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1 |Introduction    

Prognostics and Health Management (PHM) is considered a vital component within the realm of smart 

manufacturing [1]. PHM aims to predict the remaining useful life (RUL) of a specific system and formulate 

the optimal approach for managing its health [2]. PHM is a computational framework that explores the realm 

of physical knowledge related to the functioning and upkeep of structures, systems, and components [3]. In 

the realm of semiconductor manufacturing, the presence of sophisticated machinery involves a complex 

interconnection of various elements, which presents a significant obstacle to predicting system-level 

performance. In order to mitigate the risk of abrupt equipment breakdown due to the degradation of 

components, minimize maintenance costs, and uphold competitiveness in the industry, companies are 

progressively turning to advanced PHM technology to methodically oversee the operational status of 

production machinery. The prediction of RUL offers insights into the duration until failure and is crucial for 
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the overall efficiency of the ion mill etching (IME) procedure. This paper proposed a Data-driven Deep Learning 

(DL) framework that integrates a Temporal Convolution Network (TCN), Long Short-Term Memory (LSTM), and 

self-attention mechanism to improve the accuracy of RUL prediction in the ion mill etching Process. Initially, 

sensor input data is divided into two parallel paths - one with TCN blocks for capturing long-range dependencies, 

and the other with LSTM layers for extracting temporal patterns. The outputs from both paths are then merged 

and input into an LSTM layer for enhanced learning, followed by a self-attention mechanism to highlight important 

features then fully connected layer for predicting RUL. The efficacy of this suggested model was assessed through 

the utilization of the 2018 PHM Data Challenge Dataset and juxtaposed against various Deep Learning models to 

demonstrate its efficacy. The results from the experiments indicate that ATCN-LSTM serves as a robust option 

for estimating the RUL in the ion mill etching Process as it outperformed all other models that were compared. 
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guiding maintenance choices prior to a breakdown, ultimately diminishing uncertainties [2]. Ion mill etching 

(IME) is a semiconductor manufacturing method that is both accurate and effective [4]. During this 

procedure, an unreactive gas is aimed at the wafer by passing through various grids with distinct voltage 

variances. The wafer is positioned on a revolving platform and can be inclined towards the ion beam. The 

etching procedure commences upon the opening of the shutter, with the ion beam eliminating material from 

the wafer [5]. Wafers, which are silicon chips utilized in the production of integrated circuits and photovoltaic 

items, are undergoing increasingly intricate processing due to the swift advancement of both the integrated 

circuit and photovoltaic industries [6] Ion etching technology is capable of altering the surface morphology 

of a product at the micron scale [7]. As a result, the utilization of IME machines has become indispensable 

in the realm of wafer processing. The configuration of these IME machines can be observed in Figure 1. To 

avoid overheating, a helium water system known as Flowcool is employed to lower the temperature of the 

wafer. Nonetheless, this particular system is susceptible to malfunctions that may result in unforeseen periods 

of inactivity and increased maintenance expenses. Consequently, it is crucial to anticipate and pinpoint 

potential malfunctions in order to guarantee prompt maintenance and enhance operational effectiveness. 

Various research methodologies have been developed by scholars in recent times to predict the RUL of ion 

mill etching. These strategies are commonly classified into two main groups: physics-based methods and data-

driven methods [8-12]. In the approach based on physics, existing scientific knowledge is utilized to develop 

physical models that illustrate the deterioration of mechanical machinery [13]. To construct a physical 

prognostic model, the initial stage involves utilizing a set of dynamic ordinary or partial differential equations 

to elucidate the behaviors of the system [14]. The disparities observed between the real values and the results 

generated by the behavioral model are referred to as residuals. If a residual exceeds a specified threshold, it 

signifies the presence of a fault [15]. Sadabadi et al. [16] developed a sophisticated single-particle model that 

includes enhanced parameters for predicting the RUL of Electric Vehicle (EV) batteries using charging data. 

This concept provides a fundamental explanation for the deterioration of batteries caused by electrochemical 

activities taking place inside them. Gai et al. [17] proposed a method to estimate the fatigue lifespan by utilizing 

contact stress based on the fatigue theoretical design methodology. This approach allows for the calculation 

of the maximum stress at the point of contact, given the provided radial and axial forces applied to the bearing. 

This calculation helps in determining the lifetime of the bearing due to contact fatigue by referring to the 

contact fatigue life curve. Physical models are able to provide an accurate and analytical representation of 

system behavior due to being developed with a deep comprehension of the system. Additionally, physical 

models help elucidate the physical mechanisms of failure. The processes of IME entail intricate interplays 

among various particles and surfaces, with the dynamics being significantly influenced by the unique 

properties of the materials and the processing parameters. Consequently, creating physics-driven models to 

characterize the degradation patterns, mechanisms, and failure modes poses a formidable challenge. However, 

this approach needs to demonstrate more performance in creating physical representations for various 

complex systems [18]. Furthermore, the process of constructing highly accurate physical models through trial 

and error to align with experimental findings can be a time-consuming endeavor lasting several years. Data-

driven approaches involve the creation of predictive models by utilizing past data collected from sensors 

installed on equipment and the corresponding measurements. The utilization of a data-driven methodology 

is adept at achieving generalization without the need for specialized expertise. By employing data-driven 

techniques, the connection between sensor data and the deterioration of a system can be revealed [19], 

showcasing a strong ability to generalize and reduce the dependence on empirical knowledge [20]. Data-driven 

approaches for predicting RUL have the potential to reduce dependence on traditional engineering knowledge 

and generate accurate predictions through the examination of temporal data patterns. This technique proves 

valuable in the continuous monitoring of equipment in real-time, mitigating the risk of critical malfunctions, 

and improving forthcoming manufacturing operations [11]. 

