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Abstract: The emergence of fifth-generation (5G) wireless technologies leads to enlarging net- 6 

work complexity as a result of massive data generation, exhaustive operating costs, time, energy, 7 

and the burdens of planning and management. Artificial intelligence (AI) has been demon- 8 

strated to have a vital role in improving data analytics and decision-making in massive 5G 9 

networks. On the other hand, Quantum Computing is an evolving technology for handling ex- 10 

ponential expansion in the data dimensions and calculating linear algebra quicker and more 11 

proficiently than traditional computers implying reduced computational costs and energy con- 12 

sumption. The unification between these disciplines engenders the concept of “Quantum Intel- 13 

ligence", which is an innovative and quite promising field with the possibility of unbounded 14 

capabilities for the 5G network. Beyond centralized learning, our discussions extend to debate 15 

the potentials of quantum intelligence to improve the distributed (federated) learning scenarios 16 

over several quantum computers, aiming to drastically enhance computational efficiency and 17 

energy consumption. Multiple simulation experiments are performed to evaluate and compare 18 

the performance of quantum intelligence on classical and quantum datasets. Finally, this article 19 

outlines the major technical and research challenges and open problems for future research on 20 

quantum intelligence in 5G wireless networks. 21 

Keywords:  Artificial intelligence, Quantum computing, Beyond 5G networks, ultra-reliable 22 

low-latency communications. 23 

1. Introduction 24 

The emergence of beyond 5G (B5G) networks is expected to bring about a paradigm shift in the telecommunications 25 

industry, with unprecedented opportunities for faster data speeds, lower latency, and increased network capacity. 26 

However, to fully realize the potential of B5G networks, it is essential to address the challenges that come with the 27 

increased complexity of network management and optimization [1]. This is where machine learning (ML) comes in, as 28 

it offers a promising approach to tackle the complexity and enable efficient operation of B5G networks. One of the 29 

primary role of ML in B5G networks is in network management and optimization. With the large amounts of data 30 

generated by B5G networks, ML algorithms can be used to analyze this data and identify patterns, predict network 31 

behavior, and automate network management tasks [2]. ML can also be used for fault detection and diagnosis, 32 

enabling quick identification and resolution of network issues. Additionally, ML can assist in resource allocation, 33 

optimizing network performance by predicting demand and allocating resources accordingly [3]. 34 
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Quantum computing (QC) , is defined as an evolving computational paradigm that exploit the principles of quantum 1 

mechanics to perform computations that usually exceed the abilities of traditional computers. A part from classical 2 

bits representing info in from of 0 𝑜𝑟 1, quantum bits (also called qubits) can occur in manifold states concurrently, 3 

which can be attributed to the superposition phenomena. This intrinsic parallelism makes the quantum computers 4 

capable to solve some computing problems exponentially faster than traditional computers. In addition, entanglement 5 

comes into sight as another inherent attribute of quantum systems, allowing the qubits to interrelate with each other 6 

in a way that the state of one qubit promptly impacts the state of another, irrespective of the how they far from each 7 

other. This, in turn, render the QC as a promising tool for revolutionizing different fields, including 8 

telecommunications, cryptography, and optimization [4]. 9 

When it comes to B5G networks, QC has an essential role in transforming network infrastructure, processes, and 10 

security. This can be significantly demonstrated with recently developed quantum-based algorithms for solving 11 

common problems in B5G networks, counting ultra-reliable low-latency communications (URLLC), high 12 

dependability, and massive machine-type communications (mMTC) [5]. For network optimization problem, Quantum 13 

Approximate Optimization Algorithm (QAOA) demonstrated an extraordinary ability to improve resource 14 

distribution, traffics routing, and network management [6]v. However, there are still several technical and practical 15 

challenges that need to be addressed before QC can be fully integrated for optimizing B5G networks. On the security 16 

side, QC empower the B5G networks with an enhanced set of security protocols that help protecting sensitive data 17 

from possible cyber threats. For example, Quantum key distribution (QKD) protocols made use of the ideologies of 18 

quantum mechanics to found safe communication channels with unreserved security assurances. With the integration 19 

of QKD, B5G networks become equipped with secure and tamper-proof communication [7].  20 

