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Abstract

The COVID-19 pandemic, first identified in Wuhan, China, in December 2019, rapidly spread across the
globe, necessitating mathematical models to understand its transmission dynamics. This study presents
a susceptible-exposed-infected-removed (SEIR) model to analyze the spread of COVID-19 in France.
The model incorporates key epidemiological parameters, including the transmission rate (𝛼) and social
interaction factor (𝜅), which influence disease spread. To solve the system of differential equations, we
employ the fourth-order Runge-Kutta (RK4) method. A parametric study is conducted to validate the
model, and the basic reproduction number (𝑅0) is derived to assess disease stability. The results align with
real-world data, confirming the model’s effectiveness in describing the outbreak. Our findings highlight
the critical role of social distancing, recovery rates, and transmission reduction measures in mitigating the
spread of COVID-19.
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1 | Introduction

COVID-19 is a widespread, epidemic disease, brought about by a virus attacking the higher part of the breathing
apparatus, marked by fever and a great loss of power in muscles. The disease was first disclosed in 2019 in
Wuhan, a well-populated commercial city, located in the Hubei Province of China, and spread worldwide [1].
The consequences of this disease are not the same for all individuals which vary from person to person. It is
difficult to establish some relationship between the severity of this virus and the ethnicity or gender of the
individuals, but the severity of consequences mainly depends on the immune system of the people. In the
majority of cases, patients face mild symptoms and endure it easily; however, there are also a reasonable number
of instances when the affected persons are subjected to severe issues such as acute respiratory illness, clotting of
blood, failure of the organs, etc.
COVID-19 is a zoonotic type virus means that it can transfer between animals and humans. The major source
of virus spread is close contact with the affected person from which this virus may transmit via tiny droplets
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mainly through coughing and sneezing of the affected person. These droplets may directly transmit the virus
during close contact, or these may retain on the surfaces and transfer later upon contact with those surfaces.
No evidence is available about the traveling of the virus through the air over long distances. The degree of
contagiousness is significantly high during the initial few days after the outbreak of symptoms. However, the
transmission of the virus is possible even from those affected persons having no symptoms[2].
To control the spread of this infection, it is recommended to wash your hands frequently, maintain a safe physical
distance from others, not touch your face with unwashed hands, and cover the cough and sneeze. Suspected
individuals are recommended to cover their faces with a proper covering to prevent the spread of this infectious
disease. Research work has resulted in a number of effective Covid vaccines however due to rapid mutations for
this virus but so far, no success has been achieved to produce any vaccine for COVID-19. The best solution is to
take necessary precautionary measures to avoid the spread.
The most familiar/typical symptoms of this disease consist of cough with fever and fatigue accompanied by
hotness of breath. Loss of taste and smell were also noted as symptoms of COVID-19, but these are not very
common. It is also possible that no symptoms would appear in the COVID-19 carrier. Generally, the incubation
period of this virus is five days which may vary between two to fourteen days. The COVID-19 Patient and
Number of deaths per day show that the individuals seem to be susceptible to this virus [3].
Recently, the epidemic of Coronavirus (COVID-19) is growing and the cases of infected individuals have been
fastly growing. The safety measure for COVID-19 the government of different countries take some actions (such
as lock-down) closing all businesses, all educational institutes, suspending public transport, and all national and
international affairs and public gatherings to relieve the effect of the epidemic.
The mathematical model assumes a significant function to acclimatize the cycle of transmission of infection and
gives various measures to control its multiplication. Mathematicians present different models to discuss this
infectious disease like SIR, SEIR, and SEIHR models. In this work, a novel differential model (SEIR (Susceptible,
Exposed, Infectious, Removed (Recovered or Death)) for COVID-19 is presented. The Runge Kutta of order 4 is
acknowledged as a differential operator in the model [4].
The Runge-Kutta method gives the relative value of y for a given point x. The fourth order Runge-Kutta order
yields: 𝑦𝑚+1 = 𝑦𝑚 + 1

6 (𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4)
Where
𝑚1 = ℎ𝑓(𝑡𝑚, 𝑦𝑚)
𝑚2 = ℎ𝑓(𝑡𝑚 + ℎ

2 , 𝑦𝑚 + 𝑚1
2 )

𝑚3 = ℎ𝑓(𝑡𝑚 + ℎ
2 , 𝑦𝑚 + 𝑚2

2 )
𝑚4 = ℎ𝑓(𝑡𝑚 + ℎ, 𝑦𝑚 + 𝑚3)
Here, 𝑚1, 𝑚2, 𝑚3, and 𝑚4 denotes the slopes and ℎ is the time step.

