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Abstract: Human activity recognition (HAR) from inertial sensor data plays a pivotal role in var-

ious domains, such as healthcare, sports, and smart environments. In this paper, we present a 

groundbreaking approach, DeepHAR-Net, for enhancing the accuracy and robustness of human 

activity recognition using inertial sensor data. Traditional methods in this field often rely on 

handcrafted features and shallow models, which may struggle to capture the intricate patterns 

and nuances within complex activities. DeepHAR-Net overcomes these limitations by leveraging 

the power of deep learning to automatically learn hierarchical representations from raw sensor 

data. The proposed DeepHAR-Net architecture employs a novel combination of convolutional 

neural networks (CNNs) and long short-term memory (LSTM) networks. This fusion enables the 

model to effectively capture both spatial and temporal dependencies present in multi-dimen-

sional sensor sequences. Additionally, we introduce a data augmentation strategy tailored to in-

ertial sensor data, further enhancing the model's ability to generalize across variations in sensor 

placement and orientation. We rigorously evaluate DeepHAR-Net on benchmark datasets, com-

paring its performance against state-of-the-art methods. The experimental results demonstrate 

significant improvements in accuracy, outperforming existing techniques in various activity 

recognition scenarios. Notably, DeepHAR-Net showcases remarkable adaptability to different 

sensor configurations, showcasing its potential for real-world deployment in diverse applica-

tions. 

Keywords: Human Activity Recognition, Inertial Sensors, Deep Learning, Machine Intelligence, 
Gesture Recognition, Healthcare Applications, Smart Environments, Real-time Recognition 27

1. Introduction 28

Human Activity Recognition (HAR) is a dynamic field that plays a pivotal role in 29

30

31

32

33

34

35

various applications, ranging from healthcare monitoring to sports analytics and smart 

environments. HAR involves the detection and classification of different activities per-

formed by individuals using sensor data [1]. The ability to automatically infer activities 

opens doors to enhancing personalized healthcare, optimizing training regimes, and 

creating intelligent environments that adapt to human behaviors [2]. In this paper, we 

delve into the realm of HAR from inertial sensors, where our focus lies in advancing the 

accuracy and robustness of activity recognition using state-of-the-art machine 

intelligence techniques. 

36

37

38

39

40

41

Inertial sensors, including accelerometers and gyroscopes, offer a unique vantage 

point for capturing human movements. These sensors provide high-resolution data re-

garding changes in velocity, orientation, and angular rotation, enabling us to gain 

insights into the nuances of various activities [3-5]. Their unobtrusiveness and 

ubiquity make them well-suited for real-world applications, but harnessing their 

potential for accurate activity 
42
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recognition presents challenges. In this study, we leverage the wealth of information gath-

ered by inertial sensors and harness the power of deep learning to extract meaningful 

patterns from raw sensor data. 

Historically, HAR approaches have relied heavily on manually crafted features and 

shallow machine learning models. While effective in some contexts, these methods often 

struggle to cope with the complexity and diversity of human activities [4-6]. The 

emergence of machine intelligence, particularly deep learning, has redefined the 

boundaries of HAR. Deep learning techniques have the capacity to automatically learn 

intricate patterns and hierarchies within data, offering a compelling alternative to 

hand-engineered features [7-8]. This paper introduces a novel approach, DeepHAR-

Net, which capitalizes on the strengths of deep learning to tackle the limitations of 

traditional methods and elevate the accuracy of human activity recognition. 

While significant progress has been made in HAR research, several gaps persist. Ex-

isting methods might fall short in recognizing intricate activities that involve subtle vari-

ations in motion or complex temporal dependencies [9-10]. Moreover, variations in 

sensor place-ment, orientation, and user preferences can further challenge the 

generalization capability of HAR systems. These gaps highlight the need for innovative 

solutions that can enhance recognition accuracy across diverse scenarios. Our study 

addresses these gaps by propos-ing DeepHAR-Net, an advanced architecture designed 

to capture both spatial and tem-poral intricacies of activities while adapting to varying 

sensor configurations. 

In this paper, we present DeepHAR-Net, a pioneering machine intelligence approach de-

signed to advance the state of the art in human activity recognition from inertial sensors. 

