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1 |Introduction 

The Navier-Stokes equations, a set of nonlinear partial differential equations, are fundamental in fluid 

mechanics. They describe the motion of viscous fluids. In three dimensions, these equations are particularly 

complex and often lead to turbulence. Understanding turbulence is a major challenge in fluid mechanics and 

has implications across various fields, including engineering, meteorology, and oceanography. 

The present article can be read as a follow-up to our previous article suggesting that it is possible to find 

tunneling time solutions for the Schrodinger equation considering quasicrystalline as interstellar matter [1], 

under quasicrystalline potential. A review of tunneling time estimate through ER=EPR type tunneling for the 

Schrodinger equation with quasicrystalline potential is outlined in Section 1. Moreover, we can extend further 

the notion of quasicrystalline potential by considering PT-symmetric potential is considered in Section 2. 

Our motivations here are twofold, first of all, we offer a physical medium hypothesis of quasicrystalline solid 

as an alternative to the standard hypothesis of Interstellar matter. Secondly, we consider that in Nature several 

natural wormhole tunnels exist in this Earth or what is popularly termed as Stargate. Aside from the story of 

Jacob in Bethel who saw a heavenly staircase where angels walked up and down the stairs, we can also consider 
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for instance folklore that tells us when the Conquistador entered to conquer Aztec people, the King of the 

Aztec tribe went to Mount with his family, and suddenly they disappeared. Rumor has it that they just vanished 

like vapor [7], but the story can be interpreted that the king had a special key to enter the natural wormhole 

tunnel around that mountain. Other stories of such strange locations may be heard around the Middle East 

or Skinwalker Ranch in the USA, but we shall be really careful because other interpretations abound. 

A. Follow up to the previous article [1] 

Section 1. Tunneling time estimate through ER=EPR type tunneling 

The ER=EPR hypothesis, proposed by Maldacena and Susskind, suggests a profound connection between 

Einstein-Rosen (ER) bridges (wormholes) and Einstein-Podolsky-Rosen (EPR) entanglement.  

The ER=EPR hypothesis posits that every pair of entangled particles is connected by an unobservable 

wormhole. This implies that quantum entanglement, a fundamental phenomenon in quantum mechanics, has 

a deep connection to the geometry of spacetime. In the context of interstellar travel, this hypothesis suggests 

the possibility of utilizing entangled particles to create traversable wormholes for faster-than-light travel. 

The interstellar medium is a complex and dynamic environment. While traditionally modeled as a diffuse gas, 

recent observations suggest the presence of intricate structures, including quasicrystalline arrangements of 

dust and gas. Quasicrystals, characterized by aperiodic order, exhibit unique physical properties that could 

profoundly impact the propagation of particles and the formation of wormholes. We hypothesize that the 

quasicrystalline structure of the interstellar medium can significantly influence the dynamics of wormhole 

formation and subsequent particle tunneling, see cf. [11, 12]. 

To estimate the tunneling time through an ER=EPR type wormhole, we employ the WKB (Wentzel-

Kramers-Brillouin) approximation. The WKB approximation provides an approximate solution to the 

Schrödinger equation for the wave function of a particle in a slowly varying potential. 

The tunneling time through the wormhole can be expressed as: 

                                              τ_tunnel = ∫_a^b dx / v(x)                                                                               (1) 

Where: 

 τ_tunnel is the tunneling time. 

 x is the spatial coordinate along the wormhole trajectory. 

 v(x) is the group velocity of the particle within the wormhole. 

The group velocity can be determined from the dispersion relation of the particle within the quasicrystalline 

potential. 