2 | Preliminaries

In this category, we will present some significant definitions of ordinary differential equations, their key properties,
and notations used in this article.

2.1 | Model Formulation
In this model, the Susceptible-Exposed-Infected-Removed (SEIR) system is presented and it will be used to
portray the ongoing outbreak of COVID-19 in France. We consider a basic SEIR model to model the virus
spread. People were each chosen to one of the accompanying malady states i.e. (S, E, I, R) the number of
Susceptible cases (S), Exposed cases (E), Infectious cases (I), Removed cases (R) with a total population (N) and
which wants to individuals not yet infected and sickness free, people that are encountering incubation period, the
confirmed cases, removed people, respectively. The following is a detailed description of the state variables [5, 6].
Susceptible (denoted by 𝑆): The individuals who are at the possibility of contracting a disease.
Exposed (denoted by 𝐸): A individual who is infected by the disease but has not transmitted it to others.
Infectious (denoted by 𝐼): A person which can transfer the disease to another person.
Removed (denoted by 𝑅): A person who are removed(recovered/death) from this disease.
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Figure 1. Flow diagram of the COVID-19 SEIR model

The corresponding model is given below:

𝑑𝑆(𝑡)
𝑑𝑡

= 𝜔𝑁 − 𝛼𝜅𝑆𝐼
𝑁

− 𝜔𝑆, (1)

𝑑𝐸(𝑡)
𝑑𝑡

= 𝛼𝜅𝑆𝐼
𝑁

− 𝜌𝐸 − 𝜀𝐸 − 𝜔𝐸, (2)

𝑑𝐼(𝑡)
𝑑𝑡

= 𝜀𝐸 − 𝜂𝐼 − 𝜔𝐼, (3)

𝑑𝑅(𝑡)
𝑑𝑡

= 𝜂𝐼 + 𝜌𝐸 − 𝜔𝑅. (4)

Here 𝑆(0) = 𝜗1, 𝐸(0) = 𝜗2, 𝐼(0) = 𝜗3, 𝑅(0) = 𝜗4. In this model, 𝛼 represents the transmission rate, 𝜂 represents
the rate of recovery, 𝜀 denotes the exposure rate of the infected, 𝜌 indicates the proportion of exposed people
who potentially become infected, 𝜔 is the rate of individuals that leave the compartment, and 𝜅 is the social
factors of contracting COVID-19 [7].
𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁
then,
𝑑𝑆
𝑑𝑡 + 𝑑𝐸

𝑑𝑡 + 𝑑𝐼
𝑑𝑡 + 𝑑𝑅

𝑑𝑡 = 𝑑𝑁
𝑑𝑡

⇒ 𝑑𝑁
𝑑𝑡 = 𝜔𝑁 − 𝛼𝜅𝑆𝐼

𝑁 − 𝜔𝑆 + 𝛼𝜅𝑆𝐼
𝑁 − 𝜌𝐸 − 𝜀𝐸 − 𝜔𝐸 + 𝜀𝐸 − 𝜂𝐼 − 𝜔𝐼 + 𝜂𝐼 + 𝜌𝐸 − 𝜔𝑅

By canceling the terms, we get,
⇒ 𝑑𝑁

𝑑𝑡 = 𝜔𝑁 − 𝜔𝑆 − 𝜔𝐸 − 𝜔𝐼 − 𝜔𝑅
⇒ 𝑑𝑁

𝑑𝑡 = 𝜔(𝑁 − 𝑆 − 𝐸 − 𝐼 − 𝑅)
⇒ 𝑑𝑁

𝑑𝑡 = 𝜔(𝑁 − 𝑁)
⇒ 𝑑𝑁

𝑑𝑡 = 0
Many numerical methods, including the Runge-Kutta method and the Euler method, can be used to solve this
model. The RK4 approach is employed in this study to solve the differential equations model [2, 7, 8].
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Parameters for SEIR COVID-19 Model
Parameters Definition Parametric Values
𝛼 transmission rate 0.27926
𝜂 recovery rate 0.005
𝜀 exposure or infection risk rate 0.3165682
𝜌 rate of individuals who are exposed and potentially

become infected
0.039661667

𝜅 the social factors of contracting COVID-19 disease 0 < 𝜅 < 1
𝜔 rate of individuals that leave the compartment 0.0023977
𝑅(𝑡) the susceptible Individuals
𝐸(𝑡) the exposed Individuals
𝐼(𝑡) the infected Individuals
𝑅(𝑡) the removed Individuals

