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Abstract: The Proton Exchange Membrane Fuel Cell (PEMFC) presents itself as an effective and 8 

viable technology to consider for transportation purposes. One of the most important things to 9 

consider in the field of electric vehicles is the crucial evaluation of the deterioration of the 10 

PEMFC stack. A data-driven deep learning method is proposed in this paper to enhance the pre- 11 

cision of PEMFC Remaining Useful Life (RUL) prediction. This method combines a Long Short- 12 

Term Memory (LSTM), self-attention, and scaled dot-product attention mechanism. The LSTM 13 

enables the model to comprehend intricate temporal patterns and produce more abstract data 14 

representations. The correlations among various time points are found by using the self-attention 15 

mechanism. To highlight the most important features, the scaled dot-product attention method 16 

is used. In order to demonstrate the efficacy of the proposed model, comparisons with several 17 

Deep Learning models were made using the Dataset of the 2014 PHM Data Challenge. The find- 18 

ings from the experiments suggest that DA-LSTM proves to be a reliable choice for the RUL 19 

prediction of PEMFCs, as it demonstrated superior performance compared to all other models 20 

examined. The source code is available here: https://github.com/AhmedHossam10/remaining- 21 

useful-life-prediction-for-proton-exchange-membrane-fuel-cells  22 

Keywords: Remaining useful life; Proton exchange membrane fuel cell; Long short-term memory 23 

network; Attention mechanism. 24 

1.  Introduction 25 

 These days, the automotive industry is confronted with two prominent global issues, namely global warming, and the 26 

energy crisis [1], [2]. Despite the utilization of advanced technologies such as turbocharging, direct injection, and 27 

Atkinson cycle engines to reduce pollutant emissions in gasoline-powered vehicles [3], [4], significant levels of CO2 28 

emissions persist, contributing to the exacerbation of global warming. On the other hand, the full-scale adoption of 29 

electric vehicles faces challenges in the short term due to their limited range, slow charging times, and the lack of a 30 

comprehensive charging infrastructure [5]. Furthermore, it is worth noting that electric vehicles continue to generate 31 

CO2 emissions during their production phase when viewed from a life cycle standpoint [6]. Conversely, hydrogen fuel 32 

cell vehicles are emerging as a prominent avenue for the advancement of new energy transportation due to their 33 

environmental friendliness, rapid refueling capabilities, and extended driving range [7]. 34 

 35 

A hydrogen fuel cell vehicle's main component is a proton exchange membrane fuel cell (PEMFC). The chemical energy 36 

contained in a hydrogen tank is quickly converted into electrical energy via an electrochemical process. Its primary use 37 
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is in the realm of transportation due to its superior density of power and more dynamic properties than other alternative 1 

fuel cell varieties. These advantages stem from its key features, such as increased density of power, appropriate energy 2 

capacity range (0.001-100 kW), a narrow working temperature varying from 0 oC to 80 oC, lack of electrolyte loss, and 3 

lightweight design [8]. The two primary tasks in prognostics and health management involve forecasting degradation 4 

patterns and determining the remaining useful life (RUL). A key factor in increasing the efficiency of hydrogen fuel cell 5 

cars is the precise estimation of RUL for PEMFCs. Hence, it is imperative to develop a precise and efficient predictive 6 

model for RUL. The degradation pattern of PEMFCs may be assessed by using stack aging indices like as total 7 

electrochemical impedance spectroscopy (EIS), voltage, polarization curves, and power. Similarly, various parameters 8 

of degradation models derived from measurement data can serve as degradation indices. At present, the stack power 9 

and stack voltage are the most widely used measurement-based deterioration indicators for PEMFCs. 10 

 11 

Lately, Scholars have recently devised a range of research methodologies aimed at forecasting proton exchange 12 

membrane fuel cell RULs. These approaches are typically categorized into three primary groups: model-based methods, 13 

data-driven methods, and hybrid methods [9] [10]. The model-based methodologies concentrate on constructing a 14 

theoretical method that elucidates how the fuel cell system operates.  They posit that mathematical models or formulae 15 

can accurately represent the system's degradation. Model-based methodologies strive to provide accurate RUL 16 

estimations based on fundamental physics and chemistry that are relevant to fuel cells by clarifying the degradation 17 

mechanisms and their impact on the system [11]. The degradation phenomenon of PEMFCs is simulated through 18 

model-based methods, utilizing mechanism models that do not rely heavily on data. To predict the prognosis of 19 

PEMFCs, various models have been used, including the empirical deterioration method [12] [13], mechanism 20 

deterioration method [14], semi-empirical deterioration method [7] [8], and semi-mechanism deterioration method [17]. 21 

Chen et al. [18] introduced a technique for real-time forecasting of the RUL of PEMFCs utilizing data from laboratory 22 

testing and vehicle operations, serving as a foundation for PEMFC lifespan design. An expanded Kalman filter 23 

technique and a voltage aging model were used in Chen et al.'s [19] approach for predicting aging. By using 24 

deterioration methods for equivalent resistance and electrochemical surface area, Ouyang et al. [20] developed a voltage 25 

prediction method to forecast the course of PEMFC deterioration. Lechartier et al. [21] developed a predictive 26 

framework for PEMFCs, comprising a distinct static component and a dynamic component, and verified its accuracy 27 

using empirical data obtained from extended testing periods. Moreover, the process of developing precise physical 28 

models through trial and error to match experimental results can be a lengthy process lasting for multiple years. Data- 29 

driven methods involve constructing predictive models using historical data obtained from sensors on machinery and 30 

the associated measurements. The application of data-driven methodologies is effective in achieving generalization 31 

without requiring specialized expertise. Through the use of data-driven techniques, the relationship between sensor 32 

data and system degradation can be uncovered [22], demonstrating a robust ability to generalize and reduce reliance 33 

on empirical knowledge [23]. Data-driven approaches for RUL have the potential to lessen the reliance on conventional 34 

engineering knowledge and generate accurate predictions by examining trends in temporal data. This approach is 35 

advantageous in facilitating the ongoing, live tracking of equipment, thus decreasing the likelihood of crucial 36 

malfunctions while also improving forthcoming production procedures [24]. Data-driven methodologies in predicting 37 

