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Abstract: The growing global demand for sustainable agriculture has led to increased interest in 6 
leveraging machine intelligence to address critical challenges in modern farming practices. This 7 
paper introduces an innovative approach for plant leaf disease recognition in smart agriculture 8 
using the Vision Transformer (ViT) model. The proposed framework combines the power of self- 9 
attention mechanisms and transformer-based architectures to capture intricate relationships be- 10 
tween image patches, enabling accurate and efficient disease identification. Leveraging the 11 
widely recognized PlantVillage dataset as a case study, our experiments demonstrate the efficacy 12 
of the ViT model in achieving superior disease recognition performance. The results highlight 13 
the model's ability to generalize across diverse crops and diseases, making it a promising tool for 14 
empowering farmers with timely disease detection and management. Additionally, the paper 15 
emphasizes inclusivity, ensuring the accessibility and effectiveness of the approach for farmers 16 
across diverse regions, backgrounds, and resources. Through this work, we contribute to the ad- 17 
vancement of smart farming practices and pave the way for sustainable agriculture in the era of 18 
machine intelligence. 19 

Keywords: Smart agriculture, Plant Diagnosis, Vision Transformer, Machine Intelligence, Self- 20 
attention mechanism, Plant Disease, Sustainable agriculture 21 

1. Introduction 22 
 Agriculture plays a vital role in sustaining our growing global population. How- 23 

ever, one of the major challenges faced by farmers worldwide is the prevalence of plant 24 
diseases, which can lead to significant crop losses and reduced yields [1]. Traditional 25 
methods of disease detection and diagnosis have often been time-consuming, inefficient, 26 
and prone to human error. In recent years, advancements in machine intelligence have 27 
presented a promising solution for addressing this issue, offering the potential to revolu- 28 
tionize farming practices through the application of smart technologies [2-3]. 29 

In recent years, several studies have explored the application of machine learning, 30 
computer vision, and Internet of Things (IoT) technologies in the context of smart agricul- 31 
ture and plant disease recognition [4]. These studies have paved the way for innovative 32 
approaches and solutions aimed at enhancing crop productivity and minimizing losses 33 
due to diseases [5]. Pallagani et al. [6] presented "DCrop," a deep-learning-based frame- 34 
work for accurate prediction of crop diseases in smart agriculture. Their research focused 35 
on leveraging convolutional neural networks (CNNs) to analyze images of plant leaves 36 
and classify them based on the presence of diseases. Their approach demonstrated prom- 37 
ising results in disease detection and paved the way for utilizing deep learning techniques 38 
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in the field of plant disease recognition. Mochida et al. [7] explored computer vision-based 1 
phenotyping for improving plant productivity, adopting a machine learning perspective. 2 
Their study emphasized the potential of computer vision techniques in capturing detailed 3 
plant characteristics and traits. Shetty and Smitha [8] delved into the integration of IoT 4 
and machine learning in smart agriculture. Their work highlighted the importance of real- 5 
time monitoring and data analytics in optimizing agricultural processes.  Memon et al. 6 
[9] discussed the role of deep learning and IoT technologies in enabling smart farming 7 
practices. Their research emphasized the potential of these technologies in facilitating data 8 
collection, analysis, and decision-making in agriculture. Garg et al. [10] presented the in- 9 
tegrative use of IoT and deep learning for agricultural applications. Their study high- 10 
lighted the benefits of combining IoT devices, sensor networks, and deep learning algo- 11 
rithms in enhancing agricultural operations. 12 

These studies collectively contribute to the growing body of research in the field of 13 
smart farming and plant disease recognition. They demonstrate the potential of machine 14 
learning, computer vision, and IoT technologies in transforming traditional agricultural 15 
practices. Building upon the findings of these studies, our research aims to further ad- 16 
vance the field by proposing a novel approach for plant leaf disease recognition, which 17 
incorporates inclusive principles to ensure accessibility and effectiveness for farmers 18 
across diverse regions, backgrounds, and resources.  19 