Mathematica (outline only) 

(* Define the quasicrystalline potential *) quasicrystallinePotential[x_] := Sum[Cos[a*k*x]*Exp[-b*k^2], {k, 

1, 10}] (* Define the potential barrier *) potentialBarrier[x_] := Piecewise[{{0, x < 0 || x > L}, {V0, 0 <= x 

<= L}}] (* Define the total potential *) totalPotential[x_] := quasicrystallinePotential[x] + potentialBarrier[x] 

(* Calculate the group velocity *) groupVelocity[x_] := D[Sqrt[2*m*(E - totalPotential[x])]/m, x] (* Calculate 

the tunneling time *) tunnelingTime[E_] := NIntegrate[1/groupVelocity[x], {x, 0, L}, Method -> 

"LocalAdaptive"] (* Set parameters *) a = 1; b = 0.1; V0 = 1; L = 10; m = 1; (* Calculate tunneling time for 

different energies *) tunnelingTimes = Table[{E, tunnelingTime[E]}, {E, 0.1, 1, 0.1}] (* Plot the tunneling 

time as a function of energy *) ListPlot[tunnelingTimes, AxesLabel -> {"Energy", "Tunneling Time"}] 

This study provides a preliminary investigation into the potential impact of the quasicrystalline structure of 

the interstellar medium on the tunneling time through ER=EPR-type wormholes. The results suggest that 

the unique properties of quasicrystals could significantly influence interstellar travel and have profound 

implications for our understanding of the universe. 
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Section 2. Alternative extension of tunneling time estimate through ER=EPR type tunneling by considering 

the quasicrystalline potential to be extended in PT-symmetric potential. 

Alternatively, we introduce PT-symmetric potentials as an alternative framework to describe the interaction 

of particles with the complex environment within and around the wormhole. By extending the quasicrystalline 

potential to be PT-symmetric, we explore the implications of this novel approach on the tunneling time and 

the dynamics of particle propagation. 

PT-symmetric quantum mechanics, pioneered by Carl Bender, offers a novel approach to describing systems 

with complex potentials. A PT-symmetric Hamiltonian satisfies the condition: 

 *PT H PT⁻¹ = H ** 

where P is the parity operator (spatial inversion) and T is the time-reversal operator. 

This framework allows for the exploration of non-Hermitian systems that still exhibit real energy eigenvalues, 

opening up new possibilities for understanding particle dynamics in complex environments. 

We extend the quasicrystalline potential to be PT-symmetric by introducing a complex component that 

satisfies the PT-symmetry condition. This can be achieved by modifying the potential function to include an 

imaginary part that is odd under parity inversion. 

The extended PT-symmetric potential can be expressed as: 

                    V(x) = V_R(x) + i V_I(x)                                                                                                      (2) 

Where: 

 V_R(x) is the real part of the potential (quasicrystalline potential) 

 V_I(x) is the imaginary part of the potential, satisfying V_I(-x) = -V_I(x) 

The tunneling time through the wormhole can be estimated using the WKB approximation, modified to 

account for the complex potential. The group velocity, which now becomes complex, can be determined 

from the modified dispersion relation. 

Mathematica (outline only) 

(* Define the PT-symmetric quasicrystalline potential *) ptSymmetricPotential[x_] := Sum[Cos[a*k*x]*Exp[-

b*k^2], {k, 1, 10}] + I*Sinh[a*k*x]*Exp[-b*k^2] (* Define the potential barrier *) potentialBarrier[x_] := 

Piecewise[{{0, x < 0 || x > L}, {V0, 0 <= x <= L}}] (* Define the total potential *) totalPotential[x_] := 

ptSymmetricPotential[x] + potentialBarrier[x] (* Calculate the group velocity *) groupVelocity[x_] := 

D[Sqrt[2*m*(E - Re[totalPotential[x]])]/m, x] (* Calculate the tunneling time *) tunnelingTime[E_] := 

NIntegrate[1/Re[groupVelocity[x]], {x, 0, L}, Method -> "LocalAdaptive"] (* Set parameters *) a = 1; b = 

0.1; V0 = 1; L = 10; m = 1; (* Calculate tunneling time for different energies *) tunnelingTimes = Table[{E, 

tunnelingTime[E]}, {E, 0.1, 1, 0.1}] (* Plot the tunneling time as a function of energy *) 

ListPlot[tunnelingTimes, AxesLabel -> {"Energy", "Tunneling Time"}] 

This study extends the previous investigation by incorporating PT-symmetric potentials to describe the 

complex environment encountered by particles traversing ER=EPR wormholes. The results highlight the 

potential significance of PT-symmetry in understanding the dynamics of particle propagation in such 

scenarios. 