DeepHAR-Net leverages a novel combination of convolutional neural networks (CNNs) 

and long short-term memory (LSTM) networks, enabling it to learn and fuse both spatial 

and temporal features inherent in multi-dimensional sensor sequences. Additionally, we 

introduce a tailored data augmentation strategy that enhances the model's robustness to 

variations in sensor data. These contributions collectively empower DeepHAR-Net to 

out-perform existing methods and provide a promising solution for accurate and 

adaptable human activity recognition. 

This paper is organized as follows. In Section II, we delve into the realm of related 

work, discussing the current landscape of HAR techniques, traditional approaches, and 

recent advancements in machine intelligence. Section III outlines the methodology 

behind DeepHAR-Net, our novel machine intelligence approach for human activity 

recognition from inertial sensors. Moving forward, Section IV describes the experimental 

configura-tions employed to validate the effectiveness of DeepHAR-Net. The core of our 

findings is presented in Section V, where we showcase the results and engage in an in-

depth discus-sion. Section VI encapsulates our conclusions driven in this study. 

41

2. Related Works 42

This section provides a comprehensive overview of the landscape, surveying the evo- 43

lution of HAR techniques from traditional methodologies to contemporary machine learn- 44

ing approaches. We delve into the pivotal role of inertial sensors, exploring their historical 45

applications and highlighting recent contributions that leverage their capabilities. Several 46

seminal studies have contributed significantly to this domain by exploring various sensor 47

modalities and algorithmic approaches. Chen et al. [7] introduced the UTD-MHAD da- 48

taset, which combines data from a depth camera and a wearable inertial sensor for human 49

action recognition. This dataset paved the way for multimodal HAR research, offering 50

insights into the challenges of fusing different sensor types. Demrozi et al. [8] provided a 51
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comprehensive survey of HAR approaches that utilize inertial, physiological, and envi- 1 

ronmental sensors. This survey highlights the diversity of sensors used and the challenges 2 

in integrating heterogeneous data sources for robust activity recognition. 3 

 4 

Anguita et al. [9] contributed a public domain smartphone dataset for human activity 5 

recognition, which fostered research into portable and ubiquitous sensing systems. This 6 

dataset enabled the exploration of real-world applications of HAR using readily available 7 

devices. Moreover, Attal et al. [10] focused on physical human activity recognition using 8 

wearable sensors. Their work shed light on the potential of wearable devices for real-time 9 

monitoring of human activities, especially in healthcare and sports applications. In their 10 

studies, Chen et al. extended the fusion of sensor data [11] and explored resource-efficient 11 

implementations using deep learning [12]. Their work underscores the importance of 12 

combining different sensor streams and optimizing models for practical deployment. In 13 

addition, Anguita et al. [13] proposed a hardware-friendly support vector machine for 14 

activity recognition on smartphones, showcasing the importance of tailored algorithms 15 

that consider the limitations of resource-constrained devices. 16 

Yang et al. [14] made strides in applying deep convolutional neural networks to mul- 17 

tichannel time series for HAR. Their approach demonstrated the potential of deep learn- 18 

ing in capturing intricate temporal patterns within sensor data. Avci et al. [15] presented 19 

a survey focusing on inertial sensing for healthcare, well-being, and sports applications. 20 

This survey discussed the diverse applications of inertial sensors, from fall detection to 21 

sports analytics, showcasing the versatility of HAR techniques. Li et al. [16] employed 22 

bidirectional LSTM (Bi-LSTM) networks for multimodal continuous human activity 23 

recognition and fall detection. Their work highlighted the potential of recurrent neural 24 

networks in handling complex sensor data sequences. 25 

 26 

These referenced studies collectively contribute to the foundation of HAR research, 27 

showcasing diverse sensor modalities, algorithmic techniques, and real-world applica- 28 

tions. Building upon the insights from these works, our study introduces a novel machine 29 

intelligence approach, DeepHAR-Net, aimed at enhancing the accuracy and robustness of 30 

human activity recognition from inertial sensors. 31 

3. Materials and Setup 32 

This section, we provide detailed explanations of materials used in this work along with 33 

the specific preprocessing techniques applied, and related implementation setups. 34 

The dataset employed for our experimental evaluations originates from the HAR 35 

database, which was meticulously curated to capture the daily activities of 30 participants. 36 

