢∈𝑈

(1 − 𝑣𝐴(𝑢)) ≤ 𝑡2 

Example Calculation Let 𝑈 = {𝑏, 𝑒} be an independent set in 𝐺∗. 

 Sum of membership degrees 𝜇𝐴 : 

𝜇𝐴(𝑏) + 𝜇𝐴(𝑒) = 0.5 + 0.2 = 0.7 ( which exceeds 𝑡1 = 0.5) 

Thus, this subset does not satisfy the first condition. 

 Sum of non-membership complements 1 − 𝑣𝐴 : 
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(1 − 𝑣𝐴(𝑏)) + (1 − 𝑣𝐴(𝑒)) = (1 − 0.4) + (1 − 0.8) = 0.6 + 0.2 = 0.8 ( which exceeds 𝑡2 = 0.6) 

Thus, this subset does not satisfy the second condition. 

Therefore, the set 𝑈 = {𝑏, 𝑒} is not an independent set in the IFTG 𝐺. 

Definition 10. [123] A Neutrosophic Fuzzy Threshold Graph (NFTG) is an extension of neutrosophic fuzzy 

graphs that incorporates three threshold parameters to define its independent sets. An NFTG is denoted as 

= (𝑃, 𝑄; 𝜏1, 𝜏2, 𝜏3), where: 

 𝐺 = (𝑃, 𝑄) is a Neutrosophic Fuzzy Graph (NFG) defined on a vertex set 𝑉∗ and an edge set 𝐸∗. 

- The neutrosophic fuzzy set 𝑃 on the vertices 𝑉∗ is defined by three functions: 

𝜇𝑃: 𝑉
∗ → [0,1], (truth-membership) 

𝑣𝑃: 𝑉
∗ → [0,1], (falsity-membership) 

𝜎𝑃: 𝑉
∗ → [0,1], (indeterminacy-membership) 

 

- The neutrosophic fuzzy set 𝑄 on the edges 𝐸∗ is defined by three functions: 

𝜇𝑄: 𝐸
∗ → [0,1],

𝑣𝑄: 𝐸
∗ → [0,1],

(truth-membership) 

𝜎𝑄: 𝐸
∗ → [0,1],

 (falsity-membership) 

 (indeterminacy-membership) 

 

The graph 𝐺 = (𝑃, 𝑄) is defined as an 𝑁𝐹𝑇𝐺 if there exist three positive thresholds 𝜏1 > 0, 𝜏2 > 0, and 

𝜏3 > 0 such that, for any subset 𝑈 ⊆ 𝑉∗ that is an independent set in 𝐺, the following conditions hold: 

∑  

𝑢∈𝑈

𝜇𝑃(𝑢) ≤ 𝜏1,  ∑  

𝑢∈𝑈

(1 − 𝑣𝑃(𝑢)) ≤ 𝜏2,   and  ∑  

𝑢∈𝑈

𝜎𝑃(𝑢) ≤ 𝜏3 

Remark 

 The notion of an independent set in an 𝑁𝐹𝑇𝐺 is the same as in its underlying classical graph 𝐺∗. 

 If 𝐺 = (𝑃, 𝑄; 𝜏1, 𝜏2, 𝜏3) and 𝑈 ⊆ 𝑉∗ is a dependent set in 𝐺, then at least one of the following 

inequalities must hold: 

∑  

𝑢∈𝑈

𝜇𝑃(𝑢) > 𝜏1,  ∑  

𝑢∈𝑈

(1 − 𝑣𝑃(𝑢)) > 𝜏2,   or  ∑  

𝑢∈𝑈

𝜎𝑃(𝑢) > 𝜏3 

Example 11. (Example of a Neutrosophic Fuzzy Threshold Graph (NFTG)). Consider a graph 𝐺∗ =

(𝑉∗, 𝐸∗) with the following sets of vertices and edges: 

𝑉∗ = {𝑚, 𝑛, 𝑜, 𝑝, 𝑞}
𝐸∗ = {(𝑚, 𝑛), (𝑛, 𝑜), (𝑜, 𝑝), (𝑝, 𝑛), (𝑛, 𝑞)}

 

Let 𝑃 be the neutrosophic fuzzy subset defined on 𝑉∗ and 𝑄 be the neutrosophic fuzzy subset defined on 

𝐸∗. The degrees of truth-membership, falsity-membership, and indeterminacy-membership for vertices and 

edges are provided in the following tables:  
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Vertices:  

Vertex 𝝁𝑷 𝒗𝑷 𝝈𝑷 

𝑚 0.6 0.2 0.1 

𝑛 0.2 0.3 0.1 

𝑜 0.2 0.4 0.2 

𝑝 0.1 0.2 0.3 

𝑞 0.3 0.4 0.2 

 

Edges: 

Edge 𝝁𝑸 𝒗𝑸 𝝈𝑸 

(𝑚, 𝑛) 0.2 0.5 0.2 

(𝑛, 𝑜) 0.1 0.6 0.2 

(𝑜, 𝑝) 0.1 0.4 0.3 

(𝑝, 𝑛) 0.1 0.5 0.3 

(𝑛, 𝑞) 0.2 0.5 0.2 

 

Based on the neutrosophic fuzzy subsets 𝑃 and 𝑄, we define the Neutrosophic Fuzzy Threshold Graph 

(NFTG) as: 

𝐺 = (𝑃, 𝑄; 𝜏1, 𝜏2, 𝜏3) 

with the thresholds: 

𝜏1 = 0.6,  𝜏2 = 0.8,  𝜏3 = 0.5 

The graph 𝐺 is called a Neutrosophic Fuzzy Threshold Graph (NFTG) if, for any subset 𝑈 ⊆ 𝑉∗ that is an 

independent set in the underlying graph 𝐺∗, the following conditions hold: 

∑  

𝑢∈𝑈

𝜇𝑃(𝑢) ≤ 𝜏1,  ∑  

𝑢∈𝑈

(1 − 𝑣𝑃(𝑢)) ≤ 𝜏2,  ∑  

𝑢∈𝑈

𝜎𝑃(𝑢) ≤ 𝜏3 

Example Calculation. Let 𝑈 = {𝑚, 𝑜} be an independent set in 𝐺∗. 

 Sum of truth-membership degrees 𝜇𝑃 : 

𝜇𝑃(𝑚) + 𝜇𝑃(𝑜) = 0.6 + 0.2 = 0.8 ( which exceeds 𝜏1 = 0.6) 

Thus, this subset does not satisfy the first condition. 