RUL for PEMFCs entail utilizing historical and real-time data for detecting significant patterns and trends. Subsequently, 38 

a black-box model was provided with this information as input, which was then analyzed and converted into pertinent 39 

measurements. Creating the connection between the intended output (RUL prediction) and the input sensor monitoring 40 

data (For instance, environmental or operational data) is largely dependent on this black-box model.  It discerns and 41 

encapsulates relationships and latent information from the data for facilitating precise forecasting. 42 
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This study evaluates the RUL of complex systems by utilizing data-driven methodologies. These techniques encompass 1 

Deep Learning (DL) and Machine Learning (ML) approaches. ML methodologies have become a powerful tool in 2 

various aspects of our daily lives, enabling computers to learn from data autonomously and improve their effectiveness 3 

continuously without explicit programming. The capacity of ML to extract insights from data and perform tasks 4 

automatically is transforming our way of life, work practices, and technological engagements. With the advancement 5 

of this field, we anticipate even greater influences on our global community. ML methodologies can leverage large 6 

volumes of sensor data, operational parameters, and historical maintenance records. Through this methodical data- 7 

driven approach, machine learning algorithms can grasp intricate relationships among diverse variables that influence 8 

the state and deterioration of equipment. Complex feature extraction is conducted across different domains like 9 

frequency, time, and time-frequency  [25], and the selection of features is crucial for ensuring the optimal performance 10 

of traditional machine learning methods. hybrid deterioration tracking methods and Support Vector Machines (SVMs) 11 

were combined by Yan et al. The SVM was employed for the classification of degradation across five stages, while the 12 

hybrid deterioration tracking method was utilized to determine the most suitable RUL values for each stage of 13 

degradation [26]. Wavelet packet decomposition was used by Mejia et al. [27] to acquire coefficients from the primary 14 

sensor data. This entailed evaluating the current operational condition of the equipment using a Gaussian Hidden 15 

Markov Model (HMM). Additionally, the HMM model was utilized to predict the machinery's RUL along with 16 

determining the associated level of confidence. An intermediate domain was introduced by Shen et al. [28] to address 17 

the issue of source degradation indices being inadequate for SVM applications. In their approach they choose the best 18 

feature degradation indices, they employ a combination of PCA and the joint evaluation index. When it came to 19 

predicting RUL with little data, Nan et al.'s combination of gray predictive modeling (GM) and Relevance Vector 20 

Machine (RVM) with dynamic window widths demonstrated superior performance better than both a Convolutional 21 

Neural Network (CNN) and a Particle Filter (PF). The GM can anticipate the trend of deterioration with the use of 22 

relevance vectors generated by the RVM. In this methodology, dynamic window sizes are implemented to cater to 23 

various life cycle stages, wherein windows with longer widths exhibit more efficient performance in the early stages 24 

while windows with smaller widths are more effective in the later stages [29]. Zhang et al. utilized the RVM in 25 

conjunction with the differential evolution (DE) algorithm for predicting the batteries' RUL by utilizing denoised data 26 

generated through the wavelet denoising algorithm [30]. Tang et al. developed a collection of RVMs in which the 27 

primary model is adapted to specific characteristics, while each additional RVM is adapted to an individual feature. In 28 

addition to employing a comprehensive approach to feature generation through various techniques, they also 29 

introduced a method for feature selection to prioritize the features based on their significance over time [31]. 30 

 31 

Deep learning, a notable subset within the domain of machine learning, has led to significant changes in various 32 

facets of our society. It combines artificial neural networks with multiple layers to process data, mimicking the cognitive 33 

processes of the human brain. The advancements in deep learning methods have been impressive due to their versatility. 34 

Unlike ML, deep learning models do not require feature engineering as they can independently extract feature 35 

representations. Deep learning stands out for its complex network architecture, facilitating the identification of 36 

deteriorating features from past sensor data of monitored equipment [32]. As a result, deep learning demonstrates 37 

superior effectiveness in managing unstructured and high-dimensional data types like time series data and images. 38 

Notably, deep learning methods surpass other machine learning techniques, particularly in the domain of predictive 39 

maintenance. Wang et al. [33] presented the spatiotemporal non-negative projected convolutional network (SNPCN) 40 

methodology for detecting deterioration patterns within adjacent matrices by employing a three-dimensional 41 

convolutional neural network (3DCNN). The authors later used the PRONOSTIA platform to validate the efficacy of 42 
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this approach. Wang et al. introduced a Temporal Convolutional Network (TCN) that integrates two distinct 1 

convolution techniques to enhance the capacity for capturing local dependencies and enhancing accuracy: causal 2 

convolutions, which enable the examination of preceding sequential steps, and dilated convolutions, which facilitate 3 

the observation of a broader segment of the entire sequence [34]. Similarly, Yang et al. [35] devised a dual-CNN model 4 

for the prediction of RUL. The primary CNN is devoted to identifying the initial point of failure, while the secondary 5 

CNN is employed to predict the RUL value. Using a special version of the recurrent neural network (RNN) called grid- 6 

long short-term memory (G-LSTM), Ma et al. [36] presented a novel technique for forecasting fuel cell deterioration. 7 