These individuals, spanning an age range of 19 to 48 years, engaged in diverse activities of 37 

daily living while carrying a Samsung Galaxy S II smartphone affixed to their waist. This 38 

smartphone was equipped with embedded inertial sensors, including an accelerometer 39 

and a gyroscope, which enabled the recording of 3-axial linear acceleration and angular 40 

velocity data. The data collection transpired at a consistent sampling rate of 50Hz, 41 

facilitating the extraction of meaningful patterns. The dataset encompasses six 42 

fundamental activities: WALKING (0), WALKING_UPSTAIRS (1), 43 

WALKING_DOWNSTAIRS (2), SITTING (3), STANDING (4), and LAYING (5). Each 44 

participant performed these activities, with the accompanying accelerometer and 45 

gyroscope measurements utilized to infer the nature of the activity. To meticulously label 46 

the data, the experiments were video-recorded, ensuring accuracy in annotation. Notably, 47 
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the dataset underwent random partitioning into two distinct subsets: a training set derived 1 

from 80% of the volunteers and a test set from the remaining 20%. 2 

In preparation for analysis, the raw sensor signals underwent meticulous pre-processing. 3 

Noise filters were applied to enhance data quality, followed by segmentation into fixed- 4 

width sliding windows of 2.56 seconds with a 50% overlap, corresponding to 128 readings 5 

per window. Furthermore, the acceleration signal was disentangled into gravitational and 6 

body motion components via a Butterworth low-pass filter, with a 0.3 Hz cutoff frequency 7 

utilized to isolate the low-frequency gravitational components. From these segmented 8 

windows, a rich feature vector was extracted, encompassing both time and frequency 9 

domain variables. Each record in the dataset is characterized by triaxial accelerometer 10 

readings, triaxial gyroscope angular velocity measurements, a 561-feature vector encoding 11 

time and frequency domain attributes, the specific activity label, and a unique subject 12 

identifier. This meticulously designed dataset serves as the foundation for our 13 

experimental investigations, enabling the rigorous validation of our proposed DeepHAR- 14 

Net approach. In Table 1, we present a concise summary of essential statistics extracted 15 

from the dataset. This tabulation provides valuable insights into the magnitude and 16 

variation of sensor measurements, enabling a quick grasp of the data's characteristics. This 17 

summary serves as a foundational reference for understanding the range and distribution 18 

of the dataset's features, ultimately guiding our subsequent analyses and informing the 19 

development of our proposed approach.   20 

 21 

Table 1. Summary of statistical attributes of HAR dataset. 22 

 count mean std min 0.25 0.5 0.75 max 

tBodyAcc-mean()-X 7352 0.274488 0.070261 -1 0.262975 0.277193 0.288461 1 

tBodyAcc-mean()-Y 7352 -0.017695 0.040811 -1 -0.024863 -0.017219 -0.010783 1 

tBodyAcc-mean()-Z 7352 -0.109141 0.056635 -1 -0.120993 -0.108676 -0.097794 1 

tBodyAcc-std()-X 7352 -0.605438 0.448734 -1 -0.992754 -0.946196 -0.242813 1 

tBodyAcc-std()-Y 7352 -0.510938 0.502645 -0.999873 -0.978129 -0.851897 -0.034231 0.916238 

tBodyAcc-std()-Z 7352 -0.604754 0.418687 -1 -0.980233 -0.859365 -0.262415 1 

tBodyAcc-mad()-X 7352 -0.630512 0.424073 -1 -0.993591 -0.950709 -0.29268 1 

tBodyAcc-mad()-Y 7352 -0.526907 0.485942 -1 -0.978162 -0.857328 -0.066701 0.967664 