 Sum of non-membership complements 1 − 𝑣𝑃: 

(1 − 𝑣𝑃(𝑚)) + (1 − 𝑣𝑃(𝑜)) = (1 − 0.2) + (1 − 0.4) = 0.8 + 0.6

= 1.4 ( which exceeds 𝜏2 = 0.8) 

Thus, this subset does not satisfy the second condition. 

 Sum of indeterminacy-membership degrees 𝜎𝑃 : 

𝜎𝑃(𝑚) + 𝜎𝑃(𝑜) = 0.1 + 0.2 = 0.3 ( which is within 𝜏3 = 0.5) 

This subset satisfies the third condition. 

Therefore, the set 𝑈 = {𝑚, 𝑜} is not an independent set in the NFTG 𝐺. 
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3 |Results 

State the results of this paper. 

3.1 |Result: Incidence Graph 

Define the Single-Valued Turiyam Neutrosophic Incidence Graph and the Single-Valued Pentapartitioned 

Neutrosophic Incidence Graph, and then prove that they can be transformed into other graph classes. 

Definition 12 (Single-Valued Turiyam Neutrosophic Incidence Graph). Let 𝐺′ = (𝑉, 𝐸, 𝐼) be an incidence 

graph, where: 

 𝑉 is a non-empty set of vertices. 

 𝐸 is a set of edges. 

 𝐼 ⊆ 𝑉 × 𝐸 is a set of incidence pairs. 

A Single-Valued Turiyam Neutrosophic Incidence Graph (SVTIG) of 𝐺′, denoted as �̃� = (𝐴, 𝐵, 𝐶), is 

defined as an ordered triplet where: 

1. 𝐴 is a single-valued Turiyam Neutrosophic set on the vertex set 𝑉, with 𝐴(𝑥) =

(𝑡𝐴(𝑥), 𝑖𝑣𝐴(𝑥), 𝑓𝑣𝐴(𝑥), 𝑙𝑣𝐴(𝑥)), where: 

 𝑡𝐴(𝑥) ∈ [0,1]: Truth-membership degree of vertex 𝑥. 

 𝑖𝑣𝐴(𝑥) ∈ [0,1] : Indeterminacy-membership degree of vertex 𝑥. 

 𝑓𝑣𝐴(𝑥) ∈ [0,1] : Falsity-membership degree of vertex 𝑥. 

 𝑙𝑣𝐴(𝑥) ∈ [0,1] : Liberation-membership degree of vertex 𝑥. 

 Sum condition: 𝑡𝐴(𝑥) + 𝑖𝑣𝐴(𝑥) + 𝑓𝑣𝐴(𝑥) + 𝑙𝑣𝐴(𝑥) ≤ 4. 

2. 𝐵 is a single-valued Turiyam Neutrosophic relation on the edge set 𝐸, with 𝐵(𝑥𝑦) =

(𝑡𝐵(𝑥𝑦), 𝑖𝑣𝐵(𝑥𝑦), 𝑓𝑣𝐵(𝑥𝑦), 𝑙𝑣𝐵(𝑥. where: 

 𝑡𝐵(𝑥𝑦) ∈ [0,1] : Truth-membership degree of edge 𝑥𝑦. 

 𝑖𝑣𝐵(𝑥𝑦) ∈ [0,1] : Indeterminacy-membership degree of edge 𝑥𝑦. 

 𝑓𝑣𝐵(𝑥𝑦) ∈ [0,1] : Falsity-membership degree of edge 𝑥𝑦. 

 𝑙𝑣𝐵(𝑥𝑦) ∈ [0,1] : Liberation-membership degree of edge 𝑥𝑦. 

 Sum condition: 𝑡𝐵(𝑥𝑦) + 𝑖𝑣𝐵(𝑥𝑦) + 𝑓𝑣𝐵(𝑥𝑦) + 𝑙𝑣𝐵(𝑥𝑦) ≤ 4. 

3. 𝐶 is a single-valued Turiyam Neutrosophic subset of the incidence set 𝐼, with 𝐶(𝑥, 𝑥𝑦) =

(𝑡𝐶(𝑥, 𝑥𝑦), 𝑖𝑣𝐶(𝑥, 𝑥𝑦), 𝑓𝑣𝐶(𝑥 satisfying: 

𝑡𝐶(𝑥, 𝑥𝑦) ≤ min{𝑡𝐴(𝑥), 𝑡𝐵(𝑥𝑦)}

𝑖𝑣𝐶(𝑥, 𝑥𝑦) ≤ min{𝑖𝑣𝐴(𝑥), 𝑖𝑣𝐵(𝑥𝑦)}

𝑓𝑣𝐶(𝑥, 𝑥𝑦) ≥ max{𝑓𝑣𝐴(𝑥), 𝑓𝑣𝐵(𝑥𝑦)}

𝑙𝑣𝐶(𝑥, 𝑥𝑦) ≥ max{𝑙𝑣𝐴(𝑥), 𝑙𝑣𝐵(𝑥𝑦)}

 

for all 𝑥 ∈ 𝑉 and 𝑥𝑦 ∈ 𝐸. 

Definition 13 (Single-Valued Pentapartitioned Neutrosophic Incidence Graph). Let 𝐺′ = (𝑉, 𝐸, 𝐼) be an 

incidence graph, where: 

 𝑉 is a non-empty set of vertices. 
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 𝐸 is a set of edges. 

 𝐼 ⊆ 𝑉 × 𝐸 is a set of incidence pairs. 

A Single-Valued Pentapartitioned Neutrosophic Incidence Graph (SVPPNIG) of 𝐺′, denoted as �̃� = 

(𝐴, 𝐵, 𝐶), is defined as an ordered triplet where: 

1. 𝐴 is a single-valued pentapartitioned neutrosophic set on the vertex set 𝑉, with 

𝐴(𝑥) = (𝑇𝐴(𝑥), 𝐶𝐴(𝑥), 𝑅𝐴(𝑥), 𝑈𝐴(𝑥), 𝐹𝐴(𝑥)) 

, where: 

 𝑇𝐴(𝑥) ∈ [0,1]: Truth-membership degree of vertex 𝑥. 

 𝐶𝐴(𝑥) ∈ [0,1]: Contradiction-membership degree of vertex 𝑥. 

 𝑅𝐴(𝑥) ∈ [0,1] : Ignorance-membership degree of vertex 𝑥. 

 𝑈𝐴(𝑥) ∈ [0,1] : Unknown-membership degree of vertex 𝑥. 

 𝐹𝐴(𝑥) ∈ [0,1]: Falsity-membership degree of vertex 𝑥. 

 Sum condition: 𝑇𝐴(𝑥) + 𝐶𝐴(𝑥) + 𝑅𝐴(𝑥) + 𝑈𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 5. 

