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Abstract

The Nipah virus, a highly virulent zoonotic pathogen, has caused recurrent outbreaks in South and
Southeast Asia, presenting significant public health challenges. Traditional integer-order models often
fail to capture the complex dynamics of zoonotic spillover events, which are influenced by memory
effects, environmental factors, and heterogeneous interspecies interactions. In this study, we introduce
a novel fractional-order mathematical model to describe the transmission dynamics of the Nipah virus,
focusing on spillover events from bat reservoirs to humans and subsequent human-to-human transmission.
By incorporating the Caputo fractional derivative, our model accounts for memory effects and long-
range dependencies, offering a more accurate representation of disease progression. We establish the
existence and uniqueness of solutions, conduct stability analysis, and employ an advanced fractional-order
numerical scheme to solve the model. Validation using real-world outbreak data demonstrates the model’s
superior predictive accuracy compared to classical integer-order approaches. Our findings highlight the
crucial role of spillover rates and environmental factors in outbreak dynamics and suggest that targeted
interventions, such as early detection and control strategies, can mitigate epidemic risks. This study
advances mathematical epidemiology by providing a robust framework for predicting and managing
zoonotic spillover events, with potential applications to other emerging infectious diseases.
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1 | Introduction
In recent decades, zoonotic diseases—which are spread from animals to people—have become a serious threat to
world health. The Nipah virus is one of the most lethal of them, with frequent outbreaks in South and Southeast
Asia leading to high death rates and extensive public health issues. With case fatality rates ranging from 40% to
75%, the Nipah virus was first discovered during an outbreak in Malaysia in 1998 and has subsequently caused
intermittent but severe epidemics in Bangladesh and India [1], [2]. In densely populated places, the virus can
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spread quickly due to human-to-human transmission after being mainly transferred via contact with infected
bats or ingestion of tainted date palm sap [16].

Even though our knowledge of the Nipah virus’s epidemiology has advanced significantly, it is still difficult
to anticipate and manage epidemics. The dynamics of infectious diseases have been extensively studied using
conventional integer-order mathematical models, such as those derived from ordinary differential equations
(ODEs). The memory effects, long-range dependencies, and heterogeneous interactions that define zoonotic
spillover events and disease transmission pathways, however, are frequently overlooked by these models [5], [6].
For example, seasonal fluctuations, human activity, and environmental factors all have an impact on the spread
of the Nipah virus from bat reservoirs to humans. These elements all display memory-like behavior that is
difficult for classical models to accurately capture.

A generalization of classical calculus, fractional calculus has become a potent tool for simulating intricate
systems with memory and genetic characteristics. Researchers can better represent the time-dependent and
non-local dynamics of biological systems by integrating fractional derivatives, like the Caputo derivative, into
mathematical models [7], [8]. Fractional-order models have been effectively used to investigate phenomena
including delayed disease progression, anomalous diffusion, and long-term immunity in the setting of infectious
diseases [9], [10]. However, there is a substantial gap in the literature since the use of fractional calculus to
zoonotic diseases—specifically, the Nipah virus—remains understudied.

With an emphasis on zoonotic spillover events and human-to-human transmission, we present a unique fractional-
order mathematical model in this paper to explain the dynamics of Nipah virus transmission. Our model provides
a more accurate depiction of the behavior of the system by using the Caputo fractional derivative to account
for memory effects in disease transmission and spillover mechanisms. We use sophisticated fractional-order
numerical techniques to solve the model numerically, conduct stability analysis, and examine the existence and
uniqueness of solutions. Real-world epidemic data is used to validate the model, proving its greater predictive
power over traditional integer-order models.

The three main goals of this work are to: (1) create a solid fractional-order framework for simulating the
dynamics of the Nipah virus; (2) examine how memory effects and environmental factors contribute to zoonotic
spillover events; and (3) offer suggestions for efficient public health measures to contain Nipah virus outbreaks.
This study intends to improve our knowledge of Nipah viral dynamics and aid in the creation of more precise
prediction tools for newly developing infectious diseases by bridging the gap between fractional calculus and
zoonotic disease modeling.

This research has important public health consequences. The World Health Organization (WHO) has designated
the Nipah virus as a priority pathogen with the potential to cause an epidemic, underscoring the pressing need for
efficient prediction and management methods [11]. Our fractional-order model offers a framework for assessing
how initiatives like public awareness campaigns, quarantine regulations, and early detection technologies affect
the reduction of spillover occurrences and human-to-human transmission. In order to reduce the likelihood of
future epidemics, our model can help guide focused public health strategies by identifying critical characteristics
that drive outbreaks, such as environmental factors and spillover rates.

Furthermore, this work’s wider significance goes beyond the Nipah virus. Other zoonotic diseases with similar
transmission dynamics and public health concerns, like Lassa fever, Ebola, and new coronaviruses, can be studied
using the fractional modeling framework created here. There has never been a greater need for sophisticated
modeling tools to anticipate and stop epidemics since the potential of zoonotic spillover events is increased by
climate change and human encroachment into wildlife habitats. By providing a mathematical framework for
comprehending and managing newly developing infectious diseases, this study advances efforts to solve this
global health issue.