The convergence of QC with artificial intelligence (AI) into B5G solutions leads to the rise to the concept of Quantum 21 

Machine Intelligence (QMI), as transformative tool for advancing abilities of B5G networks. This revolutionary power 22 

of QMI stem from the deep integration of intelligence and decision-making capabilities of ML and computing power 23 

of QC, helping the networks to adapt, optimize, and evolve in real-time. QMI represent a step forward to address 24 

composite challenges, such as dynamic resource allocation, network optimization, and anomaly detection. Some QMI 25 

algorithms like quantum neural networks (QNNs) and quantum reinforcement learning (QRL), can analyze vast 26 

streams of network data and unconventionally adapt network configurations, which enable meeting the diverse and 27 

growing demands of B5G applications. 28 

Fig. 1. Categorization of quantum technologies in B5G wireless communications. [5] 
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To this end, this article studies the opportunities of applying QMI challenges and effects of applying quantum 1 

mechanics for enhancing computational capability in a B5G wireless network. Particularly, we present some 2 

fundamental knowledge about QC—superposition, entanglement, and inference principles — required to interpret 3 

the distinctions between conventional intelligence and QMI. Follow, the discussion cover QMI methods as a crucial 4 

way to learn from quantum information without the contravention the standards of quantum technology. Finally, we 5 

figure out the open research challenges and the promising research direction. 6 

The remainder of this work is organized as follows. Section 2 provide a detailed background about the concepts of QC. 7 

Following, we discuss the role of AI in B5G concepts in section 3. Then, we explore of the current progress in the 8 

quantum intelligence in section 4. Section 5 explore the quantum federated learning (FL). The open research avenues 9 

are debated in section 6. Finally, the concluding remarks are summarized in section 7. 10 

2. Background and Literature 11 

QMI is envisioned to revolutionize to offer an intelligent approach for solving computing paradigm that can solve 12 

classic intractable computational problems in B5G environments [8]. It is noteworthy that user can contains operative 13 

mobile networks equipped with a computational module distributed between the two layers. Based on type of 14 

application and required resources, the computation can be performed on either devices or core [9]. It is noteworthy 15 

that on-device activities would enhance the performance with respect to delays for classical calculations across the 16 

network. On the other hand, quantum processes need more resources in order to collect a sizable amount of data, 17 

particularly when dealing with real-time jobs [10]. In addition to providing high-convergent, data-intensive learning, 18 

a better comprehension of augmented and virtual reality, and improved interaction with the potential configurations 19 

of the systems, QMI algorithms can solve problems with traditional computing. Data partitioners, which are able to 20 

separate the data into quantum and conventional parts to aid in the adoption of better models and provide an idea of 21 

resource utilisation in QMI, are another aspect to consider. A definitive response to the applications' demand for 22 

either classical or quantum computing would be necessary in the data splitting sector. However, intelligent devices 23 

are anticipated to be competing for resources—which QMI algorithms may better manage—in B5G applications. 24 

A. Qauntum Computing 25 

QC is a kind of high computation that operates on a quantum computer and can’t operate on conventional computing. 26 

The main unit of quantum is qubit or quantum bit which is like a bit in classical computers. Where in classical 27 

computers the data is stored either in zeros or ones as a binary formula into bits on a hard drive. The qubit has two 28 

main states |0 >  𝑎𝑛𝑑 |1 > . The qubit |𝜓 > is broader than the classical bit. Furthermore, the qubit can deal with any 29 

combinations of binary formulas based on superposition property. So, super classical computers don’t have a memory 30 

to hold numerous combinations of problems. Also, traditional computation analyzes each combination one by one 31 

which consumes time. The quantum computing is depending on quantum properties such as superposition, 32 

entanglement, and interference. 33 

Superposition indicates that a qubit can present many combinations of states at the same time, not like a bit in 34 

classical computers. These qubits are integrated together permanently to act the same as a system based on 35 

entanglement property. So, the quantum state (QS) of each element can’t be described individually from other states. 36 

Lastly, Inference is also named cancelation which mange the QS by amplifying signals that indicate the correct answer 37 

