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Abstract: The advent of smart cities has paved the way for transformative advancements in 8 

healthcare, particularly in the domain of disease diagnosis. In the wake of the COVID-19 pan- 9 

demic, accurate and timely identification of Pandemic diseases has become paramount.  This 10 

paper explores the challenges and opportunities in synergizing Artificial Intelligence (AI), Inter- 11 

net of Things (IoT), and Blockchain technologies for diagnosis of Pandemic diseases in smart 12 

cities. This study provides an overview of each technology and its relevance to sustainable 13 

healthcare in smart cities, emphasizing its potential for analyzing medical data and making in- 14 

formed decisions. We also explore how IoT devices can contribute to disease surveillance, ena- 15 

bling real-time data collection and remote healthcare. Additionally, we discuss the potential of 16 

Blockchain in ensuring secure and transparent healthcare systems. Following, the paper study 17 

the synergistic potential of integrating AI, IoT, and blockchain, emphasizing how their com- 18 

bined strengths can enhance the accuracy, efficiency, and security of COVID-19 diagnosis sys- 19 

tems in smart cities Moreover, the paper highlights the challenges in integrating these technolo- 20 

gies and the opportunities for research and implementation, underlining the significance of syn- 21 

ergizing AI, IoT, and Blockchain in disease diagnosis in smart cities. The findings demonstrate 22 

that the convergence of AI, IoT, and blockchain can enhance the speed and accuracy of diagnos- 23 

ing Pandemic diseases, leading to more effective containment and management strategies. 24 

Keywords: Smart Cities, Pandemic Diseases, Pandemics, Artificial Intelligence (AI), Internet of 25 

Things (IoT), Blockchain. 26 

1. Introduction 27 

Smart cities are a compelling vision of the future, where advanced technologies flawlessly integrate with urban 28 

infrastructure to enhance the quality of life for residents. These cities leverage cutting-edge improvements to optimize 29 

resource consumption, advance sustainability, and specify effective public services [1]. One critical region where smart 30 

cities hold great potential is healthcare. In conventional urban settings, healthcare systems face numerous challenges, 31 

incorporating constrained resources, ineffective service supply, and struggles in disease detection and management. 32 

Nevertheless, with the advent of smart cities, the healthcare systems are shifting [2]. Various components of 33 

healthcare systems, including physicians, hospitals, insurance companies, and pharmacies, are actively exploring the 34 

potential of technology-driven solutions within smart cities. Perfect and sensible diagnosis of pandemic diseases in 35 

smart cities is of dominant importance because of its potential to save lives, avoid further transmission, and optimize 36 

resource distribution. In heavily crowded urban environments, where residents often interact intently, the prompt 37 

identification and isolation of infected persons are crucial to curbing the spread of infectious diseases. Through 38 
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leveraging advanced ICT technologies, smart cities can enhance disease surveillance, early detection, and efficient 1 

contact tracing, thereby enabling swift intervention measures [5]. Timely diagnosis facilitates prompt medical 2 

intervention, enabling healthcare providers to administer appropriate treatments, reduce the severity of illness, and 3 

prevent problems. Besides, precise disease diagnosis in smart cities enables data-driven decision-making, empowering 4 

policymakers, and healthcare authorities to allocate resources effectively, implement targeted interventions, and 5 

protect the well-being of the community at large [6]. 6 

Pandemic diseases present numerous challenges when it comes to their diagnosis and management within 7 

the healthcare system. Medical facilities become overwhelmed as cases escalate at an alarming rate with limited 8 

resources leading to stretched medical staff. Accurate identification is incredibly tricky due to its unpredictable 9 

symptoms combined with its similarity to other lung infections which require specific testing equipment and 10 

designated facilities [7]. Furthermore, updates must keep coming regularly as this disease progresses continuously 11 

over time making it challenging for health care providers who have already been delivering final services in regular 12 

circumstances. Moreover, the variation protocols among different health care systems create difficulties in sharing 13 

information effectively for proper treatment procedures resulting in delayed assessment times leading up extensive 14 

waiting periods before receiving test results; confidentiality issues make matters worse where there aren't many strict 15 

protocols established beforehand proving problematic. Therefore, working together as policymakers across all levels 16 

can help improve current situations by offering solutions like better diagnostic tools development increasing 17 

collaboration opportunities between hospitals around region-specific-based patient needs ensuring smooth data- 18 

sharing processes starting from check-ins till post-treatments follow-ups etc.[8-9]. 19 

Smart cities usually comprise a set of interconnected networks of sensors, devices, and data analytics to 20 

establish a complete healthcare ecosystem that can collect vast amounts of real-time health data, enabling 21 

comprehensive and continuous monitoring of population health. This wealth of data, combined with the power of 22 

artificial intelligence (AI), Internet of Things (IoT), and blockchain technologies, can make transformative changes in 23 

disease diagnosis, avoidance, and medication. AI, with its talent to analyze complicated datasets and recognize 24 

patterns, enables healthcare specialists with precise and timely insights [10]. The introduction and improvement of 25 

machine learning algorithms enable detecting the patterns indicative of pandemic diseases, allowing for early 26 

identification and intervention. On the other hand, IoT devices can have a critical role in enabling permanent 27 

monitoring of individuals' health parameters and granting real-time data to healthcare workers. This connectivity 28 

enables remote healthcare services, personalized treatment plans, and early detection of disease outbreaks [11].  29 

Additionally, blockchain technology, known for its decentralized and tamper-resistant nature, can guarantee the 30 

security, privacy, and integrity of healthcare data, thereby, facilitating interoperability between different healthcare 31 

systems, providing seamless data sharing among various stakeholders while maintaining data privacy. The synergistic 32 

integration of AI, IoT, and blockchain in diagnosing pandemic diseases in smart cities holds immense potential for 33 

improving patient outcomes, enhancing public health management, and optimizing resource allocation. Jointly, these 34 

technologies can lead to quicker and more precise diagnoses, early intervention, and personalized treatment plans, 35 

leading to improved patient outcomes [12]. Moreover, the comprehensive health data collected by smart cities can 36 

provide valuable insights for public health management, enabling proactive measures to control disease outbreaks, 37 

optimize resource allocation, and design targeted interventions [10-12]. 38 

Despite the growing interest in the integration of AI, IoT, and blockchain for disease diagnosis in smart cities, 39 

there exists a research gap that needs to be addressed. While individual studies have explored the applications of AI, 40 

IoT, or blockchain in healthcare, there is a lack of comprehensive research focusing on the synergistic integration of 41 

these technologies specifically for disease diagnosis in smart cities. Limited studies have investigated the combined 42 
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impact of AI's data analysis capabilities, IoT's real-time monitoring, and blockchain's secure data sharing in enhancing 1 

disease diagnosis in the unique context of smart cities. Additionally, there is a need for research that explores the 2 

challenges, feasibility, and potential risks associated with integrating these technologies. To this end, this paper will 3 

address the following specific research questions and hypotheses: 4 

1) What are the key technical and operational challenges in integrating AI, IoT, and blockchain for disease 5 

diagnosis in the context of smart cities?  6 

2) What are the potential benefits and opportunities of synergizing these technologies, such as enhanced 7 

accuracy, efficiency, and security?  8 

3) What are the implications for patient outcomes, public health management, and resource allocation in 9 

leveraging this integration?  10 

4) What is the data privacy, security, and ethical considerations associated with the combined use of AI, IoT, and 11 

blockchain in healthcare?  12 

5) What are the recommended strategies, solutions, and regulatory frameworks to overcome challenges and 13 

maximize the opportunities of this integration?  14 

Studying these research questions is expected to contribute to a comprehensive identification of the challenges and 15 

opportunities involved in synergizing AI, IoT, and blockchain for diagnosing pandemic diseases in smart cities. The 16 

primary objective of this paper is to explore the challenges and opportunities associated with the integration of AI, 17 

IoT, and blockchain for diagnosing Pandemic diseases in smart cities. The paper seeks to delve into the complexities 18 

surrounding data privacy, security, interoperability, and ethical considerations that arise in this integration process. 19 

Furthermore, it aims to highlight the opportunities presented by this convergence, such as improved accuracy, 20 

efficiency, and security in disease diagnosis.  21 

 22 

The remaining part of this paper is structured as follows. Section 2 provides a concise background and review of the 23 

literature. Section 3 explores the control of Pandemic diseases in smart cities. Section 4 studies the convergence of 24 

the AI, IoT, and blockchain for Pandemic diseases in smart cities. Section 5 studies the main challenges and 25 

opportunities of the reviewed technologies. Section 6 concludes this study. 26 

2. Background and Overview  27 

The section provides a comprehensive overview of the key concepts, technologies, and existing research related to 28 

the integration of AI, IoT, and blockchain for diagnosing pandemic diseases in smart cities. 29 

The research on smart cities developments involves leveraging cutting-edge technologies combined with data-driven 30 

insights for improving urban life positively. With the incorporation of IoT technologies, sensors, digital platforms along 31 

with various analytical tools have transformed how municipalities address challenges related to infrastructure 32 

modernization, delivery of public service availability while optimizing resources towards sustainable urban growth. In 33 

light of pandemic outbreaks globally across multiple regions maybe overcome with several advantages presented by 34 

smart cities [1-3]. AI algorithms promptly analyze health data such as symptoms, testing results, contact tracing 35 

information, enabling public health officials to identify community clusters at risk of becoming superspreaders. Digital 36 

platforms also present an opportunity for smart cities to disseminate actual information regarding pandemics like 37 
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COVID-19 [5-6].  These platforms allow citizens to access real-time updates, interactive services such as remote 1 

healthcare support while promoting vaccination programs' equity and access [8-10]. 2 

