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1 |Introduction 

Data has recently grown in importance as a source for several disciplines, including data science and data 

mining. Handling enormous data dimensions is one of the difficult issues that data mining presents. The 

dimensionality of the data could make data mining difficult. Moreover, it requires large computation time and 

space expenditures. These enormous datasets are too big for conventional machine-learning techniques to 

handle. The dataset includes a set of instances or instances representing information regarding a certain case. 
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Feature selection (FS) plays a vital role in minimizing the high-dimensional data as much as possible to aid in 

enhancing the classification accuracy and reducing computational costs. The purpose of the FS techniques is to extract 

the most effective subset features, which might enable the machine learning (ML) algorithms to better grasp the input 

data’s patterns and improve their classification performance. Although several metaheuristic algorithms have been 

recently presented to solve this problem, they still suffer from several disadvantages, such as getting stuck in local 

optima, slow convergence speed, and a lack of population diversity, which prevent them from achieving the desired 

solutions in an acceptable time. Therefore, this study is presented to propose a new feature selection approach, namely 

OBMSASA, based on integrating the recently published mantis search algorithm with the opposition-based learning 

(OBL) method and simulated annealing (SA) to strengthen its exploration and exploitation operators. The OBL 

method aims to improve the exploration operator, making the algorithm able to avoid stagnation into local minima; 

meanwhile, the SA is used as a local search to further strengthen the exploration operator, thereby improving the 

convergence speed. The K-nearest neighbor algorithm is used to compute the accuracy of the selected feature. The 

proposed algorithm is assessed using 21 common datasets and compared to several rival optimizers in terms of several 

performance metrics, including convergence curve, average fitness, computational cost, length of selected features, 

and standard deviation, to observe its effectiveness and efficiency. The numerical findings demonstrated the proposed 

algorithm's superiority over its competitors. The source code is publicly accessible at 

https://drive.mathworks.com/OBMSASA. 
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Every sample has a unique set of characteristics. The problem with the dataset is not just its enormous 

dimension sizes; it also includes attributes that are redundant or unimportant. Furthermore, the collected 

dataset can have a high level of noise, and the model might be complex. These issues raise computing costs 

and reduce the accuracy of machine learning (ML) techniques. Therefore, the feature selection (FS) as a 

preprocessing step is used to pick the best subset of the valuable characteristics to reduce the computational 

cost and improve the classification accuracy of the ML classifiers. The use of feature selection to lessen the 

effects of data dimensionality has proven to be quite effective. Locating the optimal selected feature (OSF) is 

a NP-hard optimization problem because it requires observing a huge number of combinations to reach the 

best one that could simultaneously optimize both the number of selected features and classification accuracy.  

Several feature selection techniques have been presented in the literature, which is divided into three 

categories: Filter, wrapper, and embedding techniques [1]. The filter method assesses the chosen subset of 

features based on the data's properties so, we can say that it always focuses on the broad features of the data. 

In contrast, the wrapper methods employ a ML classifier to observe the quality of the selected features. Those 

methods yield more accurate results than filters, but they are expensive in terms of computational cost. 

Embedded techniques are a combination of filters and wrapping methods. When using embedded 

approaches, feature selection happens concurrently with the classifier during the training phase [2]. Although 

wrapper procedures are slower, they yield better results than filter methods. Due to the effectiveness of 

wrapper-based FS techniques, they are extensively employed in the literature to optimize the FS problem for 

several fields. Among those techniques, the metaheuristic algorithms could achieve outstanding outcomes 

when applied to solve this problem due to their strong exploration and exploitation characteristics. The meta-

heuristic techniques could achieve outstanding results for several optimization problems, including both 

continuous and combinatorial problems, in a reasonable amount of time. The majority of those techniques 

are based on two phases: exploration and exploitation. In the first phase, known as exploration, the search 

area is more extensively examined as the algorithm searches for the most promising places. The second step 

of the metaheuristic begins by scouring the most promising regions in greater detail to identify even better 

solutions. 

According to some papers [3], Metaheuristic algorithms are categorized into five categories as follows: the 

first category is called evolutionary-based metaheuristic algorithms, these algorithms including optimization 

paradigms that are based on evolutionary mechanisms, such as biological genetics and natural selections, 

genetic algorithms (GA) [4], and differential evolution (DE) [5] are examples of evolutionary-based 

metaheuristic algorithms. Human-based metaheuristics are the second category, the foundation for 

introducing human-based metaheuristic methods is a mathematical simulation of a variety of human 

behaviors. Teaching-Learning-Based Optimization (TLBO) [6], Poor and Rich Optimization (PRO) [7], 

and Human Mental Search (HMS) [8] are examples of the Human-based metaheuristics. Swarm-based is the 

third category, they are designed to mimic the swarming habits of birds, mammals, and other natural 

organisms. some of the well-known algorithms that come to mind are Particle Swarm Optimization (PSO) 