The accuracy of the model was verified by testing using three distinct kinds of PEMFCs. A study [37] suggested an Echo 8 

State Network-based (ESN-based) method for prognosticating fuel cells under varying loads, with a notably low level 9 

of uncertainty in the estimation method. Wang et al. [38] suggested an integration of an attention mechanism within a 10 

bidirectional LSTM model to conduct RUL regression specifically for lithium batteries. In a similar vein, Chen et al. [39] 11 

presented a methodology that encompasses a two-step process first, for feature extraction they used Kernel Principal 12 

Component Analysis (KPCA), and second, for RUL estimation they used an application of a Gated Recurrent Unit (GRU) 13 

based architecture. 14 

 15 

The degradation system model is first built using a model-based strategy, which is based on a comprehensive 16 

comprehension of the behavior and degradation mechanisms of the system. The chemical and physical mechanisms 17 

that contribute to deterioration are included in this model. Next, utilizing the generated model and accessible data, a 18 

data-driven strategy is used to estimate the RUL. Hybrid methods use the best features of both approaches to provide 19 

more precise and dependable RUL forecasts. Using the benefits of both the data-driven strategy which uses actual data 20 

and statistical techniques for improving the accuracy of RUL prediction and the model-based approach which integrates 21 

fundamental physics and chemical concepts into the fuel cell system the hybrid approach maximizes its potential. 22 

Through the integration of these methods, a deeper understanding of the performance of the system and deterioration 23 

trends may be attained, resulting in an enhanced estimation of RUL [21]. Cheng et al. [40] suggested a new method for 24 

predicting the PEMFCs’ performance, utilizing a combination of the regularized particle filter (RPF) and the least square 25 

support vector machine (LSSVM). By applying this approach to the FCLAB Research Consortium's PEMFC dataset, the 26 

effectiveness of this methodology was confirmed. Meanwhile, Liu et al. [41] employed a data-driven method using an 27 

automated ML technique that utilized the adaptive neuro-fuzzy inference system (ANFIS). To predict the remaining 28 

operational life, they also used an adaptive centerless Kalman filter (ACKF) technique in combination with a semi- 29 

empirical deterioration method. The Least Squares SVM (LSSVM) is applied in various areas within the field of PHM. 30 

A technique called a dual filter approach was presented by Li et al. [42] that combines LSSVM with Unscented Particle 31 

Filters (UPF). The real-time updating of degradation states and LSSVM parameters is made possible by this fusion 32 

method, which combines model-based and data-driven elements. As a UPF's measurement equation, the LSSVM model 33 

which is first trained offline generates predictive values for future observations. Additionally, the LSSVM training set 34 

receives feedback from the expected output and LSSVM model parameter outcomes to enable dynamic parameter 35 

modifications and live training. Mechanism models are usually necessitated for both hybrid and model-based 36 

techniques, which leads to intricate modeling and sophisticated computing. Consequently, multiple researchers are 37 

focusing more on data-driven techniques, which encounter the obstacle of enhancing the model's precision accuracy. 38 

 39 

We introduce a novel data-driven deep learning method in this study aimed at predicting the RUL of PEMFCs. A 40 

novel technique referred to as dual attention combined with a long short-term memory (DA-LSTM) network is 41 

suggested in order to forecast RUL by taking sensor data obtaining temporal dependencies and extracting spatial 42 
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characteristics. An attention mechanism has been integrated into the LSTM architecture in order to allocate weight 1 

values to the extracted features, thereby emphasizing crucial information and enhancing the model's RUL forecast. The 2 

DA-LSTM model's efficiency is assessed using the well-known IEEE PHM 2014 Challenge Dataset [43] for predicting 3 

the RUL of PEMFCs. Our experimental findings demonstrate that the proposed approach diminishes uncertainty in 4 

multi-step prediction tasks and surpasses other existing models in terms of accuracy. The study's noteworthy 5 

contributions can be summarized as follows: 6 

1) A novel data-driven deep learning architecture designed to understand temporal relationships in time series 7 

data. This is achieved through the integration of dual attention mechanisms with long short-term memory 8 

(LSTM), which efficiently captures deterioration patterns in the PEMFCs. 9 

2) The model's validity was verified through the utilization of the dataset of the IEEE 2014 PHM data challenge 10 

[43], demonstrating its superior performance in predicting RUL compared to other models. 11 

 12 

The following sections of this document are organized in a subsequent manner. Section 2 includes the description of 13 

Methods and materials. Following this, Section 3 provides detailed information on the suggested methodology. This is 14 

then succeeded by the elucidation of Experimental settings in Section 4. Section 5 delves into the Results and discussion. 15 

Lastly, Section 6 summarizes the conclusions from this study. 16 

2. Methods and materials 17 

2.1 Long Short-Term Memory (LSTM) 18 

The network can operate similarly to a series of hidden layers interacting with each other because the Recurrent Neural 19 

Network (RNN) adds a feedback loop to the hidden layer. RNNs are well-suited for the analysis of temporal data 20 

because of this particular feature that allows them to remember past events. RNNs encounter two potential limitations 21 

when utilizing gradient-based backpropagation to modify the network weights. Neural networks may encounter issues 22 

with the disappearing or expanding gradient as the number of hidden layers increases, especially when generating 23 

predictions of long-term [44]. The necessity to examine extended periods of time intervals in forecasting necessitated 24 

the exploration of alternative approaches beyond RNNs to ensure precise outcomes. Various iterations of RNNs have 25 

been developed, such as the special version of RNN called Long Short-Term Memory. 26 