 3 

2.1. AI in Smart Cities 4 

AI has been playing a pivotal role in the development and optimization of smart cities, revolutionizing various aspects 5 

of urban life  through empowering the smart cities to harness the power of data, automate procedures, and make 6 

knowledgeable decisions through analyzing vast volumes of data collected from sensors, IoT devices, and other 7 

sources [13-20]. This capability has been allowing smart cities to optimize resource allocation, improve efficiency in 8 

transportation systems, enhance public safety, and deliver personalized services to residents. AI has been empowering 9 

smart cities to address complex urban challenges by unlocking the potential of data-driven decision-making and 10 

enabling intelligent automation. In the context of smart cities, AI is extensively applied in transportation systems to 11 

optimize traffic flow, reduce congestion, and improve public transit efficiency. AI-powered algorithms could analyze 12 

Figure 1. Visualization of our Taxonomy for categorizing AI applications in smart cities. 
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real-time traffic data, identify patterns, and suggest ideal routes for vehicles, leading to reduced travel times and 1 

advanced road safety [20-30]. Moreover, AI has been used in smart parking systems to optimize parking space 2 

utilization and provide real-time information to drivers, minimizing the time and fuel wasted in searching for parking 3 

spots. The applications of AI solutions in smart technologies are numerous and span multiple areas, which can be 4 

summarized in our taxonomy presented in Figure 1. AI has a transformative impact on healthcare systems within smart 5 

cities, improving patient care, disease management, and public health outcomes. AI-powered healthcare solutions in 6 

smart cities leverage advanced algorithms to analyze large volumes of patient data, including medical records, 7 

diagnostic images, and genetic information. This enables healthcare providers to make accurate diagnoses, develop 8 

personalized treatment plans, and predict disease progression with greater precision [30-60]. AI algorithms are data 9 

driven by nature, hence identifying the publicly available datasets is significant to identify for researchers and 10 

practitioners.  Taking the COVID-19 pandemic as an example, we provide a review of the relevant datasets for 11 

developing AI solutions In Table 1. 12 

 13 

Table 1.  Comparative review of literature datasets for developing AI solutions for COVID-19 screening. 14 

References Modality Sample Size # Class #Patients Country Date 
Data 

Format 
Studies  

[13] X-ray 679 5 412 26 countries 2020 
JPEG, 

PNG, JPG 
[14-16] 

[17] X-ray 6286 3 NA Italy, Spain, China 2020 / [18-20] 

[21] X-ray 452 3 NA Canada 2020 JPG, PNG [22-24] 

[25] X-ray 21,295 3 NA / 2020 JPG [26-27] 

[28] X-ray 852 3 NA Spain 2020 JPG [29-30] 

[31] X-ray 1559 3 NA China 2022 JPG [32] 

[33] X-ray 4703 3 NA Italy 2020 DICOM [34-35] 

[36]  X-ray 30,000 3 16 Canada 2021 PNG [37-38] 

[39]  CT 812 2 NA China 2020 PNG, JPG [40-41] 

[43] CT 617,775 2 NA China 2020 JPG, PNG [44-45] 

[46]  CT 20 2 NA China 2020 DICOM [16] 

[47]  CT 165,667 2 861 China 2020 / 
[28], 

[40] 

[48]  CT 20,685 3 1521 Russia 2020 NIFIT [42] 

[49]  CT 2482 2  Brazil 2020 PNG [43] 

[50]  CT 340190 3  China 2020 PNG [45] 

[51]  CT 19685 3 1521 China 2020 
DICOM, 

JPEG 
[36] 

[52] CT 2724 2 2617 China, Japan, Italy 2020 / [38] 

[53]  CT 34,006 3 NA China 2020 JPG [12] 

[54]  CT 145,167 3 NA China 2021 JPG [22] 

[55]  CT 63,849 2 235 Iran 2021 TIFF [16] 

[56]  CT 308 3 305 Iran 2021 DICOM [25] 

[57]  CT 1566 3 201 Turkey 2022 JPG [38] 

https://www.mdpi.com/2079-9292/12/5/1167#B20-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B13-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B12-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B24-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B25-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B26-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B27-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B28-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B29-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B30-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B31-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B34-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B35-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B36-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B37-electronics-12-01167
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[58]  CT 376,000 3 1000+ / 2022 JPG [40] 

[59]  X-ray / CT 18840/6687 COVID/No/Others 1,311 Spain 2020 / [45] 

[60]  X-ray / CT 1327/263 3 NA USA 2020 / [11] 

 1 

2.2. IoT in Smart Cities 2 

Cities that leverage the IoT as part of its infrastructure offer citizens improved quality of life. Real-time data collected 3 

from various interconnected devices within these cities including sensors helps gain insights into different elements 4 

such as environmental factors or energy consumption patterns. Efficient communication within this network leads to 5 

informed decision-making and well-planned operational adjustments across various sectors towards optimized service 6 

delivery.  Smart cities equip central infrastructure with dynamic sensing devices programmed to detect and track 7 

changes intended for efficient resource planning and allocation. Connected vehicles’ smart traffic signals installed 8 

along main transportation routes generate on-the-spot route diversions, easing stressors related to road congestion.  9 

Moreover, digital solutions-driven waste management optimization tools explore fleet tracking systems that 10 

incorporate real-time bin-fill level sensing equipment leading to reduced trash collection costs due to effective 11 

curbside waste distribution strategies [61-65]. In essence, this technology supports urban sustainability strategies by 12 

providing valuable insights crucial for better urban planning - in real-time. IoT has a substantial influence on health 13 

monitoring, and emergency response within smart cities (See Figure 2). IoT devices, such as surveillance cameras, 14 

environmental sensors, and wearable health trackers, provide real-time data on public spaces, air quality, and 15 

individual health parameters. This information enables early detection of safety hazards, pollution levels, and disease 16 

outbreaks, facilitating prompt interventions and preventive measures. For instance, IoT-based emergency response 17 

systems can automatically detect and report incidents such as fires or accidents, enabling faster emergency services 18 

and improving overall public safety. IoT-powered health monitoring devices allow continuous remote monitoring of 19 

patients, enabling timely interventions, and reducing the need for hospital visits [66-70]. 20 

Several literature studies have been performed to explore and survey the application of IoT in smart cities [61-75]. A 21 

comprehensive review and comparison of these studies reveal key insights into the diverse domains where IoT is 22 

Figure 2. Illustration of the general workflow of the IoT applications in smart cities.  

https://www.mdpi.com/2079-9292/12/5/1167#B38-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B39-electronics-12-01167
https://www.mdpi.com/2079-9292/12/5/1167#B40-electronics-12-01167
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employed. Table 2 presents an overview of cutting-edge literature studies, emphasizing their research focus, 1 

methodology, key findings, limitations, contributions, etc. Through different research approaches, these studies have 2 

demonstrated the potential of IoT in optimizing resource consumption, improving infrastructure efficiency, enhancing 3 

healthcare services, and ensuring public safety. 4 

 5 

Table 2.  Comparative review of literature surveys on the role of AI in smart cities. 6 

Study Objective 
Methodol
ogy 

Key Findings 
Applicat
ion Area 

IoT 
Technologies 

Challenges 
Addressed 

Limitations 
Future 
Directions 

[61] 

Investigate fog 
computing approaches 
in IoT-enabled smart 
cities 

Literature 
review and 
case study 
analysis 

- Enhanced 
scalability and 
resource efficiency 
through fog 
computing 

Smart 
cities 

Fog computing, 
IoT platforms 

Scalability, 
resource 
allocation, 
latency 

Limited case 
studies 
available, 
diverse. 

Optimization of 
fog node 
placement 

[62] 

Conduct a systematic 
review on semantic 
interoperability in IoE-
enabled smart cities 

Systematic 
literature 
review 

- Improved data 
exchange and 
integration among 
heterogeneous IoT 
devices 

Smart 
cities 

Semantic 
interoperability 
frameworks, 
IoT protocols 

Data 
integration, 
semantic 
mapping,  

Limited 
standardization 
across 
domains, 
complexity 

Semantic 
interoperability 
frameworks, 
standardization 
of IoT models 

[63] 
Survey the landscape of 
explainable AI (XAI) for 
smart cities 

Survey and 
literature 
review 

- Increased 
transparency and 
interpretability of 
AI algorithms in 
smart city 
applications 

Smart 
cities 

Machine 
learning 
algorithms, XAI 
techniques 

Interpretability, 
explainability, 
accountability 

Diversity of AI 
techniques, 
complexity of 
urban data 

Development 
of XAI 
frameworks for 
urban 
applications 

[64] 

Review the digital twin 
technology in smart 
grid, transportation 
system, and smart city 

Literature 
review and 
case study 
analysis 

- Improved system 
monitoring and 
control through 
virtual replicas of 
physical assets 

Smart 
grid, 
transpor
tation, 
smart 
cities 

Digital twin 
platforms, 
simulation 
models 

System 
modeling, real-
time data 
integration, 
data privacy 

Limited 
implementatio
n cases, 
scalability 
challenges 

Enhanced 
simulation 
capabilities 

[65] 

Discuss recent 
advances, taxonomy, 
and open research 
challenges in urban 
computing for 
sustainable smart cities 