“Constructive Interference” and canceling the signals which indicate the wrong answer” Destructive Interference”.  In 38 

conventional computing, the gates such as AND, OR gates do irretrievable operations, where the input can’t be 39 

retrieved from the output.  40 
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B. Types of Qauntum Computers 1 

Quantum computing encompasses diverse architectures tailored to different computational tasks and requirements. 2 

First, quantum annealer (QA) is the easiest to implement and the most limited one. But recently conventional 3 

computers have a broken QA in normal operations.  On the other hand, QA can successfully perform operations by 4 

exploiting the quantum fluctuations effect to solve high computation problems such as discrete search domains with 5 

many local minima as optimization issues. The D-wave platform was the first depending on the QA pattern in its 6 

kernel processing [11]. Second, analog quantum computer (AQC) is more robust than the conventional computer by 7 

imitating the interactions between quantum systems. AQC can have from 50 to 100 qubits. It’s not a global purpose 8 

computer but can identify certain issues in quantum physics [12]. Third, Universal Quantum Computer (UQC) is the 9 

highest powerful one among the three kinds. It’s difficult to implement and more globally. Can involve 100,000 qubits 10 

for operations such as cryptography, quantum chemistry, optimization, searching, etc. The UQC requires a very low 11 

temperature which is highly expensive to offer this technology. Also, it’s hard to implement reliable qubits and 12 

integrate them [13]. In more fine-grained way, quantum technology has been a taxonomized into different quantum 13 

technologies and their apps as shown Figure 1. It can be noted that this taxonomy comprises quantum sensing, 14 

quantum communication, quantum computation, and quantum simulation [5]. 15 

3. Artificial Intelligence 16 

Artificial Intelligence is a field of computer science that has revolutionized the way of performing daily life tasks 17 

using machines with limited human interference to promote automated and intelligent conduct. Machine Learning 18 

(ML) and Deep Learning (DL) are rapidly evolving subfields of AI that achieve an extraordinary level of performance 19 

when learning to solve progressively complicated computational data-driven or data-free problems, making them 20 

crucial for the upcoming development of human civilization. The complexity of AI solutions has recently improved to 21 

such a level that roughly no human interference is necessary for their building and deployment. This in turn renders 22 

the AI as key enabler for the realization of B5G wireless communications in real-world [1]. Moreover, AI enabled 23 

wireless communications are being deployed in extremely sensitive policy areas (i.e., recidivism forecast in the 24 

criminal justice system, or the face recognition in police system), and in fields with variety of societal and political 25 

authorities. Hence, now, AI solutions are integrated into a broad range of decision-making activities in almost all life 26 

sectors. Accordingly, the attention of science and policy communities has been positioned toward the extent to which 27 

AI can help standardize the design of B5G networks soon [2]. 28 

4. Quantum Intelligence 29 

Quantum computing easily lends its concepts to the realm of AI and therefore there has been effective research on 30 

striving to use standards of quantum technology to enhance the computational efficacy and representation power of 31 

traditional AI algorithms. Quantum expansions to conventional AI challenges have been gaining great significance for 32 

the B5G community in recent times. The key differences between quantum intelligence and classical intelligence are 33 

parallel computation. The new research direction aims to combine classical ML or DL algorithms with quantum 34 

computing. This will lead to complex quantum states with high-dimension particles and many entangled quantum 35 

degrees. It is considered to be challenging to rebuild an experimental structure that generates it. In this part, we break 36 

down the quantum intelligence elements of learning under a quantum context. 37 

 Input representation: In conventional computing, the NN computations are done in one direction to the output 38 

where computations are irretrievable. In contrast to quantum computing where its computations are retrievable 39 

conversion to derive the input from the output. In a QNN the output can be achieved by appending an ancillary bit to 40 
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the input. In a multi-class situation, where one qubit can’t indicate the output, the 𝛰 (𝑙𝑜𝑔𝑁) can be given to indicate 1 

the class where 𝑁 is several classes in Hilbert space. 2 

The input to QNN can be the conversion of classical data or quantum data into the form of states 𝜓 > (1, . . . , 𝑠) where 3 

its a superposition 2𝑠. the get reliable quantum data to implement QNN networks, the mainstream concerned studies 4 

convert their considerations to obtain QNNs on classical data. the conversion of traditional data to a QS, many famous 5 

techniques have been proposed. Such as binarizing independent elements based on threshold and representing each 6 

binary domain regarding qubit outcomes. In parallel work, many contributions have been introduced in [3] the 7 

continuous-variable platforms, which transform traditional input using a continuous degree of freedom to QS. This 8 

technique reduces the information loss during uniform continuous inputs, but with high complexity [10]. 9 

