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Abstract

Graph theory examines networks composed of nodes (vertices) and their connections (edges). A graph
class is defined by shared structural properties governed by specific rules or constraints. This paper
explores uncertain graph models, with a focus on Pythagorean, Fermatean, and Complex Turiyam Neu-
trosophic Graphs, which extend Neutrosophic Graphs to more effectively address uncertainty. Potential
extensions using General Plithogenic Graphs are also discussed.

Keywords: Neutrosophic graph, Fuzzy graph, Plithogenic Graph, Pythagorean Turiyam Neutrosophic
Graph, Complex Turiyam Neutrosophic Graph

1 | Introduction

1.1 | Uncertain Graph Theory
Graphs have been studied for over 200 years, and graph theory has now gained widespread recognition. Graph
theory focuses on networks made up of nodes (vertices) and their connections (edges) [23]. It has been extensively
explored due to its wide range of applications across various fields, including real-world systems [23].

This paper delves into models of uncertain graphs, such as Fuzzy, Intuitionistic Fuzzy, Neutrosophic, Turiyam
Neutrosophic, and Plithogenic Graphs, which are designed to manage uncertainty in diverse contexts. Collec-
tively known as uncertain graphs, these models extend classical graph theory by incorporating varying degrees
of uncertainty [53, 51].

This paper focuses on the use of derived classes of Neutrosophic Graphs, specifically Pythagorean Neutro-
sophic Graphs, Fermatean Neutrosophic Graphs, and Complex Neutrosophic Graphs. Pythagorean Neutro-
sophic Graphs extend conventional graphs by assigning Pythagorean membership values to vertices and edges,
incorporating squared values of truth, indeterminacy, and falsity degrees [1, 16, 19]. Fermatean Neutrosophic
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Graphs further enhance uncertainty modeling by using cubed values of these degrees [52, 14, 17]. Complex
Neutrosophic Graphs utilize complex-valued truth, indeterminacy, falsity state degrees, enabling a more com-
prehensive representation of uncertainty[5, 72, 44, 48, 3].

For further information, please refer to the relevant survey notes [26, 27, 30].

1.2 | Our Contribution in this paper
The above discussion underscores the significance of research on Uncertain Graphs. However, the exploration
of Turiyam Neutrosophic Graphs is still in its early stages. This study introduces and analyzes new concepts
of Fermatean, Pythagorean, and Complex Turiyam Neutrosophic Graphs. Turiyam Neutrosophic Graphs as-
sign four values—truth, indeterminacy, falsity, and liberal state—to each vertex and edge, capturing complex
relationships [36, 26, 30]. Additionally, this paper explores potential extensions through General Plithogenic
Graphs (cf. [30]).

2 | Preliminaries and definitions
In this section, we present a brief overview of the definitions and notations used throughout this paper.

2.1 | Basic Graph Concepts
Here, we present some basic concepts of graph theory. For more foundational concepts and notations, please
refer to lecture notes, surveys, or introductory texts such as [23].

Definition 1 (Graph). [23] A graph 𝐺 is a mathematical structure consisting of a set of vertices 𝑉 (𝐺) and a set
of edges 𝐸(𝐺) that connect pairs of vertices, representing relationships or connections between them. Formally,
a graph is defined as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the vertex set and 𝐸 is the edge set.

Definition 2 (Subgraph). [23] Let 𝐺 = (𝑉 , 𝐸) be a graph. A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻) of 𝐺 is a graph such
that:

• 𝑉𝐻 ⊆ 𝑉 , i.e., the vertex set of 𝐻 is a subset of the vertex set of 𝐺.

• 𝐸𝐻 ⊆ 𝐸, i.e., the edge set of 𝐻 is a subset of the edge set of 𝐺.

• Each edge in 𝐸𝐻 connects vertices in 𝑉𝐻 .

Definition 3 (Degree). [23] Let 𝐺 = (𝑉 , 𝐸) be a graph. The degree of a vertex 𝑣 ∈ 𝑉 , denoted deg(𝑣), is the
number of edges incident to 𝑣. Formally, for undirected graphs:

deg(𝑣) = |{𝑒 ∈ 𝐸 ∣ 𝑣 ∈ 𝑒}|.
In the case of directed graphs, the in-degree deg−(𝑣) is the number of edges directed into 𝑣, and the out-degree
deg+(𝑣) is the number of edges directed out of 𝑣.

2.2 | Fuzzy, Neutrosophic Graphs, and Turiyam Neutrosophic Graphs
In this subsection, we explore Fuzzy Graphs, Neutrosophic Graphs, and Turiyam Neutrosophic Graphs. The
following definitions include related concepts. Note that Turiyam Neutrosophic Set is actually a particular case
of the Quadruple Neutrosophic Set, by replacing ”Contradiction” with ”Liberal” [55]. For more details, please
refer to the survey notes [26, 27, 30].

Definition 4. (cf.[53]) A crisp graph is an ordered pair 𝐺 = (𝑉 , 𝐸), where:

• 𝑉 is a finite, non-empty set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges, where each edge is an unordered pair of distinct vertices.
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Formally, for any edge (𝑢, 𝑣) ∈ 𝐸, the following holds:

(𝑢, 𝑣) ∈ 𝐸 ⟺ 𝑢 ≠ 𝑣 and 𝑢, 𝑣 ∈ 𝑉
This implies that there are no loops (i.e., no edges of the form (𝑣, 𝑣)) and edges represent binary relationships
between distinct vertices.

Definition 5 (Unified Uncertain Graphs Framework). (cf.[26]) Let 𝐺 = (𝑉 , 𝐸) be a classical graph with a
set of vertices 𝑉 and a set of edges 𝐸. Depending on the type of graph, each vertex 𝑣 ∈ 𝑉 and edge 𝑒 ∈ 𝐸
is assigned membership values to represent various degrees of truth, indeterminacy, falsity, and other nuanced
measures of uncertainty.

(1) Fuzzy Graph [53]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a membership degree 𝜎(𝑣) ∈ [0, 1], representing the degree of
participation of 𝑣 in the fuzzy graph.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a membership degree 𝜇(𝑢, 𝑣) ∈ [0, 1], representing the strength
of the connection between 𝑢 and 𝑣.

(2) Intuitionistic Fuzzy Graph (IFG) [4]:

• Each vertex 𝑣 ∈ 𝑉 is assigned two values: 𝜇𝐴(𝑣) ∈ [0, 1] (degree of membership) and 𝑣𝐴(𝑣) ∈ [0, 1]
(degree of non-membership), such that 𝜇𝐴(𝑣) + 𝑣𝐴(𝑣) ≤ 1.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned two values: 𝜇𝐵(𝑢, 𝑣) ∈ [0, 1] (degree of membership) and
𝑣𝐵(𝑢, 𝑣) ∈ [0, 1] (degree of non-membership), such that 𝜇𝐵(𝑢, 𝑣) + 𝑣𝐵(𝑢, 𝑣) ≤ 1.

(3) Neutrosophic Graph [42, 9, 54, 39]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a triple 𝜎(𝑣) = (𝜎𝑇 (𝑣), 𝜎𝐼(𝑣), 𝜎𝐹 (𝑣)), where:

– 𝜎𝑇 (𝑣) ∈ [0, 1] is the truth-membership degree,

– 𝜎𝐼(𝑣) ∈ [0, 1] is the indeterminacy-membership degree,

– 𝜎𝐹 (𝑣) ∈ [0, 1] is the falsity-membership degree,

– 𝜎𝑇 (𝑣) + 𝜎𝐼(𝑣) + 𝜎𝐹 (𝑣) ≤ 3.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a triple 𝜇(𝑒) = (𝜇𝑇 (𝑒), 𝜇𝐼(𝑒), 𝜇𝐹 (𝑒)), representing the truth,
indeterminacy, and falsity degrees for the connection between 𝑢 and 𝑣.

(4) Turiyam Neutrosophic Graph [36]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a quadruple 𝜎(𝑣) = (𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣)), where:

– 𝑡(𝑣) ∈ [0, 1] is the truth value,

– 𝑖𝑣(𝑣) ∈ [0, 1] is the indeterminacy value,

– 𝑓𝑣(𝑣) ∈ [0, 1] is the falsity value,

– 𝑙𝑣(𝑣) ∈ [0, 1] is the liberal state value,

– 𝑡(𝑣) + 𝑖𝑣(𝑣) + 𝑓𝑣(𝑣) + 𝑙𝑣(𝑣) ≤ 4.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is similarly assigned a quadruple representing the same parameters for
the connection between 𝑢 and 𝑣.

(5) Vague Graph [6]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a pair (𝜏(𝑣), 𝜙(𝑣)), where 𝜏(𝑣) ∈ [0, 1] is the degree of truth-
membership and 𝜙(𝑣) ∈ [0, 1] is the degree of false-membership, with 𝜏(𝑣) + 𝜙(𝑣) ≤ 1.

• The grade of membership is characterized by the interval [𝜏(𝑣), 1 − 𝜙(𝑣)].
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• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a pair (𝜏(𝑒), 𝜙(𝑒)), satisfying:
𝜏(𝑒) ≤ min{𝜏(𝑢), 𝜏(𝑣)}, 𝜙(𝑒) ≥ max{𝜙(𝑢), 𝜙(𝑣)}.

(6) Hesitant Fuzzy Graph [70]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a hesitant fuzzy set 𝜎(𝑣), represented by a finite subset of [0, 1],
denoted 𝜎(𝑣) ⊆ [0, 1].

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a hesitant fuzzy set 𝜇(𝑒) ⊆ [0, 1].
• Operations on hesitant fuzzy sets (e.g., intersection, union) are defined to handle the hesitation in

membership degrees.

(7) Single-Valued Pentapartitioned Neutrosophic Graph [21, 40]:

• Each vertex 𝑣 ∈ 𝑉 is assigned a quintuple 𝜎(𝑣) = (𝑇 (𝑣), 𝐶(𝑣), 𝑅(𝑣), 𝑈(𝑣), 𝐹 (𝑣)), where:

– 𝑇 (𝑣) ∈ [0, 1] is the truth-membership degree.

– 𝐶(𝑣) ∈ [0, 1] is the contradiction-membership degree.

– 𝑅(𝑣) ∈ [0, 1] is the ignorance-membership degree.

– 𝑈(𝑣) ∈ [0, 1] is the unknown-membership degree.

– 𝐹(𝑣) ∈ [0, 1] is the false-membership degree.

– 𝑇 (𝑣) + 𝐶(𝑣) + 𝑅(𝑣) + 𝑈(𝑣) + 𝐹(𝑣) ≤ 5.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned a quintuple 𝜇(𝑒) = (𝑇 (𝑒), 𝐶(𝑒), 𝑅(𝑒), 𝑈(𝑒), 𝐹 (𝑒)), satisfying:

⎧{{{
⎨{{{⎩

𝑇 (𝑒) ≤ min{𝑇 (𝑢), 𝑇 (𝑣)},
𝐶(𝑒) ≤ min{𝐶(𝑢), 𝐶(𝑣)},
𝑅(𝑒) ≥ max{𝑅(𝑢), 𝑅(𝑣)},
𝑈(𝑒) ≥ max{𝑈(𝑢), 𝑈(𝑣)},
𝐹(𝑒) ≥ max{𝐹(𝑢), 𝐹(𝑣)}.