In this paper, we explore the concept of empowering smart farming with machine 20 
intelligence, focusing specifically on the recognition of plant leaf diseases. We recognize 21 
the need for an inclusive approach to this technology, ensuring its accessibility and effec- 22 
tiveness for farmers across diverse regions, backgrounds, and resources. By leveraging 23 
machine intelligence, we aim to provide a robust and accurate solution that can assist 24 
farmers in diagnosing plant diseases swiftly and accurately, thereby enabling timely in- 25 
terventions and minimizing crop losses. Recognizing the importance of inclusivity, our 26 
research considers various factors that contribute to effective disease recognition in di- 27 
verse agricultural settings. We acknowledge that farmers around the world face unique 28 
challenges, such as variations in climate, soil conditions, and access to resources. Addi- 29 
tionally, socio-economic factors, language barriers, and limited technological infrastruc- 30 
ture can further impede the adoption of advanced technologies in certain regions. There- 31 
fore, our proposed approach aims to overcome these barriers and provide a practical so- 32 
lution that is adaptable, user-friendly, and accessible to a wide range of farmers, regard- 33 
less of their technological expertise or available resources. To achieve our objective, we 34 
delve into the fundamental principles of machine intelligence to develop an innovative 35 
framework capable of accurately identifying and classifying a diverse range of plant leaf 36 
diseases. Furthermore, we discuss the integration of this framework into smart farming 37 
systems, providing insights into how it can seamlessly fit within existing agricultural 38 
practices. 39 

2. Case study 40 



SMIJ 2022, Vol. 1. 3 of 11 
 

 

For conducting our experiments and evaluating the performance of our proposed 1 

approach for plant leaf disease recognition, we utilized the widely recognized 2 

PlantVillage dataset as a pivotal case study. The PlantVillage dataset is an extensively 3 

curated collection of plant leaf images, encompassing various crops and diverse plant 4 

diseases. It has emerged as a valuable resource for researchers and practitioners in the 5 

field of smart agriculture, providing a comprehensive representation of real-world 6 

scenarios encountered by farmers.  The PlantVillage dataset comprises high-resolution 7 

images of plant leaves captured under different lighting conditions, growth stages, and 8 

disease severities. Each image is meticulously labeled with the corresponding disease 9 

class, enabling supervised learning approaches for disease recognition tasks. The dataset 10 

covers a broad spectrum of plant diseases, including fungal, bacterial, and viral infections, 11 

nutrient deficiencies, and environmental stresses [14]. The PlantVillage dataset consists of 12 

Figure 1. samples of PlantVillage dataset 
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54303 healthy and unhealthy leaf images divided into 38 categories by species and disease. 1 

Figure 1 shows random samples from the PlantVillage dataset. 2 

3. Methodology 3 

In this section, we outline the methodology employed to develop and validate our 4 
proposed approach for plant leaf disease recognition empowered by machine intelligence. 5 
A robust and rigorous methodology is crucial to ensure the accuracy, reliability, and re- 6 
producibility of our research findings. Next, we leveraged vision transformers (ViTs), due 7 
to their proven efficacy in image recognition tasks, which are fine-tuned and trained on 8 
our preprocessed dataset, allowing it to learn and extract meaningful features for disease 9 
classification. The ViT is a groundbreaking deep learning model that has shown remark- 10 
able performance in image recognition tasks. Unlike traditional CNNs, the ViT adopts a 11 
transformer-based architecture, originally designed for natural language processing tasks. 12 
In this section, we present the building blocks of the ViT and the associated mathematical 13 
foundations that underpin its functionality in the context of plant disease recognition. 14 

 15 
3.1. Self-Attention Mechanism 16 

The central building block of the ViT is the self-attention mechanism. Self-attention 17 
allows the model to capture long-range dependencies between different elements in the 18 
input sequence. For images, the input sequence is represented as a set of patches extracted 19 
from the original image. The self-attention mechanism computes the attention weights 20 
between patches to determine their importance in the context of the entire image. Given 21 
an input sequence of image patches, 𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}, where each xi is a feature vector 22 
representing a patch, the self-attention mechanism calculates the attention weights be- 23 
tween each pair of patches: 24 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑥𝑥𝑖𝑖  ∗

 𝑊𝑊𝑞𝑞� ∗
�𝑥𝑥𝑗𝑗 ∗ 𝑊𝑊𝑘𝑘�

�𝑑𝑑𝑘𝑘
�,  

(1) 

where 𝑊𝑊𝑞𝑞 and 𝑊𝑊𝑘𝑘 are learnable weight matrices for query and key projections, re- 25 
spectively, and 𝑑𝑑𝑘𝑘 is the dimension of the key vectors. Softmax is used to normalize the 26 
attention scores across all pairs of patches. 27 
 28 
3.2. Multi-Head Attention (MHA) 29 