[9], Ant Colony Optimization (ACO) [10], and Firefly Algorithm (FA) [11]. The mathematical representation 

of different physical laws and occurrences serves as the foundation for the building of physics-based 

metaheuristic algorithms, which is the fourth category of metaheuristics. Simulated Annealing (SA) [12] and 

the Gravitational Search Algorithm (GSA) [13] are two examples of widely recognized physics-based 

algorithms. Mathematics based is considered the final category of metaheuristic algorithms, it based on the 

mathematics mechanisms. Arithmetic optimization algorithm (AOA) [14], and sine cosine algorithm [15] are 

examples of the mathematics based metaheuristic. 

Many metaheuristic algorithms are presented in this respect to address feature selection challenges. However, 

we argue that previous research has some shortcomings, including poor convergence, local optima trapping, 

and increased computation durations. The previous problems were the motivation to present our proposed 

model. The proposed opposition-based mantis search simulated annealing (OBMSASA) utilizes an improved 

version of the mantis search algorithm (MSA) based on an opposition-based learning method as the first 

phase, this mechanism improves the algorithm's ability to explore, making it able to provide better quality 

solutions. Secondly, the opposition-based mantis search algorithm (OBMSA) is hybridized with simulated 
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annealing (SA). The convergence speed is increased by using SA as a local search to reinforce the exploratory 

operator even more. For assessing the performance of the proposed OBMSASA, twenty-one datasets were 

employed to track the effectiveness of the suggested technique. A comparative analysis was conducted using 

multiple recently published methods to address the feature selection issue, such as Discrete equilibrium 

optimizer combined with simulated annealing for feature selection (EOSA) [16], two-phase mutation gray 

wolf optimizer (TPGWO) [17], hybrid harris hawks optimization simulated annealing algorithm (HHOSA) 

[18], slime mould algorithm marine predators algorithm (SMAMPA) [19], sine cosine algorithm (SCA) [20], 

opposition based learning salp swarm algorithm (OBSA)[21], crossover cooperative whale optimization 

algorithm (CCWOA)[22], and the standard mantis search algorithm (MSA) [23]. 

The main contribution of this work is finding the best subset of features using a hybrid approach between an 

enhanced mantis search algorithm and simulated annealing addresses most of the constraints found in the 

previous studies. Since the SA can accept a subpar solution based on probability, it is hybridized with the 

Mantis Search Algorithm to escape from the local optima and improve population diversity as well. Moreover, 

using opposition-based learning in MSA can increase the diversity of the original population. Different and 

large-dimensional dataset sizes are utilized to assess the efficacy of the proposed method. 

The remainder of the paper is arranged as follows: Section 2 discusses some recently published techniques 

for the FS; Section 3 briefly describes the K-nearest neighbor approach, the MSA algorithm, the opposition-

based learning method, and simulated annealing (SA) as the main components of the proposed algorithm; 

Section 4 discusses the proposed algorithm; Section 5 provides numerical results and discussion; and the 

conclusions and recommendations for the future are presented in Section 6. 

2 | Related Work 

Large datasets present a significant challenge to machine learning techniques because of their high 

dimensionality, which might hinder data mining. Applications that use datasets with a lot of dimensions must 

therefore raise the classification parameters. Consequently, the classifier's performance considerably 

deteriorates. According to this principle, there is an urgent need to use methods for dimensionality reduction. 

Dimensional reduction is one well-liked method to get rid of noise and unnecessary features. It is a useful 

technique for increasing model generalization, reducing computational complexity, increasing precision, and 

reducing the amount of storage needed. One of the most popular techniques used in solving this issue is the 

feature selection process. A lot of well-known feature selection methods are used to solve the problem of 

high dimensionality; Metaheuristics is one of these methods that has become widespread recently. The 

different feature selection methods are indicated in Figure 1. 

 
Figure 1. Feature selection methods techniques. 
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Feature selection methods aim to find the best subset of the features, keeping in mind the efficiency of 

classification as the priority. The problem of identifying the optimal subset of characteristics is classified as 

NP-Hard[24] The primary tasks carried out by metaheuristic algorithms can be illustrated in Figure 2. 

 

Figure 2. Feature selection cycle using metaheuristic algorithms. 