 10 

Modeling: Generally, the QNN is modeled using a variational quantum circuit (VQC) [4]. VQC is the technique to 11 

achieve approximations to the lowest energy eigenstate (ES) or ground state. In another word, VQC can be trained by 12 

classical approaches to drive queries on quantum computers. In this step, the encodings are given to the VQC which 13 

involves parameterized gates and then reduces the loss to optimize the model task. The permutation matrix 14 

transforms which is the common way of conversion. Also, the unitary matrix can find the conversion, based on free 15 

parameters. Some contributions implement linear and non-linear conversions [3].  16 

Extracting the output: the final step depends on estimating the parity of the output. It’s challenging to get a single 17 

value from superposition qubits. The quantum output is relying on QS or bias. the aim is to identify 𝑝𝑦 from the 18 

combined output state, regarding the final qubit in the last quantum computing achieve after the unitary process.  19 

The fidelity [7] is the estimation of clones between two QS. If the output is not computationally biased, the fidelity can 20 

be easily altered as the output state is combined. In another word, fidelity indicates the probability that one state will 21 

pass a test to identify as the other. To measure the cost function, the Pauli operator is computed. Pauli operators are 22 

logical operators or gates that are appended to input states to identify the impacts of the environment on a QS. 23 

 24 

Learning network parameters: As in traditional NN on conventional computing, The QNN parameters aim to reduce 25 

the loss function based on the first-order and second-order optimization approaches, which provides a general flow of 26 

QDL. 27 

Fig.2. Comparison of classification performance of quantum CNN and traditional CNN under A) centralized learning and FL on MNIST 

dataset using classical data. 
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 1 

Quantum Feedforward Deep Neural Networks (QFFDN): One exciting contribution will be the studies 2 

depending on [6]. This contribution is pioneered in using the encoding of a non-discrete valued array instead of 3 

binary formula. This is like obtaining gray-level images instead of binary images. Furthermore, the probability of 4 

linking many quantum layer perceptrons together. The model could be completely developed on quantum computing 5 

and would efficiently form an FFDN [7]. 6 

Quantum Convolution neural network (QCNN): QCNNs were first proposed in [8] inspired by the classical 7 

CNNs. Convolutions are processes achieved on vicinity couples of qubits. As in VQC, Convolutions are 8 

parameterized unitary rotations. The next pooling layers are achieved by evaluating a subset of the qubits and using 9 

the outcomes of the evaluation to manage following process. The fully connected analog layer is a various qubit 10 

process on the remaining qubits before the last evaluation. During training whole parameter value is assessed. 11 

QCNNs is classifying quantum states, as in the traditional CNN that differentiates among various topological forms. 12 

QCNNs can also classify classes just like in conventional computing. 13 

Quantum Recurrent neural network (QRNN): The classical RNN has an effective impact on many DL tasks such as 14 

speech recognition, machine translation, etc.  The QRNN cell is made up of parametrized quantum neurons 15 

depending on VQC to generate non-linearity to input if it is combined with amplitude amplification. Then measure 16 

the output for every step-in class perdition [9]. 17 

Quantum Autoencoder (QAE): An effective variational quantum approach for quantum data compression by its 18 

capability to obtain low-dimensional patterns from QS being in the high-dimensional space based on eigenvalues 19 

computations. 20 

Quantum Reinforcement Learning (QRL): The state (action) in classical RL is seen as the ES in QRL. The state (action) 21 

set can be introduced as a quantum superposition state and the ES can be achieved by randomly monitoring the 22 

simulated QS regarding the fall hypothesis of quantum measurement. The possibility of ES is determined by the 23 

probability amplitude, which is upgraded correspondingly to rewards and value functions. Therefore, it becomes a 24 

great balance between exploration and exploitation and can increase learning speed also. 25 