Literature 
review and 
analysis 

- Improved 
understanding and 
utilization of 
urban data 

Sustaina
ble 
smart 
cities 

Data analytics, 
machine 
learning, urban 
computing 
frameworks 

Data quality, 
scalability, 
privacy 

Lack of unified 
frameworks, 
data 
heterogeneity 

Development 
of intelligent 
urban systems 

[66] 

Investigate the 
collection, processing, 
and secondary use of 
personal and 
anonymized data in 
smart cities 

Case study 
analysis 
and survey 

- Facilitated 
collection and 
analysis of 
personal and 
anonymized data 

Smart 
cities 

Data 
processing 
platforms, 
anonymization 
methods 

Data privacy, 
consent 
management, 
data 
governance 

Ethical 
considerations, 
data 
anonymization 
accuracy 

Dynamic 
consent 
frameworks 

[67] 

Conduct a systematic 
review of the effective 
use of smart cities in 
crisis cases 

Systematic 
literature 
review 

- Enhanced 
emergency 
response and crisis 
management 

Crisis 
manage
ment, 
smart 
cities 

IoT sensors, 
communication 
networks, 
emergency 
response 
systems 

Crisis 
preparedness, 
real-time data 
integration, 
citizen 
engagement 

Limited case 
studies 
available, 
heterogeneous 
crisis scenarios 

Integration of 
AI and 
predictive 
analytics 

[68] 

Provide an overview of 
cyber threats, attacks, 
and countermeasures 
on the primary domains 
of smart cities 

Literature 
review and 
analysis 

- Increased 
understanding of 
cyber threats and 
vulnerabilities in 
smart city 
domains 

Smart 
cities 

Encryption, 
intrusion 
detection 
systems, access 
control 
mechanisms 

Cyber threats, 
vulnerability 
assessment, 
incident 
response 

Rapidly 
evolving cyber 
threats, 
resource 
constraints 

Development 
of threat 
intelligence 
platforms 

[69] 

Review concepts, 
frameworks, and key 
technologies for IoT-
enabled smart cities 

Literature 
review and 
analysis 

- Improved 
understanding of 
IoT-enabled smart 
city concepts and 
architectures 

IoT-
enabled 
smart 
cities 

IoT protocols, 
cloud 
platforms, data 
analytics tools 

Scalability, 
interoperability, 
data privacy 

Lack of 
standardized 
frameworks, 
technology 
integration 
challenges 

Development 
of holistic 
smart city 
frameworks, 
interoperability 
standards 

[70] 

Investigate fog 
computing approaches 
in IoT-enabled smart 
cities 

Literature 
review and 
case study 
analysis 

- Enhanced 
scalability and 
resource efficiency 
through fog 
computing 

Smart 
cities 

Fog computing, 
IoT platforms 

Scalability, 
resource 
allocation, 
latency 

Limited case 
studies 
available, 
diverse 
implementatio
n approaches 

optimization of 
fog node 
placement 

[71] 

Map optimization 
problems for IoT-
enabled smart city 
development, including 
applications, objectives, 
and constraints 

Literature 
review and 
analysis 

- Identified 
optimization 
problems and 
their applications 
in IoT-enabled 
smart cities 

IoT-
enabled 
smart 
cities 

Mathematical 
optimization, 
IoT sensors, 
decision 
support 
systems 

Resource 
allocation, 
multi-objective 
optimization, 
scalability 

Limited case 
studies, 
complex 
decision-
making 
scenarios 

dynamic 
resource 
allocation 
models 

[72] 
Provide a 
contemporary survey 
on IoT-based smart 

Literature 
review and 
analysis 

- Explored IoT-
based smart city 

IoT-
based 

IoT protocols, 
cloud 

Interoperability, 
security, data 
privacy 

Lack of 
standardized 
architectures, 

privacy-
enhancing 
technologies 
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cities, including 
architecture, 
applications, and open 
issues 

architectures and 
their components 

smart 
cities 

platforms, data 
analytics tools 

technology 
integration 
challenges 

[73] 

Review the IoT and 
smart city domains, 
identifying existing 
knowledge and 
research gaps 

Systematic 
literature 
review 

- Established an 
overview of IoT 
and smart city 
concepts, 
frameworks, and 
technologies 

IoT, 
smart 
cities 

IoT protocols, 
cloud 
platforms, data 
analytics tools 

Standardization, 
governance, 
sustainability 

Fragmented 
research 
landscape, lack 
of 
comprehensive 
frameworks 

Development 
of unified IoT 
frameworks 

[74] 

Discuss cybersecurity 
challenges of IoT-
enabled smart cities 
through a survey of 
existing literature 

Literature 
review and 
survey 

- Identified 
cybersecurity 
threats and 
challenges specific 
to IoT-enabled 
smart cities 

IoT-
enabled 
smart 
cities 

Encryption, 
intrusion 
detection 
systems, access 
control 
mechanisms 

Cyber threats, 
vulnerability 
assessment, 
incident 
response 

Rapidly 
evolving cyber 
threats, 
resource 
constraints 

Development 
of threat 
intelligence 
platforms 

[75] 

Review smart city 
dimensions and 
associated risks 
through a literature 
review 

Literature 
review and 
analysis 

- Identified key 
dimensions and 
components of 
smart cities 

Smart 
cities 

Data 
governance, 
privacy 
regulations, 
risk assessment 
frameworks 

Data privacy, 
cybersecurity, 
governance 

Lack of 
standardized 
risk 
management 
frameworks, 
diverse risk 
profiles 

proactive risk 
mitigation 
strategies 

 1 

2.3. Blockchain in Smart Cities 2 

Blockchain technology is gaining substantial recognition as a highly versatile platform capable of delivering multiple 3 

applications beyond its initial use case for cryptocurrencies such as Bitcoin. In smart city operations, Blockchain 4 

enables a transparently distributed platform that performs secure validation and recording of transactions, data 5 

exchanges & individuals' digital identities' verification [76-78]. It serves as an unalterable decentralised ledger that 6 

interconnects blocks giving unparalleled assurances in information transactional history & actuality.  Data security 7 

issues continue to pose significant challenges to prevent data breaches in complex urban environments with multiple 8 

stakeholders requiring access to varying types of sensitive information e.g., Government agencies and citizens with 9 

keen interest in accessing their personal energy consumption records amongst countless others — however, using 10 

validation through blockchain offers unique protection protocols by preventing unauthorized modification or 11 

unwarranted access attempts on restricted pieces of data in daunting smart city environments [79-80].  Efficient and 12 

automated management structures are crucial for ease-of-use during day-to-day operations; smart contracts executed 13 

on a decentralized blockchain platform eliminate intermediaries involved reducing storage overhead costs while 14 

streamlining processes like property trading or supply chain management. Providing transparency supporting 15 

accountability and traceability through an immutable decentralized ledger could also facilitate efficient public delivery 16 

mechanisms, such as welfare distribution or infrastructure maintenance programs at cost-effectiveness levels that 17 

foster stakeholder commitments in governance efforts.  Blockchain technology further presents self-sovereign identity 18 

systems empowering individuals to manage their digital identities rigorously while providing selective control over the 19 

sharing of their personal information, thus ensuring citizens' protection from unscrupulous third parties accessing 20 

sensitive data aspects for undesired intentions [81-83]. 21 

Blockchain technology has gained significant attention because of its prospective applications in various sectors of 22 

smart cities and pandemic control systems. Different types of blockchain can be employed in these contexts, each 23 

offering unique features and functionalities. Table 3 presents a comprehensive comparison of the most used 24 

blockchain types, highlighting their characteristics, advantages, and limitations. Firstly, public blockchains, such as 25 

Bitcoin and Ethereum, are decentralized networks open to all participants, offering transparency and immutability. 26 

However, they suffer from scalability issues and limited privacy [80-83]. On the other hand, private blockchains, such 27 

as Hyperledger Fabric and Corda, are permissioned networks where access and participation are restricted to 28 

authorized entities, guaranteeing higher privacy and performance. Hybrid blockchains, like Quorum and Dragonchain, 29 

merge elements of both public and private blockchains, allowing for customizable levels of transparency and privacy. 30 
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Moreover, consortium blockchains, such as Ripple and MultiChain, are governed by a consortium of organizations, 1 

enabling collaborative efforts while maintaining control over the network [82-85]. 2 

Table 3.  Comparison between different types of blockchain. 3 

Blockchain 

Type 
Use Cases Advantages Challenges Scalability Privacy Governance 

Public 

Blockchain 

Health data exchange, 

clinical trials, patient 

consent management 

Transparency, 

immutability, 

interoperability 

Scalability, energy 

consumption, 

privacy concerns 

Varies (e.g., 

Ethereum's PoS 

transition, Layer 

2 solutions) 

Varies (e.g., 

pseudonymity, 

data privacy 

concerns) 

Decentralized 

governance, 

community-driven 

decision-making 

Private 

Blockchain 

Electronic health records, 

supply chain integrity, 

healthcare provider 

credentialing 

Efficiency, privacy, 

control 

Centralization, 

limited network 

size, trust among 

participants 

Scalable within 

the defined 

network 

Enhanced privacy 

controls, 

restricted access 

Centralized 

governance, 

trusted authorities 

Consortium 

Blockchain 

Health information sharing 

networks, patient data 

interoperability, research 

collaborations 

Shared control, 

increased 

efficiency, 

scalability 

Governance 

structure, 

consensus 

mechanisms, 

interoperability 

Scalable within 

the consortium 

Configurable 

privacy settings, 

controlled access 

Consortium-based 

governance, 

shared decision-

making 

Hybrid 

Blockchain 

Interoperable health data 

exchange, secure 

telemedicine, consent-based 

data sharing 

Customizable 

access control, 

scalability options 

Complexity, 

interoperability 

challenges, 

potential 

centralization 

Scalable within 

the defined 

network 

Configurable 

privacy settings, 

controlled access 

Varies (can be 

consortium-based 

or custom 

governance) 