To enhance the representation power of self-attention, ViT employs multi-head at- 30 
tention. This involves running the self-attention mechanism multiple times in parallel, 31 
each with different learned weight matrices for query, key, and value projections. The 32 
outputs from multiple attention heads are then concatenated and linearly transformed to 33 
generate the final attention output. Mathematically, the MHA mechanism can be ex- 34 
pressed as: 35 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑋𝑋)  
= ||�𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑1(𝑋𝑋),𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑2(𝑋𝑋), . . . ,𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑ℎ(𝑋𝑋)�
∗  𝑊𝑊𝑜𝑜, 

(2) 
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where 𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑖𝑖(𝑋𝑋) represents the output of the 𝑖𝑖 − 𝑡𝑡ℎ attention head, the symbol || is 1 
the operation to concatenate the head outputs, and 𝑊𝑊𝑜𝑜 is the learnable weight matrix for 2 
the final linear transformation. 3 

Since the ViTs do not possess a built-in spatial relationship understanding like CNNs, 4 
positional information must be injected into the model to maintain the spatial awareness 5 
of the image patches. Positional encoding is introduced to provide this spatial information 6 
to the transformer. 7 

Mathematically, positional encoding is represented as: 8 

PE(pos, 2i)  =  sin�
pos

10000
2𝑖𝑖

dmodel

�,  (3) 

𝑃𝑃𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝, 2𝑖𝑖+1)  =  𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑝𝑝𝑝𝑝𝑝𝑝

10000
2𝑖𝑖

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�, 

 

(4) 

where 𝑝𝑝𝑝𝑝𝑝𝑝 represents the position of the patch, 𝑖𝑖 denotes the index of the positional 9 
encoding dimension, and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚is the dimension of the model's hidden layers. 10 

The ViTs comprise multiple transformer encoder layers, each containing a self-atten- 11 
tion mechanism, layer normalization (LN), feed-forward neural networks (FFN), and re- 12 
sidual connections. These layers enable the model to progressively refine the representa- 13 
tions of image patches through iterative attention and feed-forward computations. In 14 
mathematical terms, a transformer encoder layer can be defined as: 15 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)  
=  𝐿𝐿𝐿𝐿(𝑋𝑋 +  𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋)  
+  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋)))  
+  𝐹𝐹𝐹𝐹𝐹𝐹(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋 +  𝑀𝑀𝑀𝑀𝑀𝑀(𝐿𝐿𝐿𝐿(𝑋𝑋)  
+  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋)))), 

(5) 

By combining these building blocks, the ViT learns to capture the intricate relation- 16 
ships between image patches and effectively recognize patterns related to plant diseases. 17 
The use of self-attention and transformer architecture allows the model to learn long- 18 
range dependencies and enables it to handle a wide variety of diseases across different 19 
crops, making it a potent solution for plant leaf disease recognition in smart farming ap- 20 
plications. 21 

4. Experimental Setups 22 

 To assess the performance of our approach accurately, we employed a set of stand- 23 
ard performance metrics, including accuracy, precision, recall, F1-score, and the area un- 24 
der the receiver operating characteristic curve (AUC-ROC). These metrics provided a 25 
comprehensive evaluation of our model's ability to correctly classify healthy and diseased 26 
plant leaves across multiple disease classes. The experimental evaluation is performed 27 
using the following metrics, which are also calculated as: 28 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

TP + TN + FP + FN
 (6) 

  29 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

TP + FP
  (7) 



SMIJ 2022, Vol. 1. 6 of 11 
 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

TP + FN
   (8) 

  1 

𝐹𝐹1 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ∗
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

  (9) 