2.2 | Equilibrium Points
The system of equations (1)-(4) is solved below by substituting 𝑆(𝑡) −→ 𝑥1, 𝐸(𝑡) −→ 𝑥2, 𝐼(𝑡) −→ 𝑥3, and 𝑅(𝑡) −→ 𝑥4:

𝑑𝑥1
𝑑𝑡

= 𝜔 − 𝑥1(𝛼𝜅𝑥3 + 𝜔) (5)

𝑑𝑥2
𝑑𝑡

= 𝛼𝜅𝑥1𝑥3 − 𝑥2(𝜀 + 𝜔 + 𝜌) (6)

𝑑𝑥3
𝑑𝑡

= 𝜀𝑥2 − 𝑥3(𝜂 + 𝜔) (7)

𝑑𝑥4
𝑑𝑡

= 𝜂𝑥3 + 𝜌𝑥2 − 𝜔𝑥4 (8)

For the equilibrium points
𝑑𝑥1
𝑑𝑡 = 𝑑𝑥2

𝑑𝑡 = 𝑑𝑥3
𝑑𝑡 = 𝑑𝑥4

𝑑𝑡 = 0
then equation (5)-(8) becomes:

𝜔 − 𝑥1(𝛼𝜅𝑥3 + 𝜔) = 0 (9)
𝛼𝜅𝑥1𝑥3 − 𝑥2(𝜀 + 𝜔 + 𝜌) = 0 (10)

𝜀𝑥2 − 𝑥3(𝜂 + 𝜔) = 0 (11)
𝜂𝑥3 + 𝜌𝑥2 − 𝜔𝑥4 = 0 (12)

The point 𝑃1 = (1, 0, 0, 0) is trivial/negligible, everyone of a people is sound and stay-good healthy for constantly
means they are disease-free [9].
Now for finding the second equilibrium point, we deal with (9)-(12).
Add (9) and (10)
𝜔 − 𝑥1(𝛼𝜅𝑥3 + 𝜔) + 𝛼𝜅𝑥1𝑥3 − 𝑥2𝜀 − 𝑥2𝜔 − 𝑥2𝜌 = 0
⇒ 𝜔 − 𝛼𝜅𝑥1𝑥3 − 𝑥1𝜔 + 𝛼𝜅𝑥1𝑥3 − 𝑥2𝜀 − 𝑥2𝜔 − 𝑥2𝜌 = 0
⇒ 𝜔(1 − 𝑥1 − 𝑥2) − 𝑥2𝜀 − 𝑥2𝜌 = 0
⇒ 𝜔(1 − 𝑥1 − 𝑥2) − 𝑥2(𝜀 + 𝜌) = 0
or
𝑥1(1 − 𝜔) − 𝑥2(𝜀 − 𝜔 − 𝜌) = 0
⇒ 𝑥1(1 − 𝜔) = 𝑥2(𝜀 − 𝜔 − 𝜌)

𝑥1 = 𝑥2(𝜀 − 𝜔 − 𝜌)
(1 − 𝜔)

(13)

From (11)
𝜀𝑥2 − 𝑥3(𝜂 + 𝜔) = 0
⇒ 𝜀𝑥2 = 𝑥3(𝜂 + 𝜔)

𝑥2 = 𝑥3(𝜂 + 𝜔)
𝜀

(14)

Put the value of 𝑥2 in (12)
⇒ 𝜂𝑥3 + 𝜌( 𝑥3(𝜂+𝜔)

𝜂 ) − 𝜔𝑥4 = 0
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⇒ 𝜂𝑥3 + 𝜌 (𝜂+𝜔)
𝜂 𝑥3 − 𝜔𝑥4 = 0

⇒ 𝜀𝜂+𝜌𝜂+𝜌𝜔
𝜂 𝑥3 = 𝜔𝑥4

𝑥4 = 𝜀𝜂 + 𝜌𝜂 + 𝜌𝜔
𝜂𝜔

𝑥3 (15)

Put the value of 𝑥1 and 𝑥2 in (10)
⇒ 𝛼𝜅( 𝑥2(𝜀+𝜔+𝜌)

1−𝜔 )𝑥3 − (𝑥3
(𝜂+𝜔)

𝜀 )(𝜀 + 𝜔 + 𝜌) = 0
⇒ 𝛼𝜅( 𝑥3(𝜂+𝜔)(𝜀+𝜔+𝜌)

𝜀(1−𝜔) )𝑥3 − ( (𝜂+𝜔)(𝜀+𝜔+𝜌)
𝜀 )𝑥3 = 0

⇒ 𝑥2
3( 𝛼𝜅(𝜂+𝜔)(𝜀+𝜔+𝜌)