To find the optimally selected feature, the scholars developed a number of metaheuristic approaches. Thus, 

we shall look into a number of those algorithms. Lately, to address the feature selection problem, a variation 

of the Vortex Search Algorithm (VSA) integrated with different chaotic maps has been investigated as a way 

to enhance the VSA operators and aid in controlling both exploitation and exploration [25]. This method's 

effectiveness was assessed using 24 UCI benchmark datasets. In [26], the authors suggested that MetaSCA 

stands for hybrid metaheuristic optimization. It is based on a golden sine strategy and a multilevel regulatory 

factor strategy for feature selection, as well as an enhanced sine cosine algorithm. Seven UCI datasets are 

employed in the evaluation process.  The outcomes demonstrated that it attains superior performance in 

terms of accuracy and the ideal feature subset. This module's drawback was that it took a long time to extract 

the optimal feature subset from a large number of features; hence, it still requires a lot of work to enable a 

noticeable boost in the speed of the feature selection process. Another module was introduced by the authors 

of [27]. The goal of this study was to introduce a new feature selection (FS) technique by enhancing Gorilla 

Troops Optimizer (GTO) performance through the use of the GTO-BSA technique, a method for bird 

swarms (BSA). By using BSA, with a great ability to identify the viable regions that offer the optimum solution, 

the performance of GTO was improved. The testing results demonstrated that the suggested GTO-BSA 

method outperformed several existing metaheuristic algorithms in terms of results. One of the research's 

limitations is that it does not address all multi-objective challenges. Furthermore, in order to identify the best 

feature subsets from the NSL-KDD dataset, this research [28] suggests an innovative feature selection 

technique that makes use of a genetic algorithm (GA). Moreover, decision trees (DT) and logistic regression 

(LR) have been used in hybrid classification to improve accuracy (ACC) and detection rate (DR). This study 

optimized the chosen ideal features by applying and contrasting the performance of multiple meta-heuristic 

techniques. Despite providing good accuracy, the suggested task has certain drawbacks. This disadvantage is 

that, in addition to increasing complexity, the suggested method takes longer to converge, which could be 

expensive computationally. Another method in [29], in which the Sine-Cosine hybrid optimization algorithm 

is combined with a modified whale-optimization approach to handle feature selection and achieve high 

accuracy, is called SCMWOA.  On 19 datasets, SCMWOA is evaluated. The results demonstrate how accurate 

the SCMWOA algorithm is. 

Jun Li et al. [30] provide a better-hybridized salp swarm algorithm that is based on the first two stages of the 

TLSSA teaching-learning-based optimization technique. Although TLSSA produces higher results, it is 

limited to use on four feature selection datasets. Furthermore, a modified SSA method known as quantized 

SSA (QSSA) is recommended by [31] to increase performance. The quantization operator, a mathematical 

operator, is integrated into the fundamental SSA in the proposed method to choose the best features from 

benchmark datasets while maintaining accuracy. To lessen the dimensionality of agricultural disease detection, 
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Sonal Jain et al. [32] presented a binary version of the memetic salp swarm optimization method (MSSOA), 

which finds the ideal number of characteristics for the best classification accuracy. The findings show that 

the suggested approach performs better than the other algorithms in terms of achieving accurate classification 

and minimizing the size of the feature. 

Amel Ali Alhussan et al. [33] proposed an innovative feature selection technique that uses the KNN classifier 

and the binary version of the waterwheel plant's method of prey selection (bWWPA) as communication to 

find the optimal feature combination. Thirty datasets from the UCI machine learning repository were used in 

experiments to test the robustness and stability of the suggested bWWPA approach. A nonlinear binary 

grasshopper whale optimization algorithm (NL-BGWOA) is an amalgamated algorithm that is put forth by 

the authors of [34]. The suggested method maximizes the breadth of exploration in the target region by 

expressing a new position update strategy that combines the position variations of the whale and grasshopper 

populations. For assessment, ten different high-dimensional UCI datasets are used. NL-BGWOA produces 

good results; however, when it comes to datasets with fewer features, its fitness and accuracy of classification 

still need to be improved. Mustafa Serter Uzer et al. [35] introduced a new binary hybrid optimization-based 

wrapper feature selection technique called BWPLFS is put forth. It combines the Lévy Flight, Particle Swarm 

Optimization, and Whale Optimization Algorithms. To assess the suggested algorithm's performance, some 

common benchmark datasets are taken from the UCI repository. 

Mahmoud Ragab [36] introduced a binary combination of currently available meta-heuristic methods, the 

particle swarm optimization (PSO) algorithm and the firefly algorithm (FA), that combines the best aspects 

from each method to offer an optimized and effective method of addressing the feature selection problem 

and is used to handle high-dimensionality datasets. Moving to [37], the authors address the drawbacks of the 

standard grasshopper optimization algorithm (GOA) by strengthening its global optimization capability and 

hindering it from getting into the local optimum trap by integrating elite opposition-based learning and 

Gaussian bare-bones into the GOA. The suggested module still has a lengthy computation time, even though 

it achieves good results in terms of accuracy and obtaining the best subset of features. 