A novel RNN architectural modification is presented by the LSTM, specifically crafted to address the issue of 27 

disappearing gradients in conventional RNNs, with a focus on resolving the challenges posed by long-term 28 

dependencies in predictive tasks. This innovative structure includes a sophisticated configuration of memory cells that 29 

stands out for its ability to effectively retain and utilize information over extended sequences, making it particularly 30 

suitable for tasks that involve predicting long-term dependencies, such as RUL prediction in PEMFCs. Figure 1 shows 31 

the construction of the LSTM cell. Within the LSTM model, the forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡 constitute 32 

the three essential components that govern information flow and regulate interactions within the network. The 33 

information from the previous cell state that should be discarded is determined by the forget gate 𝑓𝑡. Taking into account 34 

the prior hidden state and the input at hand, the forget gate 𝑓𝑡 produces an output value within the range of 0 to 1, 35 

representing complete forgetfulness to full retention. The mathematical expression for 𝑓𝑡 is detailed in Equation 1. 36 

𝑓𝑡 = 𝜎(𝑊𝑓 𝑥𝑡 +  𝑈𝑓  ℎ𝑡−1 + 𝑏𝑓) (1) 

Where the sigmoid function is shown by the symbol σ, t represents the time step, the output hidden state from the 37 

previous time sample is indicated by ℎ𝑡−1, the input feature at time t is indicated by 𝑥𝑡, the parameters 𝑊𝑓 , 𝑈𝑓 , 𝑏𝑓 are 38 

optimized during the training process. The input gate 𝑖𝑡 is tasked with selecting new data to retain in the cell state. 39 

Through an analysis of the current input and preceding hidden state, it produces an output between 0 and 1, for 40 

incorporation into the cell state, along with a fresh candidate value. Equation 2 defines the mathematical form of 𝑖𝑡. 41 
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𝑖𝑡 = 𝜎(𝑊𝑖  𝑥𝑡 +  𝑈𝑖  ℎ𝑡−1 + 𝑏𝑖)  (2) 

Where the parameters 𝑊𝑖 , 𝑈𝑖 , 𝑏𝑖 are optimized at the training process. With reference to the previous hidden state and 1 

current input, what data is conveyed as the current LSTM cell's hidden state is governed by the output gate 𝑜𝑡. Its output 2 

varies from 0 to 1. The mathematical formulation of 𝑜𝑡 is presented in Equation 3. 3 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥𝑡 +  𝑈𝑜  ℎ𝑡−1 + 𝑏𝑜)  (3) 

Where the parameters 𝑊𝑜, 𝑈𝑜 , 𝑏𝑜 are optimized during the training process. The candidate value 𝑐′𝑡  represents novel 4 

data that has the potential to be integrated into the cell state at the current time step (t), generated by taking into account 5 

the input gate's consideration of the prior hidden state and the present input. Equation 4 defines the mathematical form 6 

of 𝑐′𝑡 . 7 

𝑐′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎  𝑥𝑡 +  𝑈𝑎  ℎ𝑡−1 + 𝑏𝑎)  (4) 

Where the parameters  𝑊𝑎, 𝑈𝑎 , 𝑏𝑎 are optimized at the training process. Subsequently, the 𝑐𝑡 value representing the unit 8 

state at time t is calculated using Equation 5. Finally, the ℎ𝑡 value representing the hidden state at time t is determined 9 

utilizing mathematical Equation 6. 10 

𝑐𝑡 = 𝑓𝑡 ∙  𝑐𝑡−1 + 𝑖𝑡 ∙  𝑐′𝑡   (5) 

ℎ𝑡 = 𝑜𝑡  ∙  tanh(𝑐𝑡)  (6) 

 11 

 12 

Figure 1. LSTM cell architecture. 13 

2.2 Scaled dot-product attention 14 

In the domain of time series analysis, recent data plays a pivotal role in accurately forecasting future values. Scaled dot- 15 

product attention is a method that helps highlight these recent portions of the LSTM output by giving more importance 16 

to their respective key vectors during the scoring phase. This technique is a key element used in different attention 17 

mechanisms. By incorporating it after the LSTM stage, The LSTM output sequence can include distinct segments that 18 

the model can concentrate on that are considered most relevant for prediction purposes. The transformation of the 19 

LSTM output involves mapping it into three separate vector spaces - Query, Key, and Value - using linear conversions. 20 

The query vector (Q) represents the center of attention for the model at each time step. The key vector (K) captures the 21 

available information at each time step in the sequence, while the value vector (V) holds the actual data content for each 22 

time step. A score is calculated by multiplying the query vector (Q) with each key vector (K) across the sequence, as 23 

shown in Equation 7. 24 
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𝑠𝑐𝑜𝑟𝑒 =  
𝑄  .  𝐾𝑇

√𝑑𝑘

 (7) 

Where 𝑑𝑘 donates the dimensionality of the key vectors, and √𝑑𝑘 represents  a scaling factor to stabilize the gradients. 1 

Following this, the scores undergo a softmax function application to transform them into a probability distribution 2 

referred to as the attention weights (A) in Equation 8. 3 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑐𝑜𝑟𝑒) (8) 

According to the current prediction (which is based on the query vector), these weights show the relative relevance of 4 

each time step in the sequence. Finally, the attention weights (A) are used to assign importance to the corresponding 5 

value vectors (V) following Equation 9. This procedure produces a context vector that summarizes the most relevant 6 

information from the entire sequence based on the current focus (query). 7 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑣𝑒𝑐𝑡𝑜𝑟 =  𝐴  .  𝑉 (9) 