2.3 | Plithogenic Graphs
Plithogenic Graphs have been introduced as an extension of Fuzzy Graphs and Turiyam Neutrosophic Graphs,
broadening the concept to encompass Plithogenic Sets [58]. These graphs have become a prominent subject of
ongoing research and development [65, 43, 26]. The formal definition is provided below.

Definition 6. [65] Let 𝐺 = (𝑉 , 𝐸) be a crisp graph where 𝑉 is the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is the set of
edges. A Plithogenic Graph 𝑃𝐺 is defined as:

𝑃𝐺 = (𝑃𝑀, 𝑃𝑁)

where:

(1) Plithogenic Vertex Set 𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓):
• 𝑀 ⊆ 𝑉 is the set of vertices.

• 𝑙 is an attribute associated with the vertices.

• 𝑀𝑙 is the range of possible attribute values.

• 𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for vertices.

• 𝑎𝐶𝑓 ∶ 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) for vertices.

(2) Plithogenic Edge Set 𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓):
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• 𝑁 ⊆ 𝐸 is the set of edges.

• 𝑚 is an attribute associated with the edges.

• 𝑁𝑚 is the range of possible attribute values.

• 𝑏𝑑𝑓 ∶ 𝑁 × 𝑁𝑚 → [0, 1]𝑠 is the Degree of Appurtenance Function (DAF) for edges.

• 𝑏𝐶𝑓 ∶ 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡 is the Degree of Contradiction Function (DCF) for edges.

The Plithogenic Graph 𝑃𝐺 must satisfy the following conditions:

(1) Edge Appurtenance Constraint: For all (𝑥, 𝑎), (𝑦, 𝑏) ∈ 𝑀 × 𝑀𝑙:
𝑏𝑑𝑓 ((𝑥𝑦), (𝑎, 𝑏)) ≤ min{𝑎𝑑𝑓(𝑥, 𝑎), 𝑎𝑑𝑓(𝑦, 𝑏)}

where 𝑥𝑦 ∈ 𝑁 is an edge between vertices 𝑥 and 𝑦, and (𝑎, 𝑏) ∈ 𝑁𝑚 × 𝑁𝑚 are the corresponding
attribute values.

(2) Contradiction Function Constraint: For all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑁𝑚 × 𝑁𝑚:

𝑏𝐶𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) ≤ min{𝑎𝐶𝑓(𝑎, 𝑐), 𝑎𝐶𝑓(𝑏, 𝑑)}

(3) Reflexivity and Symmetry of Contradiction Functions:

𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

Example 7. (cf.[30]) The following examples are provided.

• When 𝑠 = 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Fuzzy Graph.

• When 𝑠 = 2, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Intuitionistic Fuzzy Graph.

• When 𝑠 = 3, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic Neutrosophic Graph.

• When 𝑠 = 4, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic quadripartitioned Neutrosophic Graph.

• When 𝑠 = 5, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic pentapartitioned Neutrosophic Graph.

• When 𝑠 = 6, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic hexapartitioned Neutrosophic Graph.

• When 𝑠 = 7, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic heptapartitioned Neutrosophic Graph.

• When 𝑠 = 8, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic octapartitioned Neutrosophic Graph.

• When 𝑠 = 9, 𝑡 = 1, 𝑃𝐺 is called a Plithogenic nonapartitioned Neutrosophic Graph.

2.4 | Pythagorean Graph
A Pythagorean Fuzzy Graph (PFG) is an extension of the traditional graph concept that incorporates the degrees
of membership and non-membership based on Pythagorean fuzzy sets [8, 7, 66].

Definition 8. [8, 7, 66] A Pythagorean Fuzzy Graph is defined as a pair 𝐺∗∗ = (𝑃 , 𝑄), where:

• 𝑉 is a non-empty set of vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

• 𝑃 = (𝜈𝑃 , 𝜉𝑃 ) is a Pythagorean fuzzy set on 𝑉 , such that for each vertex 𝑢 ∈ 𝑉 :

0 ≤ 𝜈𝑃 (𝑢)2 + 𝜉𝑃 (𝑢)2 ≤ 1,
where 𝜈𝑃 (𝑢) and 𝜉𝑃 (𝑢) denote the membership and non-membership degrees of the vertex 𝑢, respectively.
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• 𝑄 = (𝜈𝑄, 𝜉𝑄) is a Pythagorean fuzzy set on 𝐸, such that for each edge (𝑢, 𝑣) ∈ 𝐸:

0 ≤ 𝜈𝑄(𝑢, 𝑣)2 + 𝜉𝑄(𝑢, 𝑣)2 ≤ 1,
where 𝜈𝑄(𝑢, 𝑣) and 𝜉𝑄(𝑢, 𝑣) denote the membership and non-membership degrees of the edge (𝑢, 𝑣),
respectively.

Additionally, the following conditions hold:

(1) For any vertices 𝑢, 𝑣 ∈ 𝑉 , if (𝑢, 𝑣) ∈ 𝐸:
𝜈𝑄(𝑢, 𝑣) ≤ min(𝜈𝑃 (𝑢), 𝜈𝑃 (𝑣)),
𝜉𝑄(𝑢, 𝑣) ≥ max(𝜉𝑃 (𝑢), 𝜉𝑃 (𝑣)).

(2) If 𝜈𝑄(𝑢, 𝑣) = 0 and 𝜉𝑄(𝑢, 𝑣) = 0, then no edge exists between 𝑢 and 𝑣.

(3) An edge exists between 𝑢 and 𝑣 if any of the following holds:

• 𝜈𝑄(𝑢, 𝑣) = 0 and 𝜉𝑄(𝑢, 𝑣) > 0,

• 𝜈𝑄(𝑢, 𝑣) > 0 and 𝜉𝑄(𝑢, 𝑣) = 0,

• 𝜈𝑄(𝑢, 𝑣) > 0 and 𝜉𝑄(𝑢, 𝑣) > 0.

Example 9 (Pythagorean Fuzzy Graph: Livestock Transportation Network). Consider a transportation net-
work for livestock where the vertices represent key locations (e.g., a farm, a market, and a processing plant)
and the edges represent the transportation routes between them.

Let the set of vertices be:
𝑉 = {Farm A, Market B, Processing Plant C}.

Assign the following Pythagorean fuzzy membership and non-membership degrees to the vertices:
𝜈𝑃 (Farm A) = 0.8, 𝜉𝑃 (Farm A) = 0.3,

𝜈𝑃 (Market B) = 0.7, 𝜉𝑃 (Market B) = 0.5,
𝜈𝑃 (Processing Plant C) = 0.9, 𝜉𝑃 (Processing Plant C) = 0.2.

These values satisfy
0 ≤ 𝜈𝑃 (𝑢)2 + 𝜉𝑃 (𝑢)2 ≤ 1, ∀𝑢 ∈ 𝑉 .

Now, let the set of edges be
𝐸 = {(Farm A, Market B), (Market B, Processing Plant C), (Farm A, Processing Plant C)}.

For each edge (𝑢, 𝑣) ∈ 𝐸, assign the following Pythagorean fuzzy values:
𝜈𝑄(Farm A, Market B) = 0.7, 𝜉𝑄(Farm A, Market B) = 0.5,

𝜈𝑄(Market B, Processing Plant C) = 0.6, 𝜉𝑄(Market B, Processing Plant C) = 0.5,
𝜈𝑄(Farm A, Processing Plant C) = 0.6, 𝜉𝑄(Farm A, Processing Plant C) = 0.3.

These assignments are chosen so that for each edge (𝑢, 𝑣):
𝜈𝑄(𝑢, 𝑣) ≤ min(𝜈𝑃 (𝑢), 𝜈𝑃 (𝑣)) and 𝜉𝑄(𝑢, 𝑣) ≥ max(𝜉𝑃 (𝑢), 𝜉𝑃 (𝑣)).

Thus, the structure 𝐺∗∗ = (𝑃 , 𝑄) forms a valid Pythagorean Fuzzy Graph that models the efficiency and
reliability of transportation routes in a livestock network.

A Pythagorean Neutrosophic Graph (PNG) is an extension of classical graph theory that combines the princi-
ples of Pythagorean fuzzy sets and neutrosophic sets, enabling more comprehensive modeling of uncertainty,
indeterminacy, and truth [19, 38, 2].

Definition 10. (cf.[16]) A Pythagorean Neutrosophic Graph is defined as a pair 𝐺 = (𝑉 , 𝐸), where:

• 𝑉 is a set of vertices, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}.

• Each vertex 𝑣𝑖 ∈ 𝑉 is associated with three functions:
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– Membership function 𝜇1(𝑣𝑖),
– Indeterminacy function 𝛽1(𝑣𝑖),
– Non-membership function 𝜎1(𝑣𝑖),

such that:
0 ≤ 𝜇1(𝑣𝑖)2 + 𝛽1(𝑣𝑖)2 + 𝜎1(𝑣𝑖)2 ≤ 2, ∀𝑣𝑖 ∈ 𝑉 .

• 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges, where each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 is associated with three functions:

– Edge membership function 𝜇2(𝑣𝑖, 𝑣𝑗),
– Edge indeterminacy function 𝛽2(𝑣𝑖, 𝑣𝑗),
– Edge non-membership function 𝜎2(𝑣𝑖, 𝑣𝑗),

such that:
0 ≤ 𝜇2(𝑣𝑖, 𝑣𝑗)2 + 𝛽2(𝑣𝑖, 𝑣𝑗)2 + 𝜎2(𝑣𝑖, 𝑣𝑗)2 ≤ 2, ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐸.

Additionally, the following conditions hold:

(1) For any vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 , if (𝑣𝑖, 𝑣𝑗) ∈ 𝐸:
𝜇2(𝑣𝑖, 𝑣𝑗) ≤ min(𝜇1(𝑣𝑖), 𝜇1(𝑣𝑗)),
𝛽2(𝑣𝑖, 𝑣𝑗) ≤ min(𝛽1(𝑣𝑖), 𝛽1(𝑣𝑗)),
𝜎2(𝑣𝑖, 𝑣𝑗) ≥ max(𝜎1(𝑣𝑖), 𝜎1(𝑣𝑗)).

(2) If 𝜇2(𝑣𝑖, 𝑣𝑗) = 0, 𝛽2(𝑣𝑖, 𝑣𝑗) = 0, and 𝜎2(𝑣𝑖, 𝑣𝑗) = 0, then no edge exists between 𝑣𝑖 and 𝑣𝑗.

Example 11 (Pythagorean Neutrosophic Graph: Livestock Disease Transmission Network). Consider a network
that models the potential transmission of disease among livestock farms (cf.[20]). In this network, each vertex
represents a farm and is characterized by three functions: membership (indicating the likelihood of infection),
indeterminacy (reflecting uncertainty), and non-membership (indicating the likelihood of not being infected).

Let the set of vertices be:
𝑉 = {Farm X, Farm Y, Farm Z}.