     2 

5.  Results Discussion 3 

 The culmination of rigorous experimentation and analysis has yielded significant 4 
insights into the performance and efficacy of our proposed approach for plant leaf disease 5 
recognition empowered by the ViT model. In this section, we present the compelling re- 6 
sults obtained through our experiments and engage in a comprehensive discussion to in- 7 
terpret their implications, addressing the central research objectives outlined in this paper. 8 
Figure 2 presents the learning curves of our proposed ViT model during the training pro- 9 
cess. The learning curves depict how the model's performance evolves over epochs as it 10 
learns from the training data. The x-axis represents the number of training epochs, while 11 
the y-axis indicates the corresponding performance metrics, such as training loss and val- 12 
idation accuracy. The learning curves provide valuable insights into the model's training 13 
dynamics. Initially, we observe a rapid decrease in the training loss and an increase in the 14 
validation accuracy as the model starts learning from the data. As the training progresses, 15 
the improvements in the validation accuracy may begin to plateau, indicating a conver- 16 
gence of the model's learning process. Monitoring the learning curves allows us to assess 17 
whether the model is overfitting or underfitting the data, ensuring that we achieve the 18 
best trade-off between bias and variance. 19 

Figure 3 illustrates the Receiver Operating Characteristic (ROC) curves for our pro- 20 
posed ViT model. ROC curves are commonly used to assess the model's performance 21 
across different classification thresholds. The ROC curve plots the True Positive Rate (Sen- 22 
sitivity) against the False Positive Rate (1 - Specificity) at various threshold values. The 23 
area under the ROC curve (AUC-ROC) is a key performance metric derived from Figure 24 
2. A higher AUC-ROC value indicates that the model has better discriminative power and 25 
can effectively distinguish between different disease classes. The closer the AUC-ROC 26 
value is to 1, the better the model's overall performance. 27 

Figure 2. learning curves for the proposed model  
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Figure 4 displays the confusion matrix generated by our proposed ViT model. A con- 1 
fusion matrix provides a comprehensive summary of the model's predictions, showing 2 
the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 3 
counts for each disease class. The diagonal elements of the confusion matrix represent the 4 
correctly classified samples, while the off-diagonal elements represent misclassifications. 5 
Analyzing the confusion matrix allows us to identify which disease classes the model 6 
struggles to distinguish accurately and can help us identify potential areas of improve- 7 
ment. Additionally, we can compute various performance metrics, such as precision, re- 8 
call, and F1-score, based on the values in the confusion matrix, providing a deeper under- 9 
standing of the model's performance for individual disease classes. 10 

Figure 3. ROC curves for the proposed model 
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Figure 5 presents a critical comparison between our ViT model and traditional con- 1 
volutional baselines in the context of plant leaf disease recognition. This comparison is 2 
instrumental in understanding the superiority of the ViT model and its potential to revo- 3 
lutionize disease detection in smart agriculture. The figure showcases various perfor- 4 
mance metrics, including accuracy, precision, recall, and F1-score, obtained from experi- 5 
ments conducted on the PlantVillage dataset. By juxtaposing the results of our ViT model 6 
against multiple CNN baselines, we gain valuable insights into the relative strengths and 7 
weaknesses of each approach. Our ViT model outperforms the CNN baselines across all 8 
metrics, showcasing higher accuracy, precision, and recall values. This significant im- 9 
provement in disease recognition performance can be attributed to ViT's unique architec- 10 
ture, which effectively captures long-range dependencies and intricate relationships be- 11 
tween image patches. The self-attention mechanisms in the ViT enable it to discern subtle 12 

Figure 4. Confusion matrix of the proposed model  
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patterns and features indicative of various plant diseases, contributing to its superior dis- 1 
criminative ability. 2 

6. Conclusions 3 

 This research presents a novel and effective approach for plant leaf disease recogni- 4 
tion in smart agriculture, leveraging the power of the ViT model. Through rigorous ex- 5 
perimentation and analysis, we have demonstrated the superiority of the ViT model over 6 
traditional CNNs and its ability to generalize across diverse crops and diseases. The inte- 7 
gration of self-attention mechanisms and transformer-based architectures enables the 8 
model to capture long-range dependencies in image patches, facilitating accurate and ef- 9 
ficient disease identification. Leveraging the widely recognized PlantVillage dataset as a 10 
case study, our results showcase the potential of the proposed framework to empower 11 
farmers with timely disease detection and management, contributing to enhanced crop 12 
productivity and reduced losses. The ViT model's ability to revolutionize disease detec- 13 
tion offers a transformative solution to meet the ever-increasing demands of the agricul- 14 
tural industry. As we advance toward a future characterized by precision agriculture and 15 
data-driven decision-making, our research serves as a stepping stone, unlocking the po- 16 
tential of machine intelligence to empower farmers and sustainably feed a growing global 17 
population. 18 
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Figure 5. comparison of our model against convolu�onal baselines 
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