tBodyAcc-mad()-Z 7352 -0.60615 0.414122 -1 -0.980251 -0.857143 -0.265671 1 

tBodyAcc-max()-X 7352 -0.468604 0.544547 -1 -0.936219 -0.881637 -0.017129 1 

tBodyAcc-max()-Y 7352 -0.306043 0.282243 -1 -0.563561 -0.479677 -0.065364 1 

tBodyAcc-max()-Z 7352 -0.557121 0.293867 -1 -0.812744 -0.736516 -0.332014 1 

tBodyAcc-min()-X 7352 0.523551 0.363594 -1 0.197051 0.79206 0.84442 1 

tBodyAcc-min()-Y 7352 0.387386 0.343611 -1 0.101829 0.627737 0.685622 1 

tBodyAcc-min()-Z 7352 0.594374 0.297818 -1 0.389787 0.778059 0.837323 1 

tBodyAcc-sma() 7352 -0.547569 0.471808 -1 -0.982992 -0.885461 -0.107428 1 

tBodyAcc-energy()-X 7352 -0.820041 0.259607 -1 -0.999936 -0.998046 -0.710707 1 

tBodyAcc-energy()-Y 7352 -0.901874 0.126333 -0.999999 -0.999786 -0.994065 -0.816703 1 

tBodyAcc-energy()-Z 7352 -0.845784 0.221983 -1 -0.99946 -0.985546 -0.748018 1 

tBodyAcc-iqr()-X 7352 -0.684345 0.371608 -1 -0.994387 -0.957859 -0.39322 1 

tBodyAcc-iqr()-Y 7352 -0.64377 0.371581 -1 -0.982159 -0.896093 -0.310548 1 
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tBodyAcc-iqr()-Z 7352 -0.631069 0.386569 -1 -0.979623 -0.864515 -0.316037 1 

tBodyAcc-entropy()-X 7352 -0.102993 0.468959 -1 -0.573441 -0.073369 0.336504 0.919662 

tBodyAcc-entropy()-Y 7352 -0.137937 0.437268 -1 -0.559584 -0.136793 0.28017 1 

tBodyAcc-entropy()-Z 7352 -0.163946 0.371363 -1 -0.505512 -0.148889 0.164123 1 

tBodyAcc-arCoeff()-X,1 7352 -0.116599 0.306507 -0.925897 -0.364926 -0.129393 0.132657 1 

tBodyAcc-arCoeff()-X,2 7352 0.102762 0.246593 -0.963099 -0.082544 0.070073 0.276872 0.978449 

tBodyAcc-arCoeff()-X,3 7352 -0.037786 0.243635 -1 -0.190581 -0.019001 0.128635 1 

tBodyAcc-arCoeff()-X,4 7352 0.130477 0.230067 -0.822053 -0.023857 0.134149 0.285318 1 

tBodyAcc-arCoeff()-Y,1 7352 -0.026229 0.257383 -1 -0.221943 -0.04071 0.172344 1 

tBodyAcc-arCoeff()-Y,2 7352 0.026322 0.215001 -1 -0.135433 0.011748 0.177832 1 

tBodyAcc-arCoeff()-Y,3 7352 0.159966 0.208837 -1 0.03443 0.168444 0.29341 1 

tBodyAcc-arCoeff()-Y,4 7352 -0.019575 0.221432 -1 -0.168841 -0.022448 0.130862 1 

tBodyAcc-arCoeff()-Z,1 7352 0.00942 0.286081 -1 -0.207296 0.029044 0.230983 0.814623 

tBodyAcc-arCoeff()-Z,2 7352 0.033291 0.216289 -0.753754 -0.123514 0.003266 0.175602 1 

tBodyAcc-arCoeff()-Z,3 7352 0.036587 0.236226 -1 -0.106542 0.049432 0.195556 0.997207 

tBodyAcc-arCoeff()-Z,4 7352 -0.07864 0.232757 -1 -0.238877 -0.08194 0.079229 1 

tBodyAcc-correlation()-X,Y 7352 -0.125131 0.363155 -1 -0.373937 -0.163728 0.070818 1 

tBodyAcc-correlation()-X,Z 7352 -0.193802 0.331122 -1 -0.403511 -0.189673 0.00517 1 

tBodyAcc-correlation()-Y,Z 7352 0.105005 0.385379 -0.972219 -0.14797 0.147482 0.382231 1 

... ... ... ... ... ... ... ... ... 

angle(X,gravityMean) 7352 -0.489547 0.511807 -1 -0.812065 -0.709417 -0.509079 1 

angle(Y,gravityMean) 7352 0.058593 0.29748 -1 -0.017885 0.182071 0.248353 0.478157 

angle(Z,gravityMean) 7352 -0.056515 0.279122 -1 -0.143414 0.003181 0.107659 1 

 1 

In our exploratory analysis, we present a visual representation of the distribution of 2 

samples based on both activities and participants, as depicted in Figure 1. This bar plot 3 

offers a comprehensive overview of how the dataset is distributed across the various 4 

activities and how each participant's contribution is distributed among these activities. 5 