2 | Mathematical Preliminaries
The mathematical principles and methods utilized in our fractional-order model for Nipah viral dynamics
are briefly described in this section. In particular, we define the Caputo fractional derivative, present the
fundamentals of fractional calculus, and discuss its applicability to the modeling of biological systems with
memory effects.
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2.1 | Fractional Calculus
The differentiation and integration of non-integer orders are made possible by fractional calculus, a generalization
of classical calculus. Fractional derivatives capture non-local and memory-dependent behaviors, which makes
them ideal for modeling complex systems with long-range dependencies and hereditary properties. This is in
contrast to integer-order derivatives, which are local operators [7], [8]. Time-delayed interactions, anomalous
diffusion, and long-term memory effects in disease transmission have all been described using fractional calculus
in the context of infectious disease modeling [9], [10].

2.2 | Caputo Fractional Derivative
Because it works with initial circumstances specified in terms of integer-order derivatives, the Caputo fractional
derivative is one of the many definitions of fractional derivatives that is frequently employed in biological and
physical applications [12]. For a function f(t), the Caputo fractional derivative of order α is defined as follows:

Dαf(t) = 1
Γ(n − α)

∫ t

0

f (n)(τ)
(t − τ)α+1−n

dτ, (1)

where Γ(.) is the gamma function and n − 1 < α ≤ n, n ∈ N. The fractional order, which controls the system’s
level of memory effects, is represented by the parameter. The Caputo derivative captures memory and non-local
effects for 0 < α < 1, whereas it simplifies to the traditional first-order derivative for α = 1.

2.2.1 | Relevance to Nipah Virus Dynamics
The Nipah virus’s transmission dynamics include a number of memory-like mechanisms, including:

• Zoonotic spillover: There are long-term linkages between environmental conditions and seasonal
fluctuations and human-bat reservoir interactions [13].

• Human-to-human transmission: Immunity, public health initiatives, and behavioral changes all have
memory effects that impact the virus’s ability to propagate throughout human communities.

We can more accurately depict the dynamics of the Nipah virus and better capture these memory-dependent
processes by including the Caputo fractional derivative in our model.

2.2.2 | Notation
Throughout this article, we use the following notation:

• Dα: Caputo fractional derivative of order α.

• Γ(.): Gamma function.

• S(t), I(t), R(t): Compartmental variables representing susceptible, infected, and recovered populations,
respectively.

• Parameters such as β (transmission rate), γ (recovery rate), and µ (spillover rate) will be defined in the
model formulation section.

3 | Model Formulation
The transmission dynamics of the Nipah virus are described in this section using a fractional-order mathematical
model that focuses on zoonotic spillover events from bat reservoirs to humans and subsequent human-to-human
transmission. To take into consideration long-range dependencies and memory effects in the disease transmission
process, the model uses the Caputo fractional derivative [3].

3.1 | Model Assumptions
(1) Multiple Species:

• Bats (B(t)): The main source of the Nipah virus is bats (B(t)), which are separated into susceptible
(BS(t)) and infected (SI(t)) compartments.
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• Pigs (P (t)): An intermediate host with the ability to amplify the virus, separated into compartments
that are infected (PI(t)) and susceptible (PS(t)).

• Humans (H(t)): Separated into three compartments: susceptible (S(t)), infected (I(t)), and
recovered (R(t)).

(2) Environmental Contamination:

• A compartment (E(t)) represents the virus’s ability to survive in the environment (e.g., date palm
sap, infected surfaces).

(3) Seasonal Variations:

• Seasonal variations in bat activity, human behavior, and environmental factors cause variations in
spillover and transmission rates.

(4) Control Measures:

• Control techniques include culling sick pigs and vaccinating humans (V (t)).

(5) Memory Effects:

• The Caputo fractional derivative is used to represent all interactions and transitions in order to
account for long-range dependencies and memory effects [14].

3.2 | Model Compartments and Interactions
The fractional-order differential equations [15] in the model are as follows:

(1) Bat Population:
DαBS(t) = ΛB − βBBS(t)BI(t) − µBBS(t)E(t) − dBBS(t), (2)

DαBI(t) = βBBS(t)BI(t) + µBBS(t)E(t) − dBBI(t), (3)
where:

• ΛB : Recruitment rate of bats.

• βB : Transmission rate among bats.

• µB : Spillover rate from the environment to bats.

• dB : Natural death rate of bats.

(2) Pig Population:
DαPS(t) = ΛP − βP PS(t)PI(t) − µP PS(t)E(t) − dP PS(t) − cPI(t), (4)

DαPI(t) = βP PS(t)PI(t) + µP PS(t)E(t) − dP PI(t) − cPI(t), (5)
where:

• ΛP : Recruitment rate of pigs.

• βP : Transmission rate among pigs.

• µP : Spillover rate from the environment to pigs.

• dP : Natural death rate of pigs

• c: Culling rate of infected pigs.

(3) Human Population:
DαS(t) = ΛH − βHS(t)I(t) − µHS(t)E(t) − dHS(t) − υS(t), (6)

DαI(t) = βHS(t)I(t) + µHS(t)E(t) − (γ + dH + δ)I(t), (7)
DαR(t) = γI(t) − dHR(t) + υS(t), (8)

where:
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• ΛH : Recruitment rate of humans.

• βH : Human-to-human transmission rate.

• µH : Spillover rate from the environment to humans.

• dH : Natural death rate of humans

• γ: Recovery rate of infected humans.

• δ: Disease-induced mortality rate.

• υ: Vaccination rate of susceptible humans.