Interestingly, we shall remark here that there is a recent report by Pascal Koiran, etc on the 1-D PT-symmetric 

wormhole possibility [10], Nonetheless, we shall admit that there is a lack of physical mechanism of tunneling 

in the above Schrodinger picture. 

On the bright side, there is also a recent article by Meng and Yang (2024) suggesting Quantum spin 

representation for the Navier-Stokes equation [5]. Among other things, they wrote that it is possible to find 
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non-Hermitian QM relation to Navier-Stokes, which eventually reminds us of R.M. Kiehn’s article on Falaco 

soliton as a possible solution of Navier-Stokes equations [3]. Alternatively, we can also consider Falaco soliton 

as a kind of topological surgery on a flat surface [6]. 

We shall consider this possibility of Falaco soliton as a physical mechanism of tunneling in the Navier-Stokes 

Universe, but first of all, let us take a look at other neat correspondence between Navier-Stokes and Riccati 

equations. 

B. Possibility of Falaco soliton as a physical mechanism of tunneling in Navier-Stokes Universe 

As we know, the 3D Navier-Stokes equations provide a mathematical framework for studying a wide range 

of fluid phenomena, including: 

 Flow around objects: Understanding the flow of air around airplanes or water around ships is crucial 

for designing efficient and safe vehicles. 

 Turbulence: Turbulence is a ubiquitous phenomenon that can have significant impacts on fluid 

systems. For example, turbulence in the atmosphere affects weather patterns, and turbulence in pipes 

can increase energy losses. 

 Mixing: The Navier-Stokes equations can be used to study the mixing of different fluids, which is 

important in many industrial processes. 

 Combustion: Understanding the combustion of fuels involves studying the flow and mixing of gases. 

Mapping to Riccati Equations 

Riccati equations are a class of nonlinear differential equations that have been studied extensively in 

mathematics. In certain cases, it is possible to map the 3D Navier-Stokes equations onto a pair of Riccati 

equations. This mapping can provide insights into the behavior of the Navier-Stokes equations and may lead 

to new methods for solving them. 

While the specific mapping process can be quite technical and depends on the particular form of the Navier-

Stokes equations, it often involves introducing new variables and rewriting the equations in terms of these 

variables. The resulting equations can then be expressed as a pair of Riccati equations (see previous articles 

by S. Ershkov et al.). 

Mapping Navier-Stokes Equations to Riccati Equations [ 2] 

The mapping of Navier-Stokes equations to Riccati equations often involves a change of variables and specific 

assumptions about the flow conditions. While a general, one-size-fits-all mapping might not be feasible, we 

can illustrate a common approach using simplified assumptions. 

Simplified Example: 1D Compressible Flow 

For a 1D, compressible flow with constant density and viscosity, the Navier-Stokes equations can be reduced 

to: 

ρ(∂u/∂t + u∂u/∂x) = -∂p/∂x + μ(∂^2u/∂x^2)                                                           (3) 

Where: 

 ρ is the density 

 u is the velocity 

 p is the pressure 

 μ is the viscosity 

Introducing a New Variable 
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Let's introduce a new variable v = ∂u/∂x. Then, the momentum equation can be rewritten as: 

ρ(dv/dt + u∂v/∂x) = -∂p/∂x + μ(∂v/∂x)                                                                                      (4) 

Assuming a Linear Relationship between Pressure and Velocity 

For simplicity, let's assume a linear relationship between pressure and velocity: 

 p = ρc^2 + ρau                                                                                                                      (5) 

Where c is the speed of sound and a is a constant. 

Substituting into the Momentum Equation 

Substituting this expression for pressure into the momentum equation yields: 

ρ(dv/dt + u∂v/∂x) = -ρac - ρa∂u/∂x + μ(∂v/∂x)                                                        (6) 

Simplifying 

Using the definition of v and simplifying, we get: 

 dv/dt + (u + a)dv/∂x = (μ/ρ - a)v                                                                                     (7) 

Mapping to a Riccati Equation 

This equation can be mapped to a Riccati equation by defining a new variable w = v/u. After some algebraic 

manipulations, we obtain: 

 dw/dt + (a/u)w = (μ/ρ - a)/u                                                                                             (8) 

This is a Riccati equation in terms of w, see also [2]. 

Note: 

 This is a simplified example, and the mapping process can be more complex for more general flow 

conditions. 