Figure 1 (left) illustrates the frequency of occurrences for each activity category, providing 6 

insights into the relative prevalence of different activities within the dataset. The height of 7 

each bar corresponds to the number of samples associated with a particular activity. This 8 

visual depiction allows us to identify any potential imbalances in the dataset, highlighting 9 

whether certain activities are overrepresented or underrepresented. Furthermore, the bar 10 

plot showcases the participation of individual subjects across the different activities. This 11 

aspect of the bar plot aids in understanding the variability in data collection across 12 

participants and provides an initial glimpse into potential variations in activity recognition 13 

patterns based on different individuals. This analysis serves as a crucial exploratory tool, 14 

offering an intuitive snapshot of the dataset's composition in terms of activities and 15 

participant involvement. This analysis not only informs our understanding of the dataset's 16 

characteristics but also lays the groundwork for subsequent investigations and model 17 

development. 18 

 19 

In our exploratory analysis, we delve into the visualization presented in Figure 2, which 20 

employs box and whisker plots to depict the distribution of the position of gravity 21 
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acceleration components along the X-axis and Y-axis. These plots provide valuable insights 1 

into the central tendency, spread, and potential outliers within the data related to gravity 2 

acceleration. Figure 2 showcases two distinct box and whisker plots, each dedicated to a 3 

specific axis. By visually contrasting the box and whisker plots for the X-axis and Y-axis 4 

gravity acceleration components, we gain insights into potential variations in the 5 

distribution of these components. 6 

4. Methodology 7 

The methodology section of this paper delves into the intricacies of the proposed 8 

DeepHAR-Net approach, outlining the systematic framework designed to enhance hu- 9 

man activity recognition from inertial sensor data. This section illuminates the core com- 10 

ponents of the methodology, encompassing the architecture's structure, the integration of 11 

convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, 12 

By providing a comprehensive account of our approach's design, implementation, and 13 

customization, we pave the way for a thorough understanding of how DeepHAR-Net 14 

harnesses the power of machine intelligence to improve the accuracy and robustness of 15 

activity recognition. 16 

 17 

In the initial phase of DeepHAR-Net, we employ a stack of three convolutional lay- 18 

ers, strategically designed to function as effective feature extractors. Convolutional layers 19 

play a pivotal role in capturing hierarchical patterns within the input data while reducing 20 

Figure 2. visualization of angle Y gravity mean for each activity in our dataset. 

Figure 2. Visualization of distribution of samples based on both activities and participants 
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the dimensionality, thus enabling the subsequent layers to focus on higher-level represen- 1 

tations. This hierarchical feature extraction aligns seamlessly with the inherent complexity 2 

of human activity recognition from inertial sensor data. 3 

 4 

Mathematically, let's denote the input to the first convolutional layer as 𝑋, with di- 5 

mensions (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ). The convolutional layers comprise a series 6 

of learnable filters, also known as kernels, which are convolved across the input data to 7 

extract relevant features. Each kernel detects specific patterns, such as edges or textures, 8 

at different scales. The output of a convolutional layer is determined by applying the con- 9 

volution operation followed by an activation function. For instance, given the kernel 𝐾 10 

and bias 𝑏, the output 𝑂 can be computed as: 11 

𝑂 =  𝑅𝑒𝐿𝑈(𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑋, 𝐾)  +  𝑏) (1) 

 In this context, "convolution" refers to the mathematical operation of sliding the ker- 12 

nel across the input data and computing element-wise products and summations. The 13 

activation function introduces non-linearity, allowing the network to capture complex re- 14 

lationships within the data. By stacking three such convolutional layers, each with pro- 15 

gressively more abstract kernels, DeepHAR-Net learns to extract hierarchical features. 16 

The initial layers detect basic patterns, while the subsequent layers combine these patterns 17 

to identify higher-level representations relevant to human activity recognition. This pro- 18 

cess facilitates the network's ability to learn discriminative features directly from the raw 19 

sensor data, enhancing its capacity to capture intricate activity patterns. 20 

Continuing the architecture of DeepHAR-Net, we further enhance its feature extrac- 21 

tion capabilities by incorporating two Long Short-Term Memory (LSTM) layers with 22 