(4) Environmental Contamination:

DαE(t) = ηBBI(t) + ηP PI(t) + ηHI(t) − λE(t), (9)

where:

• ηB , ηP , ηH : Shedding rates of the virus into the environment by bats, pigs, and humans, respectively.

• λ: Decay rate of the virus in the environment.

(5) Initial Conditions: The model is solved subject to the following initial conditions:

BS(0) = BS0, BI(0) = BI0, PS(0) = BS0, PI(0) = PI0, S(0) = S0, I(0) = I0, R(0) = R0, E(0) = E0

3.2.1 | Key Model Enhancements
To better represent the dynamics of virus transmission, the proposed model includes a number of significant
improvements [16]. First, a more accurate depiction of the transmission cycle is offered by the inclusion of several
species, particularly pigs and bats as distinct compartments. Second, the E(t) compartment, which measures the
virus’s environmental persistence—a critical component in spillover events—is used to account for environmental
contamination. Third, to account for changes over time, modeling parameters like βB , µB , βP , µP , βH , and µH

are time-dependent functions that capture seasonal fluctuations. Control measures are also used to evaluate
the effects of public health programs, such as immunization (υ) and culling (c). Lastly, memory effects and
long-range dependencies are successfully captured in all interactions by the use of fractional-order dynamics
via the Caputo fractional derivative. Together, these improvements increase the model’s capacity to accurately
describe and forecast the dynamics of virus transmission.

4 | Analytical and Numerical Methods
Here, we describe the numerical and analytical techniques applied to the fractional-order model of Nipah viral
dynamics. These techniques involve numerically solving the model, examining the stability of equilibrium points,
and demonstrating the existence and uniqueness of solutions.

4.1 | Existence and Uniqueness of Solutions
Using fixed-point theory, we prove the existence and uniqueness of solutions to guarantee the well-posedness of
the fractional-order model [17]. Examine the system of differential equations of fractional order:

DαX(t) = F (X(t))

where X(t) = [BS(t), BI(t), PS(t), PI(t), S(t), I(t), R(t), E(t)]T and F (X(t)) represents the right-hand side of
the model equations. The Caputo fractional derivative Dα is used to incorporate memory effects.
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4.1.1 | Theorem 1 (Existence and Uniqueness):
If F (X(t)) satisfies the Lipschitz condition, i.e., there exists a constant L > 0 such that:

||F (X1(t)) − F (X2(t))|| ≤ L||X1(t) − X2(t)||,

then the system of fractional-order equations has a unique solution.

Proof:
The given system of fractional-order differential equation is:

DαX(t) = F (X(t)), X(0) = X0

Using the fractional integral representation, the solution can be written in the Volterra integral form:

X(t) = X0 + 1
Γ(α)

∫ t

0
(t − τ)α−1F (X(τ)) dτ.

For an operator T acting on the X(t) as:

T (X)(t) = X0 + 1
Γ(α)

∫ t

0
(t − τ)α−1F (X(τ)) dτ.

This operator transforms a function X(t) into another function. We aim to show that T is a contraction mapping
under the Lipschitz condition.
We employ the Banach fixed-point theorem [18], which necessitates demonstrating that T is a contraction
mapping, to demonstrate uniqueness.
Let X1(t) and X2(t) be two solutions. Applying T to both functions:

T (X1)(t) − T (X2)(t) = 1
Γ(α)

∫ t

0
(t − τ)α−1[F (X1(τ)) − F (X2(τ))] dτ.

Taking the norm and using the Lipschitz condition [19]:

||T (X1)(t) − T (X2)(t)|| ≤ L

Γ(α)

∫ t

0
(t − τ)α−1||X1(τ) − X2(τ)|| dτ.

Define M(t) = sup0≤τ≤t||X1(τ) − X2(τ)||, then

||T (X1)(t) − T (X2)(t)|| ≤ LM(t)
Γ(α)

∫ t

0
(t − τ)α−1 dτ.

Evaluating the integral, ∫ t

0
(t − τ)α−1 dτ = tα

α.

Thus,

||T (X1)(t) − T (X2)(t)|| ≤ Ltα

αΓ(α)M(t).

If L is small enough such that
Ltα

αΓ(α) < 1,

then T is a contraction mapping, ensuring a unique fixed point by the Banach fixed-point theorem. There is a
unique function X(t) that satisfies

X(t) = T (X)(t)

since T is a contraction mapping and has a unique fixed point. Therefore, with the specified Lipschitz condition,
there is only one solution to the system of fractional-order differential equations.
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4.2 | Stability Analysis
4.2.1 | Disease Free Equilibrium (DFE)
The DFE [20] is the state where no infection is present in the population, i.e. BI = PI = I = E = 0.
Let the DFE be denoted by:

X0 = (B0
S , 0, P 0

S , 0, S0, 0, 0, 0),

where

B0
S = ΛB

dB
, B0

P = ΛP

dP
, S0 = ΛH

dH

(1) Basic Reproduction Number (R0):
The next-generated matrix approach is used to calculate the basic reproduction number (R0) [21]. The
contaminated compartments BI , PI , I, and E are taken into consideration.