3. Sustainable Pandemic Control in Smart Cities 4 

In recent years, smart cities have arisen as a favorable solution for addressing several urban challenges, including the 5 

management of pandemic outbreaks. The incorporation of advanced technologies such as AI, IoT, and blockchain has 6 

provided new opportunities for effective and sustainable pandemic control in urban environments. In this section, we 7 

delve into the theory of sustainable pandemic control in smart cities, concentrating on the application of these 8 

technologies to improve disease surveillance, early detection, and response mechanisms (see Figure 3). 9 

3.1. Early Detection and Surveillance 10 

Urban areas can strategically place these sensors around the city- capturing critical insights such as pollution levels 11 

impacting respiratory illnesses or environmental factors that influence common disease transmissions [86]. 12 

Furthermore, wearable gadgets or other mobility applications gather real-time health data from individuals through 13 

vital sign measurements- automatic symptom reporting along with their recent travel history- providing an essential 14 

perspective for disease surveillance efforts.  Urban centers that use AI algorithms integrated with all this insightful 15 

information gathered from multiple sources at scale could identify hotspot regions where determined anomalies might 16 

indicate emerging disease outbreaks rapidly vs., traditional methods relying retrospectively on human-reported 17 

incidents alone [87]. Through real-time monitoring of IoT devices and sensors in smart cities, authorities can act swiftly 18 

when responding to disease outbreaks. To achieve this, cities must establish platforms for integrated data fusion and 19 



SMIJ 2024, Vol. 7 10 of 28 
 

 

advanced analytics that support coordination across various sources such as healthcare records, social media insights, 1 

and environmental sensor observations [88]. Using social media discussions alongside other sources helps identify 2 

potential indicators or geographical locations poised for an outbreak before it occurs. Fortified with such information 3 

allows governments launch targeted interventions like increased testing or awareness campaigns aimed at combating 4 

infections effectively [89]. 5 

Several smart cities around the world have implemented proactive surveillance systems to monitor the spread of 6 

pandemics and take timely preventive actions. For instance, Singapore's smart city initiatives have demonstrated 7 

remarkable success in leveraging technology for pandemic control [90]. Through their "TraceTogether" program, 8 

Singapore implemented a contact tracing system that utilizes Bluetooth technology to identify and notify individuals 9 

who have been near COVID-19 cases. This real-time data enables quick identification and isolation of potentially 10 

infected individuals, helping to contain the spread of the virus. Additionally, South Korea's smart city efforts have been 11 

highly effective in monitoring and managing the COVID-19 outbreak [86-89]. The country established an extensive 12 

testing and surveillance system that integrates data from various sources, including healthcare records, mobile phone 13 

tracking, and credit card transactions. This integrated approach allows for efficient contact tracing and early detection 14 

of outbreaks, enabling swift responses, targeted interventions, and effective containment measures. These examples 15 

highlight how proactive surveillance systems in smart cities can play a crucial role in monitoring and managing the 16 

spread of pandemics, ultimately helping to safeguard public health and minimize the impact of infectious diseases 17 

[90]. 18 

3.2. Contact Tracing and Monitoring 19 

Contact tracing and monitoring have become essential components of pandemic control within smart cities, with 20 

digital technologies playing a significant role in these efforts. Mobile applications and wearables have emerged as 21 

powerful tools for contact tracing and monitoring the movement of individuals. Through mobile applications, 22 

individuals can voluntarily report their symptoms, undergo self-assessment, and receive real-time alerts and updates 23 

related to COVID-19 [91]. These applications utilize Bluetooth technology to record proximity data between devices, 24 

Figure 3. operational framework for sustainable pandemic control in smart cities 
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enabling the identification of close contacts in case of a confirmed infection. Wearable devices, such as smartwatches 1 

or fitness trackers, can also contribute to contact tracing by capturing data on individuals' proximity, movement 2 

patterns, and vital signs. This information allows for timely testing, contact notifications, and appropriate quarantine 3 

measures, minimizing the spread of the virus within the community. The use of digital technologies for contact tracing 4 

and monitoring empowers individuals to take proactive measures, helps authorities make informed decisions, and 5 

plays a crucial role in curbing the transmission of infectious diseases in smart cities [92]. 6 

Self-isolation is a energetic approach in containing the spread of infectious diseases, and IoT devices joint with 7 

AI algorithms can play a significant role in identifying potential high-risk contacts and alerting individuals for testing or 8 

self-isolation within smart cities. IoT devices, such as wearable devices and smart home sensors, can track proximity 9 

data and movement patterns of individuals [93]. Once potential high-risk contacts are identified, automated alerts can 10 

be sent to individuals, notifying them of their potential exposure and providing guidance on self-isolation and testing. 11 

This technology enables a more targeted and efficient approach to self-isolation, allowing resources and public health 12 

efforts to be focused on individuals who are at higher risk of spreading the disease. During the COVID-19 pandemic, 13 

numerous examples have demonstrated the effectiveness of IoT devices and AI algorithms in supporting self-isolation 14 

measures. In countries like South Korea and Taiwan, individuals under quarantine were required to wear electronic 15 

wristbands or use mobile applications that monitored their location and ensured compliance with self-isolation 16 

measures. If an individual violated the quarantine rules or moved outside the designated area, an alert would be 17 

triggered, prompting authorities to take appropriate action [94]. This approach aided to enforce self-isolation 18 

effectively and minimize the risk of disease communication. Such examples highlight the potential of IoT devices and 19 

AI algorithms to support self-isolation efforts, improve compliance, and ultimately contribute to the control and 20 

containment of infectious diseases in smart cities  [91-95]. 21 

 22 

3.3. Data-Driven Decision Making 23 

Smart cities can leverage data analytics and AI algorithms to inform decision-making processes during a 24 

pandemic, enabling more effective and evidence-based strategies [96]. AI algorithms can process this data to identify 25 

trends, detect potential outbreaks, and predict the spread of infectious diseases. For instance, machine learning 26 

algorithms can analyze real-time data on COVID-19 cases, hospital admissions, and healthcare capacity to provide 27 

accurate forecasts of future demand, aiding decision-makers in planning and allocating resources effectively [97]. Data 28 

analytics can also contribute to understanding population mobility patterns, identifying high-risk areas, and designing 29 

targeted interventions to limit the transmission of the disease. The COVID-19 pandemic has demonstrated the value 30 

of data analytics and AI algorithms in informing decision-making within smart cities [98]. A notable example is the city 31 

of Seoul in South Korea, which effectively employed data analytics and AI technologies to manage the outbreak. Seoul's 32 

Metropolitan Government utilized a comprehensive data platform that integrated information from various sources, 33 

including health records, immigration data, credit card transactions, and mobile phone location data [99]. This data- 34 

driven approach played a vital role in Seoul's successful response to the pandemic, enabling the city to implement 35 

targeted testing and isolation measures, effectively manage healthcare capacity, and minimize the impact on public 36 

health. The example of Seoul highlights how smart cities can harness the power of data analytics and AI algorithms to 37 

make informed decisions and navigate the complexities of a pandemic effectively [100]. 38 

The integration of diverse data sources, such as healthcare data, mobility patterns, and socioeconomic factors, 39 

is crucial in predicting disease spread and planning resource allocation within smart cities. Healthcare data, including 40 

information on COVID-19 cases, hospitalizations, and testing results, provides valuable insights into the prevalence 41 

and severity of the disease [96]. Mobility patterns, derived from sources like transportation data and mobile phone 42 
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tracking, offer crucial information on population movement, identifying potential transmission routes and areas of 1 

high risk. Socioeconomic factors, such as population density, income levels, and access to healthcare, contribute to 2 

the understanding of disparities and vulnerabilities in different communities. This integration conceptually allows 3 

proactive decision-making, resource optimization, and targeted interventions, ultimately improving the effectiveness 4 

of disease control measures within smart cities [98-99].  The COVID-19 pandemic has practically demonstrated the 5 

implication of mixing diverse data sources in predicting disease spread and apportioning resources effectively. An 6 

example can be seen in the city of New York, which faced significant challenges during the outbreak. To address this, 7 

the city leveraged diverse data sources to inform its response. They also analyzed mobility data to monitor population 8 

movement, identify potential hotspots, and enforce targeted containment measures. Moreover, socioeconomic 9 

factors, such as poverty rates and access to healthcare, were considered to address disparities in healthcare outcomes 10 

and ensure equitable distribution of resources. The incorporation of these diverse data sources played a critical role 11 

in New York City's response to the pandemic, helping to control the spread of the virus, allocate resources effectively, 12 

and mitigate the impact on public health. This example exemplifies the power of integrating multiple technologies in 13 

smart cities, emphasizing the importance of leveraging diverse data sources to predict disease spread and plan 14 

resource allocation during a pandemic [100]. 15 

3.4. Remote Healthcare and Telemedicine 16 

Smart cities can leverage telemedicine and remote healthcare technologies to ensure continuous access to healthcare 17 