This research assesses the RUL of intricate systems through the application of data-driven approaches. These 

methods include both Deep Learning (DL) and Machine Learning (ML) methodologies. ML methodologies 

have evolved into a robust instrument in multiple facets of our daily routines, empowering computers to 
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assimilate information from data without the need for explicit programming and to consistently enhance their 

efficiency.  The capability of ML to derive insights from data and execute tasks automatically is revolutionizing 

our lifestyle, professional activities, and technological interactions. As the field develops, we can predict even 

more substantial impacts on our global society. ML methodologies can exploit vast quantities of sensor data, 

operational parameters, and historical maintenance records. This methodological data-driven approach 

enables machine learning algorithms to comprehend intricate connections among various variables that 

impact the condition and decline of machinery. Extraction of complex features is carried out across time, 

frequency, and time-frequency domains [21], and the selection of features must also be executed to guarantee 

the optimal performance of conventional machine learning models. Sigaud et al. [22] utilize artificial neural 

networks (ANN) to estimate the Remaining Useful Life (RUL) by leveraging models trained on inspection 

data. While the multilayer perceptron (MLP) with a single hidden layer is theoretically capable of fitting any 

continuous function, it falls short in addressing sequence learning challenges. This limitation arises from the 

fact that original MLP networks can solely map from current input to output vectors, lacking the capability 

to effectively capture changes within sequences [23]. Zhang et al. [24] employed the relevance vector machine 

(RVM) in combination with the differential evolution (DE) algorithm to forecast the RUL of batteries by 

utilizing denoised data produced through the wavelet denoising algorithm. Berghout et al. [25] detailed the 

crucial steps involved in forecasting the remaining operational longevity through the utilization of machine 

learning techniques. They systematically examined the prospective advantages and challenges that may arise 

in the future. Mejia et al. [26] conducted wavelet packet decomposition to extract coefficients from the original 

sensor data, utilizing a combination of Gaussians Hidden Markov Model (HMM) for evaluating the present 

operational status of the machinery. Furthermore, the model was applied for the estimation of RUL and the 

corresponding confidence level. Many of these techniques necessitate significant feature engineering to 

identify important features. Furthermore, the moderate complexity of these models constrains their ability to 

accurately process data and demonstrate strong generalization skills. 

Deep learning is a significant subset in the field of machine learning and has triggered substantial changes 

across multiple facets of our lives. It integrates artificial neural networks with multiple layers for data 

processing that simulates the cognitive functions of the human brain. The progress in deep learning 

methodologies has been remarkable in light of their generality. Feature engineering is not required for deep 

learning algorithms since they possess the ability to autonomously extract feature representations. DL is 

distinguished by its more intricate network architecture, enabling the extraction of deteriorating features from 

historical sensor data of monitored equipment [27]. Consequently, DL exhibits superior efficiency in handling 

high-dimensional and unorganized data types like images and time series data. Notably, DL models 

outperform other ML techniques in the realm of predictive maintenance [11]. Convolutional neural networks 

(CNNs) integrated with additional structures have exhibited enhanced feature extraction capabilities in 

predicting RUL as a result of their expanded receptive field and efficient computational processes [28]. CNN 

is employed for extracting local characteristics from the input data and merging these characteristics to 

produce advanced features through a series of convolutional and pooling layers stacked on top of each other 

[29]. The effectiveness of CNN has been shown in applications related to predictive maintenance [30-32]. 

The adjustment required for enhancing predictive maintenance often involves a straightforward process of 

transitioning the input kernel from a 2-dimensional filter to a 1-dimensional filter for processing the numerical 

data within a time series dataset. Nonetheless, in order to enhance pattern recognition capabilities, additional 

filters must be utilized to detect a greater number of distinct patterns [33]. Recurrent neural networks (RNN) 

examine the temporal relationships within an input sequence at a specific time point, leveraging the knowledge 

stored in the hidden units pertaining to past observations of the sequence. Catelani et al. [34] integrated the 

RNN with a filtering-based technique for predicting RUL. The enhancement of the RNN's efficacy is ensured 

in this methodology by employing Genetic Algorithms (GA). RNNs encounter two potential limitations when 

employing gradient-based backpropagation for the purpose of modifying the weights of the network. The 

issue arises as the number of hidden layers (or, in this particular scenario, the loopback) grows, leading neural 

networks to potentially confront either the challenge of the exploding gradient or the diminishing gradient, 

particularly in the context of extended-term forecasting [35]. Long short-term memory (LSTM) models 
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incorporate gate control mechanisms to address the limitations of traditional RNNs, specifically in managing 

memory retention and forgetting processes [36]. Jianjing et al. [37] introduced an LSTM neural network, in 

which state cells are incorporated to retain long-term memory. Wang et al. [38] introduced a bidirectional 

LSTM model incorporating an attention mechanism to carry out RUL regression for lithium batteries. Gated 

Recurrent Unit (GRU) bears a resemblance to LSTM in its utilization of gating mechanisms to manage long-

term dependencies; however, the primary distinction between them lies in their respective gates [39].  Chen 

et al. [40] introduced a methodology consisting of a two-part procedure that incorporates Kernel Principal 

Component Analysis (KPCA) for feature extraction, followed by the utilization of a GRU-based architecture 

for the prediction of RUL. 

CNNs are frequently employed for prediction due to their efficient feature extraction capabilities; however, 

they encounter challenges when dealing with long-term dependencies [41]. In response, TCNs were 

developed as an enhanced version of CNNs with a specific emphasis on sequence modeling. TCNs utilize 

1D convolutions in contrast to 2D convolutions, as the latter extract features from multiple sensors 

simultaneously, leading to increased noise with each feature extraction [42]. Wang et al. [41] introduced a 

TCN which incorporates two distinct convolutional techniques aimed at enhancing the capability to capture 

local relationships and enhancing accuracy: causal convolutions, which enable the examination of preceding 

linear steps in the sequence, and dilated convolutions, which allow for the observation of a broader segment 

of the entire sequence.  Transformers employ a multi-head self-attention mechanism to capture long-range 

dependencies within a sequence irrespective of the distance between elements. This strategy enhances the 

model's ability to handle longer sequences and eliminates the need for employing recurrence or convolution 

techniques [43]. Ma et al. [44] developed a modified version of the G-Transformer model framework which 

incorporates the encoder component from conventional Transformer models. This adaptation is specifically 

designed for sampling and extracting features in the context of natural language processing for PM. 