2. 𝐵 is a single-valued Pentapartitioned neutrosophic relation on the edge set 𝐸, with 

𝐵(𝑥𝑦) = (𝑇𝐵(𝑥𝑦), 𝐶𝐵(𝑥𝑦), 𝑅𝐵(𝑥𝑦), 𝑈𝐵(𝑥𝑦), 𝐹𝐵(𝑥𝑦)) 

, where: 

 𝑇𝐵(𝑥𝑦) ∈ [0,1] : Truth-membership degree of edge 𝑥𝑦. 

 𝐶𝐵(𝑥𝑦) ∈ [0,1]: Contradiction-membership degree of edge 𝑥𝑦. 

 𝑅𝐵(𝑥𝑦) ∈ [0,1]: Ignorance-membership degree of edge 𝑥𝑦. 

 𝑈𝐵(𝑥𝑦) ∈ [0,1] : Unknown-membership degree of edge 𝑥𝑦. 

 𝐹𝐵(𝑥𝑦) ∈ [0,1]: Falsity-membership degree of edge 𝑥𝑦. 

 Sum condition: 𝑇𝐵(𝑥𝑦) + 𝐶𝐵(𝑥𝑦) + 𝑅𝐵(𝑥𝑦) + 𝑈𝐵(𝑥𝑦) + 𝐹𝐵(𝑥𝑦) ≤ 5. 

3. 𝐶 is a single-valued pentapartitioned neutrosophic subset of the incidence set 𝐼, with 

𝐶(𝑥, 𝑥𝑦) = (𝑇𝐶(𝑥, 𝑥𝑦), 𝐶𝐶(𝑥, 𝑥𝑦), 𝑅𝐶(𝑥, 𝑥𝑦), 𝑈𝐶(𝑥, 𝑥𝑦), 𝐹𝐶(𝑥, 𝑥𝑦)) 

, satisfying: 

𝑇𝐶(𝑥, 𝑥𝑦) ≤ min{𝑇𝐴(𝑥), 𝑇𝐵(𝑥𝑦)}

𝐶𝐶(𝑥, 𝑥𝑦) ≤ min{𝐶𝐴(𝑥), 𝐶𝐵(𝑥𝑦)}

𝑅𝐶(𝑥, 𝑥𝑦) ≤ min{𝑅𝐴(𝑥), 𝑅𝐵(𝑥𝑦)}

𝑈𝐶(𝑥, 𝑥𝑦) ≤ min{𝑈𝐴(𝑥), 𝑈𝐵(𝑥𝑦)}

𝐹𝐶(𝑥, 𝑥𝑦) ≥ max{𝐹𝐴(𝑥), 𝐹𝐵(𝑥𝑦)}

 

for all 𝑥 ∈ 𝑉 and 𝑥𝑦 ∈ 𝐸. 

Theorem 14. A Single-Valued Pentapartitioned Neutrosophic Incidence Graph (SVPPNIG) can be 

transformed into: 

1. A Single-Valued Turiyam Neutrosophic Incidence Graph (SVTIG) by merging specific membership 

degrees and adjusting the sum conditions accordingly. 
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2. A Neutrosophic Incidence Graph by setting certain membership degrees to zero and reinterpreting 

others. 

3. A Fuzzy Incidence Graph by simplifying the membership degrees from the Neutrosophic Incidence 

Graph. 

Proof. 1. Transformation from SVPPNIG to SVTIG 

Let �̃� = (𝐴, 𝐵, 𝐶) be an SVPPNIG. For each vertex 𝑥 ∈ 𝑉 and edge 𝑥𝑦 ∈ 𝐸, the membership degrees are: 

 Vertices: 

𝐴(𝑥) = (𝑇𝐴(𝑥), 𝐶𝐴(𝑥), 𝑅𝐴(𝑥), 𝑈𝐴(𝑥), 𝐹𝐴(𝑥)),  𝑇𝐴(𝑥) + 𝐶𝐴(𝑥) + 𝑅𝐴(𝑥) + 𝑈𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 5 

 Edges: 

𝐵(𝑥𝑦) = (𝑇𝐵(𝑥𝑦), 𝐶𝐵(𝑥𝑦), 𝑅𝐵(𝑥𝑦), 𝑈𝐵(𝑥𝑦), 𝐹𝐵(𝑥𝑦)),  𝑇𝐵(𝑥𝑦) + 𝐶𝐵(𝑥𝑦) + 𝑅𝐵(𝑥𝑦) +

𝑈𝐵(𝑥𝑦) + 𝐹𝐵(𝑥𝑦) ≤ 5. 

 

To transform �̃� into an SVTIG, proceed as follows: 

1. Merge Contradiction-membership into Truth-membership: 

𝑡𝐴(𝑥) = 𝑇𝐴(𝑥) + 𝐶𝐴(𝑥),  𝑡𝐵(𝑥𝑦) = 𝑇𝐵(𝑥𝑦) + 𝐶𝐵(𝑥𝑦) 

2. Rename Ignorance and Unknown-membership degrees: 

𝑖𝑣𝐴(𝑥) = 𝑅𝐴(𝑥),  𝑙𝑣𝐴(𝑥) = 𝑈𝐴(𝑥);  𝑖𝑣𝐵(𝑥𝑦) = 𝑅𝐵(𝑥𝑦),  𝑙𝑣𝐵(𝑥𝑦) = 𝑈𝐵(𝑥𝑦) 

3. Keep Falsity-membership degrees unchanged: 

𝑓𝑣𝐴(𝑥) = 𝐹𝐴(𝑥),  𝑓𝑣𝐵(𝑥𝑦) = 𝐹𝐵(𝑥𝑦). 

4. Sum Conditions: 

𝑡𝐴(𝑥) + 𝑖𝑣𝐴(𝑥) + 𝑓𝑣𝐴(𝑥) + 𝑙𝑣𝐴(𝑥) = 𝑇𝐴(𝑥) + 𝐶𝐴(𝑥) + 𝑅𝐴(𝑥) + 𝐹𝐴(𝑥) + 𝑈𝐴(𝑥) ≤ 5. 

5. Normalization: To conform to the SVTIG sum condition ( ≤ 4 ), normalize the membership degrees: 

�̃�𝐴(𝑥) =
𝑡𝐴(𝑥)

5
× 4,  𝑖�̃�𝐴(𝑥) =

𝑖𝑣𝐴(𝑥)

5
× 4,  𝑓𝑣𝐴˜ (𝑥) =

𝑓𝑣𝐴(𝑥)

5
× 4,  𝑙�̃�𝐴(𝑥) =

𝑙𝑣𝐴(𝑥)

5
× 4. 

Similarly for edges. 