𝜀(1−𝜔) ) − ( (𝜂+𝜔)(𝜀+𝜔+𝜌)
𝜀 )𝑥3 = 0

⇒ 𝑥3[(𝑥3
𝛼𝜅(𝜂+𝜔)(𝜀+𝜔+𝜌)

𝜀(1−𝜔) ) − ( (𝜂+𝜔)(𝜀+𝜔+𝜌)
𝜀 )] = 0

⇒ 𝑥3( 𝛼𝜅(𝜂+𝜔)(𝜀+𝜔+𝜌)
𝜀(1−𝜔) ) − ( (𝜂+𝜔)(𝜀+𝜔+𝜌)

𝜀 ) = 0
⇒ 𝑥3( 𝛼𝜅(𝜂+𝜔)(𝜀+𝜔+𝜌)

𝜀(1−𝜔) ) = ( (𝜂+𝜔)(𝜀+𝜔+𝜌)
𝜀 )

⇛ 𝑥3( 𝛼𝜅
1−𝜔 ) = 1

𝑥3 = 1 − 𝜔
𝛼𝜅

(16)

Put the value of 𝑥3 in (14), we get,

𝑥2 = (1 − 𝜔)(𝜂 + 𝜔)
𝛼𝜅𝜀

(17)

Put the value of 𝑥2 in (13),
𝑥1 = (1−𝜔)(𝜂+𝜔)(𝜀+𝜔+𝜌)

𝛼𝜅𝜀(1−𝜔)

𝑥1 = (𝜂 + 𝜔)(𝜀 + 𝜔 + 𝜌)
𝛼𝜅𝜀

(18)

Now put the value of 𝑥3 in (15), we get

𝑥4 = (1 − 𝜔)(𝜀𝜂 + 𝜌𝜂 + 𝜌𝜔)
𝛼𝜅𝜀𝜔

(19)

The point 𝑃2 = (𝑥10, 𝑥20, 𝑥30, 𝑥40) that coincides with an endemic case i.e. the Coronavirus disease prevails in
two populations.
The determined values of 𝑥10, 𝑥20, 𝑥30, 𝑥40 are:
𝑥10 = (𝜂+𝜔)(𝜀+𝜔+𝜌)

𝛼𝜅𝜀 ,
𝑥20 = (1−𝜔)(𝜂+𝜔)

𝛼𝜅𝜀 ,
𝑥30 = 1−𝜔

𝛼𝜅 ,
𝑥40 = (1−𝜔)(𝜀𝜂+𝜌𝜂+𝜌𝜔)

𝛼𝜅𝜀𝜔 .
Hence it is proved that system (1)-(4) have two equilibrium points 𝑃1(1, 0, 0, 0) and 𝑃2(𝑥10, 𝑥20, 𝑥30, 𝑥40).

2.3 | Stability Analysis
For Simplicity [10], we let:
(𝜂+𝜔)(𝜀+𝜔+𝜌)

𝛼𝜅𝜀 = 𝛾, (1−𝜔)(𝜂+𝜔)
𝛼𝜅𝜀 = 𝛽, 1−𝜔

𝛼𝜅 = 𝜓, and (1−𝜔)(𝜀𝜂+𝜌𝜂+𝜌𝜔)
𝛼𝜅𝜀𝜔 = 𝜃.

Then we have,
𝑥10 = 𝛾, 𝑥20 = 𝛽, 𝑥30 = 𝜓, 𝑥40 = 𝜃.
For obtaining the variational matrix, we utilize the model equation (5)-(8) at the first equilibrium point 𝑃1 we get,

𝐽 =
⎛⎜⎜⎜
⎝

−𝜔 0 −𝛼𝜅 0
0 −(𝜀 + 𝜔 + 𝜌) 𝛼𝜅 0
0 𝜀 −(𝜂 + 𝜔) 0
0 𝜌 𝜂 −𝜔

⎞⎟⎟⎟
⎠
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Now let 𝜇1 = 𝜀 + 𝜔 + 𝜌 and 𝜇2 = 𝜂 + 𝜔 then the matrix becomes,