To tackle feature selection problems, a lot of algorithms are introduced in this regard. One of them, EOSA, 

in the article [16] suggests a binary adjusting of the recently suggested meta-heuristic, discrete equilibrium 

optimizer (EO), boosted with simulated annealing (SA). This procedure is employed as a local search process 

to improve the exploitation capability. The authors use the proposed EOSA method on eighteen popular 

UCI datasets and compare it with many other algorithms. EOSA exhibits strong performance on several high-

dimensional datasets. To tackle feature selection for classification issues based on wrapper approaches, Abdel-

Basset et al. suggested a new Grey Wolf Optimizer algorithm incorporated with a two-phase mutation called 

(TMGWO) [17]. Another study introduced a hybrid variant of the Harris Hawks Optimization algorithm 

(HHOSA) that uses wrapper approaches to solve the FS issue for the sake of classification [18]. HHOSA 

relies on bit-wise processing and Simulated Annealing. Recently, an improved version of the slime mold 

algorithm called SMAMPA has been introduced to address FS problems [19]. This version relies on the 

Marine Predators Algorithm (MPA) operators, which play the role of a local search technique, so it helps 

SMA increase the rate of convergence and prevents the attraction to local optima. A sine-cosine algorithm is 

introduced to make an appropriate tradeoff between selecting the optimal subset of features and maximizing 

the accuracy of classification [38]. Some authors introduced an enhanced version of the salp swarm algorithm 

to tackle feature selection problems and choose the best subset of features in wrapper mode. The original 

SSA algorithm was modified in two key ways to address its shortcomings and make it suitable for feature 

selection issues [21]. Opposition-Based Learning (OBL) is used during the SSA's startup phase to increase 

the diversity of populations in the area of search, which is the first improvement. The creation and application 

of a new local search algorithm with SSA to enhance its exploitation constitutes the second enhancement. 

Another study presented a novel strategy called Horizontal Crossover and Cooperative-hunting-based WOA 

(CCWOA) to solve these shortcomings [22]. The WOA framework is strengthened by this algorithm by 

adding a weight, horizontal crossover approach, and cooperative learning methods. 

https://link.springer.com/article/10.1007/s11227-023-05067-9#auth-Mustafa_Serter-Uzer-Aff1
https://onlinelibrary.wiley.com/authored-by/Ragab/Mahmoud


   Mandour et al.|Sustain. Mach. Intell. J. 8 (2024) 56-98 

 

06 

With remarkable success, metaheuristic approaches were developed to address a wide range of contemporary 

and emerging issues. As a result, numerous academics used metaheuristic algorithms to quickly address FS 

problems. Nonetheless, we contend that prior research suffers from several flaws, such as: 

 Poor convergence and getting trapped in LO. 

 The lengthening of computation times. 

 Unfortunately, huge data dimensions may have an impact on the algorithm’s performance. 

 It takes time to prepare the algorithm's parameters before having to select the ideal configuration. 

A hybrid approach between an improved mantis search algorithm and simulated annealing is looking for the 

optimal subset of features to address the majority of the constraints discovered in the earlier investigations. 

Since the SA can accept an inferior solution depending on probability, it is hybridized with the Mantis Search 

Algorithm to escape from the local optima and enhance population diversity as well. Furthermore, applying 

opposition-based learning to MSA can broaden the initial population's diversity. Various and large-

dimensional dataset sizes are employed to examine the effectiveness of the suggested approach. 

3 |Mantis Search Algorithm 

Abdel-Basset introduced a nature-inspired algorithm that mimics the physical and behavioral methods used 

by mantises to protect their prey and evade predators [23]. There are about 2400 kinds of this kind of bug 

around the globe, grouped into 434 genera. The bug is distinguished by its long body, triangular face with two 

antennae and exophthalmic eyes that are compound, and elastic neck that allows certain species to rotate the 

head around 180 degrees. Ants, scorpions, and wasps are the usual food sources for mantises. Small mantises 

can be consumed by large mantises as well.  

3.1 |MSA's Mathematical Model 

The three primary MSA stages are shown mathematically in this section and are explained in brief in the 

following order: The initial positions of the mantises (population initialization) are the initial stage, which is 

in charge of randomly assigning the mantises within the optimization's search space. (ii) The second step is 

the phase of exploration, or "looking for prey," which imitates the actions taken by the mantises to locate 

their prey. (iii) The third step is the phase of exploitation, which imitates the mantises' attacking behavior. (iv) 

The fourth phase indicates sexual cannibalism. (v) The final stage describes the method of retrieving the 

solutions that are located outdoors in the search space. All these stages will be mathematically formulated in 

the following sections. 

3.1.1 |Initialization 

The suggested algorithm begins with an initial group of mantises, just like population-based approaches do. 

In a mantis optimization methodology, every mantis stands for a potential solution for an optimization issue. 