The sum condition becomes: 

�̃�𝐴(𝑥) + 𝑖�̃�𝐴(𝑥) + 𝑓𝑣𝐴˜ (𝑥) + 𝑙�̃�𝐴(𝑥) ≤ 4. 

6. Incidence Conditions: The incidence membership degrees 𝐶(𝑥, 𝑥𝑦) transform accordingly, satisfying the 

SVTIG conditions. 

Thus, the SVPPNIG is transformed into an SVTIG. 

2. Transformation from SVPPNIG to Neutrosophic Incidence Graph Proceed as follows: 

1. Set Contradiction and Unknown-membership degrees to zero: 

𝐶𝐴(𝑥) = 𝑈𝐴(𝑥) = 0,  𝐶𝐵(𝑥𝑦) = 𝑈𝐵(𝑥𝑦) = 0. 

2. Rename Ignorance-membership degree as Indeterminacy-membership degree: 

𝐼𝐴(𝑥) = 𝑅𝐴(𝑥),  𝐼𝐵(𝑥𝑦) = 𝑅𝐵(𝑥𝑦). 

3. Define Remaining Membership Degrees: 



   Fujita, T. | SciNexuses 1 (2024) 97-125 

 

018 

𝐴(𝑥) = (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)),  𝐵(𝑥𝑦) = (𝑇𝐵(𝑥𝑦), 𝐼𝐵(𝑥𝑦), 𝐹𝐵(𝑥𝑦)). 

4. Sum Conditions: 

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) = 𝑇𝐴(𝑥) + 𝑅𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 5. 

5. Normalization: Normalize the membership degrees to satisfy the Neutrosophic sum condition (≤

3): 

�̃�𝐴(𝑥) =
𝑇𝐴(𝑥)

5
× 3,  𝐼𝐴(𝑥) =

𝐼𝐴(𝑥)

5
× 3,  �̃�𝐴(𝑥) =

𝐹𝐴(𝑥)

5
× 3. 

Similarly for edges. 

The sum condition becomes: 

�̃�𝐴(𝑥) + 𝐼𝐴(𝑥) + �̃�𝐴(𝑥) ≤ 3 

6. Incidence Conditions: The incidence membership degrees 𝐶(𝑥, 𝑥𝑦) adjust accordingly, satisfying the 

Neutrosophic incidence graph conditions. 

Thus, the SVPPNIG is transformed into a Neutrosophic Incidence Graph. 

3. Transformation from Neutrosophic Incidence Graph to Fuzzy Incidence Graph Proceed as follows: 

1. Simplify Membership Degrees: 

𝜇(𝑥) = �̃�𝐴(𝑥),  𝜆(𝑥𝑦) = �̃�𝐵(𝑥𝑦) 

2. Incidence Membership Degrees: 

𝜓(𝑥, 𝑥𝑦) = min{𝜇(𝑥), 𝜆(𝑥𝑦)},  ∀𝑥 ∈ 𝑉, 𝑥𝑦 ∈ 𝐸. 

3. Sum Conditions: Since 𝜇(𝑥) ∈ [0,1], the fuzzy incidence graph conditions are satisfied. 

Thus, the Neutrosophic Incidence Graph simplifies to a Fuzzy Incidence Graph. 

3.2 |Result: Threshold Graph 

We will provide the definitions of Threshold Graphs extended to Turiyam Neutrosophic Graphs and Single-

Valued Pentapartitioned Neutrosophic Graphs, and examine their relationships with other graph classes. The 

definitions are described as follows. 

Definition 15. A Turiyam Neutrosophic Fuzzy Threshold Graph (TFTG) is a graph 𝐺 = (𝑉, 𝐸) where: 

 Each vertex 𝑣 ∈ 𝑉 is associated with four membership degrees: 

𝑡(𝑣) ∈ [0,1],  (truth-membership) 

𝑖𝑣(𝑣) ∈ [0,1],  (indeterminacy due to indeterminacy) 

𝑓𝑣(𝑣) ∈ [0,1],  (falsity-membership) 

𝑙𝑣(𝑣) ∈ [0,1],  (latent-membership) 

 

satisfying: 

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4 

 For any independent set 𝑈 ⊆ 𝑉, the threshold conditions are: 

∑  

𝑣∈𝑈

𝑡(𝑣) ≤ 𝜏1,  ∑  

𝑣∈𝑈

𝑖𝑣(𝑣) ≤ 𝜏2,  ∑  

𝑣∈𝑈

𝑓𝑣(𝑣) ≤ 𝜏3,  ∑  

𝑣∈𝑈

𝑙𝑣(𝑣) ≤ 𝜏4, 

where 𝜏1, 𝜏2, 𝜏3, 𝜏4 > 0. 
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Definition 16. A Pentapartitioned Neutrosophic Fuzzy Threshold Graph (PNFTG) is a graph 𝐺 = (𝑉, 𝐸) 

where: 

 Each vertex 𝑣 ∈ 𝑉 is associated with five membership degrees: 

𝑇(𝑣) ∈ [0,1], (truth − membership)

𝐶(𝑣) ∈ [0,1], (contradiction − membership)

𝑅(𝑣) ∈ [0,1], (ignorance − membership)

𝑈(𝑣) ∈ [0,1], (unknown −membership)

𝐹(𝑣) ∈ [0,1], (falsity − membership)

 

satisfying: 

𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5 

 For any independent set 𝑈 ⊆ 𝑉, the threshold conditions are: 

∑  

𝑣∈𝑈

𝑇(𝑣) ≤ 𝜃1,  ∑  

𝑣∈𝑈

𝐶(𝑣) ≤ 𝜃2,  ∑  

𝑣∈𝑈

𝑅(𝑣) ≤ 𝜃3,  ∑  

𝑣∈𝑈

𝑈(𝑣) ≤ 𝜃4,  ∑  

𝑣∈𝑈

𝐹(𝑣) ≤ 𝜃5, 

  where 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5 > 0. 

Theorem 17. Every Turiyam Neutrosophic Fuzzy Threshold Graph can be transformed into a Neutrosophic 

Fuzzy Threshold Graph. 

Proof. We define the mappings: 

𝜇𝑃(𝑣) = 𝑡(𝑣)
𝜎𝑃(𝑣) = 𝑖𝑣(𝑣) + 𝑙𝑣(𝑣)
𝑣𝑃(𝑣) = 𝑓𝑣(𝑣)

 

Since: 

𝜇𝑃(𝑣) + 𝜎𝑃(𝑣) + 𝑣𝑃(𝑣) ≤ 4 

We normalize: 

𝜇𝑃
′ (𝑣) =

𝜇𝑃(𝑣)

4
× 3

𝜎𝑃
′ (𝑣) =

𝜎𝑃(𝑣)

4
× 3

𝑣𝑃
′ (𝑣) =

𝑣𝑃(𝑣)

4
× 3

 

Adjust the thresholds: 

𝜏𝑖
′ =

𝜏𝑖
4
× 3,  𝑖 = 1,2,3 

Thus, we obtain a Neutrosophic Fuzzy Threshold Graph 𝐺′ = (𝑃′, 𝑄′; 𝜏1
′ , 𝜏2

′ , 𝜏3
′ ). 