 8 

2.3 Self-attention mechanism 9 

Traditional time series models frequently encounter challenges in capturing intricate relationships within the data, 10 

particularly when dealing with long-term dependencies. The use of self-attention helps in identifying dependencies 11 

across different time points, facilitating effective learning and representation of temporal relationships. Unlike 12 

traditional sequential data processing methods, self-attention allows each time point to consider all others in the 13 

sequence, enabling the model to select the most relevant past values for future predictions. Time series data often 14 

display prolonged dependencies, in which the measurement at a particular time instance is impacted by distant past 15 

data points. Self-attention mechanisms, specifically those integrating dilated convolutions or multi-head attention, are 16 

proficient in capturing these extended dependencies, thereby empowering the model to generate forecasts through a 17 

more comprehensive contextual comprehension. Through the utilization of the attention mechanism, information from 18 

individual time points is consolidated into the hidden state through the allocation of weights to the crucial data in the 19 

sequence. This mechanism functions by utilizing three vectors that are obtained by converting the input X into separate 20 

feature spaces: Keys (K), Queries (Q), and Values (V). The query vector (Q) symbolizes the central point of attention of 21 

the model at each time interval as determined through equation 10, while the key vector (K) contains the existing 22 

information at each time instance as computed by equation 11, and the value vector (V) retains the factual data content 23 

for each time step as calculated by equation 12. 24 

 25 

𝑄 = 𝑋 × 𝑊𝑞 (10) 

𝐾 = 𝑋 × 𝑊𝑘 (11) 

𝑉 = 𝑋 × 𝑊𝑣 (12) 

 26 

where 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣 are trainable parameters, and 𝑋 indicates the input tensor. The calculation involves evaluating 27 

the dot product between the query Q and each K in the sequence, then dividing by √𝑑𝑘 after the dot product operation, 28 

with the dimension of K being specified. This process is illustrated in Equation 13. 29 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒𝑠 =  
𝑄  .  𝐾𝑇

√𝑑𝑘

 (13) 

Subsequently, the computed scores undergo a softmax transformation, resulting in a probability distribution known as 30 

attention weights (A) as described in Equation 14. 31 

 32 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒𝑠) (14) 
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These weights signify the importance of individual time steps in the sequence concerning the current prediction made 1 

by the query vector. Following this, the attention weights (A) are utilized to assign importance to the corresponding 2 

value vectors (V) based on Equation 15.  3 

 4 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑣𝑒𝑐𝑡𝑜𝑟 =  𝐴  .  𝑉 (15) 

This method leads to the formation of a context vector containing the most pertinent details from the entire sequence 5 

based on the current focus indicated by the query. 6 

 7 

3. The proposed DL model 8 

The RUL for PEMFCs is regarded as a supervised regression task, necessitating the utilization of data from the dataset 9 

of the Challenge of the IEEE 2014 PHM Data for training and assessing deep learning models. This study suggests a 10 

new data-driven deep learning method named DA-LSTM, which combines LSTM, self-attention, and a scaled dot- 11 

product attention mechanism for predicting the RUL of PEMFCs, as illustrated in Figure 2. To extract historical patterns 12 

of the supplied information in the temporal domain, the LSTM layer is employed. The result from the initial LSTM layer 13 

is then directed to the self-attention mechanism, responsible for recognizing dependencies among various time points. 14 

Subsequently, the LSTM layer transmits information through memory cells and gates. The output from the second 15 

LSTM layer serves as the input for the subsequent layer, aiding in capturing hierarchical representations of the input 16 

data. The neuron weights of the hidden state layer are subsequently ascertained by using the scaled dot-product 17 

attention method. This layer is crucial in computing the output via the LSTM, assigning weight coefficients, and 18 

reconstructing data to identify the essential features. Following is the last LSTM layer. The incorporation of multiple 19 

LSTM layers enables the model to grasp intricate temporal relationships and create more abstract data representations, 20 

incorporating dropout layers to prevent overfitting. The processed data from the hidden layer is combined and for the 21 

final RUL prediction, this processed data is directed to the fully connected (FC) layer. Lastly, Algorithm 1 outlines the 22 

pseudocode of the proposed model. 23 

 24 

 25 

Figure 2. The suggested DA-LSTM flowchart. 26 

 27 

Outlined in Algorithm 1, the suggested framework follows a series of steps to manage the input data. Initially, the input 28 

data undergoes preprocessing before being directed to the input layer. Subsequently, this information is fed into an 29 

LSTM with 256 neurons and a Tanh activation function to acquire temporal insights from the input data. The LSTM’s 30 

resulting output is then passed to the self-attention mechanism to identify interdependencies among different time 31 

points. It is then sent to another LSTM layer with 256 neurons and a Tanh activation function, incorporating a dropout 32 

layer to prevent overfitting. Following this, an additional LSTM using 128 units and as an activation function using 33 
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Tanh is employed to allow the model to understand complex temporal patterns and generate more abstract data 1 

representations. The output of this layer is directed to the scaled-dot product attention mechanism dedicated to the key 2 

elements. Subsequently, it goes through another LSTM layer with 128 neurons and a Tanh activation function, along 3 

with the integration of a dropout layer. The resulting output is then channeled into a fully connected network that 4 

contains a dense layer using 1 unit serves as an output layer for predicting the remaining useful life of PEMFCs. 5 

 6 

Algorithm 1 Pseudo-code of DA-LSTM 

Input: Input data (D), batch size (Bs),  maximum epoch (T), and learning rate (lr) 

Output: loss (𝑀𝑆𝐸), RMSE 

1: Conducting the preprocessing step 

/* Create the proposed DA-LSTM model */ 

2: Input: Construct an input layer to receive the input data 

/* temporal learning based on the LSTM */ 

3: x: Create an LSTM layer with 256 units and a Tanh activation function to take the data 

from the input layer. 

4: x: Add Self-attention mechanism to x. 

5: x: Add LSTM layer with 256 units and Tanh activation function to x. 