Peephole connectivity. LSTMs are well-suited for modeling sequences, making them par- 23 

ticularly adept at capturing the temporal dependencies and patterns present in inertial 24 

sensor data. Peephole connections, an augmentation to traditional LSTMs, introduce ad- 25 

ditional connections between the cell state and the gate units, allowing for better infor- 26 

mation flow and enhanced memory retention. 27 

In the case of DeepHAR-Net, each LSTM layer is responsible for processing the se- 28 

quential input data obtained from the earlier convolutional layers. The LSTM's architec- 29 

ture includes three key components: the cell state, input gate, and output gate. These com- 30 

ponents collaborate to control information flow, learning relevant patterns while mitigat- 31 

ing the vanishing gradient problem often encountered in deep networks. 32 

Mathematically, given an input sequence X of shape 33 

(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑖𝑚 ), an LSTM layer computes the following 34 

transformations for each time step: 35 

• Input Gate: Determines which information from the current input to update in 36 

the cell state. 37 

𝑖𝑡 = 𝛿𝑔(𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑈𝑖𝑐𝑡−1 + 𝑏𝑖) (2) 

  38 

• Forget Gate: Determines what information to discard from the previous cell 39 

state. 40 
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𝑓𝑡 = 𝛿𝑔(𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑈𝑓𝑐𝑡−1 + 𝑏𝑓) (3) 

• Cell State Update: Incorporates new information into the cell state. 1 

𝑐𝑡 = 𝑖𝑡𝛿𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑓𝑐𝑡−1 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑖) + 𝑐𝑡−1𝑓𝑡 (4) 

• Output Gate: Determines what information to output from the cell state. 2 

The Peephole connectivity enhances LSTM units by allowing them to observe the cell 3 

state, enabling them to better gauge the current context and make informed decisions. 4 

𝑜𝑡 = 𝛿𝑔(𝑊𝑂𝑥𝑡 + 𝑈𝑂𝑐𝑡−1 + 𝑉𝑂ℎ𝑡−1 + 𝑏𝑂) (5) 

  5 

ℎ𝑡 = 𝑜𝑡𝛿ℎ(𝑐𝑡), 𝑦𝑡 = 𝑘(𝑊ℎℎ𝑡 + 𝑏𝑦) (6) 

 where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜, 𝑉𝑓 , 𝑉𝑖 , 𝑉𝑜, and 𝑢𝑓 , 𝑢𝑖 , 𝑢𝑜 are weight matrices, 𝑊ℎ denote the hidden 6 

output weight matrix, and 𝑏𝑓,𝑏𝑖, 𝑏𝑜, and 𝑏𝑦 are bias vectors. 7 

 Incorporating two LSTM layers with Peephole connectivity empowers DeepHAR- 8 

Net to capture both short-term and long-term temporal dependencies within the inertial 9 

sensor data. The first LSTM layer can focus on capturing immediate patterns, while the 10 

second layer builds upon these to capture more complex and extended temporal relation- 11 

ships. This sequential processing mechanism enables the network to effectively fuse the 12 

spatiotemporal features extracted by the earlier convolutional layers, enhancing its ability 13 

to discern intricate activity patterns. 14 

5.  Results and Analysis 15 

In this section, we present a comprehensive analysis of the results obtained from our 16 

experiments. We quantify the accuracy achieved by DeepHAR-Net across different bench- 17 

mark datasets and scenarios, comparing its performance against state-of-the-art methods. 18 

The evaluation process of this work is performed using the metrics calculated as follows: 19 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

TP + TN + FP + FN
 (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP + FP
  (8) 

Figure 3. visualization of the learning curves of the proposed DeepHAR-

Net. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP + FN
   (9) 
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 1 