Although there have been notable recent improvements in data-driven prediction techniques, there are two 

distinct and challenging obstacles when it comes to constructing models employing condition monitoring 

(CM) data from the IME process. 1) The distribution of valuable information in the IME procedures is 

unequal. The records collected from various sensors provide deterioration information related to different 

physical characteristics of the system. The physical features have a considerable impact on the behavior of 

different failure types. As a result, the data collected in the IME process shows an unequal distribution of 

effective information across time. 2) The deterioration patterns that are a part of this process are still not 

completely understood. Within the framework of IME, certain errors can manifest suddenly, while other 

flaws might develop gradually. Moreover, the latency duration of various sensors in identifying symptoms 

might differ and is not well-defined, resulting in an inadequate representation of the deterioration 

characteristics noted during this procedure. 

To address these obstacles, we introduce a novel data-driven deep learning approach aimed at predicting the 

RUL within the IME process. A novel technique referred to as the integrated temporal convolution with long 

short-term memory (ATCN-LSTM) network is suggested to extract spatial characteristics and capture 

temporal dependencies from sensor data for the prediction of RUL. Temporal convolutional networks 

(TCNs) employ one-dimensional causal filters and dilated convolutions for feature extraction from raw time 

series data, demonstrating significant memory capabilities for long time series. The LSTM component is 

employed to understand temporal dependencies from TCN output and extract temporal information from 

input data. Additionally, an attention layer is introduced to address the issue of inadequate learning in LSTM 

and RNN models when dealing with lengthy sequences. Finally, fully connected layers are utilized to link 

LSTM representations to the RUL label. Our experimental validation demonstrates that the suggested 

approach is capable of efficiently extracting pertinent features from data, identifying degradation patterns 

within the IME process, and generating reliable RUL predictions. The significant contributions of this study 

can be outlined as follows: 
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1) A novel deep learning architecture utilizes a multi-branch strategy to understand temporal 

relationships in time series data. This is achieved through the integration of a temporal convolution 

network (TCN), long short-term memory (LSTM), and self-attention mechanism, which efficiently 

captures deterioration patterns in the IME process. 

2) The validity of the model was confirmed through the utilization of the dataset from the 2018 PHM 

data challenge [6], demonstrating its superior performance in predicting RUL compared to other 

models. 

The subsequent sections of this paper are structured as follows. Section 2 elaborates on the proposed 

methodology. This is followed by the exposition of Experimental settings in Section 3. Section 4 discusses 

the Results and discussion. Lastly, Section 5 houses the conclusions of this study. 

 
Figure 1. An ion mill etching apparatus and its associated parameters [15]. 

 

2 | The Proposed DL Model 

2.1 | TCN-LSTM Components 

2.1.1 | Temporal Convolution Network (TCN) 

TCNs have a greater capacity to capture distant interdependencies within temporal data sequences compared 

to traditional RNNs such as LSTM or GRU models. The superior performance of TCNs stems from their 

utilization of Causal convolutions, which augment the effective receptive field exponentially as the depth 

increases. The TCN is a neural network design specifically tailored for processing sequential data, which 

incorporates causal convolution inspired by the Wavenet model [45]. This unique feature enables TCNs to 

discern patterns across lengthier sequences without imposing a substantial rise in computational overhead. 

TCNs represent an advancement in CNNs that specifically emphasize sequence modeling. TCNs are designed 

to employ 1D convolutions in place of 2D convolutions, as the latter extract characteristics from multiple 

sensors simultaneously, thereby introducing extra noise with each feature extraction [42]. 1D-temporal 

convolutions exclusively capture the characteristics pertinent to the temporal relationships among separate 
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sensors, which are then utilized in forming extensive short-term temporal dependencies [42].  TCNs 

distinguish themselves from their standard CNN equivalent through two additional features: firstly, by 

incorporating convolutions to avoid temporal leakage between sets, and secondly, by adopting the RNN 

framework which permits input sequences of varying lengths and produces output sequences of identical 

lengths [46]. A causal relationship within the convolutional layers is employed to encode past information in 

time series data. Figure 2 and Figure 3 illustrate the general convolution operation and the causal convolution 

operation, respectively. The distinction between general convolution and causal convolution lies in the fact 

that causal convolution exclusively takes into account past data. 

To enhance the long-term memory capacity of TCN, dilations are incorporated along with causal 

convolutions to support autoregressive forecasting. Additionally, a residual connection is introduced to 

facilitate the stacking of multiple layers while preventing model overfitting. The employment of dilation-

causal convolution operation in TCN replaces the conventional use of general convolution. As illustrated in 

Figure 4, the dilation causal convolution operation is depicted. When compared to causal convolution with 

an equivalent convolution kernel size, dilated convolution offers a larger receptive field. To ensure the stability 

of a deep neural network, a residual block with a shortcut connection is integrated into the TCN [47]. Spatial 

dropout and weight normalization are commonly applied following each dilated-causal convolution within 

the residual block of TCN for regularization purposes, as depicted in Figure 5. Furthermore, the input X of 

the residual block is combined with the output Y using a 1x1 convolution layer to guarantee that the 

elementwise addition maintains the same width in TCN. 

  

Figure 2. General Convolution. Figure 3. Causal Convolution. 