 The specific form of the Riccati equation will depend on the assumptions made about the flow and 

the chosen change of variables. 

 Solving the Riccati equation may require numerical methods, especially for non-linear cases. 

Additional Considerations: 

 Boundary Conditions: The Riccati equation will need to be solved with appropriate boundary 

conditions to obtain a meaningful solution. 

 Numerical Methods: For complex flows or non-linear relationships, numerical methods may be 

necessary to solve the Riccati equation. 

 Higher-Order Equations: In some cases, the mapping may lead to higher-order Riccati equations or 

systems of Riccati equations. 

By understanding the mapping process, you can explore the connections between Navier-Stokes equations 

and Riccati equations for various fluid flow problems. For further discussions on the connection between 

Riccati equations and Navier-Stokes and Schrodinger equations, the readers are referred to ref. [4] for 

instance. 

2 |Discussion: Falaco Soliton as Physical Mechanism of Tunneling 

The Falaco soliton, a mesmerizing phenomenon observed in rotating fluids, has captured the attention of 

physicists for its unique properties and potential implications. This article explores the Falco soliton from 
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various perspectives, delving into its potential connection to the Navier-Stokes equations, its interpretation 

as a form of topological surgery, and its possible manifestations in astrophysical phenomena. 

R.M. Kiehn's Perspective 

R.M. Kiehn, a renowned physicist, proposed that the Falaco soliton might represent a novel solution to the 

Navier-Stokes equations, a set of partial differential equations that describe the motion of fluid substances 

[3]. The Navier-Stokes equations are notoriously challenging to solve, and a complete understanding of their 

solutions remains an open problem in fluid dynamics. Kiehn's hypothesis suggests that the Falaco soliton, 

with its intricate vortex structures, could offer valuable insights into the behavior of turbulent fluids and 

potentially lead to new analytical solutions for the Navier-Stokes equations.    

A Topological Perspective: Surgery on a Flat Surface 

From a topological standpoint, the Falaco soliton can be viewed as a form of "surgery" performed on a flat 

surface [6].  When a rotating object, such as a disk, is partially submerged in a fluid, it induces a complex 

pattern of vortices and dimples on the fluid surface. This process can be seen as a topological transformation, 

where the initial flat surface is modified by the presence of the rotating object, resulting in the formation of 

the Falaco soliton. This perspective highlights the underlying geometric and topological principles that govern 

the formation and stability of these fascinating structures.    

Possible astrophysics phenomena related to Falaco soliton 

The principles underlying the Falaco soliton may have far-reaching implications in astrophysics. The Falaco 

soliton, a mesmerizing phenomenon observed in rotating fluids, has captivated physicists with its unique 

vortex structures. While primarily studied in terrestrial laboratories, the intriguing possibility of Falaco soliton-

like structures existing on a cosmic scale has emerged. This article explores potential astrophysical evidence 

suggesting the presence of these solitonic configurations, focusing on specific examples and observational 

challenges.    

1. Galactic Spiral Arms: A Cosmic Falaco Soliton Analog? 

 Observation: The grand design of spiral arms of many galaxies exhibit a remarkable degree of order 

and persistence, suggesting an underlying mechanism that maintains their structure. 

 Falaco Soliton Connection: The swirling, wave-like patterns of spiral arms bear some resemblance to 

the vortex structures observed in Falaco Solitons. It's conceivable that galactic rotation and 

gravitational interactions within the galactic disk could induce similar solitonic patterns in the 

distribution of interstellar gas and dust, influencing star formation. 

 Challenges:  

o Complexity: Galactic dynamics are far more complex than the controlled environment of a 

Falaco soliton experiment, with factors like dark matter, magnetic fields, and supernovae 

playing significant roles. 

o Observational Limitations: Directly observing the detailed fluid-like behavior of interstellar 

gas on galactic scales is challenging due to the vast distances and the limitations of current 

observational techniques. 

2. Accretion Disks around the center of galaxies: A Potential Site for Solitonic Activity 

 Observation: Accretion disks surrounding the center of galaxies exhibit complex dynamics, including 

swirling gas flows and the formation of jets.    