𝐽(1, 0, 0, 0) =
⎛⎜⎜⎜
⎝

−𝜔 0 −𝛼𝜅 0
0 −𝜇1 𝛼𝜅 0
0 𝜀 −𝜇2 0
0 𝜌 𝜂 −𝜔

⎞⎟⎟⎟
⎠

the eigenvalue of the Jacobian matrix is,

𝐽 − 𝜆𝐼4 =
⎛⎜⎜⎜
⎝

−𝜔 − 𝜆 0 −𝛼𝜅 0
0 −𝜇1 − 𝜆 𝛼𝜅 0
0 𝜀 −𝜇2 − 𝜆 0
0 𝜌 𝜂 −𝜔 − 𝜆

⎞⎟⎟⎟
⎠

⇒ 𝜆1 = −𝜔, (20)
⇒ 𝜆2 = −𝜔, (21)

𝜆1 and 𝜆2 are real values. The other two eigenvalues are calculated from 2x2 sub-matrix 𝐴 − 𝜆𝐼

𝐴 − 𝜆𝐼 = (−𝜇1 − 𝜆 𝛼𝜅
𝜀 −𝜇2 − 𝜆) = 0

⇒ (𝜇1 − 𝜆)(−𝜇2 − 𝜆) − (𝜀)(𝛼𝜅) = 0
⇒ 𝜇1𝜇2 + 𝜇1𝜆 + 𝜇2𝜆 + 𝜆2 − 𝛼𝜀𝜅 = 0
⇒ 𝜇1𝜇2 + (𝜇1 + 𝜇2)𝜆 + 𝜆2 − 𝛼𝜀𝜅 = 0
⇒ 𝜆2 + (𝜇1 + 𝜇2)𝜆 + 𝜇1𝜇2 − 𝛼𝜀𝜅 = 0
the roots of the equations are:

𝜆3 = −1
2

[𝜇1 + 𝜇2 − √(𝜇1 + 𝜇2)2 + 4𝛼𝜀𝜅 − 4𝜇1𝜇2] (22)

𝜆4 = −1
2

[𝜇1 + 𝜇2 + √(𝜇1 + 𝜇2)2 + 4𝛼𝜀𝜅 − 4𝜇1𝜇2] (23)

3 | Reproduction number

In the discipline of epidemiology, the reproduction proportion (𝑅0) is crucial. It is described as ”the typical
number of secondary infections that result from introducing one infected individual into a population where
everyone is susceptible”. It is highly practical because it helps determine whether the infection spread among
people [11].
Mathematical modeling can play a vital role in measuring conceivable illness control procedures by focusing
on the crucial parts of a disease, determining verge quantities for disease survival, and assessing the impact of
specific management systems. A very basic verge quantity is the Reproductive number. The epidemiological
definition of 𝑅0 is the average number of secondary infection cases formed by one infected person is known into
a population of susceptible.
In 9152 George Macdonald used the first application of 𝑅0 in epidemiology for constructed population models of
the spread of malaria.
When the 𝑅0 value is less than 1 (𝑅0 < 1) the infection will die out and the human individuals will stay good.
But for the value of (𝑅0 > 1) the sickness will spread to people, making it difficult to control the epidemic.
Let R represent the rate of infections in the person acquired by the change from a susceptible individual to an
infected individual or from an infected individual to a removed individual. V denotes the rate of transmission of
individuals into or out of the infected [12].

𝑅 = (𝛼𝜅𝑥1𝑥3
0 )

𝑉 = ( 𝑥2(𝜀 + 𝜔 + 𝜌)
−𝜀𝑥2 + 𝑥3(𝜂 + 𝜔))

𝑅 = (
𝜕𝑅1
𝜕𝑥2

𝜕𝑅1
𝜕𝑥3

𝜕𝑅2
𝜕𝑥2

𝜕𝑅2
𝜕𝑥3

) = (0 𝛼𝜅
0 0 )
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and

𝑉 = (
𝜕𝑉1
𝜕𝑥2

𝜕𝑉1
𝜕𝑥3

𝜕𝑉2
𝜕𝑥2

𝜕𝑉2
𝜕𝑥3

) = (𝜀 + 𝜔 + 𝜌 0
−𝜀 𝜂 + 𝜔)

then,

𝑉 −1 = 1
(𝜀 + 𝜔 + 𝜌)(𝜂 + 𝜔)

(𝜂 + 𝜔 0
𝜀 𝜀 + 𝜔 + 𝜌)

and

𝑅𝑉 −1 = 1
(𝜀 + 𝜔 + 𝜌)(𝜂 + 𝜔)

(𝛼𝜅𝜀 𝛼𝜅(𝜀 + 𝜔 + 𝜌)
0 0 )

Here 𝑅𝑉 1 have a eigenvalue 0 and basic reproduction number

𝑅0 = 𝛼𝜅𝜀
(𝜀 + 𝜔 + 𝜌)(𝜂 + 𝜔)