Assign the following values to each vertex:
𝜇1(Farm X) = 0.7, 𝛽1(Farm X) = 0.5, 𝜎1(Farm X) = 0.6,
𝜇1(Farm Y) = 0.6, 𝛽1(Farm Y) = 0.4, 𝜎1(Farm Y) = 0.7,
𝜇1(Farm Z) = 0.8, 𝛽1(Farm Z) = 0.3, 𝜎1(Farm Z) = 0.4.

These values satisfy:
0 ≤ 𝜇1(𝑣)2 + 𝛽1(𝑣)2 + 𝜎1(𝑣)2 ≤ 2, ∀𝑣 ∈ 𝑉 .

Let the edge set be:
𝐸 = {(Farm X, Farm Y), (Farm X, Farm Z), (Farm Y, Farm Z)}.

For each edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸, assign:

𝜇2(Farm X, Farm Y) = 0.6, 𝛽2(Farm X, Farm Y) = 0.4, 𝜎2(Farm X, Farm Y) = 0.7,
𝜇2(Farm X, Farm Z) = 0.7, 𝛽2(Farm X, Farm Z) = 0.3, 𝜎2(Farm X, Farm Z) = 0.6,
𝜇2(Farm Y, Farm Z) = 0.5, 𝛽2(Farm Y, Farm Z) = 0.3, 𝜎2(Farm Y, Farm Z) = 0.7.

These edge values are chosen to satisfy:
𝜇2(𝑣𝑖, 𝑣𝑗) ≤ min(𝜇1(𝑣𝑖), 𝜇1(𝑣𝑗)), 𝛽2(𝑣𝑖, 𝑣𝑗) ≤ min(𝛽1(𝑣𝑖), 𝛽1(𝑣𝑗)),

and
𝜎2(𝑣𝑖, 𝑣𝑗) ≥ max(𝜎1(𝑣𝑖), 𝜎1(𝑣𝑗)).

Thus, the graph 𝐺 = (𝑉 , 𝐸) forms a valid Pythagorean Neutrosophic Graph, providing a comprehensive model
of uncertainty, indeterminacy, and infection risk in the context of disease transmission among livestock farms.
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2.5 | Fermatean Neutrosophic Graph
A Fermatean Neutrosophic Graph (FNG) is an extension of the Fermatean neutrosophic set, incorporating the
Fermatean degrees of truth, indeterminacy, and falsity into a graphical framework [52, 14, 46].

Definition 12. [15] Let 𝑋 be a universe of discourse. A Fermatean Neutrosophic Set 𝑆 on 𝑋 is defined as:

𝑆 = {(𝑥, 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)) ∣ 𝑥 ∈ 𝑋} ,

where:

• 𝑇𝑆(𝑥) is the truth-membership degree,

• 𝐼𝑆(𝑥) is the indeterminacy-membership degree,

• 𝐹𝑆(𝑥) is the falsity-membership degree,

and these degrees satisfy:
[𝑇𝑆(𝑥)]3 + [𝐼𝑆(𝑥)]3 + [𝐹𝑆(𝑥)]3 ≤ 2, ∀𝑥 ∈ 𝑋.

Definition 13. A Fermatean Neutrosophic Graph is defined as a pair 𝐺 = (𝑃 , 𝑄), where:

• 𝑃 is a Fermatean Neutrosophic Set defined on the set of vertices 𝑉 ,

• 𝑄 is a Fermatean Neutrosophic Set defined on the set of edges 𝐸 ⊆ 𝑉 × 𝑉 .

For each vertex 𝑢 ∈ 𝑉 , we have:
[𝑇𝑃 (𝑢)]3 + [𝐼𝑃 (𝑢)]3 + [𝐹𝑃 (𝑢)]3 ≤ 2, ∀𝑢 ∈ 𝑉 .

For each edge (𝑢, 𝑣) ∈ 𝐸, we have:
[𝑇𝑄(𝑢, 𝑣)]3 + [𝐼𝑄(𝑢, 𝑣)]3 + [𝐹𝑄(𝑢, 𝑣)]3 ≤ 2, ∀(𝑢, 𝑣) ∈ 𝐸.

The relationship between vertex and edge degrees is given by:
𝑇𝑄(𝑢, 𝑣) ≤ min{𝑇𝑃 (𝑢), 𝑇𝑃 (𝑣)},
𝐼𝑄(𝑢, 𝑣) ≤ min{𝐼𝑃 (𝑢), 𝐼𝑃 (𝑣)},
𝐹𝑄(𝑢, 𝑣) ≥ max{𝐹𝑃 (𝑢), 𝐹𝑃 (𝑣)}.

If 𝑇𝑄(𝑢, 𝑣) = 𝐼𝑄(𝑢, 𝑣) = 𝐹𝑄(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

2.6 | Complex Neutrosophic Graph
A Complex Neutrosophic Graph (CNG) incorporates complex-valued degrees for truth, indeterminacy, and
falsity, providing a richer representation of uncertainty in a graphical context [71, 11, 18].

Definition 14. [71] Let 𝑋 be a universe of discourse. A Complex Neutrosophic Set 𝑆 on 𝑋 is defined as:

𝑆 = {(𝑥, 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)) ∣ 𝑥 ∈ 𝑋} ,

where:

• 𝑇𝑆(𝑥) = 𝑟𝑆(𝑥) 𝑒𝑖𝜔𝑆(𝑥), representing the complex truth-membership,

• 𝐼𝑆(𝑥) = 𝑡𝑆(𝑥) 𝑒𝑖𝜃𝑆(𝑥), representing the complex indeterminacy-membership,

• 𝐹𝑆(𝑥) = 𝑘𝑆(𝑥) 𝑒𝑖𝜌𝑆(𝑥), representing the complex falsity-membership.

These degrees satisfy:
[𝑟𝑆(𝑥)]2 + [𝑡𝑆(𝑥)]2 + [𝑘𝑆(𝑥)]2 ≤ 3, ∀𝑥 ∈ 𝑋,

where 𝑟𝑆(𝑥), 𝑡𝑆(𝑥), 𝑘𝑆(𝑥) ∈ [0, 1] and 𝜔𝑆(𝑥), 𝜃𝑆(𝑥), 𝜌𝑆(𝑥) ∈ [0, 2𝜋].
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Definition 15. A Complex Neutrosophic Graph is defined as a pair 𝐺 = (𝑃 , 𝑄), where:

• 𝑃 is a Complex Neutrosophic Set defined on the set of vertices 𝑉 ,

• 𝑄 is a Complex Neutrosophic Set defined on the set of edges 𝐸 ⊆ 𝑉 × 𝑉 .

For each vertex 𝑢 ∈ 𝑉 , we have:
[𝑟𝑃 (𝑢)]2 + [𝑡𝑃 (𝑢)]2 + [𝑘𝑃 (𝑢)]2 ≤ 3, ∀𝑢 ∈ 𝑉 .

For each edge (𝑢, 𝑣) ∈ 𝐸, we have:
[𝑟𝑄(𝑢, 𝑣)]2 + [𝑡𝑄(𝑢, 𝑣)]2 + [𝑘𝑄(𝑢, 𝑣)]2 ≤ 3, ∀(𝑢, 𝑣) ∈ 𝐸.

The relationship between vertex and edge degrees is given by:
𝑟𝑄(𝑢, 𝑣) ≤ min{𝑟𝑃 (𝑢), 𝑟𝑃 (𝑣)},
𝑡𝑄(𝑢, 𝑣) ≤ min{𝑡𝑃 (𝑢), 𝑡𝑃 (𝑣)},
𝑘𝑄(𝑢, 𝑣) ≥ max{𝑘𝑃 (𝑢), 𝑘𝑃 (𝑣)}.

If 𝑟𝑄(𝑢, 𝑣) = 𝑡𝑄(𝑢, 𝑣) = 𝑘𝑄(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

3 | Result in this paper
In this section, we present the results of this paper.

3.1 | Pythagorean Turiyam Neutrosophic Graph
A Pythagorean Turiyam Neutrosophic Graph is an extension of the Turiyam Neutrosophic graph concept, in-
corporating Pythagorean fuzzy sets to handle uncertainty with four components: truth, indeterminacy, falsity,
and liberal state degrees.

Definition 16. A Pythagorean Turiyam Neutrosophic Graph is a graph 𝐺 = (𝑉 , 𝐸) where:

• 𝑉 is a non-empty set of vertices,

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

Each vertex 𝑣 ∈ 𝑉 is assigned four membership degrees:

• 𝑡(𝑣) ∈ [0, 1] is the truth-membership degree,

• 𝑖𝑣(𝑣) ∈ [0, 1] is the indeterminacy-membership degree,

• 𝑓𝑣(𝑣) ∈ [0, 1] is the falsity-membership degree,

• 𝑙𝑣(𝑣) ∈ [0, 1] is the liberal state membership degree.

These degrees satisfy:
[𝑡(𝑣)]2 + [𝑖𝑣(𝑣)]2 + [𝑓𝑣(𝑣)]2 + [𝑙𝑣(𝑣)]2 ≤ 3, ∀𝑣 ∈ 𝑉 .

Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned four membership degrees:

• 𝑡(𝑢, 𝑣) ∈ [0, 1] is the truth-membership degree of the edge,

• 𝑖𝑣(𝑢, 𝑣) ∈ [0, 1] is the indeterminacy-membership degree of the edge,

• 𝑓𝑣(𝑢, 𝑣) ∈ [0, 1] is the falsity-membership degree of the edge,

• 𝑙𝑣(𝑢, 𝑣) ∈ [0, 1] is the liberal state membership degree of the edge.

These degrees satisfy:
[𝑡(𝑢, 𝑣)]2 + [𝑖𝑣(𝑢, 𝑣)]2 + [𝑓𝑣(𝑢, 𝑣)]2 + [𝑙𝑣(𝑢, 𝑣)]2 ≤ 3, ∀(𝑢, 𝑣) ∈ 𝐸.

Additionally, the following conditions hold:
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(1) For any edge (𝑢, 𝑣) ∈ 𝐸:
𝑡(𝑢, 𝑣) ≤ min {𝑡(𝑢), 𝑡(𝑣)} ,

𝑖𝑣(𝑢, 𝑣) ≤ min {𝑖𝑣(𝑢), 𝑖𝑣(𝑣)} ,
𝑓𝑣(𝑢, 𝑣) ≥ max {𝑓𝑣(𝑢), 𝑓𝑣(𝑣)} ,
𝑙𝑣(𝑢, 𝑣) ≤ min {𝑙𝑣(𝑢), 𝑙𝑣(𝑣)} .

(2) If 𝑡(𝑢, 𝑣) = 𝑖𝑣(𝑢, 𝑣) = 𝑓𝑣(𝑢, 𝑣) = 𝑙𝑣(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

Theorem 17. A Pythagorean Turiyam Neutrosophic Graph is Turiyam Neutrosophic Graph.

Proof : Obviously holds. □

Theorem 18. Any Pythagorean Turiyam Neutrosophic Graph can be transformed into a Pythagorean Neutro-
sophic Graph by setting the liberal state degree to zero and appropriately scaling the degrees.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Pythagorean Turiyam Neutrosophic Graph. For each vertex 𝑣 ∈ 𝑉 , define:

𝜇(𝑣) = 𝑡(𝑣)
√ 3

2

, 𝛽(𝑣) = 𝑖𝑣(𝑣)
√ 3

2

, 𝜎(𝑣) = 𝑓𝑣(𝑣)
√ 3

2

.