 
 

Figure 4. Dilation-causal convolution operation. Figure 5. Residual block of TCN. 
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2.1.2 | Long Short-Term Memory (LSTM) 

LSTM introduces a novel variant of the RNN architecture, specifically designed to address the challenge of 

vanishing gradient to effectively manage the prediction of long-term dependencies [36]. This particular model 

introduces a complex memory unit that allows for the retention of information over lengthy sequences, 

making it well-suited for tasks requiring long-term dependencies. The LSTM cell architecture is shown in 

Figure 6.  The LSTM cell consists of the forget gate  (𝑓𝑡), input gate (𝑖𝑡), and output gate (𝑜𝑡) are the three 

essential elements that jointly control the information flow and manage the interactions within the network. 

The forget gate 𝑓𝑡 plays a crucial role in deciding the information to be omitted from the prior cell state. 

Through the evaluation of the present input and the preceding hidden state, the forget gate produces an 

output value that spans from 0 (representing total forgetfulness) to 1 (representing complete retention). Its 

formulation is formally expressed in equation 1. 

𝑓𝑡 = 𝜎(𝑊𝑓 𝑥𝑡 + 𝑈𝑓  ℎ𝑡−1 + 𝑏𝑓) (1) 

Where the symbol σ indicates the sigmoid function, t signifies the time step, 𝑥𝑡 denotes the input feature at 

time t, ℎ𝑡−1 signifies  the output hidden state from the previous time sample, the parameters 𝑊𝑓 , 𝑈𝑓 , 𝑏𝑓 are 

optimized during the training process. The input gate 𝑖𝑡 plays a crucial role in the selection of new information 

to be stored in the cell state. Through the utilization of the current input and the previous hidden state, it 

produces an output value within the range of 0 to 1. Additionally, it creates a new candidate value that is 

aimed at being integrated into the cell state. This process is formally described by equation 2. 

𝑖𝑡 = 𝜎(𝑊𝑖  𝑥𝑡 +  𝑈𝑖  ℎ𝑡−1 +  𝑏𝑖)  (2) 

The parameters  𝑊𝑖, 𝑈𝑖 , 𝑏𝑖 are optimized during the training process. The output gate 𝑜𝑡 controls the 

determination of which information will be conveyed as the concealed state of the present LSTM cell, utilizing 

input from the current time step and the preceding hidden state. This gate produces a numeric value between 

0 and 1, and its calculation is specified by equation 3. 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥𝑡 +  𝑈𝑜  ℎ𝑡−1 + 𝑏𝑜)  (3) 

The parameters 𝑊𝑜, 𝑈𝑜, 𝑏𝑜 are optimized during the training process. The candidate value 𝑐′𝑡 represents new 

information that could potentially be added to the cell state during the current time step (t). It is produced by 

the input gate, considering both the current input and the previous hidden state. The calculation of this value 

is formally described by equation 4. 

𝑐′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎  𝑥𝑡 +  𝑈𝑎  ℎ𝑡−1 + 𝑏𝑎)  (4) 

The parameters 𝑊𝑎 , 𝑈𝑎 , 𝑏𝑎 are optimized during the training process. The 𝑐𝑡 value, which denotes the unit 

state at time t, is determined mathematically by equation 5. Following this, the h_t value, representing the 

hidden state at time t, is then calculated using mathematical equation 6. 

𝑐𝑡 = 𝑓𝑡 ∙  𝑐𝑡−1 +  𝑖𝑡 ∙  𝑐′𝑡   (5) 

ℎ𝑡 = 𝑜𝑡  ∙  tanh(𝑐𝑡)  (6) 
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Figure 6. LSTM cell architecture. 

2.1.3 | Self-attention Mechanism  

Traditional time series models commonly face challenges in capturing intricate relationships in the data, 

particularly long-term dependencies. The utilization of self-attention enables the identification of 

dependencies across various time steps, facilitating the effective learning and representation of temporal 

relationships. In contrast to sequential data processing approaches, self-attention empowers each time step 

to consider all other time steps in the sequence. This empowers the model to determine the most pertinent 

past values for future predictions. Time series data frequently showcase extended dependencies, where the 

value at a specific time step is influenced by distant historical observations. Self-attention mechanisms, notably 

those incorporating dilated convolutions or multi-head attention, are adept at capturing such extended 

dependencies, thereby enabling the model to make forecasts based on a broader contextual understanding. 

The utilization of the attention mechanism allows for the integration of data gathered from every time step 

of the concealed state through the allocation of weights to the most relevant information in the sequence. 

The operation of the attention mechanism involves three vectors: Queries (Q), Keys (K), and Values (V), 

which stem from the transformation of the input X into distinct feature spaces. The query vector (Q) 

represents the central point of the model at every time step. The key vector (K) encapsulates the available 

information at each time step in the sequence, while the value vector (V) holds the factual data content for 

each time step. The computation of the vectors Q, K, and V is performed in the following manner: 

𝑄 = 𝑋 × 𝑊𝑞   (7) 

𝐾 = 𝑋 × 𝑊𝑘  (8) 

𝑉 = 𝑋 × 𝑊𝑣   (9) 

 

where 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣 are trainable parameters, and X indicates the input tensor. Upon obtaining Q and K, 

a score is calculated by performing a scaled dot product between the query Q and each K across the sequence, 

divided by the √𝑑𝑘 after the inner product, where √𝑑𝑘 signifies the dimension of K. as shown in Equation 

10. Following this, the scores are subjected to a softmax function, which converts them into a probability 

distribution referred to as the attention weights (A) in Equation 11. These weights indicate the relative 

importance of each time step in the sequence for the current prediction (determined by the query vector). 

Subsequently, the attention weights (A) are employed to allocate weight to the corresponding value vectors 

(V) as per Equation 12. This procedure results in the creation of a context vector that encapsulates the most 

relevant information from the entire sequence based on the current focus (query). 
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𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒𝑠 =  
𝑄  .  𝐾𝑇

√𝑑𝑘

  (10) 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑟𝑒𝑠) (11) 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑣𝑒𝑐𝑡𝑜𝑟 =  𝐴  .  𝑉 (12) 

2.2 | TCN-LSTM Model 

The prediction of the remaining useful life in the ion mill etching Process is commonly recognized as a 

supervised regression assignment where information from several sensors is employed to train and evaluate 

different DL models. This study proposed a novel data-driven DL model named ATCN-LSTM, which 

incorporates TCN, LSTM, and a self-attention mechanism to predict the RUL in the ion mill etching Process. 