6: x: Add a Dropout layer with 0.4 value as a dropout rate to x. 

7: x: Add an LSTM layer with 128 units and Tanh activation function to x. 

8: x: Add Scled dot-product attention mechanism to x. 

9: x: Add an LSTM layer with 128 units and Tanh activation function to x. 

10: x: Add a Dropout layer with 0.4 value as a dropout rate to x. 

/* Prediction Block */ 

11: x: Add a dense layer with 1 node to x. 

/* Optimization process */ 

12: N = Size(D)/Bs /* Estimate the number of batches */ 

13: 𝒕 =  𝟎, Current epoch 

14: while 𝑡 < 𝑇 

15:               𝒊 =  𝟎, the current batch size. 

16:               while 𝒊 <  𝑵 

17:                       Compute the Score function using the 𝒊𝒕𝒉 batch. 

        Optimize the MSE function by updating the weights according to Adam. 

18:                      𝒊 = 𝒊 + 𝟏  

19:                end while. 

20:               𝒕 = 𝒕 + 𝟏  
21: end while 

 7 

4. Experimental settings 8 

4.1 2014 PHM Data Challenge Dataset 9 

The dataset of the challenge of the IEEE PHM 2014 Data provides the data used in this study to analyze PEMFC 10 

[43]. As depicted in Figure 3, the FCLAB conducted the experimental examination. The fuel units appear in this research 11 

study in a stacked configuration,  just like in many other research investigations. The system's power output and total 12 

voltage are enhanced by this stacking configuration. numerous fuel units linked in sequence can make up the stack, 13 

depending on the specific application's voltage and power requirements [45]. A stack of PEMFC with four fuel units 14 

positioned one above the other as shown in Figure 4. It visually demonstrates the stacking arrangement, highlighting 15 

the cells' series link. Furthermore, A basic design of the operational system is featured in the illustration, offering a 16 

summary of the way the fuel units fit within the complete structure. Five PEMFCs, especially of the Ulmer BZ 100 type, 17 

make up the stack of PEMFCs used in the experiment. The highest power output of the entire stack is 600 W. Table 1 18 

outlines more details on the experimental operating settings and the features of the stack of PEMFC. 19 
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 1 

Table 1. Experimental operating conditions and features of PEFMC stacks. 2 

Parameters Value 

Number of units 5 

the active area of each cell 100 cm2 

Gas temperature 20 °C : 80 °C 

Airflow 0: 100 1/min  

Gas humidification 0 : 100 % RH  

Cell standard voltage  0.6 V  

H2 flow 0: 30 1/min 

Gas pressure 0: 2 bars 

Current  0: 300 A  

Cooling flow  0: 10 1/min  

Cooling temperature  20: 80 °C 

 3 

Sensors installed at the PEMFC stack's intake and output measured a variety of degradation factors.  Table 2 pro- 4 

vides specifics for these criteria, offering valuable insights into the stack's condition and efficiency. In the data analysis 5 

process, the FC1 dataset was utilized for training and was fully accessible. Conversely, the FC2 experimental data, used 6 

for testing, was only available for the initial 550 hours, using the rest of the 551–1155 hours of data applied to RUL 7 

estimation. Figure 5 shows how the training and testing sets were distributed, outlining the study's data split. 8 

 9 

  

Figure 3. FCLAB degradation test platform. 
 
 

Figure 4. Schematic of PEMFCs system. 

Table 2. IEEE 2014 PHM data challenge aging parameters. 10 

parameter Physical Meaning 

Time Aging time (h) 

U1 to U5 Single-cell voltages (V) 

Utot Stack voltage (V) 

I Current (A) 

J Current Density (A/cm2) 

TinH2 Inlet temperatures of H2 (oC) 

ToutH2 outlet temperatures of H2 (oC) 

TinAIR Inlet temperatures of air (øC) 

ToutAIR outlet temperatures of air (øC) 

TinWAT Inlet temperatures of cooling water (oC) 

ToutWAT outlet temperatures of cooling water (oC) 

PinH2 Inlet pressure of H2(mbara) 

PoutH2 outlet pressure of H2(mbara) 

PinAir Inlet pressure of air(mbara) 

PoutAir outlet pressure of air(mbara) 

DinH2 The inlet flow rate of H2(l/mn) 
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DoutH2 outlet flow rate of H2(l/mn) 

DinAIR Inlet flow rate of air (l/mn) 

DoutAIR outlet flow rate of air (l/mn) 

DWAT Flow rate of cooling water (l/mn) 

HrAIRFC Estimated air inlet hygrometry (%) 

 1 

4.2 Data preprocessing 2 

There are 127,370 samples in the dataset of FC2 and 143,862 samples in the dataset of FC1. To maintain the deteriorating 3 

features of the PEMFC and minimize the amount of computation required, every parameter as well as samples across 4 

the two sets was collected for one hour. As a consequence, the FC2 and FC1 sets produced, respectively, 1021 and 1155 5 

samples. The FC1's stack voltage displays an erratic and turbulent trend, whereas the FC2's stack voltages exhibit strong 6 

peaks because of the changes in load circumstances. By adding a window size equal to 21 for the Savitzky-Golay filter 7 

(SGF) and applying it to the two stack voltage sets, we decreased the noise and softened the generated sets. The influence 8 

of SGF is illustrated in Figure 6 for FC1 and Figure 7 for FC2. 9 

In order to normalize the characteristic values, the min-max scaling approach is used. In machine learning, this scaling 10 

technique is important, particularly for characteristics with various magnitudes or measures. It standardizes the range 11 

while adjusting the data to a constant range, usually between 0 and 1 [46]. This preserves the original distribution form. 12 

Mathematically, min-max scaling is defined by equation 16. 13 

𝑥′
𝑖,𝑗 =  

𝑥𝑖,𝑗 − 𝑥𝑗 𝑚𝑖𝑛

𝑥𝑗 𝑚𝑎𝑥 −  𝑥𝑗 𝑚𝑖𝑛

 (16) 

Where 𝑥𝑖,𝑗 donates the value of 𝑖𝑡ℎ sample, and 𝑗𝑡ℎ feature, 𝑥𝑗 𝑚𝑖𝑛 , 𝑥𝑗 𝑚𝑎𝑥  donates the minimum, and maximum values 14 

in 𝑗𝑡ℎ feature, respectively. 15 

 16 

Figure 5. An instance of a dataset for testing and learning. 17 

 18 
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Figure 6. The influence of SGF on FC1. 
 