A two-dimensional matrix m of size 𝑁𝑢𝑚 × 𝐷 can represent a population of 𝑁𝑢𝑚 mantises (solutions) in a 

D-dimensional search space. A vector of the following form can be used to define the position of the mantis 

𝑖  for function assessment 𝑡: 

𝑚𝑖
𝑡 = [𝑚𝑖,1

𝑡 , 𝑚𝑖,2
𝑡 , … ,𝑚𝑖,𝐷

𝑡 ]                                                                                                                                 (1) 

Where  𝑖  indicates the current solution that belongs to the set {1,2,… . . , 𝑁𝑢𝑚} ; 𝑡 stands for the function 

evaluation that is now in effect; 𝐷 denotes the problem's dimension; and the 𝑖𝑡ℎ mantis’ position  can be 

represented by 𝑚𝑖
𝑡.  The 𝑖𝑡ℎmantis's 𝑚𝑖

𝑡  initial vector in the search space can be randomly generated using 

the equation below: 

𝑚𝑖
𝑡 = 𝑚𝑗

𝑙 + 𝑟 × (𝑚𝑗
𝑢 − 𝑚𝑗

𝑙)                                                                                                                                            (2) 
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where 𝑚𝑗

𝑢𝑎𝑛𝑑 𝑚𝑖
𝑙  stand for the j-dimension's upper and lower bounds, correspondingly. A random number  

∈ [0,1]. Every time the mantis moves into a new place, the potency of the solution is assessed based on the 

fitness function. The following is an update of the current position. The mantis shifts to the new place when 

the solution quality there is superior to the one it is now in. If not, the MOA approach keeps the mantis at its 

current location. 

3.1.2 |Exploration Phase (Searching for Prey) 

Mantis shrimp are divided into two groups: smashers and spearers. The smashers hunt their prey far away in 

their natural habitat, on the ground and the leaves and branches of trees, while the spearers wait for their prey 

to approach their burrows and strike. This novel algorithm simulates this phase in two ways: first, it attempts 

to mimic the actions of the smashers, which search other areas for their victim, and second, it mimics the 

behaviors of the spearers, which wait for their prey in a concealed position before pounces. 

3.1.2.1 |Smasher’s Exploration Behavior 

Those attackers use a variety of step sizes, including long, little, and surprise orientations, to hunt food outside 

of their burrows. This behavior covers both short and large step sizes by incorporating the Levy flight and 

normal distribution, while the surprise orientation is randomized and imitated. 

The levy flight produces small step sizes that require huge function assessments to reach the desired solution, 

making it impractical when used alone. In contrast, the normal distribution produces huge numbers that push 

the solution into distant positions and subsequently discard an extensive number of solutions. Hence, to 

simulate the behaviors of the smashers while they hunt for their victims, the authors study recombination 

between these to produce distinct sequences of numbers in this research, supporting both little and 

comparatively high numbers. Thus, the steps produced by hybridization are in between those of a very large 

one and a very small one. At last, the following is the mathematical framework for this behavior: 

𝑚⃗⃗ 𝑖
𝑡+1 = {

𝑚⃗⃗ 𝑖
𝑡 + 𝜏1⃗⃗  ⃗. (𝑚⃗⃗ 𝑖

𝑡 − 𝑚⃗⃗ 𝑎
𝑡 ) + |𝜏2|. 𝑈⃗⃗ . (𝑚⃗⃗ 𝑎

𝑡 − 𝑚⃗⃗ 𝑏
𝑡 ) ,    𝑛1 ≤ 𝑛2

𝑚𝑖
𝑡 ∗ 𝑈⃗⃗ + (𝑚⃗⃗ 𝑎

𝑡 + 𝑛3. (𝑚⃗⃗ 𝑏
𝑡 − 𝑚⃗⃗ 𝑐

𝑡)). (1 − 𝑈⃗⃗ ),     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                           (3) 

    Where 𝑚⃗⃗⃗ 𝑖
𝑡
 is the location of the 𝑖𝑡ℎ mantis at the function assessment t, |𝜏2| is a random number derived 

from the normal distribution, and  𝑛1, 𝑛2, and 𝑛3 are three randomly produced values between 0 and 1. 𝜏1⃗⃗  ⃗ is 

a vector of values constructed using the Levy-flight approach. 𝑚⃗⃗ 𝑎
𝑡 , 𝑚⃗⃗ 𝑏

𝑡  and 𝑚⃗⃗ 𝑐
𝑡  are three mantis, which were 

selected in a random manner from the current population, such that 𝑚⃗⃗ 𝑎
𝑡 ≠ 𝑚⃗⃗ 𝑏

𝑡 ≠ 𝑚⃗⃗ 𝑐
𝑡 ≠ 𝑚⃗⃗ 𝑖

𝑡. a binary vector 

U⃗⃗  is produced regarding to the next formula: 

𝑈⃗⃗ = {
0          𝑛4⃗⃗⃗⃗ < 𝑛5⃗⃗⃗⃗ 
1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                                                   (4) 

Where 𝑛4⃗⃗⃗⃗  and 𝑛5⃗⃗⃗⃗  are two random vectors including values between 0 and 1.  The first mathematical formula 

in Eq. (3) imitates the hybrid movements, whereas the second formula imitates the sudden orientation of the 

movements. 