The ATCN-LSTM model is designed to process input sensor data through two distinct parallel paths. The 

initial path comprises two TCN blocks that aim to capture long-range dependencies present in temporal data 

sequences. Conversely, the second parallel path involves two LSTM layers that specialize in extracting 

temporal patterns from the input data. Subsequently, the outputs from both paths are merged and fed into 

an LSTM layer to enhance the learning of temporal patterns from the combined features, followed by a self-

attention mechanism to emphasize relevant features while disregarding less significant ones. The outcome of 

this intricate process is then passed through a fully connected layer to make accurate predictions. Additionally, 

the pseudocode for the proposed model is detailed in Algorithm 1, while the architectural flowchart is visually 

represented in Figure 7 to provide a comprehensive overview of its structure and functionality. 

 

Figure 7. Flowchart of the proposed ATCN-LSTM. 
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Algorithm 1 Pseudo-code of ATCN-LSTM 

Input: Input data (D), batch size (Bs),  maximum epoch (T), and learning rate (lr) 

Output: loss (𝑀𝑆𝐸), RMSE 

1: Conducting the preprocessing step 

/* Create the proposed ATCN-LSTM model */ 

2: Input: Construct an input layer to receive the input data 

/* Feature extraction and temporal learning based on the TCN and LSTM */ 

/* First Parallel Path*/ 

3: P1: Create TCN block with [1, 2, 4] dilation, 32 kernels, 4 kernel size, ReLU activation 

function, and a dropout rate of 0.4 to take the data from the input layer. 

4: P1: Add TCN block with [1, 2] dilation, 16 kernels, 8 kernel size, ReLU activation function, 

and dropout rate of 0.4 to P1. 

/* Second Parallel Path*/ 

5: P2: Create an LSTM layer with 128 cells and a Tanh activation function to take the data from 

the input layer. 

6: P2: Add LSTM layer with 128 cells and Tanh activation function to P2. 

/* Concatenation stage */ 

7: x: Concatenate ([P1, P2]) 

8: x: Add an LSTM layer with 64 units and Tanh activation function to x. 

9: x: Add a Self-attention mechanism to x. 

/* Prediction Block */ 

10: x: Add a dense layer with 16 nodes and ReLU activation functions to x. 

11: x: Add a dense layer with 8 nodes and ReLU activation functions to x. 

12: x: Add a dense layer with 1 node to x. 

/* Optimization process */ 

13: N = Size(D)/Bs /* Estimate the number of batches */ 

14: 𝒕 =  𝟎, Current epoch 

15: while 𝑡 < 𝑇 

16: 𝒊 =  𝟎, the current batch size. 

17: while 𝒊 <  𝑵 

18:   Compute the Score function using the 𝒊𝒕𝒉 batch. 

Update the weights based on the Adam to optimize the MSE function. 

19:   𝒊 = 𝒊 + 𝟏  

20: end while. 

21: 𝒕 = 𝒕 + 𝟏  

22: end while 

 

As delineated in Algorithm 1, the suggested model undertakes the reception of the input data for 

preprocessing purposes to eliminate various issues, such as outliers and predominant features that may 

adversely affect the model's performance. Following this stage, the input layer processes this data and directs 

it toward two distinct paths concurrently: the initial path encompasses two TCN blocks designed to capture 

intricate long-range dependencies inherent in temporal data sequences. Each TCN block is intricately 

constructed with dilations and causal convolutions to facilitate autoregressive forecasting. Moreover, a 

residual connection is seamlessly integrated to ease the incorporation of multiple layers while concurrently 

preventing the occurrence of model overfitting. The residual block is formulated with dilated causal 

convolution intertwined with weight normalization, Rectified Linear Unit (ReLU) activation function, and a 

dropout layer strategically incorporated to mitigate the number of trainable parameters, thereby mitigating the 

overfitting concern and enhancing the overall generalization capacity of the proposed model. Additionally, 

the input variable X of the residual block is melded with the output variable Y through the utilization of a 

1x1 convolution layer, ensuring that the elementwise addition sustains uniform width within the TCN 

structure. The first TCN block is characterized by dilations of [1, 2, 4], 32 kernels, a kernel size of 4, and a 

dropout rate set at 0.4. Conversely, the second TCN block features dilations of [1, 2], 16 kernels, a kernel size 

of 8, and an equivalent dropout rate of 0.4. The alternative path is comprised of two LSTM layers equipped 

with 128 neurons each and a hyperbolic tangent (Tanh) activation function tailored to assimilate temporal 

intricacies embedded within the input data sequence. 
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The concatenated results from the two paths are passed through a concatenation layer before being directed 

to an additional LSTM layer equipped with 64 units and the Tanh activation function. Subsequently, a self-

attention mechanism is applied to highlight important features while downplaying less crucial ones, enhancing 

the overall understanding of the data. To conclude the process, the outcome of this particular layer is inputted 

into three fully connected (FC) layers: the initial two layers containing 16 and 8 neurons, respectively, are 

dedicated to providing a more refined representation of the input sequences, while the third layer, consisting 

of 1 neuron, is responsible for predicting the remaining relevant aspects in the ion mill etching procedure. 