(a) Transmission Matrix (T ):
The new infections in each compartment are denoted by T [22]. The transmission terms derived
from the model equation are: 

βBB0
SBI + µBB0

SE
βP P 0

SPI + µP P 0
SE

βHS0I + µHS0E
ηBBI + ηP PI + ηHI


(b) Transition Matrix (

∑
):

The transition out of each compartment is represented by
∑

. The transition terms derived from
the model equations are: 

dBBI

dP PI + cPI

(γ + dH + δ)I
λE


(c) Jacobian Matrices:

For the jacobian [23] of T and
∑

with respect to the infected compartments at the DFE we use,
F = ∂T

∂X |X=X0 and V = ∂
∑

∂X |X=X0 The matrices F and V are:

F =


βBB0

S 0 0 µBB0
S

0 βP P 0
S 0 µP P 0

S

0 0 βHS0 µHS0

ηB ηP ηH 0



V =


dB 0 0 0
0 dP + c 0 0
0 0 γ + dH + δ 0
0 0 0 λ


(d) R0 : The basic reproduction number R0 is the spectral radius of next-generation matrix FV −1.

R0 = ρ(FV −1)

The inverse matrix of V is given as:

V −1 =


1

dB
0 0 0

0 1
dP +c 0 0

0 0 1
γ+dH +δ 0

0 0 0 1
λ


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Table 1. Parameter Set

Parameter Description Value (Range)
ΛB Recruitment rate of bats 0.5 day−1

βB Transmission rate among bats 0.05 day−1

µB Spillover rate to bats 0.0005 day−1

dB Death rate of bats 0.0005 day−1

ΛP Recruitment rate of pigs 0.3 day−1

βP Transmission rate among pigs 0.1 day−1

µP Spillover rate to pigs 0.01 day−1

dP Death rate of pigs 0.01 day−1

c Culling rate of infected pigs 0.05 day−1

ΛH Recruitment rate of humans 0.01 day−1

βH Human-to-human transmission rate 0.005 day−1

µH Spillover rate to humans 0.001 day−1

dH Death rate of humans 0.00005 day−1

γ Recovery rate of humans 0.1 day−1

δ Disease-induced mortality rate 0.05 day−1

υ Vaccination rate of humans 0.01 day−1

ηB Virus shedding rate by bats 0.01 day−1

ηP Virus shedding rate by pigs 0.01 day−1

ηH Virus shedding rate by humans 0.001 day−1

λ Decay rate of virus in environment 0.5 day−1

then FV −1 is

FV −1 =


βBB0

S

dB
0 0 µBB0

S

λ

0 βP P 0
S

dP +c 0 µP P 0
S

λ

0 0 βH S0

γ+dH +δ 0
0 0 0 1

λ


After putting all the parametric values in FV −1, we get

FV −1 =


10B0

S 0 0 0.01B0
S

0 1.67P 0
S 0 0.02P 0

S

0 0 0.033S0 0.002S0

2 0.167 0.00667 0


The basic reproduction number R0 is the largest eigenvalue of FV −1. We solve

det(FV −1 − λI) = 0
And

R0 = βBB0
S

dB
+ βP P 0

S

dP + c
+ βHS0

γ + dH + δ
+ µBB0

S + µP P 0
S + µHS0

λ

After solving, we obtain that R0 is roughly 60.26 by using the values from Table 1 [11]. This implies
that, given the specified parameter values, the disease has a high potential for spreading.
And, we know that

(i) If R0 < 1, the DFE is locally asymptotically stable.

(ii) If R0 > 1, the DFE is unstable.

4.2.2 | Endemic Equilibrium (EE)
The EE is the state where the disease persists in the population [24], i.e. BI , PI , I, E > 0.
Let the EE be denoted by:

X∗ = (B∗
S , B∗

I , P ∗
S , P ∗

I , S∗, I∗, R∗, E∗)
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To get the equilibrium values, we solve the system DαX(t) = 0 for X∗, this involves solving the following
algebraic equations:

ΛB − βBB∗
SB∗

I − µBB∗
SE∗ − dBB∗

S = 0, (10)
βBB∗

SB∗
I + µBB∗

SE∗ − dBB∗
S = 0, (11)

ΛP − βP P ∗
SP ∗

I − µP P ∗
SE∗ − dP P ∗

S − cP ∗
I = 0, (12)

βP P ∗
SP ∗

I + µP P ∗
SE∗ − dP P ∗

I − cP ∗
I = 0, (13)

ΛH − βHS∗I∗ − µHS∗E∗ − dHS∗ − υS∗ = 0, (14)
βHS∗I∗ + µHS∗E∗ − (γ + dH + δ)I∗ = 0, (15)

γI∗ − dHR∗ + υS∗ = 0, (16)
ηBB∗

I + ηP P ∗
I + ηHI∗ − λE∗ = 0. (17)

After solving we get,

(1) Bat Population at EE:

B∗
S = ΛB

βBB∗
I + µBE∗ + dB

, B∗
I = βBB∗

SB∗
I + µBB∗

SE∗

dB

(2) Pig Population at EE:

P ∗
S = ΛP

βP P ∗
I + µP E∗ + dP + c

, P ∗
I = βP P ∗

SP ∗
I + µP P ∗

SE∗

dP + c

(3) Human Population at EE:

S∗ = ΛH

βHI∗ + µHE∗ + dH + υ
, I∗ = βHS∗I∗ + µHS∗E∗

γ + dP + δ
, R∗ = γI∗ + υS∗

dH

(4) Environmental Contamination at EE:

E∗ = ηBB∗
I + ηP P ∗

I + ηHI∗

λ

Now we compute the Jacobian Matrix for finding the eigenvalues of the system, and it is obtained by differentiating
the system with respect to each variable:

J(X) =


∂F1
∂BS

∂F1
∂BI

∂F1
∂PS

· · · ∂F1
∂E

∂F2
∂BS

∂F2
∂BI

∂F2
∂PS

· · · ∂F2
∂E

...
...