As we let 𝜇1 = 𝜀 + 𝜔 + 𝜌 and 𝜇2 = 𝜂 + 𝜔 then

𝑅0 = 𝛼𝜅𝜀
𝜇1𝜇2

and ⇒ 𝑅0𝜇1𝜇2 = 𝛼𝜅𝜀
Put the value of 𝛼𝜅𝜀 in (22) and (23) we get,
𝜆3 = − 1

2 [𝜇1 + 𝜇2 − √(𝜇1 − 𝜇2)2 + 4𝑅0𝜇1𝜇2]
𝜆4 = − 1

2 [𝜇1 + 𝜇2 + √(𝜇1 − 𝜇2)2 + 4𝑅0𝜇1𝜇2]
For equilibrium point 𝑃2, the variational matrix is

𝐽1 =
⎛⎜⎜⎜
⎝

−(𝛼𝜅𝜓 + 𝜔) 0 −𝛼𝜅𝛾 0
𝛼𝜅𝜓 −𝜇1 𝛼𝜅𝛾 0

0 𝜀 −𝜇2 0
0 𝜌 𝜂 −𝜔

⎞⎟⎟⎟
⎠

𝐽1 − 𝜆𝐼 =
⎛⎜⎜⎜
⎝

−(𝛼𝜅𝜓 + 𝜔) − 𝜆 0 −𝛼𝜅𝛾 0
𝛼𝜅𝜓 −𝜇1 − 𝜆 𝛼𝜅𝛾 0

0 𝜀 −𝜇2 − 𝜆 0
0 𝜌 𝜂 −𝜔 − 𝜆

⎞⎟⎟⎟
⎠

then,

𝜆1 = −(𝛼𝜅𝜓 + 𝜔)
𝜆2 = −𝜔

the other two eigenvalues are

𝐴 − 𝜆𝐼 = (−𝜇1 − 𝜆 𝛼𝜅𝛾
𝜀 −𝜇2 − 𝜆) = 0

⇒ (−𝜇1 − 𝜆)(−𝜇2 − 𝜆) − 𝜀(𝛼𝜅𝛾) = 0
⇒ 𝜇1𝜇2 + (𝜇1 + 𝜇2)𝜆 + 𝜆2 − 𝜀𝛼𝜅𝛾 = 0
⇒ 𝜆2 + (𝜇1 + 𝜇2)𝜆 + 𝜇1𝜇2 − 𝜀𝛼𝜅𝛾 = 0
the roots of the equations are

𝜆3 = −1
2

[𝜇1 + 𝜇2 − √(𝜇1 − 𝜇2)2 + 4𝛼𝜅𝛾𝜀 − 4𝜇1𝜇2]

𝜆4 = −1
2

[𝜇1 + 𝜇2 + √(𝜇1 − 𝜇2)2 + 4𝛼𝜅𝛾𝜀 − 4𝜇1𝜇2]

then, the following situations are given below:

𝑅0 > 1 → 𝜆3 > 0, 𝜆4 < 0
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𝑅0 = 1 → 𝜆3 = 0, 𝜆4 < 0
𝑅0 < 1 → 𝜆3 < 0, 𝜆4 < 0

3.1 | Disease Endemic Equilibrium
𝐽1(𝑆𝑜, 𝐸𝑜, 𝐼𝑜, 𝑅𝑜) is disease endemic equilibrium with positive favourable components
i.e. (𝑆, 𝐸, 𝐼, 𝑅) ≠ (0, 0, 0, 0)

𝜔 − 𝛼𝜅𝑥1𝑥3 − 𝜔𝑥1 = 0 (24)
𝛼𝜅𝑥1𝑥3 − 𝑥2𝜇1 = 0 (25)

𝜀𝑥2 − 𝑥3𝜇2 = 0 (26)
𝜂𝑥3 + 𝜌𝑥2 − 𝜔𝑥4 = 0 (27)

Equation (26) ⇒

⇒ 𝑥∗
2 = 𝑥∗

3𝜇2
𝜀

(28)

Put the value of 𝑥∗
2 in (25)

(25) ⇒ 𝛼𝜅𝑥∗
1𝑥∗

3 − 𝑥∗
3𝜇1𝜇2

𝜀 = 0

⇒ 𝑥∗
1 = 𝜇1𝜇2

𝛼𝜅𝜀
= 1

𝑅0
(29)

put the value of 𝑥∗
1 in (24)

⇒ 𝜔 − 𝛼𝜅 1
𝑅0

𝑥∗
3 − 𝜔 1

𝑅0
= 0

⇒ 𝜔 − 𝜔 1
𝑅0

= 𝛼𝜅 1
𝑅0

𝑥∗
3

then

𝑥∗
3 = 𝜔

𝛼𝜅
(𝑅0 − 1) (30)