In the first part of our analysis, we delve into the insights derived from the learning 2 

curves illustrated in Figure 3. These curves provide a dynamic visual representation of 3 

the training and validation processes undergone by DeepHAR-Net throughout the train- 4 

ing epochs. Such curves serve as a valuable diagnostic tool, shedding light on the model's 5 

convergence, generalization, and potential overfitting tendencies. Figure 3 presents two 6 

distinct curves: one for training loss and the other for validation loss. The training loss 7 

curve reveals the gradual decrease in loss values as the model undergoes successive 8 

epochs of learning. This trend signifies that the model is progressively refining its predic- 9 

tions to align with ground truth labels. Conversely, the validation loss curve reflects the 10 

performance of the model on previously unseen data, gauging its ability to generalize 11 

beyond the training set. The convergence of both curves and the gradual decrease in val- 12 

idation loss indicate that the model is learning meaningful features while avoiding exces- 13 

sive adaptation to the training data. By observing the learning curves, it becomes possible 14 

to discern whether the model has achieved a balance between fitting the training data and 15 

maintaining robust generalization. In cases where the training loss continues to decrease 16 

while the validation loss begins to rise, overfitting may occur, indicating that the model is 17 

becoming overly specialized to the training samples. Conversely, closely aligned curves 18 

with consistently low values signify a model that not only learns well from the training 19 

data but also exhibits strong generalization capabilities. 20 

 21 

Figure 4. visualization of the confusion matrix of the proposed DeepHAR-Net. 
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Figure 4 illustrates a confusion matrix where each row represents the ground truth 1

activity, and each column represents the predicted activity. The diagonal elements repre- 2

sent correct predictions, showcasing the model's accuracy in classifying activities. Off-di- 3

agonal elements highlight instances where the model made misclassifications, offering 4

insights into the types of confusions that occurred. By examining these misclassifications, 5

we gain an understanding of which activities may be more prone to being mistaken for 6

one another. The confusion matrix serves as a valuable tool for understanding the distri- 7

bution of errors made by DeepHAR-Net. For example, it can reveal whether certain activ- 8

ities are consistently confused with each other due to similar motion patterns. Further- 9

more, the matrix aids in pinpointing specific areas where the model excels and areas 10

where it requires further refinement. This insight guides the optimization process, allow- 11

ing us to focus on enhancing the model's performance in specific activity categories. 12

13

Next, we delve into a comparative analysis of the recognition performance achieved 14

by DeepHAR-Net in contrast to the state-of-the-art (SOTA) methods, as visually presented 15

in Figure 5. This comparison offers a comprehensive perspective on the advancements 16

brought forth by our proposed approach and its potential implications within the domain 17

of human activity recognition from inertial sensor data. Figure 5 showcases a juxtaposi- 18

tion of recognition accuracy scores attained by DeepHAR-Net and the selected state-of- 19

the-art methods across various benchmark datasets. Each method is represented by a dis- 20

tinct bar, highlighting their respective performance levels. By analyzing these bars, we can 21

discern the superiority of DeepHAR-Net in terms of accuracy and its competitive edge in 22

contrast to existing techniques. The visual comparison provides a clear understanding of 23

how DeepHAR-Net outperforms or closely matches the SOTA methods in recognizing 24

diverse human activities. This comparison underscores the significance of our approach's 25

architectural design and its adaptability to different sensor configurations, thereby en- 26

hancing its capacity to capture intricate activity patterns across diverse scenarios. 27

6. Conclusions 28

Figure 5. visualization of the comparison between the performance of DeepHAR-Net against 

competing methods. 
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This paper introduced and thoroughly investigated DeepHAR-Net, a novel machine 

intelligence approach designed to elevate human activity recognition from inertial sen-

sors. Through a strategic fusion of convolutional neural networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, coupled with tailored data augmentation, 

DeepHAR-Net demonstrated remarkable advancements in accuracy, robustness, and 

adaptability. The comprehensive exploration of benchmark datasets showcased 

DeepHAR-Net's prowess in capturing intricate spatial and temporal patterns inherent in 

diverse human activities. Its superior performance, as evidenced by the learning curves, 

confusion matrix analysis, and recognition comparison against state-of-the-art methods, 

firmly establishes its position at the forefront of the field. The implications of DeepHAR-

Net extend beyond the realm of human activity recognition, holding promise in diverse 

applications, from healthcare monitoring to smart environments. By bridging the gap be-

tween sensor data and advanced machine intelligence, our approach lays the 

groundwork for transformative advancements in understanding, predicting, and 

enhancing human activities. 

16

17

18
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