Theorem 18. Every Pentapartitioned Neutrosophic Fuzzy Threshold Graph can be transformed into a 

Neutrosophic Fuzzy Threshold Graph and an Intuitionistic Fuzzy Threshold Graph. 

Proof. We define the mappings: 

𝜇𝑃(𝑣) = 𝑇(𝑣)
𝜎𝑃(𝑣) = 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣)
𝑣𝑃(𝑣) = 𝐹(𝑣)

 

Since: 
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𝜇𝑃(𝑣) + 𝜎𝑃(𝑣) + 𝑣𝑃(𝑣) ≤ 5 

We normalize: 

𝜇𝑃
′ (𝑣) =

𝜇𝑃(𝑣)

5
× 3

𝜎𝑃
′ (𝑣) =

𝜎𝑃(𝑣)

5
× 3

𝑣𝑃
′ (𝑣) =

𝑣𝑃(𝑣)

5
× 3

 

Adjust the thresholds: 

𝜏𝑖
′ =

𝜃𝑖
5
× 3,  𝑖 = 1,2,3 

To transform into an Intuitionistic Fuzzy Threshold Graph, we map: 

𝜇𝐴(𝑣) =
𝑇(𝑣)

𝑇(𝑣) + 𝐹(𝑣)

𝑣𝐴(𝑣) =
𝐹(𝑣)

𝑇(𝑣) + 𝐹(𝑣)

 

This ensures 𝜇𝐴(𝑣) + 𝑣𝐴(𝑣) = 1. 

Theorem 19. Every Pentapartitioned Neutrosophic Fuzzy Threshold Graph can be transformed into a 

Turiyam Neutrosophic Fuzzy Threshold Graph. 

Proof. Define the mappings for each vertex ∈ 𝑉 : 

𝑡(𝑣) = 𝑇(𝑣)
𝑖𝑣(𝑣) = 𝐶(𝑣) + 𝑅(𝑣)
𝑓𝑣(𝑣) = 𝐹(𝑣)
𝑙𝑣(𝑣) = 𝑈(𝑣)

 

Then, 

𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) = 𝑇(𝑣) + [𝐶(𝑣) + 𝑅(𝑣)] + 𝐹(𝑣) + 𝑈(𝑣)

 = 𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣)

 ≤ 5

 

Normalize the membership degrees: 

𝑡′(𝑣) =
𝑡(𝑣)

5
× 4

𝑖𝑣′(𝑣) =
𝑖𝑣(𝑣)

5
× 4

𝑓𝑣′(𝑣) =
𝑓𝑣(𝑣)

5
× 4

𝑙𝑣′(𝑣) =
𝑙𝑣(𝑣)

5
× 4

 

Adjust the thresholds: 

𝜏𝑖 =
𝜃𝑖
5
× 4,   for 𝑖 = 1,2,3,4 

Thus, we obtain a Turiyam Neutrosophic Fuzzy Threshold Graph 𝐺′ = (𝑉, 𝐸). 

Theorem 20. In a Pentapartitioned Neutrosophic Fuzzy Threshold Graph G, the sum of all membership 

degrees for any independent set 𝑈 ⊆ 𝑉 satisfies: 
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∑  

𝑣∈𝑈

[𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣)] ≤ 5 × |𝑈| 

Proof. For each ∈ 𝑈 : 

𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5 

Summing over  : 

∑  

𝑣∈𝑈

[𝑇(𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣)] ≤ 5 × |𝑈| 

Theorem 21. The maximum cardinality of an independent set 𝑈 ⊆ 𝑉 in a Pentapartitioned Neutrosophic 

Fuzzy Threshold Graph 𝐺 is bounded by: 

|𝑈| ≤ min {
𝜃1
𝛿𝑇
,
𝜃2
𝛿𝐶
,
𝜃3
𝛿𝑅
,
𝜃4
𝛿𝑈
,
𝜃5
𝛿𝐹
} 

where 𝛿𝑖 = min{𝑑𝑖(𝑣) ∣ 𝑣 ∈ 𝑉} for 𝑖 = 𝑇, 𝐶, 𝑅, 𝑈, 𝐹. 

Proof. Since 𝑑𝑖(𝑣) ≥ 𝛿𝑖 for all ∈ 𝑈 : 

𝛿𝑖 × |𝑈| ≤ 𝜃𝑖 ⟹ |𝑈| ≤
𝜃𝑖
𝛿𝑖

 

Thus, 

|𝑈| ≤ min {
𝜃1
𝛿𝑇
,
𝜃2
𝛿𝐶
,
𝜃3
𝛿𝑅
,
𝜃4
𝛿𝑈
,
𝜃5
𝛿𝐹
}. 

Theorem 22. A Pentapartitioned Neutrosophic Fuzzy Threshold Graph does not contain any 

Pentapartitioned neutrosophic fuzzy alternating 4-cycles. 

Proof. Assuming the existence of such a cycle leads to a violation of the threshold conditions due to the 

cumulative membership degrees exceeding the thresholds. This contradicts the definition of a PNFTG. 

Theorem 23. If G is a Pentapartitioned Neutrosophic Fuzzy Threshold Graph, then its complement 𝐺‾ is 

also a Pentapartitioned Neutrosophic Fuzzy Threshold Graph under complementary membership degrees. 

Proof. Define: 

𝑇′(𝑣) = 𝐹(𝑣)

𝐶′(𝑣) = 𝑈(𝑣)

𝑅′(𝑣) = 𝑅(𝑣)

𝑈′(𝑣) = 𝐶(𝑣)

𝐹′(𝑣) = 𝑇(𝑣)

 

Since: 

𝑇′(𝑣) + 𝐶′(𝑣) + 𝑅′(𝑣) + 𝑈′(𝑣) + 𝐹′(𝑣) = 5 

Adjust thresholds 𝜃𝑖
′ to maintain the PNFTG conditions in 𝐺‾. 

Theorem 24. In a Pentapartitioned Neutrosophic Fuzzy Threshold Graph, the vertex set can be partitioned 

into a clique and an independent set based on the membership degrees and thresholds. 