Then,

[𝜇(𝑣)]2 + [𝛽(𝑣)]2 + [𝜎(𝑣)]2 = [𝑡(𝑣)]2 + [𝑖𝑣(𝑣)]2 + [𝑓𝑣(𝑣)]2
3
2

≤ 2.

Similarly, for each edge (𝑢, 𝑣) ∈ 𝐸, define:

𝜇(𝑢, 𝑣) = 𝑡(𝑢, 𝑣)
√ 3

2

, 𝛽(𝑢, 𝑣) = 𝑖𝑣(𝑢, 𝑣)
√ 3

2

, 𝜎(𝑢, 𝑣) = 𝑓𝑣(𝑢, 𝑣)
√ 3

2

.

Thus, 𝐺 becomes a Pythagorean Neutrosophic Graph. □

Theorem 19. Any Pythagorean Turiyam Neutrosophic Graph can be transformed into a Pythagorean Fuzzy
Graph by setting 𝑖𝑣(𝑣) = 𝑓𝑣(𝑣) = 𝑙𝑣(𝑣) = 0 for all 𝑣 ∈ 𝑉 and scaling the truth degrees.

Proof : Set 𝑖𝑣(𝑣) = 𝑓𝑣(𝑣) = 𝑙𝑣(𝑣) = 0. Then,
[𝑡(𝑣)]2 ≤ 3 ⟹ 𝑡(𝑣) ≤

√
3.

Define 𝜈(𝑣) = 𝑡(𝑣)√
3 , so [𝜈(𝑣)]2 ≤ 1. Similarly for edges, resulting in a Pythagorean Fuzzy Graph. □

Theorem 20. Any subgraph of a Pythagorean Turiyam Neutrosophic Graph is also a Pythagorean Turiyam
Neutrosophic Graph.

Proof : Let 𝐻 = (𝑉 ′, 𝐸′) be a subgraph of 𝐺 = (𝑉 , 𝐸), where 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. The membership
degrees in 𝐻 are inherited from 𝐺 and satisfy the required conditions. Therefore, 𝐻 is a Pythagorean Turiyam
Neutrosophic Graph. □

Theorem 21. An edge (𝑢, 𝑣) exists in a Pythagorean Turiyam Neutrosophic Graph if and only if at least one
of the degrees 𝑡(𝑢, 𝑣), 𝑖𝑣(𝑢, 𝑣), 𝑓𝑣(𝑢, 𝑣), 𝑙𝑣(𝑢, 𝑣) is greater than zero.

Proof : By the definition, if all degrees are zero, (𝑢, 𝑣) ∉ 𝐸. Conversely, if any degree is positive, (𝑢, 𝑣) ∈ 𝐸. □

Theorem 22. In an undirected Pythagorean Turiyam Neutrosophic Graph, the edge degrees are symmetric:
𝑡(𝑢, 𝑣) = 𝑡(𝑣, 𝑢), 𝑖𝑣(𝑢, 𝑣) = 𝑖𝑣(𝑣, 𝑢), 𝑓𝑣(𝑢, 𝑣) = 𝑓𝑣(𝑣, 𝑢), 𝑙𝑣(𝑢, 𝑣) = 𝑙𝑣(𝑣, 𝑢).

Proof : Since the graph is undirected, edges are unordered pairs, so the degrees are equal in both directions. □
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Theorem 23. For any vertex 𝑣:
0 ≤ 𝑡(𝑣), 𝑖𝑣(𝑣), 𝑓𝑣(𝑣), 𝑙𝑣(𝑣) ≤ 1, [𝑡(𝑣)]2 + [𝑖𝑣(𝑣)]2 + [𝑓𝑣(𝑣)]2 + [𝑙𝑣(𝑣)]2 ≤ 3.

Proof : Directly follows from the definition of Pythagorean Turiyam Neutrosophic Graph. □

Theorem 24. Under appropriate conditions, the union of two Pythagorean Turiyam Neutrosophic Graphs is a
Pythagorean Turiyam Neutrosophic Graph.

Proof : Define the union graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = 𝑉1 ∪ 𝑉2 and 𝐸 = 𝐸1 ∪ 𝐸2. Assign degrees using the
minimum of degrees from 𝐺1 and 𝐺2 to satisfy the Pythagorean condition. □

Theorem 25. The Cartesian product of two Pythagorean Turiyam Neutrosophic Graphs is a Pythagorean
Turiyam Neutrosophic Graph.

Proof : Define the vertex set as 𝑉 = 𝑉1 × 𝑉2. For each vertex (𝑢, 𝑣), define degrees:
𝑡(𝑢, 𝑣) = 𝑡1(𝑢) ⋅ 𝑡2(𝑣), 𝑖𝑣(𝑢, 𝑣) = 𝑖𝑣1(𝑢) ⋅ 𝑖𝑣2(𝑣), 𝑓𝑣(𝑢, 𝑣) = 𝑓𝑣1(𝑢) ⋅ 𝑓𝑣2(𝑣), 𝑙𝑣(𝑢, 𝑣) = 𝑙𝑣1(𝑢) ⋅ 𝑙𝑣2(𝑣).

These degrees satisfy the Pythagorean condition due to the properties of products of numbers in [0, 1]. □

Theorem 26. In a Pythagorean Turiyam Neutrosophic Graph, the sum of the truth degrees of all vertices is
greater than or equal to the sum of the truth degrees of all edges.

Proof : Since 𝑡(𝑢, 𝑣) ≤ min{𝑡(𝑢), 𝑡(𝑣)} ≤ 𝑡(𝑢) and 𝑡(𝑢, 𝑣) ≤ 𝑡(𝑣), summing over all edges and vertices gives the
inequality. □

Theorem 27. For any edge (𝑢, 𝑣):
𝑓𝑣(𝑢, 𝑣) ≥ max {𝑓𝑣(𝑢), 𝑓𝑣(𝑣)} .

Proof : Given by the edge membership constraint in the definition. □

Theorem 28. For any edge (𝑢, 𝑣):
𝑡(𝑢, 𝑣) ≤ min {𝑡(𝑢), 𝑡(𝑣)} .

Proof : Given by the edge membership constraint in the definition. □

3.2 | Fermatean Turiyam Neutrosophic Graph
A Fermatean Turiyam Neutrosophic Graph is an extension of the Fermatean Neutrosophic Graph that incor-
porates an additional component called the liberal state degree, allowing for a more nuanced representation of
uncertainty with four components: truth, indeterminacy, falsity, and liberal state.

Definition 29. Let 𝑋 be a universe of discourse. A Fermatean Turiyam Neutrosophic Set 𝐴 on 𝑋 is defined
as:

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), 𝐿𝐴(𝑥)) ∣ 𝑥 ∈ 𝑋} ,

where:

• 𝑇𝐴(𝑥) ∈ [0, 1] is the truth-membership degree,

• 𝐼𝐴(𝑥) ∈ [0, 1] is the indeterminacy-membership degree,

• 𝐹𝐴(𝑥) ∈ [0, 1] is the falsity-membership degree,

• 𝐿𝐴(𝑥) ∈ [0, 1] is the liberal state membership degree.

These degrees satisfy:
[𝑇𝐴(𝑥)]3 + [𝐼𝐴(𝑥)]3 + [𝐹𝐴(𝑥)]3 + [𝐿𝐴(𝑥)]3 ≤ 3, ∀𝑥 ∈ 𝑋.
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Definition 30. A Fermatean Turiyam Neutrosophic Graph is a graph 𝐺 = (𝑉 , 𝐸) where:

• 𝑉 is a non-empty set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

Each vertex 𝑣 ∈ 𝑉 is assigned four membership degrees:

• 𝑇 (𝑣) ∈ [0, 1] is the truth-membership degree,

• 𝐼(𝑣) ∈ [0, 1] is the indeterminacy-membership degree,

• 𝐹(𝑣) ∈ [0, 1] is the falsity-membership degree,

• 𝐿(𝑣) ∈ [0, 1] is the liberal state membership degree.

These degrees satisfy:
[𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3 + [𝐿(𝑣)]3 ≤ 3, ∀𝑣 ∈ 𝑉 .

Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is assigned four membership degrees:

• 𝑇 (𝑢, 𝑣) ∈ [0, 1] is the truth-membership degree of the edge,

• 𝐼(𝑢, 𝑣) ∈ [0, 1] is the indeterminacy-membership degree of the edge,

• 𝐹(𝑢, 𝑣) ∈ [0, 1] is the falsity-membership degree of the edge,

• 𝐿(𝑢, 𝑣) ∈ [0, 1] is the liberal state membership degree of the edge.

These degrees satisfy:
[𝑇 (𝑢, 𝑣)]3 + [𝐼(𝑢, 𝑣)]3 + [𝐹(𝑢, 𝑣)]3 + [𝐿(𝑢, 𝑣)]3 ≤ 3, ∀(𝑢, 𝑣) ∈ 𝐸.

Additionally, the following conditions hold for any edge (𝑢, 𝑣) ∈ 𝐸:
𝑇 (𝑢, 𝑣) ≤ min {𝑇 (𝑢), 𝑇 (𝑣)} ,
𝐼(𝑢, 𝑣) ≤ min {𝐼(𝑢), 𝐼(𝑣)} ,
𝐹(𝑢, 𝑣) ≥ max {𝐹(𝑢), 𝐹(𝑣)} ,
𝐿(𝑢, 𝑣) ≤ min {𝐿(𝑢), 𝐿(𝑣)} .

If 𝑇 (𝑢, 𝑣) = 𝐼(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) = 𝐿(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

Theorem 31. Any Fermatean Turiyam Neutrosophic Graph can be transformed into a Fermatean Neutrosophic
Graph by setting the liberal state degree to zero and appropriately scaling the degrees.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Fermatean Turiyam Neutrosophic Graph. For each vertex 𝑣 ∈ 𝑉 , define:

𝑇 ′(𝑣) = 𝑇 (𝑣)
3√ 3

2

, 𝐼 ′(𝑣) = 𝐼(𝑣)
3√ 3

2

, 𝐹 ′(𝑣) = 𝐹(𝑣)
3√ 3

2

.

Then,

[𝑇 ′(𝑣)]3 + [𝐼′(𝑣)]3 + [𝐹 ′(𝑣)]3 = [𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3
3
2

≤ 2.

Similarly, for each edge (𝑢, 𝑣) ∈ 𝐸, define:

𝑇 ′(𝑢, 𝑣) = 𝑇 (𝑢, 𝑣)
3√ 3

2

, 𝐼 ′(𝑢, 𝑣) = 𝐼(𝑢, 𝑣)
3√ 3

2

, 𝐹 ′(𝑢, 𝑣) = 𝐹(𝑢, 𝑣)
3√ 3

2

.