Figure 7. The influence of SGF on FC2. 

 

4.3 Evaluation metrics 1 

In this paper, the Adam optimization [47] technique and mean square error (MSE) loss, which can be determined using 2 

equation 17, are employed to enhance the network parameters. 3 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 −  𝑦′

𝑖
)

2
𝑁

𝑖=1

 (17) 

 Where N represents an overall sample size, also both the real and predicted labels of the ith sample are denoted by 𝑦𝑖  4 

and 𝑦′
𝑖
, respectively. The evaluation metric known as root mean square error (RMSE) has been used to appraise the 5 

proposed model by contrasting RMSE values between the real and forecasted labels of each data point in the dataset. 6 

The RMSE value is calculated through a mathematical formula specified in equation 18.  7 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 −  𝑦′

𝑖
)

2
𝑁

𝑖=1

 (18) 

The reduction of both MSE and RMSE is essential for enhancing the accuracy in predicting the RUL of PEMFCs 8 

 9 

4.3 Hyper parameter tuning 10 

The DA-LSTM model proposed in this study incorporates several hyper-parameters, such as the number of units within 11 

each LSTM layer, the dropout rate, and the learning rate. It is essential to precisely define these parameters to enhance 12 

the model's effectiveness and decrease the RMSE. Therefore, Table 3 depicted that several experiments were conducted 13 

in this paper to explore different configurations for each parameter in order to identify the most optimal values that 14 

lead to a substantial boost in the performance of the model. The influence of these hyperparameters on the efficacy of 15 

the DA-LSTM approach is illustrated in Figures 8 to 14. For instance, the model's performance is significantly influenced 16 

by the quantity of units in each LSTM layer. Hence, multiple experiments were conducted to ascertain the best quantity 17 

of units for each LSTM layer, starting from 64, 128, to 256. The impact of the quantity of units for each LSTM layer can 18 

be observed in Figures 8, 9, 10, and 11. The dropout rate serves as a critical hyperparameter during the training of neural 19 

networks, playing a key role in mitigating overfitting. Overfitting is the phenomenon wherein a model not only captures 20 

the inherent patterns present in the training data but also incorporates noise and intricacies that do not translate 21 

effectively to new, unseen data. Many experiments are conducted to choose the best dropout rate. The impact of 22 

different dropout rates is visualized in Figure 12.  The learning rate serves as a pivotal hyperparameter in the training 23 

of deep learning models, as it governs the magnitude of adjustments implemented in the optimization process for 24 
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guiding the method's parameters toward minimizing the loss function. Various experiments were carried out to identify 1 

the most appropriate learning rate from the options of 0.0001, 0.001, 0.002, and 0.01, with results suggesting that the 2 

optimal learning rate is 0.001. The influence of different learning rate values is illustrated in Figure 13. 3 

5.2 FC1 and FC2  prediction results 4 

For the model that was trained on FC1, specific time intervals were selected for each stage, with 577 hours allocated for 5 

training, 115 hours for validating, and 462 hours for testing. Conversely, with FC2, the model trained has 510 hours for 6 

Figure 7. The impact of LSTM_1 unit number 

through experimentation. 

Figure 8. The impact of LSTM_2 unit number 

through experimentation. 

Figure 9. The impact of LSTM_3 unit number 

through experimentation. 

Figure 10. The impact of LSTM_4 unit number 

through experimentation. 

Figure 11. The influence of dropout rate 

through experiments. 

Figure 12. The influence of learning rate 

through experiments. 
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training intervals, 102 hours for validating intervals, and 408 hours for testing periods, respectively. The curve of 1 

the estimated voltage of the suggested method learned on FC1 correctly tracks the fluctuation of the voltage of the stack, 2 

providing crucial information about the voltage of the stack deterioration pattern in advance, as seen by 3 

FC1's estimation outcomes displayed in Figure 14. The curves of the estimated voltage of the suggested model trained 4 

on FC2 appear to properly correspond to the voltage of the stack fluctuation, based on the 5 

FC2's estimation outcomes displayed in Figure 15. 6 

 7 

Table 3. Experimental Analysis of the influence of hyper-parameter on prediction results. 8 
Hyper-parameter Value RMSE 

L
S

T
M

_
1
 

Number of cells 

64 0.0514 

128 0.0113 

256 0.0210 

L
S

T
M

_
2
 

Number of cells 

64 0.0623 

128 0.0113 

256 0.0154 

L
S

T
M

_
3
 

Number of cells 

64 0.0113 

128 0.0333 

256 0.0522 

L
S

T
M

_
4
 

Number of cells 

64 0.0113 

128 0.0461 

256 0.0813 

D
E

N
S

E
_

1
 

Number of cells 

8 0.0947 

16 0.0716 

32 0.0113 

D
E

N
S

E
_

2
 

Number of cells 

8 0.0113 

16 0.0689 

32 0.0901 

D
ro

p
o

u
t 

ra
te

 