5. QUANTUM FEDERATED LEARNING 26 

 27 

Traditional centralized quantum intelligence is not quite applicable for B5G networks as they require transferring the 28 

data to a central location where learning is performed, which involves high computing, storage, and communication 29 

overhead and also could be unfeasible due to the failure to gain entree private data [7]. Therefore, distributed 30 

intelligence come to be essential requirement to learn from such private data locally by communicating only the 31 

Fig. 3. The training curves in terms of A) accuracy curves and B) loss curves using quantum relabeled on MNIST dataset.  



SMIJ2024,Vol. 7 7 of 10 
 

 

parameter of local AI models to a cloud coordinator. This greatly helps reduce the network resource and energy 1 

consumption and increases the responsiveness of AI solutions in latency-sensitive applications. FL [8] is an evolving 2 

decentralized approach that is especially cognizant of these challenges, involving privacy and resource limitations. It 3 

employs the on-device processing capability and private data by implementing the model training in a decentralized 4 

fashion [8]. 5 

As with QDL, the integration of FL and quantum intelligence leads to quantum FL (QFL), which is a key enabler for 6 

distributed and privacy-preserved learning in B5G networks. On the other hand, most present QML models depend 7 

on centralizing the training data. As a result, more feasible QFL solutions adapted to upcoming quantum intelligence 8 

architecture should be considered.  Due to, the delicate nature of computing qubits and its conversion challenge 9 

process, establishing QFL frameworks for quantum networks is crucial. In addition to its practical importance, QFL 10 

enables quantum learning to be distributed by utilizing the wireless network [9]. 11 

 12 

In the nutshell, the design of the QFL solution can be implemented through the following phases: 13 

Phase 1: Initialisation. The cloud coordinator initialized the training hyper-parameters of the quantum 14 

intelligence model such as batch size, number of iterations, Optimizers, learning rates, number of 15 

communication rounds, number of layers, and number of participating quantum computers.  16 

Phase 2: local training of the quantum model. The designated quantum computers download the preliminary 17 

hyper-parameters and begin executing the local training using local quantum data. 18 

Phase 3: securing the model. Prior to uploading the local updates to the central aggregator in the cloud. Each 19 

quantum computer calls a specific procedure for protecting the privacy of the model and associated training 20 

data. This procedure may be differential privacy, parameter encryption, etc.  21 

Phase 4: global aggregation, the cloud coordinator aggregates local quantum updates from participating 22 

quantum computers and averages them to calculate the global model parameters. 23 

Phase 5: the process from phase 1 to phase 4 repeats until the model converges or the training ends. 24 

6. SIMULATIONS AND ANALYSIS 25 

This article develops a quantum CNN to classify images of handwritten digits from the MNIST dataset [14]. The 26 

classification performance of this quantum CNN is evaluated on such classical data (non-quantum) and compared 27 

against traditional CNN. To make the comparison fair, the quantum CNN is further compared to its equivalent 28 

traditional CNN i.e., with the same number of parameters (see figure 2). The simulation is also extended to train both 29 

traditional and quantum CNN under FL scenarios using traditional MNIST data. The findings show that regardless of 30 

the structure of the quantum intelligence model or its learning strategy it cannot overcome its traditional counterparts 31 

on classical datasets [13-15]. The CNN models above are implemented using TensorFlow 2.0. The implemented 32 

quantum convolutional layers used quantum circuits operating on qubits to perform convolution operations, in which 33 

quantum inputs are handled with quantum gates (like Hadamard gate and the CNOT gate) extracting features in a 34 

quantum-mechanical method. The implementation of this part is performed using Cirq framework, which simulate 35 

and execute quantum circuits on classical computers. The model architecture consists of 8 convolutional layers 36 

followed by 3 linear layers, with max-pooling layers spread to perform spatial downsampling. It also includes batch 37 

normalization, and ReLU activation functions. The model training is performed with initial learning rate of 0.001, with 38 

batch size of 64, and Adam optimizer. We use cross-entropy as a loss, and dropout rate of 0.5. 39 