Thus, 𝐺′ = (𝑉 , 𝐸) with these new degrees is a Fermatean Neutrosophic Graph. □

Theorem 32. Any subgraph of a Fermatean Turiyam Neutrosophic Graph is also a Fermatean Turiyam Neu-
trosophic Graph.
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Proof : Let 𝐺 = (𝑉 , 𝐸) be a Fermatean Turiyam Neutrosophic Graph, and let 𝐻 = (𝑉 ′, 𝐸′) be a subgraph of
𝐺, where 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸.

For each vertex 𝑣 ∈ 𝑉 ′, the membership degrees 𝑇 (𝑣), 𝐼(𝑣), 𝐹 (𝑣), 𝐿(𝑣) are the same as in 𝐺. Since 𝐺 satisfies
the conditions of a Fermatean Turiyam Neutrosophic Graph, the degrees satisfy:

[𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3 + [𝐿(𝑣)]3 ≤ 3, ∀𝑣 ∈ 𝑉 ′.

Similarly, for each edge (𝑢, 𝑣) ∈ 𝐸′, the degrees satisfy:

[𝑇 (𝑢, 𝑣)]3 + [𝐼(𝑢, 𝑣)]3 + [𝐹(𝑢, 𝑣)]3 + [𝐿(𝑢, 𝑣)]3 ≤ 3, ∀(𝑢, 𝑣) ∈ 𝐸′.

The relationships between the degrees of the vertices and edges also hold in 𝐻 since they are inherited from 𝐺.

Therefore, 𝐻 is also a Fermatean Turiyam Neutrosophic Graph. □

Theorem 33. In an undirected Fermatean Turiyam Neutrosophic Graph, the degrees of the edges are symmetric:

𝑇 (𝑢, 𝑣) = 𝑇 (𝑣, 𝑢), 𝐼(𝑢, 𝑣) = 𝐼(𝑣, 𝑢), 𝐹 (𝑢, 𝑣) = 𝐹(𝑣, 𝑢), 𝐿(𝑢, 𝑣) = 𝐿(𝑣, 𝑢).

Proof : In an undirected graph, the edge (𝑢, 𝑣) is identical to the edge (𝑣, 𝑢). Therefore, the degrees associated
with the edge must be the same regardless of the order of the vertices.

Thus, the degrees satisfy:

𝑇 (𝑢, 𝑣) = 𝑇 (𝑣, 𝑢), 𝐼(𝑢, 𝑣) = 𝐼(𝑣, 𝑢), 𝐹 (𝑢, 𝑣) = 𝐹(𝑣, 𝑢), 𝐿(𝑢, 𝑣) = 𝐿(𝑣, 𝑢).
□

Theorem 34. For any vertex 𝑣:

0 ≤ 𝑇 (𝑣), 𝐼(𝑣), 𝐹 (𝑣), 𝐿(𝑣) ≤ 1, [𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3 + [𝐿(𝑣)]3 ≤ 3.

Proof : By definition, 𝑇 (𝑣), 𝐼(𝑣), 𝐹 (𝑣), 𝐿(𝑣) ∈ [0, 1] for all 𝑣 ∈ 𝑉 , and

[𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3 + [𝐿(𝑣)]3 ≤ 3.

This follows directly from the definition of a Fermatean Turiyam Neutrosophic Graph. □

Theorem 35. An edge (𝑢, 𝑣) exists in a Fermatean Turiyam Neutrosophic Graph if and only if at least one of
the degrees 𝑇 (𝑢, 𝑣), 𝐼(𝑢, 𝑣), 𝐹 (𝑢, 𝑣), 𝐿(𝑢, 𝑣) is greater than zero.

Proof : By definition, if 𝑇 (𝑢, 𝑣) = 𝐼(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) = 𝐿(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

Conversely, if any of 𝑇 (𝑢, 𝑣), 𝐼(𝑢, 𝑣), 𝐹 (𝑢, 𝑣), 𝐿(𝑢, 𝑣) is greater than zero, then (𝑢, 𝑣) ∈ 𝐸.

Therefore, an edge exists between 𝑢 and 𝑣 if and only if at least one of the degrees is greater than zero. □

Theorem 36. In a Fermatean Turiyam Neutrosophic Graph, the sum of the truth degrees of all vertices is
greater than or equal to the sum of the truth degrees of all edges:

∑
𝑣∈𝑉

𝑇 (𝑣) ≥ ∑
(𝑢,𝑣)∈𝐸

𝑇 (𝑢, 𝑣).
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Proof : Since for each edge (𝑢, 𝑣), 𝑇 (𝑢, 𝑣) ≤ min{𝑇 (𝑢), 𝑇 (𝑣)} ≤ 𝑇 (𝑢) and 𝑇 (𝑢, 𝑣) ≤ 𝑇 (𝑣), the truth degree of
the edge is less than or equal to the truth degree of each of its endpoints.

Therefore, summing over all edges:

∑
(𝑢,𝑣)∈𝐸

𝑇 (𝑢, 𝑣) ≤ ∑
(𝑢,𝑣)∈𝐸

min{𝑇 (𝑢), 𝑇 (𝑣)} ≤ ∑
𝑣∈𝑉

𝑇 (𝑣).

Thus:

∑
(𝑢,𝑣)∈𝐸

𝑇 (𝑢, 𝑣) ≤ ∑
𝑣∈𝑉

𝑇 (𝑣).

□

Theorem 37. Any Fermatean Turiyam Neutrosophic Graph can be transformed into a Fermatean Neutrosophic
Graph by setting the liberal state degree to zero and appropriately scaling the degrees.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Fermatean Turiyam Neutrosophic Graph. For each vertex 𝑣 ∈ 𝑉 , define:

𝑇 ′(𝑣) = 𝑇 (𝑣)
3√ 3

2

, 𝐼 ′(𝑣) = 𝐼(𝑣)
3√ 3

2

, 𝐹 ′(𝑣) = 𝐹(𝑣)
3√ 3

2

.

Then:

[𝑇 ′(𝑣)]3 + [𝐼′(𝑣)]3 + [𝐹 ′(𝑣)]3 = [𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3
3
2

≤ 2.

Similarly, for each edge (𝑢, 𝑣) ∈ 𝐸, define:

𝑇 ′(𝑢, 𝑣) = 𝑇 (𝑢, 𝑣)
3√ 3

2

, 𝐼 ′(𝑢, 𝑣) = 𝐼(𝑢, 𝑣)
3√ 3

2

, 𝐹 ′(𝑢, 𝑣) = 𝐹(𝑢, 𝑣)
3√ 3

2

.

Set 𝐿′(𝑣) = 𝐿′(𝑢, 𝑣) = 0.

Thus, 𝐺′ = (𝑉 , 𝐸) with these new degrees is a Fermatean Neutrosophic Graph. □

Theorem 38. Any Fermatean Turiyam Neutrosophic Graph can be transformed into a Pythagorean Turiyam
Neutrosophic Graph by appropriately scaling the degrees.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Fermatean Turiyam Neutrosophic Graph. For each vertex 𝑣 ∈ 𝑉 , define:

𝑡(𝑣) = 3√𝑇 (𝑣), 𝑖𝑣(𝑣) = 3√𝐼(𝑣), 𝑓𝑣(𝑣) = 3√𝐹(𝑣), 𝑙𝑣(𝑣) = 3√𝐿(𝑣).

Then:

[𝑡(𝑣)]2 + [𝑖𝑣(𝑣)]2 + [𝑓𝑣(𝑣)]2 + [𝑙𝑣(𝑣)]2 = [𝑇 (𝑣)] 4
3 + [𝐼(𝑣)] 4

3 + [𝐹(𝑣)] 4
3 + [𝐿(𝑣)] 4

3 ≤ 3 4
3 .

Since 3 4
3 ≈ 4.3267, which is greater than 3, we normalize the degrees by dividing each by 31/3:

𝑡′(𝑣) = 𝑡(𝑣)
31/3 , 𝑖𝑣′(𝑣) = 𝑖𝑣(𝑣)

31/3 , 𝑓𝑣′(𝑣) = 𝑓𝑣(𝑣)
31/3 , 𝑙𝑣′(𝑣) = 𝑙𝑣(𝑣)

31/3 .

Then:
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[𝑡′(𝑣)]2 + [𝑖𝑣′(𝑣)]2 + [𝑓𝑣′(𝑣)]2 + [𝑙𝑣′(𝑣)]2 ≤ 3.

Similarly, for edges. Therefore, 𝐺 can be transformed into a Pythagorean Turiyam Neutrosophic Graph. □

Theorem 39. Any Fermatean Turiyam Neutrosophic Graph can be transformed into a Turiyam Neutrosophic
Graph by setting the degrees appropriately.

Proof : In a Turiyam Neutrosophic Graph, the degrees satisfy:

𝑇 ′(𝑣) + 𝐼 ′(𝑣) + 𝐹 ′(𝑣) + 𝐿′(𝑣) ≤ 4.

Since in a Fermatean Turiyam Neutrosophic Graph:

[𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3 + [𝐿(𝑣)]3 ≤ 3,

and 𝑇 (𝑣), 𝐼(𝑣), 𝐹 (𝑣), 𝐿(𝑣) ∈ [0, 1], the maximum value each can attain is 1. Therefore, the sum:

𝑇 ′(𝑣) + 𝐼 ′(𝑣) + 𝐹 ′(𝑣) + 𝐿′(𝑣) ≤ 4.

Thus, 𝐺 satisfies the conditions of a Turiyam Neutrosophic Graph. □

Theorem 40. Any Fermatean Turiyam Neutrosophic Graph can be transformed into a Neutrosophic Graph by
combining the indeterminacy and liberal state degrees.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Fermatean Turiyam Neutrosophic Graph. For each vertex 𝑣 ∈ 𝑉 , define:

𝑇 ′(𝑣) = 𝑇 (𝑣), 𝐼′(𝑣) = 𝐼(𝑣) + 𝐿(𝑣), 𝐹 ′(𝑣) = 𝐹(𝑣).

Since 𝑇 (𝑣), 𝐼(𝑣), 𝐹 (𝑣), 𝐿(𝑣) ∈ [0, 1], their sum 𝑇 ′(𝑣) + 𝐼 ′(𝑣) + 𝐹 ′(𝑣) ≤ 3.

In a Neutrosophic Graph, the degrees satisfy:

0 ≤ 𝑇 ′(𝑣), 𝐼 ′(𝑣), 𝐹 ′(𝑣) ≤ 1, 𝑇 ′(𝑣) + 𝐼′(𝑣) + 𝐹 ′(𝑣) ≤ 3.

Therefore, 𝐺 can be transformed into a Neutrosophic Graph. □

3.3 | Complex Turiyam Neutrosophic Graph
A Complex Turiyam Neutrosophic Graph integrates complex-valued membership degrees for truth, indetermi-
nacy, falsity, and liberal state, providing a richer framework to model uncertainty in graphs.

