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Abstract: Thermal comfort prediction within sustainable built environments stands as a pivotal 7

challenge intertwining human well-being and environmental sustainability. This paper presents a 8

pioneering framework leveraging machine learning methodologies to advance predictive models 9

for thermal comfort. Drawing upon a comprehensive dataset sourced from ASHRAE field studies 10

and the RP-884 database, comprising 107,463 entries, our study unfolds a novel approach to enhanc- 11

ing thermal comfort predictions. The integration of diverse physiological parameters, environmen- 12

tal data, and occupant preferences forms the foundation of our machine learning-driven framework. 13

Through meticulous analysis and model development, our approach not only refines predictive ac- 14

curacy but also underscores adaptability across varying environmental contexts. The study contrib- 15

utes not only to the discourse on thermal comfort prediction but also emphasizes the crucial nexus 16

between sustainable design, occupant well-being, and energy efficiency. Furthermore, the study in- 17

troduces user-friendly web-based tools to explore the ASHRAE database, facilitating accessibility 18

and utilization for researchers and practitioners. The findings showcase the potential of machine 19

learning in revolutionizing sustainable building design paradigms, emphasizing human-centric ap- 20

proaches while aligning with environmental conservation goals. 21

Keywords: CO2 emissions, Machine learning, Predictive modeling, Environmental sustainabil- 22

ity, Greenhouse gas emissions, Climate change, Comparative analysis, Carbon footprint, Renew- 23

able energy. 24

1. Introduction 25

The comfort in buildings resulting from thermal conditions determines its well being and 26

productivity. The relationship between human comfort and built environment has been of great 27

interest to sustainable development and architecture scholars [1-3]. This has led to the 28

importance of understanding and predicting thermal comfort to create environments that 29

respond to occupants’ desires as well as align with sustainability objectives. It thus indicates the 30

need for examining how machine learning can be integrated into thermal comfort prediction, in 31

order to develop new models for optimizing sustainable buildings that will improve human 32

experiences in them [4-5]. 33

As the whole world is advancing towards smart buildings and sustainability, there has 34

been a challenge on how to arrive at optimum thermal comfort. Initially changes in thermal 35

comfort were made based on models that are fixed and rarely capture the multifarious 36

preferences of humans when it comes to temperature [4]. This inadequacy has led to 37

investigations of new tools such as machine learning which is good at collecting, organizing, 38

discerning and processing large amount of data [7]. All this breakthrough could be the start of 39

Event Date 

Received 01-05-2022 

Revised 05-08-2022 

Accepted 21-09-2022 

Published 29-10-2022 

https://doi.org/10.61185/SMIJ
https://smijournal.org/
https://orcid.org/0000-0002-0766-2651


SMIJ 2022, Vol. 1 2 of 8 

an era in predicting and controlling human thermal environment using more personalized, 1

energy-efficient, sustainable building designs [8]. Nonetheless, established techniques face 2

difficulties in effectively predicting thermal comfort across different environmental 3

circumstances and occupant preferences. What this research seeks to accomplish is find a way 4

of developing resilient predictors that do not rely on conventional methodologies [9-11]. 5

Considering that personal preferences for comfort differ extensively across individuals and the 6

unpredictable nature of the environment, it is important to develop a sophisticated technique 7

for optimizing predictions of thermal comforts [5]. These are some complexities that we will be 8

trying to address in doing this research so as to narrow the gap between normal models and the 9

actual needs of occupants for their comfort within a sustainable habitat. 10

11

Our primary goal, given these challenges, is to create machine learning-based framework 12

for improved prediction of thermal comfort in sustainable built environments. We want to 13

employ advance algorithms’ data-driven insights to create predictive models that can 14

accommodate diverse occupant preferences and adapt them with environmental changes. This 15

will enable more flexible and people-centered building designs that minimize energy usage 16

while ensuring people’s comfort which is our concern in this study. The contributions of this 17

work extend beyond the realm of predictive modeling, aiming to catalyze a paradigmatic shift 18

in the approach towards sustainable design, emphasizing the synergy between human needs 19

and environmental conservation. 20

2. Related Work 21

In this section, we will go on a journey through the most important works and contempo- 22

rary developments in thermal comfort forecast methods, machine learning techniques for build- 23