services during a pandemic. Telemedicine enables individuals to receive medical consultations, monitoring, and follow- 18 

up care remotely, reducing the need for in-person visits and minimizing the risk of disease transmission [101]. Through 19 

video conferencing, online platforms, and mobile applications, healthcare providers can remotely diagnose and treat 20 

patients, offer medical advice, and monitor their health conditions. Remote healthcare technologies, such as wearable 21 

devices and home monitoring systems, enable the collection of vital signs and health data from patients at their homes, 22 

facilitating remote patient monitoring and early detection of potential complications [102]. This approach not only 23 

ensures the continuity of healthcare services during a pandemic but also reduces the burden on healthcare facilities, 24 

optimizes resource allocation, and enhances the overall efficiency and effectiveness of healthcare delivery within 25 

smart cities. The use of IoT-enabled medical devices for remote patient monitoring holds immense potential in smart 26 

cities, particularly during a pandemic. These devices, such as wearable sensors, smart patches, and connected medical 27 

devices, enable healthcare providers to remotely monitor patients' vital signs, collect real-time health data, and deliver 28 

timely interventions [103]. This remote monitoring capability allows for early detection of any concerning trends or 29 

abnormalities, enabling healthcare providers to intervene promptly and provide appropriate care. IoT-enabled medical 30 

devices facilitate personalized and proactive healthcare, as patients can receive remote monitoring and interventions 31 

tailored to their specific needs and conditions [104]. The COVID-19 pandemic has witnessed a surge in the adoption 32 

of telemedicine and remote healthcare technologies as a means to maintain access to healthcare services. An example 33 

can be seen in the United States, where healthcare systems rapidly expanded telehealth services to ensure continued 34 

patient care while reducing the risk of viral transmission. Many healthcare providers started offering virtual 35 

consultations, enabling patients to receive medical advice, prescriptions, and follow-up care remotely. Additionally, 36 

remote monitoring technologies played a crucial role in monitoring the health status of COVID-19 patients in home 37 

quarantine. Through the use of wearable devices and remote monitoring platforms, healthcare professionals were 38 

able to remotely monitor patients' vital signs, oxygen levels, and symptoms, providing timely interventions and 39 

minimizing the need for hospitalizations. This example highlights how smart cities can leverage telemedicine and 40 

remote healthcare technologies to overcome geographical barriers, ensure continuous access to healthcare services, 41 

and support effective disease management during a pandemic [101-104]. Virtual consultations and digital health 42 



SMIJ 2024, Vol. 7 13 of 28 
 

 

platforms have emerged as valuable tools in reducing the burden on healthcare facilities and minimizing the risk of 1 

disease transmission within smart cities. Virtual consultations enable healthcare providers to connect with patients 2 

remotely through video conferencing or telecommunication platforms [105]. This allows individuals to seek medical 3 

advice, receive diagnoses, and discuss treatment options from the comfort of their homes. Additionally, virtual 4 

consultations offer convenience and accessibility, particularly for individuals with limited mobility or those residing in 5 

remote areas. Patients can access quality healthcare services without the need for long-distance travel or waiting in 6 

crowded healthcare settings. This not only reduces the burden on healthcare facilities but also improves patient 7 

satisfaction and engagement in their own healthcare management [106-107]. 8 

3.5. Public Communication and Education 9 

Effective communication strategies play a vital role in smart cities to disseminate accurate information, guidelines, 10 

and updates during a pandemic. Clear and timely communication is critical to guarantee that inhabitants, healthcare 11 

professionals, and other stakeholders have access to reliable information regarding the virus, preventive measures, 12 

testing protocols, treatment options, and vaccination campaigns.  Accurate and reliable information serves as a 13 

powerful tool in combating misinformation, rumors, and panic within smart cities. Through various communication 14 

channels, such as official websites, social media platforms, mobile applications, and public announcements, smart 15 

cities can provide up-to-date information from reputable sources, such as healthcare authorities and government 16 

agencies [108]. This information can include guidelines for physical distancing, hygiene practices, mask-wearing, and 17 

quarantine measures. Moreover, effective communication strategies enable the dissemination of critical updates on 18 

the developing situation, such as new variants, testing availability, vaccine distribution plans, and changes in public 19 

health policies. Communication platforms can also provide channels for individuals to ask questions, seek 20 

clarifications, and share concerns, allowing authorities to address misconceptions, provide support, and build a 21 

stronger sense of community resilience [109]. Additionally, communication strategies can be tailored to reach diverse 22 

populations, considering language barriers, cultural sensitivities, and accessibility needs. This comprehensive approach 23 

ensures that accurate information reaches all segments of the population, reducing disparities in healthcare access 24 

and promoting equitable public health outcomes. During the COVID-19 pandemic, effective communication policies 25 

have played a pivotal role in smart cities worldwide. Examples include the establishment of dedicated hotlines and 26 

helplines to address public inquiries, the use of social media campaigns to promote accurate information and debunk 27 

myths, and the deployment of mobile applications to deliver real-time updates and notifications [110]. These 28 

strategies have enabled authorities to swiftly communicate changes in guidelines, alert individuals to potential 29 

exposure risks, and inform residents about testing centers, vaccination sites, and healthcare resources. The COVID-19 30 

pandemic has highlighted the reputation of operative communication in smart cities, highlighting the need for clear, 31 

consistent, and accessible messaging to ensure a well-informed and engaged community response. AI-powered 32 

chatbots have arose as valuable tools for smart cities in providing personalized and instant responses to citizens' 33 

queries. These chatbots, integrated into digital platforms and social media channels, leverage natural language 34 

processing and machine learning algorithms to comprehend and reply to users' questions precisely. They can deliver 35 

real-time information on symptoms, testing centers, safety precautions, and other relevant topics. AI-powered 36 

chatbots not only assist in handling a high volume of inquiries professionally but also proposal a reliable and 37 

standardized approach to information dissemination. Citizens can accept rapid responses to their queries, enhancing 38 

their trust in the information provided and reducing the burden on human resources [111]. 39 

 40 

Several smart cities around the world have successfully implemented robust communication strategies to promote 41 

public awareness, adherence to preventive measures, and vaccination campaigns during the COVID-19 pandemic. 42 
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These cities have demonstrated exemplary efforts in leveraging technology and effective messaging to engage their 1 

communities and ensure a coordinated response to the crisis. One such example is Singapore, where the government 2 

utilized various communication channels, including social media, mobile applications, and public announcements, to 3 

disseminate accurate information, guidelines, and updates [100]. Through their "SG Clean" campaign, Singapore 4 

emphasized the importance of personal hygiene, cleanliness, and safe distancing measures, encouraging residents to 5 

adopt these practices and contribute to the collective effort in controlling the spread of the virus. Another successful 6 

example is Seoul, South Korea, which utilized a comprehensive communication strategy to raise public awareness and 7 

facilitate effective contact tracing. The city implemented a mobile application called "Smart Seoul Map" that provided 8 

real-time information on COVID-19 cases, testing locations, and quarantine measures. The application enabled citizens 9 

to access accurate information, report symptoms, and seek testing if necessary [105-110]. Furthermore, Seoul 10 

established a 24/7 COVID-19 hotline to address citizens' queries, provide guidance, and offer psychological support. 11 

These initiatives helped in building trust, reducing anxiety, and fostering community engagement in adhering to 12 

preventive measures and contact tracing efforts. Moreover, Barcelona, Spain, implemented an innovative 13 

communication strategy during the pandemic. The city launched a digital platform called "Barcelona Health Hub" to 14 

provide citizens with access to reliable information, telehealth services, and mental health support. The platform 15 

facilitated virtual consultations, enabling individuals to consult with healthcare professionals remotely. Barcelona also 16 

utilized social media campaigns and targeted messaging to promote adherence to preventive measures and 17 

vaccination campaigns [111]. These initiatives contributed to the effective dissemination of information, enhanced 18 

public awareness, and facilitated remote access to healthcare services. These successful examples demonstrate the 19 

importance of robust communication strategies in smart cities during a pandemic [109]. The implementation of such 20 

strategies has not only contributed to controlling the spread of the virus but also fostered a sense of unity, trust, and 21 

resilience among citizens. These examples serve as valuable lessons for other smart cities seeking to implement 22 

effective communication strategies to combat infectious diseases and promote public health [110]. 23 

4. Synergies AI, IoT, and Blockchain for pandemic control 24 

Figure 4. Integration of AI, IoT, and Blockchain for pandemic control in smart cities. 
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In designing pandemic control systems for smart cities (See Figure 4), the role of IoT  is instrumental. IoT devices, 1 

equipped with sensors and connectivity capabilities, allow the collection and transmission of real-time data from 2 

various sources, including environmental sensors, wearables, and healthcare devices. This vast network of 3 

interconnected devices procedures the foundation for building a comprehensive and proactive pandemic control 4 

system. One key facet of IoT in pandemic control is the capability to monitor and track the movement of individuals 5 

within smart cities [65]. This information can be leveraged to perceive potential hotspots, identify high-risk areas, and 6 

implement targeted interventions to mitigate the spread of infectious diseases. Furthermore, IoT-based contact 7 

tracing solutions, utilizing Bluetooth technology or other proximity sensing mechanisms, can offer valuable insights 8 

into the interactions and potential exposures of individuals, enabling rapid notification and preventive measures [67]. 9 