Definition 41. Let 𝑋 be a universe of discourse. A Complex Turiyam Neutrosophic Set 𝐴 on 𝑋 is defined as:

𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), 𝐿𝐴(𝑥)) ∣ 𝑥 ∈ 𝑋} ,

where:

• 𝑇𝐴(𝑥) = 𝑟𝑇 (𝑥) 𝑒𝑖𝜔𝑇 (𝑥) is the complex truth-membership,

• 𝐼𝐴(𝑥) = 𝑟𝐼(𝑥) 𝑒𝑖𝜔𝐼(𝑥) is the complex indeterminacy-membership,

• 𝐹𝐴(𝑥) = 𝑟𝐹 (𝑥) 𝑒𝑖𝜔𝐹 (𝑥) is the complex falsity-membership,

• 𝐿𝐴(𝑥) = 𝑟𝐿(𝑥) 𝑒𝑖𝜔𝐿(𝑥) is the complex liberal state membership.
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Here, 𝑟𝑇 (𝑥), 𝑟𝐼(𝑥), 𝑟𝐹 (𝑥), 𝑟𝐿(𝑥) ∈ [0, 1] and 𝜔𝑇 (𝑥), 𝜔𝐼(𝑥), 𝜔𝐹 (𝑥), 𝜔𝐿(𝑥) ∈ [0, 2𝜋).
These degrees satisfy:

[𝑟𝑇 (𝑥)]2 + [𝑟𝐼(𝑥)]2 + [𝑟𝐹 (𝑥)]2 + [𝑟𝐿(𝑥)]2 ≤ 4, ∀𝑥 ∈ 𝑋.

Definition 42. A Complex Turiyam Neutrosophic Graph is defined as a pair 𝐺 = (𝑉 , 𝐸) where:

• 𝑉 is a non-empty set of vertices.

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

Each vertex 𝑣 ∈ 𝑉 is associated with four complex membership degrees:

• 𝑇 (𝑣) = 𝑟𝑇 (𝑣) 𝑒𝑖𝜔𝑇 (𝑣),

• 𝐼(𝑣) = 𝑟𝐼(𝑣) 𝑒𝑖𝜔𝐼(𝑣),

• 𝐹(𝑣) = 𝑟𝐹 (𝑣) 𝑒𝑖𝜔𝐹 (𝑣),

• 𝐿(𝑣) = 𝑟𝐿(𝑣) 𝑒𝑖𝜔𝐿(𝑣).

These degrees satisfy:
[𝑟𝑇 (𝑣)]2 + [𝑟𝐼(𝑣)]2 + [𝑟𝐹 (𝑣)]2 + [𝑟𝐿(𝑣)]2 ≤ 4, ∀𝑣 ∈ 𝑉 .

Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with four complex membership degrees:

• 𝑇 (𝑢, 𝑣) = 𝑟𝑇 (𝑢, 𝑣) 𝑒𝑖𝜔𝑇 (𝑢,𝑣),

• 𝐼(𝑢, 𝑣) = 𝑟𝐼(𝑢, 𝑣) 𝑒𝑖𝜔𝐼(𝑢,𝑣),

• 𝐹(𝑢, 𝑣) = 𝑟𝐹 (𝑢, 𝑣) 𝑒𝑖𝜔𝐹 (𝑢,𝑣),

• 𝐿(𝑢, 𝑣) = 𝑟𝐿(𝑢, 𝑣) 𝑒𝑖𝜔𝐿(𝑢,𝑣).

These degrees satisfy:
[𝑟𝑇 (𝑢, 𝑣)]2 + [𝑟𝐼(𝑢, 𝑣)]2 + [𝑟𝐹 (𝑢, 𝑣)]2 + [𝑟𝐿(𝑢, 𝑣)]2 ≤ 4, ∀(𝑢, 𝑣) ∈ 𝐸.

The relationship between vertex and edge degrees is given by:
𝑟𝑇 (𝑢, 𝑣) ≤ min{𝑟𝑇 (𝑢), 𝑟𝑇 (𝑣)},
𝑟𝐼(𝑢, 𝑣) ≤ min{𝑟𝐼(𝑢), 𝑟𝐼(𝑣)},
𝑟𝐹 (𝑢, 𝑣) ≥ max{𝑟𝐹 (𝑢), 𝑟𝐹 (𝑣)},
𝑟𝐿(𝑢, 𝑣) ≤ min{𝑟𝐿(𝑢), 𝑟𝐿(𝑣)}.

If 𝑟𝑇 (𝑢, 𝑣) = 𝑟𝐼(𝑢, 𝑣) = 𝑟𝐹 (𝑢, 𝑣) = 𝑟𝐿(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

Theorem 43. Any Complex Turiyam Neutrosophic Graph can be transformed into a Complex Neutrosophic
Graph by setting the liberal state degree to zero and appropriately adjusting the modulus components.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Complex Turiyam Neutrosophic Graph. For each vertex 𝑣 ∈ 𝑉 , define:

𝑟′
𝑇 (𝑣) = 𝑟𝑇 (𝑣)

√ 4
3

, 𝑟′
𝐼(𝑣) = 𝑟𝐼(𝑣)

√ 4
3

, 𝑟′
𝐹 (𝑣) = 𝑟𝐹 (𝑣)

√ 4
3

.

Then,

[𝑟′
𝑇 (𝑣)]2 + [𝑟′

𝐼(𝑣)]2 + [𝑟′
𝐹 (𝑣)]2 = [𝑟𝑇 (𝑣)]2 + [𝑟𝐼(𝑣)]2 + [𝑟𝐹 (𝑣)]2

4
3

≤ 3.

Similarly, for each edge (𝑢, 𝑣) ∈ 𝐸, define:

𝑟′
𝑇 (𝑢, 𝑣) = 𝑟𝑇 (𝑢, 𝑣)

√ 4
3

, 𝑟′
𝐼(𝑢, 𝑣) = 𝑟𝐼(𝑢, 𝑣)

√ 4
3

, 𝑟′
𝐹 (𝑢, 𝑣) = 𝑟𝐹 (𝑢, 𝑣)

√ 4
3

.
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Thus, 𝐺′ = (𝑉 , 𝐸) with these adjusted degrees is a Complex Neutrosophic Graph. □

Theorem 44. Any subgraph of a Complex Turiyam Neutrosophic Graph is also a Complex Turiyam Neutro-
sophic Graph.

Proof : Let 𝐺 = (𝑉 , 𝐸) be a Complex Turiyam Neutrosophic Graph, and let 𝐻 = (𝑉 ′, 𝐸′) be a subgraph of 𝐺,
where 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸.

For each vertex 𝑣 ∈ 𝑉 ′, the membership degrees 𝑇 (𝑣), 𝐼(𝑣), 𝐹 (𝑣), 𝐿(𝑣) are the same as in 𝐺. Since 𝐺 satisfies
the conditions of a Complex Turiyam Neutrosophic Graph, the degrees satisfy:

[𝑟𝑇 (𝑣)]2 + [𝑟𝐼(𝑣)]2 + [𝑟𝐹 (𝑣)]2 + [𝑟𝐿(𝑣)]2 ≤ 4, ∀𝑣 ∈ 𝑉 ′.

Similarly, for each edge (𝑢, 𝑣) ∈ 𝐸′, the degrees satisfy:

[𝑟𝑇 (𝑢, 𝑣)]2 + [𝑟𝐼(𝑢, 𝑣)]2 + [𝑟𝐹 (𝑢, 𝑣)]2 + [𝑟𝐿(𝑢, 𝑣)]2 ≤ 4, ∀(𝑢, 𝑣) ∈ 𝐸′.

The relationships between the degrees of the vertices and edges also hold in 𝐻 since they are inherited from 𝐺.

Therefore, 𝐻 is also a Complex Turiyam Neutrosophic Graph. □

Theorem 45. For any vertex 𝑣:

0 ≤ 𝑟𝑇 (𝑣), 𝑟𝐼(𝑣), 𝑟𝐹 (𝑣), 𝑟𝐿(𝑣) ≤ 1, [𝑟𝑇 (𝑣)]2 + [𝑟𝐼(𝑣)]2 + [𝑟𝐹 (𝑣)]2 + [𝑟𝐿(𝑣)]2 ≤ 4.

Proof : By definition, 𝑟𝑇 (𝑣), 𝑟𝐼(𝑣), 𝑟𝐹 (𝑣), 𝑟𝐿(𝑣) ∈ [0, 1] for all 𝑣 ∈ 𝑉 , and

[𝑟𝑇 (𝑣)]2 + [𝑟𝐼(𝑣)]2 + [𝑟𝐹 (𝑣)]2 + [𝑟𝐿(𝑣)]2 ≤ 4.

This follows directly from the definition of a Complex Turiyam Neutrosophic Graph. □

Theorem 46. An edge (𝑢, 𝑣) exists in a Complex Turiyam Neutrosophic Graph if and only if at least one of
the modulus components of the degrees 𝑟𝑇 (𝑢, 𝑣), 𝑟𝐼(𝑢, 𝑣), 𝑟𝐹 (𝑢, 𝑣), 𝑟𝐿(𝑢, 𝑣) is greater than zero.

Proof : By definition, if 𝑟𝑇 (𝑢, 𝑣) = 𝑟𝐼(𝑢, 𝑣) = 𝑟𝐹 (𝑢, 𝑣) = 𝑟𝐿(𝑢, 𝑣) = 0, then (𝑢, 𝑣) ∉ 𝐸.

Conversely, if any of 𝑟𝑇 (𝑢, 𝑣), 𝑟𝐼(𝑢, 𝑣), 𝑟𝐹 (𝑢, 𝑣), 𝑟𝐿(𝑢, 𝑣) is greater than zero, then (𝑢, 𝑣) ∈ 𝐸.

Therefore, an edge exists between 𝑢 and 𝑣 if and only if at least one of the modulus components is greater than
zero. □

Theorem 47. For any edge (𝑢, 𝑣):
𝑟𝐹 (𝑢, 𝑣) ≥ max{𝑟𝐹 (𝑢), 𝑟𝐹 (𝑣)}.

Proof : By the edge conditions in the definition of a Complex Turiyam Neutrosophic Graph, we have:

𝑟𝐹 (𝑢, 𝑣) ≥ max{𝑟𝐹 (𝑢), 𝑟𝐹 (𝑣)}.

This follows directly from the definition. □
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3.4 | General Plithogenic Graph
The General Plithogenic Graph is a generalization of the Plithogenic Graph (cf.[30, 49, 24]).

Definition 48 (General Plithogenic Graph). [30] Let 𝐺 = (𝑉 , 𝐸) be a classical graph, where 𝑉 is a finite set
of vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges.

A General Plithogenic Graph 𝐺𝐺𝑃 = (𝑃𝑀, 𝑃𝑁) consists of:

(1) General Plithogenic Vertex Set 𝑃𝑀 :
𝑃𝑀 = (𝑀, 𝑙, 𝑀𝑙, 𝑎𝑑𝑓, 𝑎𝐶𝑓)

where:

• 𝑀 ⊆ 𝑉 : Set of vertices.

• 𝑙: Attribute associated with the vertices.

• 𝑀𝑙: Range of possible attribute values.

• 𝑎𝑑𝑓 ∶ 𝑀 × 𝑀𝑙 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for vertices.

• 𝑎𝐶𝑓 ∶ 𝑀𝑙 × 𝑀𝑙 → [0, 1]𝑡: Degree of Contradiction Function (DCF) for vertices.