In addition, the previous simulations are performed again but on the quantum version of data generated from MNIST 40 

data via quantum (see Figure 3). By observing the training behavior of both quantum CNN and traditional CNN in 41 

terms of loss and accuracy curves, we could find that the quantum CNN can overcome the existing with large 42 
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margins. In the same way, the federated training of both variants of model show similar training behavior and close 1 

results. This in turn support our hypothesis that quantum intelligence can afford powerful learning capabilities while 2 

maintaining high computational efficiency. 3 

7. OPEN AVENUES 4 

In this section, we elaborate on several directions of quantum intelligence in wireless communication. while QMI 5 

show a promising role in revolutionizing computational speeds in B5G, it still encounters many limitations. For 6 

instance, the present state of quantum hardware still in its early phases of development and is disposed to to errors 7 

and noise.  QML algorithms needs a robust error correction technique to mitigate these challenges, posing 8 

computational overhead and complexity. Additionally, the limited scalability of QMI stem from the number of qubits 9 

and quantum gates [15]. Furthermore, the practical implementation of QMI often necessitates noteworthy 10 

computational resources and expertise, impeding widespread adoption and deployment. Studying these challenges 11 

and other be crucial for unlocking the open avenue in QMI and realizing its transformative impact on various 12 

applications [16]. 13 

 14 

Measuring quantum algorithms speed: this issue is solved on individual bias cases only. This problem is extended to 15 

QDL also, which requires general theorems and standards for certain structures and learning approaches [11]. 16 

Vanishing gradient problem: Because QNN employs the same gradient descent approach to train their parameters as 17 

classical NN, they face the same challenge. Classical DL models tackle this problem by using an adequate activation 18 

function, however QDL does not, hence a different solution will be required later [12]. 19 

Noisy intermediate-scale quantum (NISQ) indicates fewer qubits and a much computational error of near-term 20 

quantum devices. Not all quantum approaches work under this context but are predictable to be applied in the future. 21 

such as Shor’s algorithm that needs a minimum of thousands of qubits without an error correction operation. Recent 22 

quantum computers have only ten’s number of qubits which high error rate percentage. Though, during the 23 

comparatively short circuit depth and qubit conditions, VQC and quantum intelligence depending on them are 24 

tolerant to these environmental restrictions. However, to improve the data processing capacity of quantum 25 

intelligence, it is required to study near-term device compatibility [16].  26 

Quantum supremacy: The illusion that quantum approaches are always superior to conventional approaches 27 

performing the same purpose may arise because of quantum advantage. However, under some conditions, gains can 28 

only be obtained by thoughtful algorithms. It is vital to argue the advantages of a new QDL algorithm over the 29 

comparable classical models while creating it. 30 

More DL inspiration algorithms: QDL is still in its early stages. The present method case is to put the same strategy 31 

training network with a QNN from the existing DNN, but there are many cases of various approaches concepts from 32 

classical RL, LSTM, GAN Attention mechanism research. The quantum computing advantages can be achieved 33 

through QNN in a case of great computational complexity via the complex Markov decision method environment 34 

[16-18]. 35 

8. CONCLUSION 36 

In this article, we define and explain the fundamentals of research on the emerging field of quantum intelligence for 37 

tackling some of the challenges in 6G wireless networks. Quantum intelligence is an emerging learning solution, 38 

tailored for centralized and distributed scenarios, that seek to address the computational cost, energy, latency, and 39 

decision-making in wireless communications by performing decentralized model training. An approachable 40 

introduction is given to figure out quantum intelligence and related salient principles. Then, we show up multiple 41 
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applications of quantum intelligence in wireless communication, covering from terminal to the main network. 1 

Simulations have been conducted to validate the applicability of quantum intelligence and the results imply that 2 

quantum intelligence can approach the performance of the conventional AI under centralized and federated training 3 

scenarios. The article ends by discussing the state-of-the-art challenges and open research topics that necessitate 4 

further technical research efforts. 5 
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