Dropout rate value 

0.3 0.143 

0.4 0.096 

0.5 0.0113 

L e a r n i n g
 

r a t e Learning rate value 0.0001 0.125 

Figure 13. The influence of optimizer through 

experiments. 
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0.001 0.0113 

0.002 0.0162 

0.01 0.213 

O
p

ti
m

iz
er

 

optimizers 

Adam 0.0113 

RMSprop 0.164 

SGD 0.314 

 1 

Table 4. The DA-LSTM hyperparameters. 2 

Parameter value 

LSTM_1 number of cells 128 

LSTM_2 number of cells 128 

LSTM_3 number of cells 64 

LSTM_4 number of cells 64 

Dense_1 number of nodes 32 

Dense_2 number of nodes 8 

Dropout rate 0.5 

Learning rate 0.001 

Max no. of epoch 1000 

Loss MSE 

Optimizer Adam 

 3 

 4 

5. Results and discussion 5 

5.1 Comparison Results 6 

In this specific section, the outcomes attained by DA-LSTM for the testing subset of the 2014 PHM Data Challenge 7 

Dataset are juxtaposed against rival models to exhibit their effectiveness and efficiency. These outcomes are measured 8 

using the RMSE metric to highlight how well the models reduce the gap between the expected and targeted RUL. The 9 

results of the model proposed in the 2014 PHM Data Challenge Dataset are contrasted with various competing models 10 

such as Fusion [48], 1 input-ESN [49], 2 input-ESN [49], 3 input-ESN [49], SAE-DNN [50], ML-DNN [50], and RCLMA 11 

[51]. The superior efficacy of the system is illustrated through the presentation of findings, as evidenced by the RMSE 12 

values detailed in Table 5.  13 

The significant outcomes are highlighted in bold style. The presented table reveals that DA-LSTM outperforms all 14 

other models investigated in terms of the RMSE over the testing dataset, achieving RMSE values of 0.0066. Upon con- 15 

trasting our results with the best outcomes attained by different referenced models, our suggested model showcases a 16 

decrease in RMSE of 60% for the 2014 PHM Data Challenge Dataset. This proposed model is considered a robust choice 17 

for tackling this problem as it has the capacity to operate most efficiently based on the RMSE measure, which assigns 18 

equal importance to predictions made earlier on and later. To visually exhibit the efficacy of the recommended model, 19 

Figure 16 has been included to display the RMSE values obtained from various algorithms for the testing set. 20 

 21 
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Figure 14. the curves of FC1's estimated stack voltage. 

 
Figure 15. the curves of FC2's estimated stack voltage. 

 

Table 5. Performance comparison with competing models for the testing set. 1 

Models RMSE 

Fusion 0.0165 

ESN based on 3 inputs  0.01804 

ESN based on 2 inputs 0.02192 

ESN based on 1 input 0.03354 

SAE-DNN 0.2867 

ML-DNN 0.1422 

RCLMA 0.01785 

Proposed method (DA-LSTM) 0.0066 

 2 

 3 

Figure 16. illustrates the representation of RMSE values acquired from different models. 4 

5.2 Ablation Study Results 5 

To assess the effects of each component in the DA-LSTM individually, ablation experiments are conducted using 6 

the proposed methodology. This section outlines four experiments that are conducted under the same conditions as the 7 
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DA-LSTM. The experiments involve the utilization of various neural network architectures, such as an LSTM model 1 

lacking an attention mechanism, a hybrid model combining LSTM and self-attention mechanism (referred to as Self- 2 

LSTM), a hybrid model combining LSTM and scaled dot-product attention mechanism (referred to as Scaled-LSTM), 3 

and a model combining LSTM with both self-attention mechanism and scaled dot-product attention method (DA- 4 

LSTM). Furthermore, the outcomes of the experiments are meticulously laid out in Table 6 and visually depicted in 5 

Figure 17. The ATCN-LSTM displays superior performance in the RMSE metric compared to LSTM, Self-LSTM, and 6 

Scaled-LSTM across the testing dataset. The RMSE value of the proposed approach DA-LSTM is registered at 0.0066, 7 

indicating enhancements of 81.3%, 77.5%, and 80.7% over LSTM, Self-LSTM, and Scaled-LSTM, respectively. 8 

 9 

 10 

Table 6. The results of the ablation study. 11 
Model RMSE 

LSTM 0.0354 

Self-LSTM 0.0294 
Scaled-LSTM 0.0311 

Self-Scaled-LSTM (DA-LSTM) 0.0066 

 12 

 13 

 14 

Figure 17. The representation of RMSE values acquired through ablation experiments. 15 

6. Conclusion 16 

This research study presents a new data-driven deep learning method called DA-LSTM, designed for the estimation of 17 

Proton Exchange Membrane Fuel Cells' (PEMFCs') Remaining Useful Life (RUL). The DA-LSTM model combines LSTM, 18 

a self-attention mechanism, and a scaled dot-product attention mechanism. Long sequences are captured using LSTM, 19 

which helps the model comprehend intricate temporal correlations in time-based data. Additionally, two attention 20 

mechanisms are integrated to synchronize input and output sequences by considering the context or significance of the 21 

input sequence. The self-attention mechanism is utilized to identify relationships among different time points, while 22 

the hidden state layer neurons' weights are set via the scaled dot-product attention mechanism. The RUL forecasts are 23 

generated through a Fully Connected (FC) network. The experimental assessment was carried out using the PHM 2014 24 
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Challenge dataset. Comparative analysis with established models in the domain illustrated that our proposed model 1 

achieved a 60% reduction in RMSE for the testing dataset. 2 
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