3 | Experimental Settings 

3.1 | 2018 PHM Data Challenge Dataset 

The 2018 PHM Data Challenge Dataset represents a real-world dataset that investigates the fault behavior of 

multiple ion mill etching tools utilized in an IME process [6]. This dataset comprises twenty tools equipped 

with a variety of sensors for process monitoring, as depicted in Figure 1. Ions are produced from an ion 

source and propelled by an electric field across a series grid at specific voltages. The ion beam impacts the 

surface of the wafer to eliminate the material. The wafer is positioned on a rotating fixture and inclined at 

various angles towards the incoming ion beam. A particle beam neutralizer system is utilized to regulate the 

quantity and shape of the ion beam at the wafer surface. The treated wafers are cooled using a cooling gas 

flow (helium gas) and water system. The dataset comprises 24 feature variables that are captured at 4-second 

intervals, encompassing 5 categorical features (such as wafer ID, tool ID, and recipe) and 19 numerical 

features (including voltage, current, pressure, and flow rate). The details of the dataset are listed in Table 1. 

The various run-to-failure cycles within each tool are consolidated based on the type of failure. Effective 

prediction of potential failures enables proactive scheduling of equipment maintenance to prevent unexpected 

downtime and uphold overall equipment efficiency in the etching process. The dataset also provides 

information on the timing of three types of failures: Flowcool Pressure Dropped Below Limit (F1), Flowcool 

Pressure Too High Check Flowcool Pump (F2), and Flowcool leak (F3) [6]. Considering the variations in the 

operational and consumptive states of the equipment, it is essential to develop individual models for each 

device. This study focuses on predicting the RUL for the 01_M02 equipment as a case in point. 

 

Table 1. 2018 PHM Data Challenge Dataset Sensors description. 

ID Name Description Type 

S1 Time time  Numerical 

S2 Tool tool id  Categorical 

S3 Stage processing stage of the wafer  Categorical 

S4 Lot wafer id  Categorical 

S5 Runnum number of times the tool has been run  Numerical 

S6 Recipe describes tool settings used to process wafer  Categorical 

S7 Recipe_step the process step of a recipe  Categorical 

S8 IONGAUGEPRESSURE 
pressure reading for the main process chamber 
when under vacuum  

Numerical 

S9 ETCHBEAMVOLTAGE 
the voltage potential applied to the beam plate of 
the grid assembly  

Numerical 

S10 ETCHBEAMCURRENT 
ion current impacting the beam grid determining 
the amount of ions accelerated through the grid 
assembly to the wafer  

Numerical 

S11 ETCHSUPPRESSORVOLTAGE 
voltage potential applied to the suppressor plate 
of the grid assembly  

Numerical 

S12 ETCHSUPPRESSORCURRENT ion current impacting the suppressor grid plate  Numerical 

S13 FLOWCOOLFLOWRATE 
rate of flow of helium through the flow cool 
circuit, controlled by the mass flow controller  

Numerical 
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S14 FLOWCOOLPRESSURE 
resulting in helium pressure in the flow cool 
circuit  

Numerical 

S15 ETCHGASCHANNEL1READBACK 
rate of flow of argon into the source assembly in 
the vacuum chamber  

Numerical 

S16 ETCHPBNGASREADBACK 
rate of flow of argon into the PBN assembly in 
the chamber  

Numerical 

S17 FIXTURETILTANGLE wafer tilt angle setting  Numerical 

S18 ROTATIONSPEED wafer rotation speed setting  Numerical 

S19 ACTUALROTATIONANGLE measure the wafer rotation angle  Numerical 

S20 FIXTURESHUTTERPOSITION open/close shutter setting for wafer shielding Numerical 

S21 ETCHSOURCEUSAGE counter of use for the grid assembly consumable  Numerical 

S22 ETCHAUXSOURCETIMER 
counter of the use for the chamber shields 
consumable  

Numerical 

S23 ETCHAUX2SOURCETIMER 
counter of the use for the chamber shields 
consumable  

Numerical 

S24 ACTUALSTEPDURATION  measured time duration for a particular step  Numerical 

 

3.2 | Data Preprocessing 

During the data preprocessing phase, the initial step entails eliminating samples containing missing values or 

outliers. The operational status of the IME machine greatly depends on the position of the shutter [15]. The 

Fixture Shutter Position parameter is employed to indicate the status of the shutter. A value of ‘0’ for Fixture 

Shutter Position corresponds to minimum values for Flowcool Pressure and Ion Gauge Pressure.  As the 

shutter position transitions from ‘0’ to ‘1’, both pressures experience a rapid increase. Once the designated 

pressure levels are achieved, the Fixture Shutter Position shifts to ‘1’, signifying the opening of the shutter 

and the commencement of the flowcool subsystem. Upon shutter closure, the Fixture Shutter Position reverts 

to ‘0’ and the pressure rapidly decreases. Hence, data where the Fixture Shutter Position parameter is ‘1’ is 

chosen to denote the operational state of the ion mill. The average duration of the run-to-fault series across 

three fault modes is reported as 2.6 × 105, 3.8 × 105, and 7.5 × 104, it is logical to categorize data with RUL 

less than 500 (approximately half an hour) as fault data, while those with RUL exceeding 5000 (around 5 

hours) are deemed normal. The various run-to-failure cycles in each tool are consolidated based on the type 

of failure. A total of 112 cycles are allocated for F1, 42 cycles for F2, and 34 cycles for F3. This study 

exclusively utilizes sensor features for model training and assessment. The data about each fault type are 

divided into training (70%), validation (20%), and testing (10%) datasets in a randomized manner. Due to the 

diverse data scales of sensor values recorded for different recipes, which may negatively impact model 

training, all sensor values for each recipe are standardized within the range [0, 1] through min-max 

normalization using Equation 13. The limited duration of the subsequent may lead to a lack of adequate 

information. To capture the characteristics of the time series, each subsequence has a length of 500 and a 

sliding window size of 1. 