Proof. Using the threshold conditions, vertices can be partitioned into a clique 𝐾 and an independent set 𝐼, 

satisfying the PNFTG properties. 
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4 |Future Tasks: Some Uncertain Graph and Linguistic Graphs 

Future research aims to extend the aforementioned graphs to hypergraphs [40, 71, 97-99] and 

superhypergraphs [105, 191-194]. In the context of Uncertain Graphs, hypergraphs and superhypergraphs are 

considered generalizations of traditional graphs and have been studied extensively [5, 6, 9, 153]. 

And I would like to study Some Uncertain Graph and Linguistic Graphs. Although it is still at the conceptual 

stage, I aim to provide a clear definition, including related concepts. 

4.1 |Z-Graph 

We plan to extend the concepts of Z-Number [16, 25, 120, 121, 142, 150, 212, 225, 226] and Z-Numbers 

Soft Set [128, 230] to graph theory in the future. Z-Number and Z-Numbers Soft Set are well-studied in areas 

like Uncertain Set Theory. Additionally, the Soft Set [13, 14, 136, 215] is known as a related concept of the 

Z-Numbers Soft Set. Although it is still at the conceptual stage, the definitions are described as follows. 

Definition 25. [226] A 𝑍-number is an ordered pair 𝑍 = (𝐴, 𝐵), where: 

 𝐴 is a fuzzy restriction on the possible values of a real-valued uncertain variable 𝑋. 

 𝐵 is a measure of reliability or certainty of the information described by 𝐴. 

In other words, 𝐴 represents the uncertain value of 𝑋, and 𝐵 quantifies the confidence in that uncertainty. Z-

numbers provide a formal framework to handle both the uncertainty and the reliability of information 

simultaneously. 

Definition 26. Let 𝐺 = (𝑉, 𝐸) be a classical graph, where: 

 𝑉 is the set of vertices. 

 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. 

A 𝑍-Graph is a graph where each vertex and/or edge is associated with a Z-number to model uncertainty and 

reliability in the graph's structure. Formally, a Z-Graph 𝐺𝑍 = (𝑉, 𝐸, 𝜎𝑉 , 𝜎𝐸) is defined as: 

 𝜎𝑉: 𝑉 → 𝒵, a function assigning a Z-number to each vertex. 

 𝜎𝐸: 𝐸 → 𝒵, a function assigning a Z-number to each edge. 

Here, 𝒵 denotes the set of all possible Z-numbers. For each vertex 𝑣 ∈ 𝑉 and edge ∈ 𝐸 : 

𝜎𝑉(𝑣) = 𝑍𝑣 = (𝐴𝑣 , 𝐵𝑣),

𝜎𝐸(𝑒) = 𝑍𝑒 = (𝐴𝑒 , 𝐵𝑒),
 

where: 

 𝐴𝑣 and 𝐴𝑒 are fuzzy restrictions representing uncertainty about vertex 𝑣 and edge 𝑒, respectively. 

 𝐵𝑣 and 𝐵𝑒 are measures of reliability for 𝐴𝑣 and 𝐴𝑒, respectively. 

Definition 27. [230] Let 𝑈 be a universe of discourse, 𝐸 be a set of parameters, and 𝐴 ⊆ 𝐸 be a non-empty 

set of attributes. 

A Z-Numbers Soft Set over 𝑈 is a pair (�̃�, 𝐴), where: 

 �̃�: 𝐴 → 𝒫𝒵(𝑈) is a mapping from parameters to the power set of Z-numbers over 𝑈. 

For each parameter 𝑒 ∈ 𝐴, �̃�(𝑒) is defined as: 

�̃�(𝑒) = {(𝑥, 𝑍𝑥,𝑒) ∣ 𝑥 ∈ 𝑈} 
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where 𝑍𝑥,𝑒 = (𝐴𝑥,𝑒 , 𝐵𝑥,𝑒) is a Z-number associated with the element 𝑥 under the parameter 𝑒 : 

 𝐴𝑥,𝑒 is the fuzzy restriction representing the degree to which 𝑥 satisfies the parameter 𝑒. 

 𝐵𝑥,𝑒 is the reliability of the information 𝐴𝑥,𝑒. 

Definition 28. A Z-Numbers Soft Graph is a graph that incorporates Z-numbers soft sets to model 

uncertainty and reliability in both its vertices and edges. Formally, a Z-Numbers Soft Graph 𝐺𝑍𝑆𝑆 =

(𝑉, 𝐸, �̃�𝑉 , �̃�𝐸) consists of: 

 𝑉, a non-empty set of vertices. 

 𝐸 ⊆ 𝑉 × 𝑉, the set of edges. 

 �̃�𝑉: 𝐴 → 𝒫𝒵(𝑉), a mapping assigning Z-numbers soft sets to vertices. 

 �̃�𝐸: 𝐴 → 𝒫𝒵(𝐸), a mapping assigning Z-numbers soft sets to edges. 

For each parameter ∈ 𝐴 : 

�̃�𝑉(𝑒) = {(𝑣, 𝑍𝑣,𝑒) ∣ 𝑣 ∈ 𝑉}

�̃�𝐸(𝑒) = {(𝑒
′, 𝑍𝑒′,𝑒) ∣ 𝑒

′ ∈ 𝐸}
 

where: 

 𝑍𝑣,𝑒 = (𝐴𝑣,𝑒 , 𝐵𝑣,𝑒) represents the fuzzy restriction and reliability for vertex 𝑣 under parameter 𝑒. 

 𝑍𝑒′,𝑒 = (𝐴𝑒′,𝑒 , 𝐵𝑒′,𝑒) represents the fuzzy restriction and reliability for edge 𝑒′ under parameter 𝑒. 

A related concept is the Linguistic Z-Graph [135], which is defined as follows. Additionally, concepts like 

the Linguistic Set [48, 116, 164] are known to be related to the Linguistic Z-Graph. 

 

Definition 29. [135] Let 𝑉 be a non-empty set and 𝑅 be a relation on 𝑉 × 𝑉. A Linguistic 𝑍-Graph 𝐺 =

(𝑉, 𝜎, 𝜇) is defined as follows: 

 𝑉 is the set of vertices. 

 𝜎: 𝑉 → 𝜃(𝑧) is a function that maps each vertex to a linguistic Z-number. 

 𝜇: 𝑉 × 𝑉 → 𝜃(𝑧) is a function that maps each pair of vertices to a linguistic Z-number. 