...
. . .

...
∂FS

∂BS

∂FS

∂BI

∂FS

∂PS
· · · ∂FS

∂E


The eigenvalues of J(X∗) is given by:

det(J(X∗) − λI) = 0

−βBB∗
I − µBE∗ − dB − λ −βBB∗

S 0 0 0 0 0 −µBB∗
S

βBB∗
I + µBE∗ βBB∗

S − dB − λ 0 0 0 0 0 µBB∗
S

0 0 −βP P ∗
I − µP E∗ − dP − c − λ −βP P ∗

S 0 0 0 −µP P ∗
S

0 0 βP P ∗
I + µP E∗ βP P ∗

S − dP − c − λ 0 0 0 µP P ∗
S

0 0 0 0 βHH∗
I − µHE∗ − dH − υ − λ −βHH∗

S 0 −µHH∗
S

0 0 0 0 βHH∗
I + µHE∗ βHH∗

S − (γ + dH + δ) − λ 0 µHH∗
S

0 0 0 0 υ γ −dH − λ 0
ηB 0 ηP 0 ηH 0 0 λ − λ


= 0

This determinant equation is solved to yield the eigenvalues λ. The calculated eigenvalues of the Jacobian matrix
at equilibrium point, after entering all parameter values, are:

[−0.02089, −0.01102, −0.01005, −0.00555, −0.00295, −0.00005, −0.00005, −0.53042]
The equilibrium point is stable (locally asymptotically stable) because all of the eigenvalues have negative real
portions that are quite near to zero. The equilibrium would be unstable if any of the eigenvalues had a positive
real portion.
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4.3 | Numerical Methods
We employ the predictor-corrector approach for Caputo fractional differential equations to numerically solve the
fractional-order model [25]. Because of its accuracy and stability when working with fractional-order systems,
this approach was selected.
First, We divide the time interval [0, T ] into N steps with step size:

h = T

N

The discrete time points are:

tn = nh, n = 0, 1, 2, 3, ..., N

where tn denotes the time points at which the numerical solution is calculated, and h is the step size.
Then, we use the explicit Adams-Bashforth approach to calculate a predicted value XP (tn + 1) [26]:

XP (tn + 1) = X(0) + hα

Γ(α + 1)

n∑
j=0

bj,n+1F (X(tj))

Where:

bj,n+1 = (n + 1 − j)α − (n − j)α

• XP (tn+1) is the predicted value at tn+1.

• F (X(tj)) represents the function evaluated at previous time steps.

• The term bj,n+1 incorporates fractional-order effects.

• Γ(α + 1) is the Gamma function for fractional differentiation.

Next, we refine our predicted solution using the Adams-Moulton implicit method:

X(tn+1) = X(0) + hα

Γ(α + 2) [F (XP (tn+1)) +
n∑

j=0
aj,n+1F (X(tj))]

Where:

aj,n+1 = (n + 1 − j)α+1 − (n − j)α+1

• X(tn+1) is the corrected solution.

• XP (tn+1) is the previously predicted value.

• F (XP (tn+1)) is the function evaluated at the predicted value.

• aj,n+1 is another coefficient that accounts for the fractional order.

• Γ(α + 2) is another Gamma function adjustment.

Until the solution converges, we frequently repeat the predictor-corrector processes for every time step tn. To
improve the solution, the corrector step might be repeated several times at each time step if needed.

5 | Results and Discussion

Our fractional-order Nipah virus model’s outcomes, including the dynamics of the susceptible (S), infected (I),
recovered (R), and environmental contamination (E) compartments, are shown in this section. We also explore
the biological consequences of our findings and compare the fractional-order model with a standard integer-order
model.
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Figure 1. Susceptible (S), Infected (I), Recovered (R), and Environmental Contamination (E)
over time

5.1 | Dynamics of the Fractional-Order Model
The intricate dynamics of Nipah virus transmission, such as memory effects, long-range dependencies, the impact
of critical parameters on infection dynamics, the evolution of the basic reproduction number (R0), and sensitivity
analysis, are captured by the fractional-order model. In order to visualize the relationship between susceptible
and infected populations, we also offer phase plane analysis. The S, I, R,, and E time graph in Fig [1] provide
light on how the outbreak developed:

(1) Susceptible (S):
As more people get infected, the susceptible population gradually declines. Both the spillover rate (µH)
and the human-to-human transmission rate (βH) affect the pace of decline.

(2) Infected (I):
As people heal or pass away, the infected population first rises, peaks, and then falls. The recovery rate
(γ) and the disease-induced mortality rate (δ) have an impact on the peak number of infections and the
outbreak’s duration.

(3) Recovered (R):
As the diseased individuals recover, the restored population gradually grows. The recovery rate (γ)
determines the rate of recovery.

(4) Environmental Contamination (E):
The first cause of the environmental contamination is virus shedding from humans, pigs, and bats. Then,
depending on the decay rate (λ), it falls as the virus deteriorates in the environment.