3.1.2.2 |Smasher’s Exploration Behavior 

These predators' means of establishing archives that include the locations of several burrows, where they wait 

for prey to approach and strike, are used to imitate their exploratory habits (Smasher behavior). Every mantis' 

local-best solutions are assigned to this archive, which is filled by randomly selecting one solution from inside 

it to replace the old one. With the help of their 180-degree rotating eyes located in their heads, these predators 

use them to survey their surroundings. The formula below is used to imitate this behavior: 

𝑚⃗⃗ 𝑖
𝑡+1 = 𝑚⃗⃗ 𝑖

𝑡 + α. (𝑚⃗⃗ 𝑎𝑟
′ − 𝑚⃗⃗ 𝑎

𝑡 )                                                                                                                          (5) 

To allow the mantis to cross the ambush's distance, α is a parameter that controls its position. This parameter 

can be mathematically defined as described below: 
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α = cos(𝜋𝑛5) . (1 −
𝑡

𝑀𝑎𝑥𝑇
)                                                                                                                                                         (6) 

wherein 𝑛5 is a number that is generated at random in the range of [0,1]. The function assessments’ maximum 

number is denoted by 𝑀𝑎𝑥𝑇. Mimicking the movements of prey as they seek their prey in their surroundings; 

nevertheless, this behavior can be determined to bring the prey inside ambush range employing the 

subsequent formula: 

𝑚⃗⃗ 𝑖
𝑡+1 = 𝑚⃗⃗ 𝑎𝑟

′ + (𝑛2 ∗ 2 − 1) ∗ 𝜇 ∗ (𝑚𝑗
𝑙 + 𝑛 × (𝑚𝑗

𝑢 − 𝑚𝑗
𝑙))                                                                         (7) 

where the upper and lower boundaries for the j-dimension are denoted, respectively, by 𝑚𝑗
𝑢 and 𝑚𝑗

𝑙. A 

number chosen at random between in the range of [0,1] is called 𝑛. 𝑚⃗⃗ 𝑎𝑟
′  represents a solution that was chosen 

at random from the repository to symbolize the 𝑖𝑡ℎ mantis' burrow. μ, a distance parameter that regulates the 

prey's position, is calculated using the subsequent formula: 

μ = (1 −
𝑡

𝑀𝑎𝑥𝑇
)                                                                                                                                                            (8) 

Furthermore, the following mathematical formulation represents the actions of ambush behavior mantises 

and their prey: 

𝑚⃗⃗ 𝑖
𝑡+1 = {

𝑚⃗⃗ 𝑖
𝑡 + α. (𝑚⃗⃗ 𝑎𝑟

′ − 𝑚⃗⃗ 𝑎
𝑡 ) ,   𝑚2 ≤ 𝑚3

𝑚⃗⃗ 𝑎𝑟
′ + (n2 ∗ 2 − 1) ∗ μ ∗ (𝑚𝑗

𝑙 + 𝑛 × (𝑚𝑗
𝑢 − 𝑚𝑗

𝑙)) ,     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                   (9) 

In this case, the two numbers, 𝑚2 and 𝑚3, are chosen at random in the range of [0,1] for exchanging the 

behaviors of ambush hunters and prey. Lastly, there are the two exploratory behaviors of spearers (Eq. (9)) 

and ambushers (Eq. (3)). The recycling control factor (RCF) is a factor that can be used to balance various 

behaviors during the optimization process. The following is the mathematical formulation for this factor: 

RCF = (1 −
(t%(

MaxT

P
))

(
MaxT

P
)

)                                                                                                                              (10) 

Where 𝑃 represents an integer. 

3.1.3 |Attack the Target: Stage of Exploitation 

The two phases of a mantis's prey-catching action are their approach and the sweeping motion [39]. A mantis 

raises and spreads its arms during the first stage, known as the approach phase. The mantis gathers its prey at 

a fast speed and drags it in to consume it during the second phase, known as the sweeping phase. It's 

interesting to note that the mantis may gauge its distance from its target before choosing to sweep (strike) 

[40]. The mantis hovers at an appropriate angle before the strike and strikes the prey quickly. A mantis will 

frequently fix its error with a similar pause if it initially misjudges the velocity of its prey. As a result, two 

essential components of the hunting process’s effectiveness are the assessment of the distance that exists 

between the predator and the target, or striking distance, and the velocity of the assault, or strike speed. To 

model this behavior analytically, the following three steps must be taken: 

 Calculating the strike distance(𝑑𝑠𝑡). 