ing science, and symbiosis of sustainable design principles with individual-based comfort con- 24

cepts. Looking at an identical built environment, Chaudhuri et al. [5] studied thermal comfort 25

prediction using normalised skin temperature as a critical measure. This work explored the con- 26

nection between thermal comfort and physiological parameters in an experiment that generated 27

how to come up with predictive models in controlled environment conditions.The deep transfer 28

hybrid learning model for predicting building thermal com-fort which was developed by Somu 29

et al. [7] is another one. The study explored benefits of applying deep learning strategies showing 30

the novel method to improve forecast accuracy in different environmental contexts. In another 31

study by Chaudhuri et al. [8], they looked at wearable sensing technologies towards gender- 32

specific physiological parameters based on predicting thermal comfort. The research employed 33

random forest-based approach into personalized comfort prediction models. 34

Wu, Y. et al. [10] presented an individual thermal comfort prediction model based on clas- 35

sification tree methodology, integrating physiological parameters and thermal history specifi- 36

cally in winter conditions. Their study aimed to tailor predictions for individual comfort needs 37

within varying environmental contexts. Chen, K. H. et al. [12] focused on thermal comfort pre- 38

diction and validation within a realistic vehicle thermal environment. Their study, detailed in a 39

technical paper, contributed insights into vehicle-based thermal comfort modeling. Fang, Z. et 40

al. [13] investigated outdoor thermal comfort prediction models in South China, particularly in 41

Guangzhou. Their case study provided valuable insights into outdoor comfort considerations 42
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within a specific geographical context. Yu, C. et al. [14] assessed the performances of machine 1 

learning algorithms for individual thermal comfort prediction, drawing data from both profes- 2 

sional and practical settings. Their study aimed to evaluate the efficacy of machine learning 3 

models across diverse environments. Eslamirad, N. et al. [16] applied supervised machine learn- 4 

ing techniques in predicting thermal comfort within green sidewalks of Tehran. Their study con- 5 

tributed to understanding thermal comfort dynamics in specific urban settings, emphasizing 6 

sustainability considerations. Peng, B. & Hsieh, S. J. [18] explored data-driven thermal comfort 7 

prediction utilizing support vector machine methodology. Their study, presented at a manufac- 8 

turing science and engineering conference, highlighted the application of machine learning in 9 

thermal comfort modeling. 10 

3. Material and Method 11 

This section elucidates the methodologies, data sources, and analytical frameworks em- 12 

ployed in the pursuit of advancing thermal comfort prediction within sustainable built environ- 13 

ments. 14 

The experimentations of this study used the ASHRAE database, which is aggregated from 15 

field studies spanning the period from 1995 to 2015, sourced from diverse global locations. This 16 

comprehensive database results from contributors willingly sharing their raw data with the aim 17 

of broadening access across the thermal comfort research community. Following a rigorous qual- 18 

ity assurance process, the dataset comprised 81,846 rows of paired subjective comfort evalua- 19 

tions and objective instrumental measurements, capturing essential thermal comfort parameters. 20 

Moreover, an additional 25,617 rows of data from the original ASHRAE RP-884 database were 21 

integrated, culminating in a robust collection totaling 107,463 entries. Primarily designed to fa- 22 

cilitate varied inquiries into field-based thermal comfort, the database is a cornerstone for re- 23 

search exploration. The dataset is cleaned by removing null values. Then, descriptive analysis is 24 

made as an initial step in our journey for data exploration, whose results are made available in 25 

Table 1. 26 

Table 1. Quantitative statistics for cleaned edition of ASHRAE database. 27  

Clo Met Air tempera-

ture (C) 

Relative hu-

midity (%) 

Air velocity 

(m/s) 

Outdoor 

monthly air 

temperature 

(C) 