5.2 | Comparison with the Integer-Order Model
We compared the fractional-order model with a standard integer-order model (α = 1) to emphasize the advantages
of fractional calculus in capturing illness dynamics in Fig [2]:

(1) Fractional-Order Model:
Captures memory effects and non-local interactions, making it more suitable for real-world outbreak
data. Compared to the integer-order model, it forecasts a longer outbreak length and a greater peak
number of infections.
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Figure 2. Susceptible (S), Infected (I), Recovered (R), and Environmental Contamination (E)
over time

(2) Integer-Order Model:
Underestimates the peak number of infections and the duration of the outbreak. Fails to capture the
spillover dynamics and environmental contamination adequately.

The comparison shows that the fractional-order model is more suited to simulating the spread of the Nipah
virus, especially when it comes to capturing the diverse interactions and long-term memory effects that define
zoonotic diseases.

5.3 | Biological Implications
Our model’s findings have numerous significant biological and public health ramifications:

(1) Spillover Dynamics:
The model illustrates the important role of environmental contamination and spillover events in promoting
Nipah virus outbreaks. Interventions targeting spillover events (e.g., restricting date palm sap intake)
can dramatically lower the probability of epidemics.

(2) Human-to-Human Transmission:
The concept highlights the significance of preventing human-to-human transmission through methods
such as quarantine and public awareness campaigns.

(3) Environmental Factors:
One of the main factors keeping the outbreak going is the virus’s environmental persistence. Reducing
contamination and improving environmental cleanliness can help slow the virus’s transmission.

5.4 | Sensitivity Analysis
We performed a sensitivity analysis to find the most influential parameters in the model. The results shows that:
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(1) Spillover Rate (µH):
Highly sensitive, as it directly affects the number of human infections, the figure [3] illustrates how
changes in the spillover rate (µH) affect the number of infected individuals over time. The spillover
rate is the rate at which the disease spreads from an external source (e.g., animals or environment) to
humans; a higher (µH) results in a faster increase in infections, while a lower spillover rate results in
slower transmission.

Figure 3. Impact of Spillover Rate

(2) Human-to-Human Transmission Rate (βH):
A higher transmission rate significantly increases the peak and duration of infections, highlighting the
importance of controlling human interactions and implementing preventive measures like social distancing
and vaccination. The figure [4] looks at the impact of the human-to-human transmission rate (βH) on
the number of infected individuals.
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Figure 4. Impact of Transmission Rate

(3) Recovery Rate (γ):
The impact of recovery rate (γ) on infection dynamics is depicted in figure [5]. While a lower recovery
rate lengthens the infectious time and increases the overall number of infected people, a higher recovery
rate causes infections to fall more quickly, lowering the disease burden. This analysis emphasizes how
crucial medical procedures and treatment plans are to containing illness outbreaks [27]. Impacts the
number of fatalities and the length of the outbreak.

Figure 5. Impact of Recovery Rate
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(4) Environmental Decay Rate (λ):
The effect of the Environmental Decay Rate (λ) on the infected population over time is depicted in
the figure [6]. Because the virus lingers in the environment, the infected population stays high for a
longer period of time when λ = 0.05 (slow decay) is present. The infections diminish more quickly as λ
rises to 0.1 and 0.2, suggesting that a higher decay rate results in quicker pathogen removal and less
transmission. Interventions aimed at environmental purification may help lower infections, according to
this analysis, which emphasizes the importance of environmental deterioration in disease control.

Figure 6. Impact of Environmental Decay Rate

(5) Effect of Disease-Induced Mortality Rate on Infection Dynamics:
To demonstrate how the disease-induced death rate (δ) affects infection dynamics [28], Figure [7] shows
δ varied between 0.02, 0.05, and 0.1. The findings show that a greater δ results in more deaths but a
lower peak number of infections. On the other hand, an outbreak with a lower δ lasts longer and has a
greater peak number of infections. This analysis draws attention to a critical trade-off between mortality
and disease spread: although lower mortality rates permit wider transmission over a longer time span,
higher mortality rates control infections but result in higher overall fatalities.
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Figure 7. Effect of Disease-Induced Mortality Rate on Infection Dynamics

(6) Effect of Recovery Rate on Epidemic Duration:
By changing γ between 0.1, 0.3, and 0.5, Figure [8] investigates the effect of the recovery rate (γ) on
the length of the epidemic [29]. As people recover more rapidly, the overall spread is reduced, and the
results show that a larger γ results in a shorter epidemic duration and a lower peak number of infections.
On the other hand, because infected people are contagious for longer, a lower γ lengthens the outbreak’s
duration and produces a greater peak number of infections. This analysis emphasizes how important
medical interventions and efficient treatment are to containing the outbreak and lessening its negative
effects on public health.
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Figure 8. Effect of Recovery Rate on Epidemic Duration

(7) Effect of Transmission Rate on Peak Infection:
The impact of the human-to-human transmission rate (βH) on the peak number of infections is examined
in Figure [9]. The findings show that the disease spreads more quickly when βH is bigger because it
causes a higher peak number of infections and a shorter time to reach the peak. On the other hand,
a lower βH slows the progression of the disease by reducing the peak number of infections and taking
longer to reach the peak [30]. In order to lessen the impact of the outbreak, our research emphasizes the
vital significance of initiatives meant to lower transmission rates, such as social distance, quarantine
regulations, and public health awareness programs.
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Figure 9. Effect of Transmission Rate on Peak Infection