Moreover, IoT plays a vital role in attractive the situational awareness and response capabilities of pandemic control 10 

systems. Through the integration of IoT devices with surveillance cameras, drones, and other monitoring technologies, 11 

real-time data on crowd movements, mask compliance, and hygiene practices can be captured. For instance, IoT data 12 

can facilitate the efficient deployment of healthcare resources to areas experiencing a surge in cases, enable predictive 13 

modeling for effective planning, and support the implementation of dynamic control measures based on the real-time 14 

status of the pandemic [72]. 15 

Further edge computing, fog computing, and cloud computing play crucial roles in enabling efficient and effective 16 

data processing, analysis, and decision-making in the design of pandemic control systems. Each of these computing 17 

paradigms offers unique capabilities and benefits that contribute to the overall architecture and functionality of the 18 

pandemic control system in a smart city [77]. Edge computing, as its name advocates, emphases on processing data 19 

at the edge of the network, closer to the data source. In our case, edge computing enables real-time data processing 20 

and analysis at the device or sensor level. At the edge side, AI algorithms can be deployed on edge devices to enable 21 

real-time data processing, analysis, and decision-making [81]. These devices can collect and process data from various 22 

sensors and devices, such as wearables or temperature scanners, to detect potential COVID-19 cases or monitor social 23 

distancing compliance. AI models running on the edge can provide immediate insights and alerts, reducing the latency 24 

and bandwidth requirements for transmitting data to centralized systems. This allows for quicker response times and 25 

more efficient local interventions, enhancing the effectiveness of pandemic control measures in smart cities [82]. 26 

Fog computing builds upon the thought of edge computing and spreads it to a broader scale. It includes the 27 

deployment of fog nodes or mini data centers at intermediate points within the network infrastructure, such as access 28 

points or base stations. These fog nodes aid as middle processing hubs between the edge devices and the cloud. In 29 

our case, fog computing can enable localized data aggregation, analysis, and decision-making [84]. 30 

Cloud computing, on the other hand, offers the scalability, storage capacity, and computational resources needed for 31 

handling large-scale data processing and complex analytics. In pandemic control systems, cloud computing serves as 32 

the central repository for storing and analyzing aggregated data from various sources. It enables unconventional data 33 

analytics, AI algorithms, and predictive modeling to generate actionable insights for decision-makers. Cloud computing 34 

also facilitates the integration of diverse data sources, such as healthcare records, environmental data, and social 35 

media feeds, enabling a holistic interpretation of the pandemic situation. In addition, cloud-based solutions support 36 

cooperative labors among diverse stakeholders by providing a centralized platform for data sharing, resource 37 

coordination, and decision coordination [100].  38 

In designing pandemic control systems for smart cities, the convergence of blockchain with edge computing, fog 39 

computing, and cloud computing presents promising in enhancing data integrity, transparency, and security, while the 40 

computing paradigms provide the essential computational power and infrastructure to support blockchain-based 41 

solutions. At the edge side, blockchain can be used to establish trust and secure data exchange among edge devices 42 



SMIJ 2024, Vol. 7 16 of 28 
 

 

in the pandemic control system [99]. Blockchain can also ease secure and privacy-preserving communication protocols 1 

among edge devices, enhancing the overall security of the system. Moreover, the use of blockchain in edge computing 2 

can enable decentralized decision-making and coordination among edge devices, ensuring the reliability and resilience 3 

of the pandemic control system. Likewise, in fog computing, blockchain can play a decisive role in founding trust and 4 

enabling secure communication among fog nodes [55]. Through applying blockchain's consensus mechanisms, fog 5 

nodes can sustain a shared and distributed ledger of transactions, guaranteeing the integrity and transparency of data 6 

exchanges. Blockchain can permit secure data aggregation and processing across fog nodes, allowing for efficient and 7 

reliable analysis of pandemic-related data. Moreover, blockchain-based smart contracts can industrialize the 8 

execution of agreements and coordination among fog nodes, enhancing the efficiency and trustworthiness of the 9 

pandemic control system in fog computing environments.  10 

In cloud side, the convergence with blockchain provides opportunities for secure and transparent data storage, 11 

sharing, and analysis. Blockchain technology can be adopted to generate an auditable and immutable record of data 12 

transactions and access permissions in the cloud. This guarantees data integrity and provides a transparent view of 13 

how data is managed and utilized within the pandemic control system. Blockchain can also enhance the security of 14 

cloud-based solutions by mitigating the risks of unauthorized access or tampering. Smart contracts deployed on the 15 

blockchain can automate and enforce data privacy policies, ensuring that sensitive data is handled in a compliant and 16 

secure manner. Furthermore, blockchain-based frameworks can enable data provenance and consent management, 17 

empowering individuals to have more control over their personal health data in the cloud. In the cloud side, AI plays 18 

a crucial role in large-scale data analysis, modeling, and prediction. Cloud-based AI systems can aggregate and analyze 19 

data from multiple sources, such as healthcare records, mobility patterns, and social media, to gain a comprehensive 20 

understanding of the pandemic's dynamics. AI models trained on this data can provide insights into disease 21 

transmission patterns, vulnerable populations, and the effectiveness of control measures. Cloud-based AI systems can 22 

also support resource optimization and healthcare planning by forecasting hospitalizations, ICU bed utilization, and 23 

vaccine distribution. 24 

In the blockchain side, AI can be used to enhance the capabilities of blockchain-based pandemic control systems. AI 25 

algorithms can analyze blockchain data to identify patterns, anomalies, and insights that can contribute to disease 26 

surveillance, contact tracing, and early warning systems [83]. AI can also support the development of AI-powered 27 

smart contracts that automate compliance with health protocols, enforce data privacy policies, and ensure secure and 28 

transparent data sharing within the blockchain network. Furthermore, AI techniques such as natural language 29 

processing and sentiment analysis can be applied to blockchain data to monitor public sentiment, identify 30 

misinformation, and facilitate effective communication strategies during a pandemic. The combination of AI and 31 

blockchain in pandemic control systems can enhance transparency, trust, and the overall effectiveness of smart city 32 

initiatives [85-88]. 33 

5. Challenges and Opportunities 34 

In this section, we dive into the details of the intrinsic challenges and open issues evolving from integration of AI, IoT, 35 

and blockchain into healthcare sector to empower intelligent and automatic diagnosis of pandemic diseases within 36 

smart cities. While the hypothetical advantages of this synergy are significant, it is decisive to address the various 37 

obstacles that can thwart its effective and sustainable implementation. Through a comprehensive investigation of 38 

these challenges (see Table 4), we can gain a deeper understanding of the deliberations required for successful 39 

integration of the surveyed technologies to pave the way for future advancements in the healthcare sector of smart 40 

city. 41 
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 1 

Table 4.  Summary of the popular research challenges facing the integration of AI, IoT, and Blockchain for pandemic control in 2 

smart cities. 3 

Challenge Sub-challenge Main Reasons Impact on Pandemic Control Possible Solutions Criticality Feasibility Cost 

Interoperability 

and 

Standardization 

Integration 

complexity 

Diverse data formats 

and protocols 

Hinders seamless data 

exchange and collaboration 

Establish data 

interoperability 

standards 

High Med High 

 

Lack of 

standardized 

interfaces 

Incompatible 

systems and devices 

Impedes integration and data 

sharing capabilities 

Develop and enforce 

standardized 

interfaces 

High Med Med 

 

Lack of 

interoperable AI 

models 

Inefficient model 

sharing and 

collaboration 

Limits scalability and 

effectiveness of AI 

applications 

Develop standardized 

AI model frameworks 
Med High High 

Data Privacy 

and Security 

Consent 

management 

and control 

Lack of transparency 

and individual 

control 

Erodes trust and privacy rights 

of individuals 

Implement robust 

consent and control 

mechanisms 

High High Med 

 

Unauthorized 

access and data 

breaches 

Vulnerabilities in 

systems and 

networks 

Jeopardizes confidentiality 

and integrity of personal 

health data 

Implement strong 

security measures 
High High High 

 

Secondary use 

and re-

identification 

risks 

Improper handling 

and de-identification 

methods 

Raises privacy concerns and 

potential harm to individuals' 

privacy 

Implement proper de-

identification 

techniques 

Med Med Low 

Data Quality 

and Reliability 

Data accuracy 

and 

completeness 

Inaccurate or 

incomplete data 

sources 

Compromises the reliability of 

diagnostic and predictive 

models 

Implement data 

quality assurance 

mechanisms 

High High Med 

 
Data latency and 

timeliness 

Delayed data 

availability 

Limits real-time monitoring 

and response capabilities 

Improve data 

collection and 

transmission speed 

Med Med Low 

 
Data integrity 

and verifiability 

Unreliable data 

sources and 

manipulations 

Undermines trust in the 

accuracy and authenticity of 

data 

Implement data 

verification and 

validation 

Med Med Low 

Ethical and 

Legal 

Considerations 

Algorithmic 

biases and 

fairness 

Discriminatory or 

biased AI decision-

making 

Raises concerns of fairness 

and equity in healthcare 

outcomes 

Develop and enforce 

guidelines for fair AI 
High Med Low 

 

Informed 

consent and 

transparency 

Lack of transparency 

in data collection 

Undermines individuals' 

autonomy and choice 

Enhance 

transparency and 

informed consent 

High High Low 

 

Legal liability 

and 

accountability 

Unclear 

responsibility in case 

of errors 

Raises concerns about 

accountability and potential 

harm 

Establish liability 

frameworks and 

mechanisms 

Med Med Low 



SMIJ 2024, Vol. 7 18 of 28 
 

 