 Determining the striking speed  (𝑣𝑠𝑡). 

 The mantis tries to strike again in this instance, taking into account the strike's failure. 

i). Calculating the strike distance(𝒅𝒔𝒕). 

The following formula can be used to determine the mantis's strike distance at the function execution 𝑡. 

𝑡𝑎𝑛 𝛽1𝑖

𝑡 = 𝑑𝑠𝑡
𝑡

𝑖
𝐵𝑖

𝑡  𝑎𝑛𝑑 ⁄ tan𝛼1𝑖

𝑡 = 𝑑𝑠𝑡
𝑡

𝑖
(1 − 𝐵𝑖

𝑡)⁄                                                                              (11) 
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𝑡𝑎𝑛 𝛽2𝑖

𝑡 = 𝑏𝑖
𝑡 𝑚𝑖𝑅𝑖

𝑡  𝑎𝑛𝑑 ⁄ tan𝛼2𝑖

𝑡 =  𝑏𝑖
𝑡 𝑚𝑖𝐿𝑖

𝑡⁄                                                                                              (12) 

Because 𝐿1𝑖

𝑡  and 𝐿2𝑖

𝑡  are parallel, then 𝛽1𝑖

𝑡 = 𝛽2𝑖

𝑡  and 𝛼1𝑖

𝑡 = 𝛼2𝑖

𝑡 . Therefore, 𝑑𝑠𝑡
𝑡

𝑖
𝐵𝑖

𝑡 = 𝑏𝑖
𝑡 𝑚𝑖𝑅𝑖

𝑡  ⁄⁄    and     

𝑑𝑠𝑡
𝑡

𝑖
(1 − 𝐵𝑖

𝑡) =  𝑏𝑖
𝑡 𝑚𝑖𝐿𝑖

𝑡⁄⁄ . Let 𝑏 = 0.5 ∗ 𝐵𝑖
𝑡, then, the above equations become 

 2𝑚𝑖𝑅𝑖

𝑡 ∗ 𝑑𝑠𝑡
𝑡

𝑖
 = 𝐵2

𝑖
𝑡
 and   2𝑚𝑖𝐿𝑖

𝑡 ∗ 𝑑𝑠𝑡
𝑡

𝑖
 =𝐵𝑖

𝑡 − 𝐵2
𝑖
𝑡
, these relations can be indicated in (Figure 5) in [23]. 

We get 𝑑𝑠𝑡
𝑡

𝑖
 after a certain amount of computations. 

𝑑𝑠𝑡
𝑡

𝑖
= (𝑚∗ − 𝑚⃗⃗ 𝑖

𝑡)                                                                                                                              (13) 

Where 𝑚⃗⃗ 𝑖
𝑡  is the 𝑖𝑡ℎ mantis's present position, and 𝑚∗ is the exact position of the prey or the solution that 

was found to be the best by far. 

ii). Determining the striking speed  (𝒗𝒔𝒕). 

The mantis attacks its prey using its frontal legs. By stabilizing its rear legs and expanding its forelegs out as 

far as it can in the direction of the prey, it updates its location. The concept of the sigmoid function can be 

used to quantitatively approximate the speed at which a mantis strikes its prey with its front legs. The velocity 

of striking is determined using the following equation: 

𝑣𝑠𝑡 =
1

1+e𝑟𝜌                                                                                                                                        (14) 

Where ρ, a constant value, indicates the gravity acceleration ratio of the mantis's strike, and V is the mantis's 

strike velocity. The number 𝑟 is produced to regulate the acceleration caused by gravity rate, and it ranges 

from -1 to 1. To capture the prey, every mantis gets updated using the formula below: 

𝑚𝑖
𝑡+1 = (𝑚𝑖

𝑡 + 𝑚∗)/2.0 + 𝑣𝑠𝑡  (𝑚
∗ − 𝑚𝑖

𝑡)                                                                                               (15) 

The mantis shifts its location between where it is now, 𝑚𝑖
𝑡 , and the target's position to minimize the space 

between them to expedite its assault process. 𝑚𝑖
𝑡+1 indicates the new location of mantis 𝑖 during the function 

assessment 𝑡, and 𝑣𝑠𝑡 sets the mantis's striking velocity. A mantis's strike may occasionally miss, in which case 

it must alter its path before trying again. As a result, the mantis changes its course in response to the directions 

of two randomly chosen mantises from the entire population. 