𝑥′
𝑖,𝑗 =  

𝑥𝑖,𝑗 − 𝑥𝑗 𝑚𝑖𝑛

𝑥𝑗 𝑚𝑎𝑥 −  𝑥𝑗 𝑚𝑖𝑛

 (13) 

Where 𝑥𝑖,𝑗 donates the value of the ith sample, and jth feature, 𝑥𝑗 𝑚𝑖𝑛 , 𝑥𝑗 𝑚𝑎𝑥 donates the minimum, and 

maximum values in the jth feature, respectively. 
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  Table 2. Experimental Analysis of the Influence of hyperparameter on prediction results. 

 value F1 F2 F3 

T
C

N
_

1 

dilation order 

[1, 2] 677.82 612.64 651.81 

[1, 2, 4] 597.35 405.72 533.45 

[1, 2, 4, 8] 836.71 932.27 799.39 

Number of  kernels 

8 1324.81 974.33 1250.28 

16 841.25 636.42 815.77 

32 597.35 405.72 533.45 

64 764.76 621.91 730.31 

Kernel size 

2 705. 41 599.77 771.73 

4 597.35 405.72 533.45 

8 688.44 553.55 699.76 

T
C

N
_

2
 

dilation order 

 

[1, 2] 597.35 405.72 533.45 

[1, 2, 4] 699.11 521.34 674.27 

[1, 2, 4, 8] 914.17 1014.35 954.61 

Number of  kernels 

8 788.51 804.66 732.16 

16 597.35 405.72 533.45 

32 685.11 671.62 658.24 

64 841.96 845.75 801.40 

Kernel size 

2 750.14 697.37 791.17 

4 625.95 623.49 640.87 

8 597.35 405.72 533.45 

L
S

T
M

_
1 

Number of  cells 

64 785.34 615.87 764.96 

128 597.35 405.72 533.45 

256 685.18 503.05 621.22 

L
S

T
M

_
2
 

Number of  cells 

64 733.12 868.68 794.66 

128 597.35 405.72 533.45 

256 699.27 601.99 615.94 

L
S

T
M

_
3
 

Number of  cells 

64 597.35 405.72 533.45 

128 752.49 601.91 721.26 

256 942.11 775.17 916.37 

D
e
n

se
_

1 

Number of  nodes 

8 701.47 535.67 699.17 

16 597.35 405.72 533.45 

32 654.78 495.18 604.53 

D
e
n

se
_

2
 

Number of  nodes 

8 597.35 405.72 533.45 

16 684.87 554.29 666.18 

32 736.64 604.51 699.59 

L
e
a
rn

in
g

 r
a
te

 

Learning rate vale 

0.0001 964.19 912.88 906.33 

0.001 597.35 405.72 533.45 

0.002 655.99 601.76 605.94 

0.01 1130.82 1164.23 1210.64 
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3.3 |Evaluation Metrics 

in this study, the Adam optimization algorithm [48] and mean square error (MSE) loss, calculated using 

equation 14, are utilized to optimize the network parameters. The introduction of root mean square error 

(RMSE) is employed as a measure to assess the suggested model by comparing RMSE values between actual 

and predicted labels of each instance in the dataset. The RMSE value is computed mathematically as outlined 

in equation 15, where N denotes the total number of samples, and 𝑦𝑖 and 𝑦′𝑖 represent the actual and 

predicted labels of the ith sample, respectively. Both MSE and RMSE need to be minimized to improve the 

accuracy in predicting the RUL in the Ion Mill Etching Process. 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 −  𝑦′

𝑖
)

2
𝑁

𝑖=1

 (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦′

𝑖
)

2
𝑁

𝑖=1

 (15) 

4 | Results and Discussion 

4.1 | Hyper Parameter Tuning 

The ATCN-LSTM model proposed in this study encompasses numerous hyper-parameters such as the 

dilation order, number of kernels, size of kernels in each TCN block, number of cells in each LSTM layer, as 

well as the learning rate. These parameters need to be accurately defined to enhance the model's effectiveness 

and lower the RMSE. Therefore, a sequence of experiments has been conducted in the course of this study, 

examining various configurations for each variable to determine the most effective values that result in a 

significant improvement in the performance of the model, as illustrated in Table 2. The influence of those 

hyper-parameters on the performance of the ATCN-LSTM method is displayed from Figure 8 to Figure 19.  

For example, the efficiency of the model is notably affected by the quantity of cells present in every LSTM 

layer. As a result, several trials were conducted to determine the optimal number of cells for each LSTM layer, 

spanning from 64, 128, to 256. The influence of the number of cells can be observed in Figures 14, 15, and 

16. The learning rate plays a vital role as a hyperparameter when training deep learning models. It dictates the 

magnitude of the increments made during the optimization process to modify the model's parameters towards 

minimizing the loss function. So multiple experiments were conducted to determine the most suitable learning 

rate within the range of 0.0001, 0.001, 0.002, and 0.01, with findings indicating that the optimal learning rate 

is 0.001. The impact of learning rate values is depicted in Figure 19. 

Table 3. The ATCN-LSTM hyperparameters. 

Parameter value 

TCN_1 dilation order [1, 2, 4] 

TCN_1 number of  kernels 32 

TCN_1 kernel size 4 

TCN_2 dilation order [1, 2] 

TCN_2 number of  kernels 16 

TCN_2 kernel size 8 

LSTM_1 number of  cells 128 

LSTM_2 number of  cells 128 

LSTM_3 number of  cells 64 

Dropout rate 0.4 

Learning rate 0.001 

Max no. of  epoch 1000 

Loss MSE 

Optimizer Adam 
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Figure 8. The influence of dilation order of TCN_1 through 
experiments. 

Figure 9. The influence of the number of kernels of 

TCN_1 through experiments. 

  

Figure 10. The influence of kernel size of TCN_1 through 
experiments. 

Figure 11. The influence of dilation order of TCN_2 

through experiments. 

  

Figure 12. The influence of the number of kernels of TCN_2 
through experiments. 

Figure 13. The influence of kernel size of TCN_2 

through experiments. 
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Figure 14. The influence of the number of cells of LSTM_1 
through experiments. 

Figure 15. The influence of the number of cells of 

LSTM_2 through experiments. 