Infrastructure 

and Resource 

Constraints 

Limited network 

bandwidth and 

capacity 

Insufficient 

infrastructure for 

data transmission 

Impairs real-time data 

analysis and communication 

Improve network 

infrastructure and 

capacity 

High Med High 

 

Limited 

computational 

resources 

Insufficient 

computing power for 

data analysis 

Hampers complex AI 

algorithms and predictive 

modeling 

Upgrade 

computational 

resources 

Med Med High 

 

Inadequate data 

storage and 

processing 

Limited storage and 

processing 

capabilities 

Hinders large-scale data 

storage and analysis 

Enhance data storage 

and processing 

capabilities 

Med Med Med 

User 

Acceptance and 

Adoption 

Lack of trust and 

awareness 

Skepticism towards 

technology and data 

use 

Hinders user acceptance and 

participation in smart systems 

Educate and raise 

awareness about 

benefits 

High High Low 

 

Technological 

literacy and 

accessibility 

Limited knowledge 

and access to 

technology 

Excludes certain populations 

from adopting and using 

smart systems 

Improve 

technological literacy 

and accessibility 

High High Low 

Regulatory and 

Policy 

Frameworks 

Lack of clear 

regulations and 

policies 

Unclear guidelines 

and frameworks 

Creates uncertainty and 

inconsistency in 

implementation 

Establish 

comprehensive 

regulations and 

policies 

High High Med 

5.1. Interoperability and Standardization  1 

The integration of AI, IoT, and blockchain technologies for pandemic diseases diagnosis in smart cities can lead to 2 

significant challenge regarding the interoperability, which result from the diversity in systems, devices, and platforms 3 

to ensure seamless communication and data exchange. Interoperability challenges can occur as a result of the 4 

heterogeneity of data formats, protocols, and interfaces used by different technologies. For example, AI algorithms 5 

may generate output data in various formats, IoT devices may use different communication protocols, and blockchain 6 

platforms may employ different consensus mechanisms [112]. Tackling these challenges involves the establishment of 7 

standardized protocols and data formats that assist the interoperability of these technologies. Moreover, embracing 8 

common data models, such as Fast Healthcare Interoperability Resources (FHIR), can enhance data exchange and 9 

interoperability between AI, IoT, and blockchain components smart city during pandemics control. To this end, 10 

Standardization can be regarded as a promising strategy to address interoperability challenges and foster the 11 

integration of AI, IoT, and blockchain for pandemic diseases diagnosis in smart cities. Standardization solutions may 12 

typically involve significant common frameworks, protocols, and data models that facilitate seamless communication 13 

and cooperation between various mechanisms. Public initiatives, such as the International Medical Device Regulators 14 

Forum (IMDRF) and the Institute of Electrical and Electronics Engineers (IEEE), are enthusiastically working towards 15 

developing healthcare-specific standards to ensure preserving data representation, security, privacy, and semantic 16 

interoperability. With the development of such common standards, smart city healthcare systems can guarantee 17 

compatibility, data consistency, and operational sharing of information between AI algorithms, IoT devices, and 18 

blockchain platforms [113]. On the other hand, the development of middleware and integration platforms is a 19 

promising solution that can offer mediators between different technologies, enabling elastic data exchange and 20 

communication between different components of pandemic control system in smart cities. These platforms can 21 

provide data transformation, protocol translation, and data orchestration services to bridge the gap between AI, IoT, 22 

and blockchain components. Furthermore, the application of standardized application programming interfaces (APIs) 23 
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enables seamless integration and interaction between different technologies. Embracing open-source initiatives, such 1 

as Hyperledger Fabric and FHIR, can also promote interoperability by providing shared frameworks and tools for 2 

developers. More research efforts are required to address the interoperability and standardization challenges with 3 

more innovative standardization frameworks, and interoperability solutions to overcome barriers meeting the 4 

integration of AI, IoT, and blockchain in smart cities, thereby unlock the full potential of these technologies in 5 

improving pandemic control and response strategies [114]. 6 

5.2. Data Privacy and Security 7 

5.2.1. Privacy Protection 8 

The integration of AI, IoT, and blockchain technologies for pandemic diseases diagnosis in smart cities necessitates the 9 

collection and analysis of sensitive healthcare data. Ensuring privacy of these data is a major concern to the 10 

development of pandemic control systems is the collection of personal data for surveillance and contact tracing 11 

purposes. Smart systems rely on various data sources, including IoT devices, mobile applications, and public health 12 

databases, to gather information about individuals' health status, movements, and contacts. However, the collection 13 

of such sensitive data raises concerns about individuals' consent and control over their personal information. Privacy 14 

protections must be embedded into the design and operation of these systems, ensuring individuals' explicit consent, 15 

and providing clear information about the kinds of data collected, the drive of collection, and how the data will be 16 

used and protected. Striking a balance between effective pandemic control and safeguarding individual privacy rights 17 

is essential [115]. 18 

5.2.2. Data Security and Confidentiality 19 

One pressing issue relating to safeguarding people's privacy involves maintaining confidentially during the collection 20 

and management of medical based personal data carried out under current pandemic situation throughout much of 21 

the world currently. To accomplish this requires taking care towards preventing unauthorized access or other 22 

purposely harmful efforts from causing breaches or circumvention illegally gaining unwanted viewership within their 23 

system. Thus, resulting we have come up with implementing cybersecurity measures such as access controls and 24 

encryption in order to build protective layers of security, plus taking care to use secure storage protocols. Additionally, 25 

it is necessary to ensure practices of strict confidentiality while exchanging data among various entities working on 26 

pandemic control systems through agreed upon shared data regulation executed through written agreements [116]. 27 

5.2.3. Data Retention and De-Identification 28 

Privacy concerns arise from retaining and de-identifying personal data in pandemic control systems. While collecting 29 

data helps immediately address pandemics, clear guidelines for how long such information will be retained are critical. 30 

Retaining it longer than necessary risks breaching personal privacy by increasing the chances of unauthorized 31 

secondary use or re-identification. Smart cities should formulate a policy that prescribes a definite timeframe for 32 

retaining relevant pandemic information while ensuring its secure deletion or anonymization when no longer needed 33 

for COVID-19 control measures. Robust techniques like anonymous masking or grouping ensure individual rights 34 

remain preserved without impeding public health research and analysis efforts by upholding high standards of 35 

identifying withheld from these techniques by officials needing access only upon special requests. Thus, technology 36 

must prioritize strong measures preventing any compromise-related activities when managing privileged content 37 

continuously [117]. 38 

5.2.4. Security of IoT Devices and Networks 39 

Incorporating IoT devices into smart cities has its drawbacks concerning security breaches since these gadgets attract 40 

hacking attempts and unauthorized access. Healthcare data becomes vulnerable once security is breached. Hence 41 

safeguarding IoT devices and networks requires implementing stringent measures such as authentication mechanisms, 42 
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encryption protocols alongside timeless monitoring of access controls in IoT objects. Collaborative efforts are then 1 

crucial among relevant parties dealing with pandemics such as medical personnel cybersecurity experts and device 2 

manufacturers as noted standardization paves the way for enhanced safety of patients [118]. 3 

5.2.5. Trust in Blockchain Systems 4 

The trust challenge in blockchain systems for pandemic control in smart cities stems from the need to ensure the 5 

reliability, integrity, and privacy of data. Blockchain technology offers inherent security features such as immutability 6 

and decentralized consensus mechanisms, which can enhance trust among participants. Nonetheless, numerous 7 

considerations need to be addressed to establish trust in the context of pandemic control. One of the main 8 

considerations is the design and audit of smart contracts on the blockchain. These self-executing agreements play a 9 

crucial role in automating processes and ensuring the accuracy of transactions. However, vulnerabilities or unintended 10 

consequences in smart contracts can undermine trust. Thorough design, rigorous testing, and regular audits are 11 

necessary to mitigate risks and ensure the secure execution of smart contracts.  Another attribute is the equilibrium 12 

between data transparency and privacy. The immutability of blockchain can provide transparency and traceability, 13 

which is beneficial for auditing and accountability. However, in the context of healthcare and pandemic control, 14 

sensitive data privacy is of utmost significance. Striking a balance between transparency and privacy is critical to 15 

defend confidential healthcare information while leveraging the advantages of blockchain technology. Establishing 16 

governance models within the blockchain ecosystem is also vital for building trust. Clear roles, responsibilities, and 17 

access rights of stakeholders need to be defined to ensure accountability and prevent misuse of the system [75-78]. 18 

Transparent governance frameworks can enhance trust among participants and provide mechanisms for resolving 19 

disputes, managing updates, and enforcing compliance with regulatory requirements. Adopting the trust challenge in 20 

blockchain systems requires a comprehensive approach that encompasses the design and audit of smart contracts, 21 

the balance between data transparency and privacy, and the establishment of effective governance models [91-93]. 22 

5.3. Quality and Reliability Data  23 

The integration of AI, IoT, and blockchain for pandemic diseases diagnosis in smart cities poses a great challenge in 24 

terms of ensuring accuracy and validity of the generated data. The sheer volume of information produced by IoT 25 

devices coupled with potential technical problems or human error can cause inconsistencies or inaccuracies in the 26 

collected data. Inaccurate readings can result from malfunctioning sensors whilst biased inputs can lead to incorrect 27 

predictions from AI algorithms. Data quality assurance mechanisms tailored towards validation checks as well as pre- 28 

processing techniques are imperative towards identifying errors at an early stage thereby mitigating associated losses. 29 