Thermal 

comfort 

count 16209 16209 16209 16209 16209 16209 16209 

mean 0.681518 1.19562 25.38873 50.91397 0.261687 24.76815 4.349312 

std 0.324204 0.197861 4.43981 15.76351 0.693904 8.259837 1.404411 

min 0 0.7 0.6 10.3 0 -2 1 

25% 0.49 1.1 22.8 39.4 0.06 21.3 3 

50% 0.63 1.2 25.3 50.1 0.15 26 5 

75% 0.78 1.2 28.1 63.3 0.33 30.8 5 

max 2.87 5 45.2 95.3 56.17 45.1 6 

 28 

Following obtaining data from ASHRAE database, a rigorous quality assurance process 29 

was implemented to ensure the reliability and integrity of the dataset. This step involved iden- 30 

tifying and rectifying missing or erroneous values, addressing outliers, and standardizing for- 31 

mats to establish a cohesive and accurate dataset for subsequent analysis. Next, to enhance the 32 

efficiency of our machine learning models, a judicious feature selection process was employed. 33 

This involved identifying relevant variables influencing thermal comfort prediction. 34 
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Physiological parameters, environmental conditions, and occupant preferences were prioritized 1 

based on their significance in previous research and exploratory data analysis (EDA) visualiza- 2 

tions. 3 

 4 

After that, standardization of numerical features is performed to bring the values into a 5 

common scale, preventing any particular feature from dominating the model due to its magni- 6 

tude. Techniques such as Min-Max scaling were applied to ensure that all variables contributed 7 

proportionally to the modeling process. 8 

 9 

𝐶𝑀𝑖𝑛−𝑀𝑎𝑥  ′ =
𝐶𝑖−𝑚𝑖𝑛(𝐶)

𝑚𝑎𝑥(𝐶)−𝑚𝑖𝑛(𝐶)
           (1) 10 

Categorical variables were encoded to numerical representations to facilitate machine 11 

learning model compatibility. Techniques like one-hot encoding were employed to transform 12 

categorical variables into binary vectors, ensuring their meaningful inclusion in the predictive 13 

models. The dataset was partitioned into training and testing sets to evaluate model performance 14 

effectively. This involved allocating a percentage of the data for training the model and reserving 15 

a separate portion for evaluating its predictive capabilities, thus avoiding overfitting. 16 

 17 

The Random Forest algorithm belongs to the ensemble learning family, characterized by 18 

the creation of multiple decision trees during training and the combination of their outputs for 19 

enhanced predictive accuracy and robustness. Each decision tree in the forest is constructed in- 20 

dependently, utilizing a random subset of features and data points. This randomness injects di- 21 

versity into the model, mitigating overfitting and promoting generalizability. The key compo- 22 

nents of random forest are described as follows: 23 

Decision Trees: The foundational building blocks of Random Forest are decision trees. Each tree 24 

is constructed by recursively partitioning the dataset based on the most informative features. 25 

These trees collectively form the forest, contributing to the final prediction through a process 26 

called bagging (bootstrap aggregating). 27 

Bootstrap Aggregating (Bagging): During the training process, each decision tree is built on a 28 

random subset of the training data, and at each split, only a random subset of features is consid- 29 

ered. This introduces variability into the model, making it less susceptible to noise and outliers. 30 

Voting Mechanism: In the predictive phase, the Random Forest employs a voting mechanism. 31 

Each decision tree in the forest contributes a prediction, and the final output is determined by 32 

majority voting. This ensemble approach enhances the model's resilience to errors and increases 33 

its overall predictive accuracy. 34 

In our study, we applied the Random Forest algorithm to predict the level of thermal com- 35 

fort within sustainable built environments. Leveraging the preprocessed dataset, the algorithm 36 

was trained on a subset of the data, learning the intricate relationships between physiological 37 

parameters, environmental conditions, and occupant preferences. The inherent randomness in 38 

the algorithm allowed it to capture complex patterns and adapt to varying contexts. 39 

The Random Forest's ability to handle both numerical and categorical data, accommodate 40 

interactions between variables, and mitigate overfitting made it an apt choice for predicting the 41 

nuanced and multifaceted nature of thermal comfort. Through an iterative process of model 42 

training, validation, and fine-tuning, the Random Forest algorithm emerged as a powerful tool 43 

for generating accurate predictions, contributing to the optimization of sustainable building de- 44 

signs and the prioritization of human well-being in diverse environmental scenarios. The appli- 45 

cation of Random Forest in our study exemplifies its versatility and effectiveness in the context 46 

of thermal comfort prediction. 47 
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4. Experimental Results  1 