  

Figure 16. The influence of the number of cells of LSTM_3 
through experiments. 

Figure 17. The influence of the number of nodes of 

Dense_1 through experiments. 

  

Figure 18. The influence of the number of nodes of Dense_2 
through experiments. 

Figure 19. The influence of learning rate values through 

experiments. 
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4.2 | Comparison Results 

In this particular section, the results achieved by ATCN-LSTM for the F1, F2, and F3 scenarios within the 

2018 PHM Data Challenge Dataset are contrasted with competing models to demonstrate their efficacy and 

productivity. These results are quantified by the RMSE metric to showcase the efficiency of the models in 

minimizing the difference between the anticipated and desired RUL. The outcomes of the proposed model 

F1, F2, and F3 conditions from the 2018 PHM Data Challenge Dataset are compared with several competing 

models such as RFR [49], MLP [49], LSTM [49], TCLSTM [50], DW-GRU [15], DW-GRU-FCs [15], and 

HF-MS-MBTransformer [51]. The superior performance of the system is demonstrated through the 

presentation of results, which can be observed in the RMSE values provided in Table 4. 

Table 4. Performance comparison of three fault modes. 

 F1 F2 F3 

RFR 5476 5567 5294 

MLP 5196 4113 5004 

LSTM 1469 2557 1877 

TCLSTM 601.47 748.12 541.24 

DW-GRU 1014 489 686 

DW-GRU-FCs 998 409 703 

HF-MS-MBTransformer 646.42 798.29 691.31 

Proposed method 597.35 405.72 533.45 

 

The superior results are emphasized in bold format. The table illustrated indicates that ATCN-LSTM 

surpasses all other models examined in terms of the RMSE across three specified scenarios, achieving RMSE 

values of 597.35, 741.72, and 533.45 for F1, F2, and F3, respectively. Upon comparison of our findings with 

the top results achieved by various cited models, our proposed model demonstrates a reduction in RMSE of 

0.6%, 0.7%, and 1.4% for the 2018 PHM Data Challenge Dataset under conditions F1, F2, and F3, 

respectively. The proposed model is viewed as a robust option for addressing this issue as it has the potential 

to perform the most effectively based on the RMSE metric, which assigns the same level of importance to 

predictions made early on as well as those made later. To visually demonstrate the effectiveness of the 

suggested model, Figure 20 has been incorporated to present the RMSE values derived from various 

algorithms for F1, F2, and F3 conditions. 

 
Figure 20. illustrates the representation of RMSE values acquired from different models. 
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4.3 | Ablation Study Results 

To assess the effects of individual components within the ATCN-LSTM, the suggested approach is utilized 

to carry out ablation experiments. Therefore, this section introduces six experiments that will be compared 

with the ATCN-LSTM, all carried out in the same conditions. These experiments involve the utilization of 

various neural network architectures, including an LSTM model without any attention mechanism, a TCN 

model also without any attention mechanism, an integrated model combining LSTM and TCN (referred to 

as TCN-LSTM), an integrated model combining LSTM with a self-attention mechanism (A-LSTM), a model 

that combines TCN with a self-attention mechanism (A-TCN), and a model that integrates LSTM with TCN 

and a self-attention mechanism (ATCN-LSTM). Moreover, the results of the experiments are thoroughly 

presented in Table 5 and visually represented in Figure 21. The ATCN-LSTM demonstrates better results in 

the RMSE metric compared to LSTM, TCN, TCN-LSTM, A-LSTM, and A-TCN across the F1, F2, and F3 

conditions. Under the first condition (F1), the RMSE of the proposed technique ATCN-LSTM is measured 

at 597.35, showcasing improvements of 28.5%, 41.7%, 38.3%, 20.8%, and 39.4% over TCN, LSTM, TCN-

LSTM, A-TCN, and A-LSTM, respectively. Similarly, under the second condition (F2), the RMSE of ATCN-

LSTM stands at 405.72, demonstrating enhancements of 50%, 65.6%, 49.1%, 30.9%, and 58.2% in 

comparison to TCN, LSTM, TCN-LSTM, A-TCN, and A-LSTM, respectively. Finally, for the third condition 

(F3), the RMSE of ATCN-LSTM is recorded at 533.45, revealing improvements of 38.3%, 52.1%, 46.6%, 

30%, and 46.8% over TCN, LSTM, TCN-LSTM, A-TCN, and A-LSTM, respectively. 

Table 5. Performance comparison of the ablation study. 

 F1 F2 F3 

TCN 836.19 812.84 865.27 

LSTM 1024.66 1180.41 1113.28 

TCN-LSTM 968.56 797.21 999.65 

A-TCN 754.36 587.48 762.91 

A-LSTM 985.24 950.73 1002.94 

ATCN-LSTM 597.35 405.72 533.45 

 

 

Figure 21. The representation of RMSE values acquired through ablation experiments. 
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5 | Conclusion 

This study introduced a novel approach named ATCN-LSTM for predicting the Remaining Useful Life (RUL) 

in the ion mill etching process. The ATCN-LSTM model integrates TCN, LSTM, and a self-attention 

mechanism, with TCN utilized to capture extended dependencies in time series data. LSTMs are employed 

to retain patterns across lengthy sequences, enabling the model to grasp intricate temporal relationships in 

temporal data. Furthermore, an attention mechanism is incorporated to align input and output sequences by 

considering the context or importance of the input sequence. The RUL predictions are produced through a 

Fully Connected (FC) layer. The experimental evaluation was conducted using the PHM 2018 Challenge 

dataset. Comparative analysis with leading models in the field demonstrated that our proposed model 

achieved a decrease in RMSE of .6%, .7%, and 1.4% for the three dataset conditions, respectively, to capture 

extended dependencies in temporal data sequences, Flowcool Pressure Too High Check Flowcool Pump, and 

Flowcool Pressure Too High Check Flowcool Pump. 
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