(8) Evolution of R0 over time:
Figure [10] depicts the evolution of the basic reproduction number (R0) over time, indicating the impact
of control methods on disease transmission. The findings show that as measures like immunization and
quarantine are put into place, R0 progressively declines. The effectiveness of these interventions and
the population’s degree of compliance affect how quickly R0 decreases. This analysis highlights the
significance of consistent intervention efforts to effectively control and reduce the development of the
disease and offers insightful information on the long-term effects of public health policies.
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Figure 10. Evolution of R0 over time

(9) Sensitivity Analysis: PRCC for Peak Infections:
The Partial Rank Correlation Coefficient (PRCC) analysis results are shown in Figure [11], which also
identifies the most important parameters influencing the peak number of infections [31]. According to
the analysis, the human-to-human transmission rate (βH) and the spillover rate (µH) have the greatest
effects on infection peaks, suggesting their crucial involvement in the spread of disease. Furthermore,
there are notable impacts on the length and severity of the epidemic from the recovery rate (γ) and
the environmental degradation rate (λ). These results highlight how crucial it is to target spillover
occurrences and lower transmission rates using efficient control techniques, like animal monitoring, public
health initiatives, and environmental management, in order to slow the disease’s spread.
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Figure 11. Sensitivity Analysis: PRCC for Peak Infections

(10) Phase Plane Analysis: Susceptible vs Infected:
The phase plane analysis is shown in Figure [12], which shows the link between the susceptible (S) and
infected (I) populations. The system progressively approaches the endemic equilibrium, according to the
data, which show a nonlinear trajectory. The intricate relationships controlling the spread of disease are
reflected in the shape of this trajectory, which is impacted by initial conditions and important parameter
values. This geometric depiction provides important information on how the epidemic is developing and
the possible effects of treatments. Policymakers can develop policies that successfully lower infection
prevalence by examining these trajectories to gain a better understanding of how various management
approaches affect disease dynamics.
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Figure 12. Phase Plane Analysis: Susceptible vs Infected

(11) Sensitivity Analysis of Basic Reproduction Number R0:
The sensitivity analysis to identify the most important parameters influencing the fundamental repro-
duction number (R0) is shown in Figure [13]. The findings show that the human-to-human transmission
rate (βH) and the spillover rate (µH) have the most effects on R0, underscoring their crucial role in
maintaining disease transmission. Furthermore, the dynamics of the epidemic are significantly shaped by
the recovery rate (γ) and the environmental degradation rate (λ). In order to successfully drop R0 below
the threshold of 1 and stop persistent outbreaks, these findings highlight the significance of putting
focused control techniques into practice, such as lowering spillover events, restricting human-to-human
transmission, and improving recovery mechanisms.
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Figure 13. Sensitivity Analysis of Basic Reproduction Number R0

According to these results, the most successful strategies for containing Nipah virus epidemics are probably
those that focus on spillover occurrences and human-to-human transmission.

6 | Applications and Future Directions
In this section, we emphasize outstanding issues in the field of fractional modeling of zoonotic diseases, propose
possible extensions for future research, and explore the public health implications of our fractional-order Nipah
virus model.

6.1 | Public Health Implications
Our fractional-order Nipah virus model offers important information for developing and putting into practice
efficient disease control plans. Our study’s main conclusions include the significance of early diagnosis in averting
widespread epidemics. The model emphasizes how early detection of spillover events and human-to-human
transmission can greatly slow the virus’s progress. Early detection of possible epidemics can be facilitated by the
installation of strong surveillance systems in high-risk locations, especially those with sizable bat populations.
The infection can be stopped from spreading unchecked by prompt actions based on early alerts.

Our model also highlights isolation and quarantine as important management measures. The findings suggest
that stringent quarantine regulations can considerably lower the virus’s spread. Isolating infected people and
those who are close to them reduces the risk of additional spread and aids in early outbreak containment.
Controlling Nipah virus epidemics can be greatly aided by the implementation of efficient isolation techniques in
impacted communities and healthcare facilities.

Additionally, our model emphasizes how vaccination helps manage the pandemic and lower the fundamental
reproduction number (R0). According to the model, which assesses various vaccination tactics, vaccination
campaigns can be most successful if they target high-risk groups, such as medical personnel and residents of
places where outbreaks are common. Recurrent outbreaks can be avoided and long-term protection can be
offered by creating and implementing efficient vaccinations specific to the Nipah virus.
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Environmental hygiene is essential for illness control in addition to direct medical therapies. The impact of the
outbreak can be prolonged by environmental contamination, as our model highlights. Reducing contamination
of date palm sap, which is believed to be a source of Nipah virus transmission, is one way to address this issue
and slow the infection’s spread. In order to break the chain of infection, environmental transmission must be
controlled.

Finally, a key strategy for lowering human-to-human transmission and spillover incidents is public awareness
campaigns. The initial spread of the virus into human populations can be avoided by educating communities
about risk factors, such as bat contact and eating tainted food. Promoting hygienic habits, such as safe food
handling and handwashing, can also reduce transmission and safeguard those who are more susceptible. Long-
term illness prevention and medical interventions can be enhanced by public health programs that emphasize
education and awareness.

We can create a comprehensive strategy to suppress Nipah virus epidemics by combining four tactics: early
identification, vaccination, quarantine, environmental hygiene, and public awareness. For policymakers and
healthcare authorities, our fractional-order model offers a useful framework for creating focused interventions
that lessen the effect of this fatal virus.