 2 

This section presents the empirical findings derived from the implementation of our ma- 3 

chine learning-driven framework for thermal comfort prediction in sustainable built environ- 4 

ments.  5 

As an important step in exploratory data analysis (EDA) of the ASHRAE database, we 6 

present visual analysis for the relationships between various data variables and thermal comfort, 7 

as displayed in Figure 1. In this systematic visualization, we employ box plots to show the inter- 8 

play between each parameter and occupants' perceived comfort levels.  9 

These plots not only offer a comprehensive overview of the dataset's characteristics but 10 

also unveil patterns, trends, and potential correlations that lay the foundation for subsequent 11 

machine learning model development. The EDA phase serves as a crucial step in comprehending 12 

the complexities of thermal comfort dynamics within sustainable built environments, providing 13 

valuable insights that inform the subsequent stages of our analysis and model refinement. In 14 

Figure 1, A), we can observe that the lower the air temperature, the higher the thermal comfort. 15 

In Figure 1, B), we can observe that it is difficult to determine if relative humidity on its own has 16 

significant impact on thermal comfort. In addition, in Figure 1, C), we can observe that the lower 17 

the air velocity, the better the thermal comfort.  18 

In Figure 2, we present the confusion matrix for the Random Forest model, providing a 19 

detailed and transparent evaluation of its predictive performance. This matrix delineates the 20 

model's ability to correctly classify instances into different categories, offering a comprehensive 21 

view of true positives, true negatives, false positives, and false negatives. The visualization 22 

serves as a crucial tool for assessing the accuracy, precision, recall, and overall effectiveness of 23 

the Random Forest algorithm in predicting thermal comfort within sustainable built environ- 24 

ments. By unraveling the intricacies of model performance, the confusion matrix aids in fine- 25 

Figure 1. Visulaizing the interplay between thermal comfort and other attributea in ASHRAE Database 

 

A B 

D C 
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tuning and optimizing the machine learning approach, contributing to the refinement of predic- 1 

tive models for more accurate and reliable thermal comfort assessments. 2 

 3 

 In Figure 3, we present the Receiver Operating Characteristic (ROC) curve for the Ran- 4 

dom Forest model, a graphical representation that illustrates the trade-off between true positive 5 

Figure 2: Confusion Matrix for Random Forest Model 

Figure 3: ROC Curve for Random Forest Model 
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rate and false positive rate across varying thresholds. The ROC curve provides a holistic view of 1

the model's discriminatory power and its ability to distinguish between different classes. By an- 2

alyzing the area under the ROC curve (AUC), we can quantitatively assess the Random Forest 3

model's overall performance. This visualization is pivotal in evaluating the model's sensitivity 4

and specificity, aiding in the determination of an optimal threshold for thermal comfort predic- 5

tion within sustainable built environments. The ROC curve in Figure 3 serves as a valuable tool 6

for understanding and communicating the classification performance of the Random Forest al- 7

gorithm in our study.  8

5. Concluding Remarks 9

This study marks a significant step forward in leveraging machine learning methodologies 10

for the prediction of thermal comfort within sustainable built environments. Utilizing the Ran- 11

dom Forest algorithm on a robust dataset from the ASHRAE Global Thermal Comfort Database 12

II, our approach demonstrated commendable predictive accuracy. However, it is important to 13

acknowledge the limitations in prediction performance, which underline the need for more high- 14

quality data and potentially more complex modeling approaches. The amalgamation of physio- 15

logical parameters, environmental data, and occupant preferences provided a nuanced under- 16

standing of the intricate dynamics influencing thermal comfort. Our comprehensive exploratory 17

data analysis (EDA) facilitated feature selection, ensuring that only the most influential variables 18

contributed to the model's predictions. Yet, the quest for enhanced predictive capabilities reveals 19

the necessity for richer datasets, capturing a more diverse range of scenarios and factors influ- 20

encing thermal comfort. The application of the Random Forest algorithm showcased its versatil- 21

ity in handling diverse data types, but the pursuit of heightened predictive accuracy may war- 22

rant exploration into more complex modeling frameworks. As we reflect on the outcomes de- 23

rived from the confusion matrix and ROC curve evaluations, it becomes apparent that a more 24

sophisticated approach, perhaps incorporating advanced machine learning algorithms or hybrid 25

models, could unlock greater potential in capturing the complexities of thermal comfort dynam- 26

ics. 27
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