Here, 𝜃(𝑧) represents a set of linguistic Z-numbers, where each Z-number is denoted as 𝑧 = (𝐴, 𝐵) =

(ℎ𝛼 , 𝑔𝛽). The membership value 𝜎(𝑥) of a vertex 𝑥 is given by 𝜃(𝑧𝑥) = (ℎ𝛼 , 𝑔𝛽), and the edge membership 

value 𝜇(𝑥, 𝑦) for an edge (𝑥, 𝑦) is calculated as: 

𝜇(𝑥, 𝑦) = 𝜎(𝑥) ∗ 𝜎(𝑦) = (ℎ𝑟, 𝑔𝛾) 

where: 

 ℎ𝑟 ≤ min{ℎ𝛼, ℎ𝛼
′ }, for all 𝑥, 𝑦 ∈ 𝑉, 

 𝛽 ≤ 𝛾 ≤ 𝛽′, and 

 𝜎(𝑥) = 𝜃(𝑧𝑥) = (ℎ𝛼 , 𝑔𝛽), 𝜎(𝑦) = 𝜃(𝑧𝑦) = (ℎ𝛼
′ , 𝑔𝛽

′ ). 

4.2 |Neutrosophic Linguistic Graph 

One of the future prospects is to define the concepts of Single-Valued Neutrosophic Linguistic Set [116, 165, 

204, 217], Interval-Valued Neutrosophic Linguistic Set [47], and Multi-Valued Neutrosophic Linguistic Set 

[118] extended to graphs. This will involve examining their mathematical structures, graph parameters, and 
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various applications. Although it is still at the conceptual stage, the definitions are described as follows. 

Definition 30. Let 𝑈 be a universe of discourse, and 𝑉 ⊆ 𝑈 be a non-empty set of vertices. Let 𝐸 ⊆ 𝑉 × 𝑉 

be the set of edges. Let Θ be an ordered set of linguistic terms. 

A Single-Valued Neutrosophic Linguistic Graph (𝑆𝑉𝑁𝐿𝐺) is a quadruple 𝐺 = (𝑉, 𝐸, 𝜎𝑉, 𝜎𝐸), where: 

 𝜎𝑉: 𝑉 → Θ × [0,1]3 assigns to each vertex 𝑣 ∈ 𝑉 a linguistic term 𝐺𝑞(𝑣) ∈ Θ and a neutrosophic 

triplet (𝑡𝑄(𝑣), 𝑑𝑄(𝑣), 𝑙𝑄(𝑣)), with 𝑡𝑄(𝑣), 𝑑𝑄(𝑣), 𝑙𝑄(𝑣) ∈ [0,1] satisfying: 

0 ≤ 𝑡𝑄(𝑣) + 𝑑𝑄(𝑣) + 𝑙𝑄(𝑣) ≤ 3 

Here, 𝑡𝑄(𝑣) is the degree of truth-membership, 𝑑𝑄(𝑣) is the degree of indeterminacy-membership, 

and 𝑙𝑄(𝑣) is the degree of falsity-membership for vertex 𝑣. 

 𝜎𝐸: 𝐸 → Θ × [0,1]3 assigns to each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 a linguistic term 𝐺𝑞(𝑒) ∈ Θ and a 

neutrosophic triplet (𝑡𝑄(𝑒), 𝑑𝑄(𝑒), 𝑙𝑄(𝑒)), satisfying: 

0 ≤ 𝑡𝑄(𝑒) + 𝑑𝑄(𝑒) + 𝑙𝑄(𝑒) ≤ 3 

Definition 31. Let 𝑈 be a universe of discourse. 

An Interval-Valued Neutrosophic Linguistic Graph (𝐼𝑉𝑁𝐿𝐺) is a quadruple 𝐺 = (𝑉, 𝐸, 𝜎𝑉, 𝜎𝐸), where: 

 𝑉 ⊆ 𝑈 is the set of vertices. 

 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. 

 𝜎𝑉: 𝑉 → Θ × [0,1]6 assigns to each vertex 𝑣 ∈ 𝑉 a linguistic term 𝐺𝑞(𝑣) ∈ Θ and interval-valued 

neutrosophic triplets: 

([𝑡𝑄
−(𝑣), 𝑡𝑄

+(𝑣)], [𝑑𝑄
−(𝑣), 𝑑𝑄

+(𝑣)], [𝑙𝑄
−(𝑣), 𝑙𝑄

+(𝑣)]) 

where 𝑡𝑄
−(𝑣), 𝑡𝑄

+(𝑣), 𝑑𝑄
−(𝑣), 𝑑𝑄

+(𝑣), 𝑙𝑄
−(𝑣), 𝑙𝑄

+(𝑣) ∈ [0,1] satisfy: 

0 ≤ 𝑡𝑄
−(𝑣) + 𝑑𝑄

−(𝑣) + 𝑙𝑄
−(𝑣) ≤ 3,  0 ≤ 𝑡𝑄

+(𝑣) + 𝑑𝑄
+(𝑣) + 𝑙𝑄

+(𝑣) ≤ 3 

 𝜎𝐸: 𝐸 → Θ × [0,1]6 assigns interval-valued neutrosophic linguistic values to edges similarly. 

Definition 32. Let 𝑈 be a universe of discourse, and Θ = {𝐺0, 𝐺1, … , 𝐺𝑡} be an ordered set of linguistic 

terms, where 𝑡 is an odd integer. 

A Multi-Valued Neutrosophic Linguistic Graph (𝑀𝑉𝑁𝐿𝐺) is a quadruple 𝐺 = (𝑉, 𝐸, 𝜎𝑉 , 𝜎𝐸), where: 

 𝑉 ⊆ 𝑈 is the set of vertices. 

 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. 

 𝜎𝑉: 𝑉 → Θ × [0,1]3 assigns to each vertex 𝑣 ∈ 𝑉 a linguistic term 𝐺𝑞(𝑣) ∈ Θ and a multi-valued 

neutrosophic triplet (�̃�𝑄(𝑣), �̃�𝑄(𝑣), 𝑙𝑄(𝑣)), with �̃�𝑄(𝑣), �̃�𝑄(𝑣), 𝑙𝑄(𝑣) ∈ [0,1] satisfying: 

0 ≤ �̃�𝑄(𝑣) + �̃�𝑄(𝑣) + 𝑙𝑄(𝑣) ≤ 3 

 𝜎𝐸: 𝐸 → Θ × [0,1]3 assigns multi-valued neutrosophic linguistic values to edges similarly. 

4.3 |Linguistic Soft Graph 

One of the future prospects is to define the concepts of Fuzzy Linguistic Soft Set [2, 137], Intuitionistic Fuzzy 

Linguistic Soft Set [101], and Multi-Valued Neutrosophic Linguistic Soft Set [118] extended to graphs. This 
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will involve examining their mathematical structures, graph parameters, and various applications. Although it 

is still at the conceptual stage, the definitions are described as follows. 

Definition 33. Let 𝑈 be a universe of discourse, and Θ = {𝐺0, 𝐺1, … , 𝐺𝑡} be a linguistic assessment set. Let 

FLSS(𝑈) denote the set of all fuzzy subsets of 𝑈. 