 Falaco Soliton Connection: The intense gravitational forces and rapid rotation within accretion disks 

could potentially give rise to localized regions of coherent vortex structures, analogous to Falaco 
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solitons. These structures could influence the accretion process and potentially contribute to the 

formation of jets. 

 Challenges:  

o Extreme Conditions: The environment within an accretion disk is incredibly harsh, with 

extreme temperatures, pressures, and magnetic fields.    

o Theoretical Modeling: Developing realistic models of fluid dynamics in such extreme 

conditions is computationally demanding and requires a deep understanding of relativistic 

effects. 

3. M-31 and Milky Way: A possible observational evidence? 

 Observation: M-37 and Milky Way galaxies have been considered by the late R.M. Kiehn as possible 

astrophysics evidence of Falaco soliton (Kiehn, 2006). 

While further research is needed to confirm these hypotheses, the Falaco soliton serves as a valuable model 

system for studying the behavior of rotating fluids on a cosmic scale. 

Another plausible consideration: Falaco Solitons as A Microcosm of Cosmic Strings? 

At first glance, the connection might seem tenuous. However, both phenomena exhibit striking similarities: 

 Topological Defects: Both Falaco solitons and cosmic strings arise from topological defects. In 

Falaco solitons, these defects emerge from the interaction between the rotating object and the fluid 

surface. Cosmic strings, on the other hand, are theorized to be one-dimensional topological defects 

in the fabric of spacetime, formed during the early universe.    

 Vortex Structures: Falaco solitons are characterized by intricate vortex patterns. Cosmic strings, while 

invisible, are predicted to have profound gravitational effects, warping spacetime around them and 

potentially influencing the formation of galaxies.    

 Stability: Both structures exhibit a remarkable degree of stability, persisting despite external 

perturbations. 

A Cosmic Tapestry Woven by Solitonic Threads? 

Extending this analogy, we can speculate on the role of Falaco soliton-like structures in the grand cosmic 

tapestry. Could a network of cosmic strings, akin to a vast, invisible web, act as a scaffolding for the formation 

of galaxies? 

 Galactic Clustering: The observed clustering of galaxies in the universe might be influenced by the 

gravitational influence of cosmic strings. Falaco solitons, with their inherent vortex structures, could 

serve as a microcosmic model for understanding how such a network of cosmic strings might guide 

the formation of galaxy clusters. 

 Galaxy Rotation and Morphology: The rotation and morphological features of galaxies, such as 

spiral arms, could be influenced by the interaction with nearby cosmic strings. The vortex patterns 

observed in Falaco solitons might offer insights into how these interactions could shape the evolution 

of galactic structures. 

Challenges and Future Directions 

This is, of course, highly speculative. Several significant challenges must be addressed: 

 Observational Evidence: Direct observation of cosmic strings remains elusive. Developing novel 

observational techniques to detect their presence is crucial to validate these hypotheses. 
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 Theoretical Modeling: Sophisticated theoretical models are needed to accurately simulate the 

interaction between cosmic strings and galactic structures, incorporating the complex dynamics of 

both systems. 

 Experimental Analogs: Laboratory experiments, such as creating Falaco soliton-like structures in 

more complex fluid systems, could provide valuable insights into the behavior of topological defects 

on larger scales. 

The connection between Falaco solitons, cosmic strings, and the cosmic tapestry remains a tantalizing 

possibility. While much remains to be explored, this speculative framework offers a unique perspective on 

the intricate interplay between fluid dynamics, topology, and the evolution of the universe.  

3 |Concluding Remark 

The Falaco solution offers a rich tapestry of physical and mathematical insights. From its potential connection 

to the Navier-Stokes equations to its interpretation as a topological transformation, the Falaco soliton 

continues to challenge our understanding of fluid dynamics and inspire new avenues of research. As our 

knowledge of this intriguing phenomenon grows, we may uncover even deeper connections to other areas of 

physics and gain a more profound understanding of the universe around us. 

While the direct observation of Falaco solitons in astrophysical contexts remains challenging, the possibility 

of their existence cannot be ruled out. 

By pursuing these research avenues, we can unlock the full potential of the Falaco soliton and gain a deeper 

appreciation for the intricate beauty and complexity of the natural world. 
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