(2) General Plithogenic Edge Set 𝑃𝑁 :
𝑃𝑁 = (𝑁, 𝑚, 𝑁𝑚, 𝑏𝑑𝑓, 𝑏𝐶𝑓)

where:

• 𝑁 ⊆ 𝐸: Set of edges.

• 𝑚: Attribute associated with the edges.

• 𝑁𝑚: Range of possible attribute values.

• 𝑏𝑑𝑓 ∶ 𝑁 × 𝑁𝑚 → [0, 1]𝑠: Degree of Appurtenance Function (DAF) for edges.

• 𝑏𝐶𝑓 ∶ 𝑁𝑚 × 𝑁𝑚 → [0, 1]𝑡: Degree of Contradiction Function (DCF) for edges.

The General Plithogenic Graph 𝐺𝐺𝑃 only needs to satisfy the following Reflexivity and Symmetry properties of
the Contradiction Functions:

• Reflexivity and Symmetry of Contradiction Functions:
𝑎𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑀𝑙
𝑎𝐶𝑓(𝑎, 𝑏) = 𝑎𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑀𝑙
𝑏𝐶𝑓(𝑎, 𝑎) = 0, ∀𝑎 ∈ 𝑁𝑚
𝑏𝐶𝑓(𝑎, 𝑏) = 𝑏𝐶𝑓(𝑏, 𝑎), ∀𝑎, 𝑏 ∈ 𝑁𝑚

Theorem 49. Any General Plithogenic Graph 𝐺𝐺𝑃 can be transformed into a Pythagorean Turiyam Neutro-
sophic Graph 𝐺𝑃𝑇 .

Proof : (1) For each vertex 𝑣 ∈ 𝑀 , with 𝑎𝑑𝑓(𝑣, 𝑎) = (𝑑1, 𝑑2, 𝑑3, 𝑑4) ∈ [0, 1]4, set:
𝑡(𝑣) = 𝑑1, 𝑖𝑣(𝑣) = 𝑑2, 𝑓𝑣(𝑣) = 𝑑3, 𝑙𝑣(𝑣) = 𝑑4.

Ensure:
[𝑡(𝑣)]2 + [𝑖𝑣(𝑣)]2 + [𝑓𝑣(𝑣)]2 + [𝑙𝑣(𝑣)]2 ≤ 3.

(2) For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝑁 , with 𝑏𝑑𝑓(𝑒, 𝑏) = (𝑑′
1, 𝑑′

2, 𝑑′
3, 𝑑′

4) ∈ [0, 1]4, set:
𝑡(𝑢, 𝑣) = 𝑑′

1, 𝑖𝑣(𝑢, 𝑣) = 𝑑′
2, 𝑓𝑣(𝑢, 𝑣) = 𝑑′

3, 𝑙𝑣(𝑢, 𝑣) = 𝑑′
4.

Ensure:
[𝑡(𝑢, 𝑣)]2 + [𝑖𝑣(𝑢, 𝑣)]2 + [𝑓𝑣(𝑢, 𝑣)]2 + [𝑙𝑣(𝑢, 𝑣)]2 ≤ 3.
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(3) Adjust edge degrees to satisfy:
𝑡(𝑢, 𝑣) ≤ min{𝑡(𝑢), 𝑡(𝑣)},

𝑖𝑣(𝑢, 𝑣) ≤ min{𝑖𝑣(𝑢), 𝑖𝑣(𝑣)},
𝑓𝑣(𝑢, 𝑣) ≥ max{𝑓𝑣(𝑢), 𝑓𝑣(𝑣)},
𝑙𝑣(𝑢, 𝑣) ≤ min{𝑙𝑣(𝑢), 𝑙𝑣(𝑣)}.

Thus, 𝐺𝐺𝑃 can be transformed into a Pythagorean Turiyam Neutrosophic Graph 𝐺𝑃𝑇 . □

Theorem 50. Any General Plithogenic Graph 𝐺𝐺𝑃 can be transformed into a Fermatean Turiyam Neutrosophic
Graph 𝐺𝐹𝑇 .

Proof : Proceeding similarly to Theorem 1, but ensuring that the degrees satisfy:

[𝑇 (𝑣)]3 + [𝐼(𝑣)]3 + [𝐹(𝑣)]3 + [𝐿(𝑣)]3 ≤ 3.
□

Theorem 51. Any General Plithogenic Graph 𝐺𝐺𝑃 can be transformed into a Complex Turiyam Neutrosophic
Graph 𝐺𝐶𝑇 .

Proof : (1) For each vertex 𝑣 ∈ 𝑀 , assign:
𝑇 (𝑣) = 𝑟𝑇 (𝑣)𝑒𝑖𝜔𝑇 (𝑣), 𝐼(𝑣) = 𝑟𝐼(𝑣)𝑒𝑖𝜔𝐼(𝑣), 𝐹 (𝑣) = 𝑟𝐹 (𝑣)𝑒𝑖𝜔𝐹 (𝑣), 𝐿(𝑣) = 𝑟𝐿(𝑣)𝑒𝑖𝜔𝐿(𝑣),

with 𝑟𝑇 (𝑣) = 𝑑1, etc., and 𝜔𝑇 (𝑣) chosen appropriately.

(2) Ensure:
[𝑟𝑇 (𝑣)]2 + [𝑟𝐼(𝑣)]2 + [𝑟𝐹 (𝑣)]2 + [𝑟𝐿(𝑣)]2 ≤ 4.

(3) For edges, proceed similarly and adjust degrees to satisfy the edge conditions.

Thus, 𝐺𝐺𝑃 can be transformed into a Complex Turiyam Neutrosophic Graph 𝐺𝐶𝑇 . □

4 | Future tasks:q-rung orthopair Turiyam Neutrosophic set and q-rung orthopair
Turiyam Neutrosophic graph

The future prospects of this study are outlined as follows. The definitions of the q-rung orthopair Neutrosophic
set, q-rung orthopair Turiyam Neutrosophic set, q-rung orthopair Neutrosophic graph, and q-rung orthopair
Turiyam Neutrosophic graph are provided below. A mathematical examination of these definitions is intended
(cf.[50, 45, 69, 22, 10]).

Definition 52. (cf.[68, 67]) Let 𝑋 be a universe of discourse. A q-rung orthopair Neutrosophic set 𝑆 on 𝑋 is
defined as:

𝑆 = {(𝑥, 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)) ∣ 𝑥 ∈ 𝑋} ,

where:

• 𝑇𝑆(𝑥) is the truth-membership degree,

• 𝐼𝑆(𝑥) is the indeterminacy-membership degree,

• 𝐹𝑆(𝑥) is the falsity-membership degree.

These degrees satisfy the following constraint:
[𝑇𝑆(𝑥)]𝑞 + [𝐼𝑆(𝑥)]𝑞 + [𝐹𝑆(𝑥)]𝑞 ≤ 2, ∀𝑥 ∈ 𝑋,

where 𝑞 ≥ 1 is a fixed positive integer, known as the q-rung parameter. The q-rung parameter controls the
flexibility of the Neutrosophic set, allowing for more comprehensive modeling of uncertainty.
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Definition 53. A q-rung orthopair Neutrosophic graph is defined as a pair 𝐺 = (𝑃 , 𝑄), where:

• 𝑃 is a q-rung orthopair Neutrosophic set defined on the set of vertices 𝑉 .

• 𝑄 is a q-rung orthopair Neutrosophic set defined on the set of edges 𝐸 ⊆ 𝑉 × 𝑉 .

For each vertex 𝑢 ∈ 𝑉 , we have:
[𝑇𝑃 (𝑢)]𝑞 + [𝐼𝑃 (𝑢)]𝑞 + [𝐹𝑃 (𝑢)]𝑞 ≤ 2, ∀𝑢 ∈ 𝑉 .

For each edge (𝑢, 𝑣) ∈ 𝐸, we have:
[𝑇𝑄(𝑢, 𝑣)]𝑞 + [𝐼𝑄(𝑢, 𝑣)]𝑞 + [𝐹𝑄(𝑢, 𝑣)]𝑞 ≤ 2, ∀(𝑢, 𝑣) ∈ 𝐸.

The relationship between the degrees of vertices and edges is defined as follows:
𝑇𝑄(𝑢, 𝑣) ≤ min{𝑇𝑃 (𝑢), 𝑇𝑃 (𝑣)},
𝐼𝑄(𝑢, 𝑣) ≤ min{𝐼𝑃 (𝑢), 𝐼𝑃 (𝑣)},
𝐹𝑄(𝑢, 𝑣) ≥ max{𝐹𝑃 (𝑢), 𝐹𝑃 (𝑣)}.

If 𝑇𝑄(𝑢, 𝑣) = 𝐼𝑄(𝑢, 𝑣) = 𝐹𝑄(𝑢, 𝑣) = 0, then the edge (𝑢, 𝑣) does not exist in the graph, i.e., (𝑢, 𝑣) ∉ 𝐸.

Definition 54. A q-rung orthopair Turiyam Neutrosophic set (qROTS) over a universe 𝑋 is defined
as:

𝑆 = {(𝑥, (𝑡𝑆(𝑥), 𝑖𝑣𝑆(𝑥), 𝑓𝑣𝑆(𝑥), 𝑙𝑣𝑆(𝑥))) | 𝑥 ∈ 𝑋} ,
where:

• 𝑡𝑆(𝑥) ∈ [0, 1] represents the degree of truth-membership of 𝑥 in the set.

• 𝑖𝑣𝑆(𝑥) ∈ [0, 1] represents the degree of indeterminacy-membership of 𝑥 in the set.

• 𝑓𝑣𝑆(𝑥) ∈ [0, 1] represents the degree of falsity-membership of 𝑥 in the set.

• 𝑙𝑣𝑆(𝑥) ∈ [0, 1] represents the degree of liberal state-membership of 𝑥 in the set.

These membership degrees satisfy the following condition for each 𝑥 ∈ 𝑋:
(𝑡𝑆(𝑥))𝑞 + (𝑖𝑣𝑆(𝑥))𝑞 + (𝑓𝑣𝑆(𝑥))𝑞 + (𝑙𝑣𝑆(𝑥))𝑞 ≤ 3,

where 𝑞 ≥ 1 is a fixed positive integer that determines the q-rung constraint.

Definition 55. A q-rung orthopair Turiyam Neutrosophic graph (qROTG) is defined as a pair 𝐺 =
(𝑉 , 𝐸), where:

• 𝑉 is a set of vertices, and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges.

• Each vertex 𝑣 ∈ 𝑉 is associated with a quadruple:
(𝑡𝑉 (𝑣), 𝑖𝑣𝑉 (𝑣), 𝑓𝑣𝑉 (𝑣), 𝑙𝑣𝑉 (𝑣)) ,

where:

– 𝑡𝑉 (𝑣) is the truth-membership degree,

– 𝑖𝑣𝑉 (𝑣) is the indeterminacy-membership degree,

– 𝑓𝑣𝑉 (𝑣) is the falsity-membership degree,

– 𝑙𝑣𝑉 (𝑣) is the liberal state-membership degree,

– and they satisfy the condition:
(𝑡𝑉 (𝑣))𝑞 + (𝑖𝑣𝑉 (𝑣))𝑞 + (𝑓𝑣𝑉 (𝑣))𝑞 + (𝑙𝑣𝑉 (𝑣))𝑞 ≤ 3.