A Fuzzy Linguistic Soft Set (FLSS) over 𝑈 is a pair (𝐾, 𝐴), where: 

 𝐴 ⊆ Θ is a non-empty set of parameters. 

 𝐾:𝐴 → FLSS(𝑈) assigns to each linguistic term 𝐺𝑔 ∈ 𝐴 a fuzzy subset of 𝑈. 

A Fuzzy Linguistic Soft Graph (FLSG) is a graph 𝐺 = (𝑉, 𝐸, 𝐾𝑉 , 𝐾𝐸), where: 

 𝑉 is the set of vertices. 

 𝐸 is the set of edges. 

 𝐾𝑉: 𝐴 → FLSS(𝑉) assigns fuzzy linguistic soft sets to vertices. 

 𝐾𝐸: 𝐴 → FLSS(𝐸) assigns fuzzy linguistic soft sets to edges. 

Definition 34. Let 𝑈 be a universe of discourse, and Θ = {𝐺0, 𝐺1, … , 𝐺𝑡} be a linguistic assessment set. Let 

IFLSS (𝑈) denote the set of all intuitionistic fuzzy subsets of 𝑈. 

An Intuitionistic Fuzzy Linguistic Soft Set (IFLSS) over 𝑈 is a pair (𝑃, 𝐴), where: 

 𝐴 ⊆ Θ is a non-empty set of parameters. 

 𝑃: 𝐴 → IFLSS(𝑈) such that for each 𝐺𝑔 ∈ 𝐴: 

𝑃(𝐺𝑔) = {⟨𝑚𝑃(𝐺𝑔)(𝑦), 𝑛𝑃(𝐺𝑔)(𝑦)⟩ ∣ 𝑦 ∈ 𝑈}, 

where 𝑚𝑃(𝐺𝑔)(𝑦), 𝑛𝑃(𝐺𝑔)(𝑦) ∈ [0,1] and 𝑚𝑃(𝐺𝑔)(𝑦) + 𝑛𝑃(𝐺𝑔)(𝑦) ≤ 1. 

An Intuitionistic Fuzzy Linguistic Soft Graph (IFLSG) is a graph 𝐺 = (𝑉, 𝐸, 𝑃𝑉 , 𝑃𝐸), where: 

 𝑉 is the set of vertices. 

 𝐸 is the set of edges. 

 𝑃𝑉: 𝐴 → IFLSS(𝑉) assigns intuitionistic fuzzy linguistic soft sets to vertices. 

 𝑃𝐸: 𝐴 → IFLSS(𝐸) assigns intuitionistic fuzzy linguistic soft sets to edges. 

Definition 35. Let 𝑈 be a universe of discourse, and Θ = {𝐺0, 𝐺1, … , 𝐺𝑡} be an ordered set of linguistic 

terms. A Multi-Valued Neutrosophic Linguistic Soft Set (MVNLSS) over 𝑈 is a pair (𝑄, 𝐴), where: 

 𝐴 ⊆ Θ is a non-empty set of parameters. 

 𝑄:𝐴 → MVNLS(𝑈), with MVNLS(𝑈) denoting the set of all multi-valued neutrosophic linguistic 

subsets of 𝑈. 

 For each 𝐺𝑞 ∈ 𝐴 : 

𝑄(𝐺𝑞) = {⟨𝐺𝑞(𝑦), (�̃�𝑄(𝑦), �̃�𝑄(𝑦), 𝑙𝑄(𝑦))⟩ ∣ 𝑦 ∈ 𝑈}, 

where �̃�𝑄(𝑦), �̃�𝑄(𝑦), 𝑙𝑄(𝑦) ∈ [0,1] satisfy: 

0 ≤ �̃�𝑄(𝑦) + �̃�𝑄(𝑦) + 𝑙𝑄(𝑦) ≤ 3. 

A Multi-Valued Neutrosophic Linguistic Soft Graph (MVNLSG) is a graph 𝐺 = (𝑉, 𝐸, 𝑄𝑉 , 𝑄𝐸), 

where: 
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 𝑉 is the set of vertices. 

 𝐸 is the set of edges. 

 𝑄𝑉: 𝐴 → MVNLS(𝑉) assigns multi-valued neutrosophic linguistic soft sets to vertices. 

 𝑄𝐸: 𝐴 → MVNLS(𝐸) assigns multi-valued neutrosophic linguistic soft sets to edges. 

4.4 |Extending Other Sets to Graph Theory 

In set theory, many other sets and related concepts are known. In the future, we plan to explore the 

mathematical characteristics of these extended graph concepts. For example, we would like to consider the 

following concepts (cf. [80]). 

 Extend Genuine Sets [57, 106] to Genuine graph. 

 Extend Tolerance Rough Fuzzy Sets [17, 228] to Tolerance Rough Fuzzy graph. 

 Extend Hybrid Fuzzy Sets [44, 161] to Hybrid Fuzzy graph. 

 Extend Level Fuzzy Sets [131, 169] to Level Fuzzy graph. 

 Extend the Bell-Shaped Fuzzy Set [49, 51] to Bell-Shaped Fuzzy Graph. 

 Extend the Hyperbolic Fuzzy Set [64, 68, 69] to Hyperbolic Fuzzy Graph. 

 Extend the Probabilistic Fuzzy Set [43, 103, 115, 133] to Probabilistic Fuzzy Graph. 

 Extend Conditional Fuzzy Set [203] to graph theory. 

 Extend the Hexagonal Fuzzy Set [45, 46, 145, 182] to Hexagonal Fuzzy Graph. 

 Extend the Sigmoid Fuzzy Set [59] to Sigmoid Fuzzy Graph. 

 Extend the Convex Fuzzy Set [124, 132, 178] to Convex Fuzzy Graph. 

 Extend Atanassov intuitionistic fuzzy sets [15, 30, 92, 146] to graph theory. 

 Extend the Gray Fuzzy Set [19, 107, 198, 211] to Gray Fuzzy Graph. 

 Extend the Granular Fuzzy Set [127, 130, 134, 177, 202, 209, 216] to Granular Fuzzy Graph. 

 Extend the Continuous Fuzzy Set [126, 171, 218] to Continuous Fuzzy Graph. 

 Extend Symmetric Fuzzy Set [28, 166] to graph theory. 

 Extend shadowed fuzzy set [41, 42, 160, 207] to graph theory. 

 Extend Stochastic Fuzzy Set [93] to graph theory. 

 Extend Fuzzy Power Set [29, 58, 208] to Fuzzy Power graph. 

 Extend Hyperfuzzy Sets [94, 117] to graph theory. 
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