In addition to this, leveraging advanced techniques like detecting anomalies coupled with outlier analysis helps 30 

uncover outliers within invalid sections thus setting up systems for high accuracy standards across all stages [66]. 31 

Incorporating information from diverse sources, including IoT gadgets, electronic health records, and public health 32 

databases presents a few obstacles that relate to data integration and interoperability. Variances in data formats, 33 

diverse amounts of data granularity, along with the necessity for data fusion across multiple platforms and systems 34 

can make the process of integrating data more complicated. To achieve a seamless merging of this data requires 35 

addressing technical matters intricately such as harmonizing the data, achieving semantic interoperability as well as 36 

cross-platform information exchange standards. Through developing shared models of this data alongside standard 37 

interfaces and ontologies can also facilitate incorporating AI, IoT alongside blockchain components that will enable 38 

healthcare stakeholders' efficient collaboration alongside programming sharing. Additionally, establishments need to 39 

develop governance for this collected information to define their collective ownership rights as well as access and 40 

details regarding information sharing with other stakeholders involved in smart city healthcare systems [103]. 41 
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The trustworthiness and provenance of data used in pandemic control systems are vital for ensuring reliable and 1 

robust decision-making processes. Data provenance refers to the ability to trace the origin, processing, and 2 

transformation of data throughout its lifecycle. Challenges arise when integrating data from multiple sources, as it 3 

becomes fundamental to establish the authenticity, reliability, and integrity of the data. Implementing data auditing 4 

mechanisms, timestamping, and digital signatures can enhance data trustworthiness and enable the verification of 5 

data authenticity. Furthermore, leveraging blockchain's immutable nature can provide an auditable trail of data 6 

transactions, ensuring transparency and accountability. Establishing data governance frameworks that encompass 7 

data quality assurance processes, data validation mechanisms, and data provenance tracking can contribute to 8 

enhancing data reliability and trustworthiness in smart city [109-111]. 9 

5.4. Ethical Considerations 10 

Algorithmic biases and fairness are critical considerations in the application of AI for pandemic control in smart cities, 11 

which stems from the potential for AI systems to produce biased or unfair outcomes that can disproportionately 12 

impact certain individuals or groups. Tackling these issues is crucial to ensure equitable and effective pandemic control 13 

strategies.  One of the main challenges is the presence of biased training data. AI algorithms learn from historical data, 14 

and if the training data is biased or unrepresentative of the diverse population, the AI system can perpetuate and 15 

augment those biases. In the context of pandemic control, this can lead to unequal access to healthcare resources, 16 

differential treatment, or disparities in disease detection and response. It is essential to cautiously curate and 17 

differentiate training data to minimize biases and ensure the fairness of AI algorithms.  Another challenge is the lack 18 

of transparency and interpretability of AI algorithms [105-108]. Many AI models, such as deep networks, operate as 19 

black boxes, making it difficult to understand how decisions are reached. This lack of transparency raises concerns 20 

about the potential for hidden biases within the algorithms. To address this challenge, efforts should be made to 21 

develop explainable AI methods that provide insights into the decision-making process of AI algorithms. This will 22 

enable stakeholders to understand and mitigate biases and ensure fairness in pandemic control strategies. 23 

Furthermore, biases can also be introduced during the algorithm design phase. Human bias, conscious or unconscious, 24 

can inadvertently influence the development and deployment of AI systems. This can occur in various ways, such as 25 

biased selection of features, biased choice of training data, or biased assumptions embedded in the algorithm design. 26 

Recognizing and mitigating these biases requires diverse and inclusive teams of experts who can critically evaluate and 27 

challenge the assumptions and biases inherent in AI systems [113]. 28 

5.5. Infrastructure and Resource Constraints 29 

The integration of AI, IoT & Blockchain technologies has revolutionized pandemic disease diagnosis in smart cities; 30 

however, it requires a scalable technical backbone for handling huge amounts of generated & transmitted data 31 

efficiently. Despite the benefits accrued from this technology-driven approach mitigating pandemics on 32 

unprecedented scales but many cities' inadequate infrastructures suffer from poor network coverage resulting in 33 

insufficient bandwidth leading towards latency issues reducing analysis timeframes affecting medical professionals’ 34 

decision-making process [87].  Improving connectivity is fundamental hence investment into expanding both high- 35 

speed internet connectivity deployment & improving network coverage should be top priority areas towards 36 

overcoming these challenges successfully utilizing edge computing capabilities as well as adoption fog-computing 37 

technology nearer to the data sources highlighting reduction in latency while enhancing real-time processing capacity.  38 

For effective integration, the availability of sufficient resources is also vital; these include meeting computing power, 39 

storage & personnel requirements among many others. Challenges may arise in cities with limited resources both 40 

technological & financial. Consequently, securing adequate funding and resource collaboration between public and 41 

private sector entities responsible for implementing advanced technologies turn out to be increasingly important to 42 
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achieve a successful pandemic response rate.  Cost-effective solutions like shared infrastructure models or cloud 1 

computing has a great opportunity to alleviate resource constraints faced by smart city health care systems further 2 

implementing capacity-building programs including training initiatives would develop a skilled workforce capable of 3 

implementing these technological advancements efficiently achieving an increase in efficiency & medical care quality 4 

[101]. 5 

5.6.  User Acceptance and Adoption 6 

One of the key challenges in the integration of AI, IoT, and blockchain technologies for pandemic diseases diagnosis in 7 

smart cities is user awareness and education. Many individuals may be unfamiliar with these technologies and their 8 

potential benefits in healthcare. Lack of awareness and understanding can lead to skepticism, resistance, or reluctance 9 

to adopt these technologies. It is crucial to invest in public education campaigns, community engagement programs, 10 

and user-friendly information dissemination to raise awareness about the capabilities and advantages of AI, IoT, and 11 

blockchain in pandemic diseases diagnosis. Providing clear and accessible information about the functionalities, 12 

privacy measures, and potential impact on healthcare outcomes can foster user acceptance and encourage broader 13 

adoption of these technologies in smart city healthcare systems [112]. 14 

The user experience and interface design has a great opportunity in facilitating the acceptance and adoption of AI, IoT, 15 

and blockchain technologies in smart city healthcare systems. Complex or poorly designed interfaces can hinder user 16 

engagement and acceptance. It is essential to prioritize user-centered design principles, ensuring intuitive and user- 17 

friendly interfaces for healthcare professionals, patients, and other stakeholders. Seamless integration of AI 18 

algorithms, IoT devices, and blockchain systems should be accompanied by user-friendly dashboards, visualizations, 19 

and actionable insights that are easily understandable and accessible. Additionally, incorporating user feedback and 20 

conducting usability testing can help identify potential usability issues and refine the user experience, enhancing user 21 

acceptance and adoption of these technologies. 22 

5.7. Regulatory and Policy Frameworks 23 

The challenge of Regulatory and Policy Frameworks in pandemic control systems in smart cities arises from the 24 

requirement to establish clear and inclusive regulations and policies that govern the use of AI, IoT, and blockchain 25 

technologies. The rapidly evolving nature of these technologies, coupled with the urgency of pandemic control, 26 

presents unique regulatory and policy considerations that must be addressed. One of the focal confrontations is the 27 

lack of clear regulations and policies specific to the integration of AI, IoT, and blockchain in pandemic control systems. 28 

Existing regulations may not sufficiently cover the unique aspects of these technologies, such as data privacy, security, 29 

and algorithmic fairness. This creates uncertainty and inconsistency in implementation, hindering the effective and 30 

responsible deployment of these technologies. Policymakers must strike a sensitive balance between advocating the 31 

use of advanced technologies for pandemic control and ensuring the protection of individuals' rights, such as privacy, 32 

consent, and non-discrimination. The development of comprehensive regulations and policies that address these 33 

ethical and legal considerations is crucial for building public trust and confidence in the use of AI, IoT, and blockchain 34 

in pandemic control. Furthermore, the global nature of pandemics highlights the importance of harmonizing 35 

regulatory frameworks across different jurisdictions. Inconsistencies and discrepancies in regulations can impede the 36 

seamless sharing of data, interoperability of systems, and collaboration between smart cities. Establishing 37 

international standards and cooperation mechanisms can facilitate the development of effective regulatory 38 

frameworks that enable cross-border data exchange and collaboration in pandemic control. 39 

6. Conclusion 40 
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This work explores the role of AI, IoT, and blockchain technologies in enabling sustainable pandemic control in smart 1 

cities through reviewing the immense potential of these technologies in revolutionizing healthcare systems and 2 

response strategies during pandemics. The integration of AI, IoT, and blockchain offers promising avenues for real- 3 

time monitoring, early detection of outbreaks, efficient contact tracing, and optimized resource allocation. Through 4 

exploiting advanced data analytics, smart cities can harness the power of big data to improve disease prediction 5 

models, advance public health infrastructure, and enable proactive interventions. The paper also explores the crucial 6 

challenges meeting this integration such as privacy concerns, data quality and reliability, ethical considerations, 7 

infrastructure constraints, user acceptance, and regulatory frameworks. Then, we explore significant opportunities for 8 

further advancements for refining and expanding the capabilities of these technologies, exploring innovative solutions 9 

for privacy preservation, scalability, and interoperability, and fostering collaborative partnerships to ensure 10 

sustainable and inclusive pandemic control strategies. 11 
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