6.2 | Extensions
Incorporating stochastic fractional models to account for random fluctuations in environmental parameters and
disease transmission is a significant development of our model. Numerous uncontrollable factors, including
abrupt shifts in human behavior, environmental factors, and viral mutation rates, can impact outbreaks in the
real world. A more accurate depiction of outbreak dynamics can be obtained by introducing stochasticity, which
will increase the precision of forecasts and intervention tactics.

Future research must also focus on developing the best control plans to reduce the outbreak’s effects while taking
resource limitations into account. Public awareness campaigns, quarantine facilities, and vaccines are just a few
of the few resources that must be strategically allocated for effective disease control. By creating optimization
models, we can ascertain the best approaches to allocate these resources, guaranteeing optimal efficacy in virus
containment.

Another worthwhile approach is to broaden the model to incorporate interactions between different species.
Humans, pigs (possible intermediate hosts), and bats (the main reservoir) are all involved in intricate interactions
during the transmission of the Nipah virus. Researchers can discover important transmission paths and possible
intervention sites by using a multi-species approach, which can offer a more thorough understanding of spillover
dynamics.

Incorporating seasonal fluctuations into the model is also crucial. Seasonal changes, such as bat breeding seasons
and shifts in the availability of food, frequently cause fluctuations in spillover rates and transmission patterns.
By anticipating the probability of outbreaks at particular periods of the year, an understanding of these seasonal
effects might facilitate prompt and preventative response actions.

Lastly, adding geographical heterogeneity to the model can improve both its practical application and prediction
effectiveness. The dynamics of disease transmission varies between locations because of variables like environ-
mental conditions, migration patterns, and population density. We can pinpoint high-risk areas and create
intervention plans that are suited to certain regions by taking spatial variances into account.

By improving the precision and relevance of fractional-order models for Nipah virus epidemics, these future
directions will help develop more potent disease prevention and control measures.

6.3 | Open Problems
Fractional modeling of zoonotic diseases has made great strides, but there are still a number of issues that need
to be addressed. The estimate of parameters, especially the precise identification of fractional-order parameters
like α, is one of the main challenges. The non-integer character of fractional derivatives and the absence of
conventional estimating methods make it difficult to estimate these parameters from real-world data. Improving
model accuracy and guaranteeing accurate predictions require the development of strong and effective parameter
estimation techniques.
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The availability of data presents another significant obstacle. There are frequently little high-quality datasets on
zoonotic illnesses, such as Nipah virus, which makes model validation challenging. Enhancing the prediction
power of fractional models requires accurate data on environmental factors, spillover events, and epidemic
dynamics. Research in this field will gain a great deal from initiatives to improve data collecting, sharing, and
accessibility.

Another difficulty with fractional models is their complexity, since real-world applications depend on striking a
balance between computational efficiency and model accuracy. Although more biological realism is captured
by sophisticated models, their implementation can be challenging and computationally costly. One key area of
research is creating realistic but simplified models that preserve key disease dynamics without incurring undue
computational expenses.

Addressing the intricate dynamics of zoonotic diseases also requires interdisciplinary cooperation. For fractional
models to be both mathematically sound and useful for actual disease control initiatives, mathematicians,
epidemiologists, ecologists, and public health specialists must collaborate. The efficiency of these models in
public health decision-making will be improved by bridging the gap between theoretical modeling and real-world
application.

Lastly, generalizability in fractional modeling is still a challenge. Although fractional-order models have been
effectively used to study diseases like Nipah virus, more research is needed to apply these models to other
zoonotic illnesses like Lassa fever and Ebola. In addition to advancing the discipline, creating a comprehensive
framework for fractional modeling of zoonotic diseases could offer important insights for managing a wider
variety of newly emerging infectious diseases.

In order to improve fractional-order models and increase their accuracy, applicability, and influence in compre-
hending and managing zoonotic disease epidemics, it will be imperative to address these issues.

7 | Conclusion
By contrasting its performance with that of traditional integer-order models, this study investigates the function
of fractional-order modeling in comprehending zoonotic spillover occurrences. Our findings show that the
fractional-order model outperforms traditional models in capturing memory effects and intricate transmission
dynamics, and it offers a superior fit to actual infection data. Parameters like spillover rate (µH), human-to-
human transmission rate (βH), and environmental decay rate (λ) have a considerable impact on disease spread,
according to sensitivity analysis, indicating possible targets for intervention methods.

Fractional modeling has the advantage of providing a more realistic depiction of epidemic dynamics by incorpo-
rating history-dependent effects and varied transmission patterns. Fractional models, as opposed to integer-order
models, take into consideration long-term memory effects and infection persistence, which makes them very
helpful when researching zoonotic illnesses where interactions between reservoir species and the environment are
critical.

The significance of environmental decay rate (λ) in regulating pathogen persistence in the environment is further
highlighted by our parametric experiments. While a lower decay rate increases the possibility of spillover, a
higher decay rate eliminates pathogens more quickly and lowers the risk of human exposure. These observations
highlight the necessity of environmental actions to lower the risk of outbreaks, such as enhanced sanitation and
biosecurity protocols.

In order to provide more dynamic and adaptable predictions, future research should concentrate on incorporating
real-time data into fractional models. Model accuracy can be improved and early warning systems for zoonotic
spillovers can be made possible through the use of machine learning and data assimilation techniques. Fractional-
order models have the potential to transform infectious disease forecasting and intervention planning by combining
mathematical modeling with epidemiological surveillance, thereby enhancing global health security.
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