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated with a quadruple:
(𝑡𝐸(𝑢, 𝑣), 𝑖𝑣𝐸(𝑢, 𝑣), 𝑓𝑣𝐸(𝑢, 𝑣), 𝑙𝑣𝐸(𝑢, 𝑣)) ,

where:
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– 𝑡𝐸(𝑢, 𝑣) is the truth-membership degree of the edge,

– 𝑖𝑣𝐸(𝑢, 𝑣) is the indeterminacy-membership degree of the edge,

– 𝑓𝑣𝐸(𝑢, 𝑣) is the falsity-membership degree of the edge,

– 𝑙𝑣𝐸(𝑢, 𝑣) is the liberal state-membership degree of the edge,

– and they satisfy:
(𝑡𝐸(𝑢, 𝑣))𝑞 + (𝑖𝑣𝐸(𝑢, 𝑣))𝑞 + (𝑓𝑣𝐸(𝑢, 𝑣))𝑞 + (𝑙𝑣𝐸(𝑢, 𝑣))𝑞 ≤ 3.

Additionally, the following constraints hold for the vertices and edges:

(1) For any vertices 𝑢, 𝑣 ∈ 𝑉 , if (𝑢, 𝑣) ∈ 𝐸:
𝑡𝐸(𝑢, 𝑣) ≤ min {𝑡𝑉 (𝑢), 𝑡𝑉 (𝑣)} ,

𝑖𝑣𝐸(𝑢, 𝑣) ≤ min {𝑖𝑣𝑉 (𝑢), 𝑖𝑣𝑉 (𝑣)} ,
𝑓𝑣𝐸(𝑢, 𝑣) ≥ max {𝑓𝑣𝑉 (𝑢), 𝑓𝑣𝑉 (𝑣)} ,
𝑙𝑣𝐸(𝑢, 𝑣) ≤ min {𝑙𝑣𝑉 (𝑢), 𝑙𝑣𝑉 (𝑣)} .

(2) If 𝑡𝐸(𝑢, 𝑣) = 𝑖𝑣𝐸(𝑢, 𝑣) = 𝑓𝑣𝐸(𝑢, 𝑣) = 𝑙𝑣𝐸(𝑢, 𝑣) = 0, then no edge exists between 𝑢 and 𝑣.

The q-rung orthopair Turiyam Neutrosophic graph extends classical graph theory by incorporating
multiple membership degrees with the flexibility of q-rung orthopairs, enabling a more nuanced representation
of uncertainty, indeterminacy, and liberal states.

Theorem 56. A q-Rung Orthopair Turiyam Neutrosophic graph (qROTG) generalizes a q-Rung Orthopair
Neutrosophic graph (qRONG).

Proof : Let 𝐺RON = (𝑃 , 𝑄) be a q-Rung Orthopair Neutrosophic graph, where:

• 𝑃 is a q-Rung Orthopair Neutrosophic set on the vertices 𝑉 , satisfying:
[𝑇𝑃 (𝑣)]𝑞 + [𝐼𝑃 (𝑣)]𝑞 + [𝐹𝑃 (𝑣)]𝑞 ≤ 2, ∀𝑣 ∈ 𝑉 .

• 𝑄 is a q-Rung Orthopair Neutrosophic set on the edges 𝐸 ⊆ 𝑉 × 𝑉 , satisfying:
[𝑇𝑄(𝑢, 𝑣)]𝑞 + [𝐼𝑄(𝑢, 𝑣)]𝑞 + [𝐹𝑄(𝑢, 𝑣)]𝑞 ≤ 2, ∀(𝑢, 𝑣) ∈ 𝐸.

Now, let 𝐺ROT = (𝑉 , 𝐸) be a q-Rung Orthopair Turiyam Neutrosophic graph, where:

• Each vertex 𝑣 ∈ 𝑉 is associated with a quadruple:
(𝑡𝑉 (𝑣), 𝑖𝑣𝑉 (𝑣), 𝑓𝑣𝑉 (𝑣), 𝑙𝑣𝑉 (𝑣)) ,

satisfying:
(𝑡𝑉 (𝑣))𝑞 + (𝑖𝑣𝑉 (𝑣))𝑞 + (𝑓𝑣𝑉 (𝑣))𝑞 + (𝑙𝑣𝑉 (𝑣))𝑞 ≤ 3.

• Each edge (𝑢, 𝑣) ∈ 𝐸 is associated with a quadruple:
(𝑡𝐸(𝑢, 𝑣), 𝑖𝑣𝐸(𝑢, 𝑣), 𝑓𝑣𝐸(𝑢, 𝑣), 𝑙𝑣𝐸(𝑢, 𝑣)) ,

satisfying:
(𝑡𝐸(𝑢, 𝑣))𝑞 + (𝑖𝑣𝐸(𝑢, 𝑣))𝑞 + (𝑓𝑣𝐸(𝑢, 𝑣))𝑞 + (𝑙𝑣𝐸(𝑢, 𝑣))𝑞 ≤ 3.

To prove the generalization, observe the following:

• If 𝑙𝑣𝑉 (𝑣) = 0 and 𝑙𝑣𝐸(𝑢, 𝑣) = 0 for all vertices 𝑣 ∈ 𝑉 and edges (𝑢, 𝑣) ∈ 𝐸, the qROTG reduces to a
qRONG. Specifically:

(𝑡𝑉 (𝑣))𝑞 + (𝑖𝑣𝑉 (𝑣))𝑞 + (𝑓𝑣𝑉 (𝑣))𝑞 ≤ 2,
and:

(𝑡𝐸(𝑢, 𝑣))𝑞 + (𝑖𝑣𝐸(𝑢, 𝑣))𝑞 + (𝑓𝑣𝐸(𝑢, 𝑣))𝑞 ≤ 2.
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• The additional liberal state-membership degree 𝑙𝑣 in qROTG introduces a fourth dimension of flexibility,
allowing the graph to model more complex relationships and states than qRONG.

Thus, by reducing the liberal state-membership degree to zero, a qROTG becomes equivalent to a qRONG,
proving that a q-Rung Orthopair Turiyam Neutrosophic graph generalizes a q-Rung Orthopair Neutrosophic
graph. □

4.1 | q-Rung Orthopair Single-Valued Neutrosophic Offset
As a future prospect, we aim to define the concept of the q-Rung Orthopair Single-Valued Neutrosophic Offset
as an extension of the Single-Valued Neutrosophic OffSet and explore the relationships between them. The
definition of the Single-Valued Neutrosophic OffSet is provided below [61, 56, 62].

Definition 57 (Single-Valued Neutrosophic OffSet). [62] A Single-Valued Neutrosophic OffSet, denoted 𝐴off ⊆
𝑈off, is a set within a universe of discourse 𝑈off in which certain elements may possess neutrosophic degrees—
truth, indeterminacy, or falsity—that extend beyond the standard limits, either above 1 or below 0. It is
formally defined as:

𝐴off = {(𝑥, ⟨𝑇 (𝑥), 𝐼(𝑥), 𝐹 (𝑥)⟩) ∣ 𝑥 ∈ 𝑈off, ∃ (𝑇 (𝑥) > 1 or 𝐹(𝑥) < 0)} ,
where:

• 𝑇 (𝑥), 𝐼(𝑥), and 𝐹(𝑥) denote the truth-membership, indeterminacy-membership, and falsity-membership
degrees of each 𝑥 ∈ 𝑈off.

• 𝑇 (𝑥), 𝐼(𝑥), 𝐹 (𝑥) ∈ [Ψ, Ω], where Ω > 1 (termed the OverLimit) and Ψ < 0 (termed the UnderLimit),
allow the possibility for 𝑇 (𝑥), 𝐼(𝑥), or 𝐹(𝑥) to take values beyond the conventional bounds of [0, 1].

Definition 58 (q-Rung Orthopair Single-Valued Neutrosophic Offset). A q-Rung Orthopair Single-Valued Neu-
trosophic Offset, denoted 𝑆off ⊆ 𝑋off, is a generalized Neutrosophic offset defined on a universe of discourse 𝑋off,
where certain elements may have truth, indeterminacy, or falsity degrees exceeding the standard range [0, 1].
Formally, it is defined as:

𝑆off = {(𝑥, ⟨𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)⟩) ∣ 𝑥 ∈ 𝑋off} ,

where:

• 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), and 𝐹𝑆(𝑥) denote the truth-membership, indeterminacy-membership, and falsity-
membership degrees of 𝑥 ∈ 𝑋off, respectively.

• The degrees 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥) ∈ [Ψ, Ω], where Ψ < 0 (termed the UnderLimit) and Ω > 1 (termed
the OverLimit), allow values outside the standard bounds of [0, 1].

• These degrees satisfy the following constraint:
[𝑇𝑆(𝑥)]𝑞 + [𝐼𝑆(𝑥)]𝑞 + [𝐹𝑆(𝑥)]𝑞 ≤ 2, ∀𝑥 ∈ 𝑋off,

where 𝑞 ≥ 1 is a fixed positive integer, known as the q-rung parameter.

Theorem 59. The q-Rung Orthopair Single-Valued Neutrosophic Offset generalizes the Single-Valued Neutro-
sophic OffSet.

Proof : The q-Rung Orthopair Single-Valued Neutrosophic Offset 𝑆off is defined as:

𝑆off = {(𝑥, ⟨𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥)⟩) ∣ 𝑥 ∈ 𝑋off} ,

where 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥) ∈ [Ψ, Ω] and satisfy:
[𝑇𝑆(𝑥)]𝑞 + [𝐼𝑆(𝑥)]𝑞 + [𝐹𝑆(𝑥)]𝑞 ≤ 2, ∀𝑥 ∈ 𝑋off,

with 𝑞 ≥ 1 as the q-rung parameter.
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When the q-rung parameter 𝑞 = 1, the constraint reduces to:
𝑇𝑆(𝑥) + 𝐼𝑆(𝑥) + 𝐹𝑆(𝑥) ≤ 2.

By restricting 𝑇𝑆(𝑥), 𝐼𝑆(𝑥), 𝐹𝑆(𝑥) to the range [Ψ, Ω], 𝑆off becomes identical to 𝐴off.

When 𝑞 > 1, 𝑆off allows for more flexible representations and models higher-order complexities. This additional
flexibility confirms that 𝑆off generalizes 𝐴off.

Thus, the q-Rung Orthopair Single-Valued Neutrosophic Offset generalizes the Single-Valued Neutrosophic
OffSet. □

Additionally, we consider the HyperNeutrosophic Set (Graph)[32, 33, 34, 35, 31, 28], the HyperFuzzy Set
(Graph)[41, 64, 37, 47], and the Plithogenic Set (Graph)[30, 57, 63]. In the future, we aim to explore the
integration of these concepts with the graph structures discussed in this paper, defining new frameworks and ex-
amining their potential applications. Furthermore, we plan to extend the graph concepts examined in this study
to Hypergraphs[12, 13] and SuperHypergraphs[25, 59, 60, 29], further expanding their theoretical foundation
and practical applicability.
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