Now using (28) and (30) we get 𝑥∗
2,

𝑥∗
2 = 𝜔𝜇2(𝑅0 − 1)

𝛼𝜅𝜀
(31)

Substituting (29) and (30) in (27) we get 𝑥∗
3

𝑥∗
3 = (𝑅0 − 1)(𝜂𝜀 + 𝜌𝜇2)

𝛼𝜅𝜀
(32)

If 𝑅0 < 1, the infection should reduced, while if 𝑅0 > 1, the infection should settle itself [13].

3.2 | Positivity of Solution
The covid model will be essential epidemiological if the model system’s solution has a non-negative I.C(initial
condition) that will stay positive for all 𝑡 > 0 [14].
Theorem:
∀ 𝑡 > 0 and I.Cs (initial conditions) 𝑃(0) ≥ 0 where 𝑃(𝑡) = (𝑥1, 𝑥2, 𝑥3, 𝑥4) the solution of the model equations
are positive for all 𝑡 > 0.
Proof:
Consider the system’s initial equation,

𝑑𝑥1
𝑑𝑡

= 𝜔𝑁 − 𝛼𝜅𝑥1𝑥3
𝑁

− 𝜔𝑥1

𝑑𝑥1
𝑑𝑡

= −𝛼𝜅𝑥1𝑥3
𝑁

− 𝜔𝑥1 + 𝜔𝑁

Now letting 𝜆1(𝑡) = 𝛼𝜅𝑥3
𝑁 and 𝜆2(𝑡) = 𝜔𝑁, the equation becomes,

𝑑𝑥1
𝑑𝑡

= −𝜆1(𝑡)𝑥1 − 𝜔𝑥1 + 𝜆2(𝑡)

𝑑𝑥1
𝑑𝑡

= 𝜆2(𝑡) − (𝜆1(𝑡) + 𝜔)𝑥1
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When we use integration to solve the aforementioned problem on both sides, it yields

𝑑
𝑑𝑡

[𝑥1(𝑡)𝑒𝑥𝑝{𝑑𝑡 + ∫
𝑡

0
𝜆2(𝑥1) 𝑑𝑥1}] = 𝜆2(𝑡)𝑒𝑥𝑝{𝜔𝑡 + ∫

𝑡

0
𝜆1(𝑥1) 𝑑𝑥1}

Hence,

[𝑥1(𝑡1)𝑒𝑥𝑝{𝑑𝑡 + ∫
𝑡1

0
𝜆2(𝑥1) 𝑑𝑥1} − 𝑥1(0)] = ∫

𝑡1

0
𝜆2𝑒𝑥𝑝{𝜔𝑥1 + ∫

𝑥1

0
𝜆1(𝑥1) 𝑑𝑥1}𝑑𝑥1

Thus, the solution of the above equation is
𝑥1(𝑡1) = 𝑥1(0)𝑒𝑥𝑝{−(𝑑(𝑡1) + ∫𝑡1

0
𝜆2(𝑥1) 𝑑𝑥1)} + 𝑒𝑥𝑝{−(𝑑(𝑡1) + ∫𝑡1

0
𝜆2(𝑥1) 𝑑𝑥1)} ∗ ∫𝑡1

0
𝜆2(𝑡)𝑒𝑥𝑝{𝜔𝑥1 +

∫𝑥1

0
𝜆1(𝑥1) 𝑑𝑥1}𝑑𝑥1 > 0

Similarly it can be shown that the equation (𝑥2, 𝑥3, 𝑥4) are positive for 𝑃 > 0 and ∀ 𝑡 > 0

Figure 2. COVID-19 cases

4 | Numerical estimation of Parameters

The estimated values of the parameters are calculated in this model to aid with predictions. We used the World
Health Organization (WHO) to make our approximations for COVID-19 modeling. Our model focuses on France
country as shown in figure 2. All the estimated parametric values are listed in the table [15].

4.1 | Estimation of 𝛼
𝛼 ≈ 0.27926 according to the WHO (World Health Organization) 27926 out of 100,000 people have been infected
in France with COVID-19.

4.2 | Estimation of 𝜂
𝜂 ≈ 0.005 is calculated by using WHO (World Health Organization) and some resources statistics that in serious
cases, to recover from COVID-19 disease it takes fourteen to forty-two days. But, each person’s risk of death
from the covid virus will vary relying on their age, even if they have a basic health condition and even if they
are vaccinated. whilst individuals who are vaccinated can still get infected, these “breakthrough” instances are
unique, and vaccines badly lessen intense contamination and loss of life.



SEIR Mathematical Model of COVID-19 Epidemic Transmission in France 81

Figure 3. Susceptibility of COVID-19

Figure 4. Exposed class of COVID-19

4.3 | Estimation of 𝜀
𝜀 ≈ 0.3165682 is calculated by using the probable cases statistic of WHO (World Health Organization) and some
other resources. For a monthly rate, divide the 37,988,187 cases per 100,000,000 by 12.

4.4 | Estimation of 𝜌
𝜌 ≈ 0.039661667 is estimated by using the statistic of WHO (World Health Organization) and some other
resources. We will split the projected number of suspected cases in France by the estimated number of known
infected cases in France before multiplying it by 100,000. This was also divided by 12 to get the rate per month.
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Figure 5. I(t) with different Social factors of COVID-19

4.5 | Estimation of 𝜅
𝜅 is the estimation between 0 to 1. It is recommended by WHO (World Health Organization) center not to
stay close to individuals who are suffering from COVID-19 disease excluding those individuals who are fully
immunized or who have had COVID-19 illness during the past three months. Figure 5 illustrates the significant
difference that societal factors have on the spread of the COVID-19 disease. We use 𝜅 = 0.2, 𝜅 = 0.4, and
𝜅 = 0.6 to see the difference in the transmission of COVID-19 disease.

4.6 | Estimation of 𝜔
𝜔 is calculated by using the natural death statistic of WHO (World Health Organization) in France (157,364)
divided by the population of France (65.6 million). This gave us a natural death rate [16].

Figure 6. Removed class of COVID-19
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Figure 7. Recovered Real Data Graph for COVID-19

5 | Discussion

The perfect state of affairs is to maintain contamination of COVID-19 disease to a minimum and to try this we
have to begin applying the following protocols [17].

Figure 8. Exposed Infected Recovery of COVID-19

• Reduce the transmission rate (𝛼 < 0.27926 ) from the susceptible individuals to the individuals that are
exposed.

• Reduce the transmission rate of the exposed individuals (𝜀 < 0.3165682) of the susceptible individuals.
This will be achieved by way of making sure that infected individuals stay apart for a prolonged time
from other individuals and remain in at-ease zones.

• Minimize the exposure to COVID-19 disease from the susceptible individuals over societal factors (𝜅).

• Raise useful resources for checking out COVID-19 disease to possibly (𝜌) infectives to lower exposure
rate of unknown touch with COVID-19.
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• Raise transmission rate of recovery (𝜂). This approach entails actual obligations and visits to clinical
experts for a proper prognosis.

Figure 9. Infected Real Data Graph for COVID-19

Figure 10. Death Real Data Graph for COVID-19

6 | Conclusion

The main task of this study was to understand, evaluate, analyze, and find the results of the epidemiological
models. In this research study, the differential model of COVID-19 was constructed.
The stability analysis was done by applying the linearizing method and the positivity of the solution was proved.
The model equations were solved numerically. The Runge-Kutta (RK4) method was employed to acquire the
numerical solutions.
Moreover, the parametric study of coronavirus cases was performed. Coronavirus broadly depends on the infected
individuals which have the ability to infect healthy populations immediately. Moreover, synchronization between
the simulated outcomes/results and the real-time data of coronavirus cases verified the exactness of the model
formulation. These findings support the assertion that the SEIR differential model can be utilized to study the
spread of coronavirus disease. [18].
The Runge-Kutta (RK4) technique was practiced to obtain numerical results. The model is solved by applying
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ode45 (Runge-Kutta of order four) in MATLAB. It is concluded from the results that The COVID-19 Pandemic’s
spread can be assessed using the differential order SEIR model.
This research study is an effort to bring aspects of infectious harmful diseases, particularly COVID-19, and try
to enhance human health. Differential models are important to analyze the communication of diseases. The
models play a vital role in studying the aspects to detach communicable diseases like COVID-19.
Valuable observation has been reaped through the evaluation of main aspects which include the simple reproductive
number 𝑅0, which suggests under which conditions a deadly disease of infection will appear in the population
at threat. When 𝑅0 < 1, The model system is designated as the disease-free state of equilibrium because it is
locally asymptotically stable. Our analysis of 𝑅0 reveals that the parameter 𝜅, which measures an individual’s
rate of socializing, holds the key to reducing infection. The number of COVID-19-infected cases in France will
decline when these parameters are reduced in rate.[19].
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