𝑚𝑖
𝑡+1 = 𝑚𝑖

𝑡 + 𝑛1. (𝑚𝑎
𝑡 − 𝑚𝑏

𝑡 )                                                                                                                      (16) 

where two mantises, X and Y, were chosen at random from the existing population. The mantis fell into a 

trap of the local optimality as a result of the mantis strike failing. To keep the algorithm from slipping into 

the local optimum trap, the subsequent mathematical formula is suggested: 

𝑚𝑖
𝑡+1 = 𝑚𝑖

𝑡 + 𝑒2𝑟 ∗ cos(2𝑟𝜋) ∗ |𝑚𝑖
𝑡 − 𝑚⃗⃗ 𝑎𝑟

′ | + (𝑛 ∗ 2 − 1) ∗ (𝑚𝑗
𝑢 − 𝑚𝑗

𝑟)                                                (17) 

This formula is applied in MSA with a probability of failure; for two reasons, the first one avoids getting into 

local minima, and the second accelerates the convergence speed to the best solution. This probability of failure 

can be expressed as follows: 

𝑓𝑏 = 𝑎 ∗ (1 −
𝑡

𝑀𝑎𝑥𝑇
)                                                                                                                                      (18) 

Where A is a predetermined, fixed value that governs both exploration and exploitation operators and ranges 

from 0 to 1. 

3.1.4 |Sexual Cannibalism 

Sexual cannibalism is the term for the act of the female praying mantises eating the male during or after 

copulation. This behavior is formulated as follows: 

𝑚𝑖
𝑡+1 = 𝑚𝑖

𝑡 + 𝑟1. (𝑚𝑖
𝑡 − 𝑚𝑎

𝑡 )                                                                                                                        (19) 
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In the case of praying mantises, 𝑚𝑖
𝑡 stands for the female, and 𝑚𝑎

𝑡 , a randomly chosen answer, symbolizes 

the male who is drawn to the female and mates with it before being devoured. An imprisoned female initiates 

the process of attracting a partner by acting on a possibility 𝑃𝑟𝑜𝑏𝑡 whose worth progressively decreases with 

repetition. 

𝑃𝑟𝑜𝑏𝑡=𝑟2 ∗ 𝜇                                                                                                                                              (20) 

The mating process and the creation of new progeny are expressed by the uniform crossover operator, which 

is derived from the operators of genetics and is given by the formula that follows: 

𝑚𝑖
𝑡+1 = 𝑚𝑖

𝑡 ∗ 𝑈⃗⃗ + (𝑚⃗⃗ 11
𝑡 + 𝑛3. (−𝑚⃗⃗ 11

𝑡 + 𝑚⃗⃗ 𝑖
𝑡)) . (1 − 𝑈⃗⃗ ),                                                                            (21) 

where 𝑚⃗⃗ 11
𝑡  symbolizes the male that mates with the female. Following or throughout the mating process, the 

female will use the following equation to consume the male: 

𝑚𝑖
𝑡+1 = 𝑚𝑎

𝑡 ∗ cos(2𝜋𝑟) ∗ μ                                                                                                                        (22) 

In this case, 𝑚𝑎
𝑡  stands for the male, μ for the male's consumed portion, and cos(2𝜋𝑟) gives the female the 

freedom to spin the male around throughout the eating process. 

To express the prior behavior in all of its phases, utilize the MSA framework (Algorithm 1). 

Algorithm 1 The steps of MSA 

Input: MaxT, Num, A, 𝑎, 𝑃𝑐, 𝜌, p, and Prob 

Output : 𝑚⃗⃗ ∗ 

1. The initialization process of mantises, 𝑚⃗⃗ 𝑖
𝑡(𝑖 = 1,2,…… . , 𝑁𝑢𝑚), using Eq.(1) 

2. Assess every 𝑚⃗⃗ 𝑖 to find the best one (𝑚∗⃗⃗ ⃗⃗  ⃗). 
3. 𝑡 = 1; //the function assessment. 

4. while (𝑡 < 𝑀𝑎𝑥𝑇) 

5. n: a random number in a range [0,1]. 

6. if n<p %%% Exploration phase 

7. n₄: a random number in a range [0,1]. 

8. Updating the recycling factor, RCF, using Eq. (10) 

9. for i=1:Num 

10. if r₄<RCF %% Smashers’ behavior 

11. Adapting 𝑚⃗⃗ 𝑖
𝑡+1 by Eq. (3) 

12. Else   %% Spearers’ behavior 

13. Adapting 𝑚⃗⃗ 𝑖
𝑡+1 by Eq. (9) 

14. End if 

15. 𝑡 = 𝑡 + 1 

16. Assess the mantis, 𝑚⃗⃗ 𝑖
𝑡+1, and exchange 𝑚⃗⃗ 𝑖

𝑡 with, 𝑚⃗⃗ 𝑖
𝑡+1 if it is superior. 

17. End for 

18. Else %%% Exploitation stage 

19. for i=1:Num 

20. for j=1:D 

21. n₂: a random number in a range [0,1]. 

22. if n₂< n₄ 

23. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (16) 

24. Else 

25. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (15) 

26. if r₄< 𝑃𝑓 

27. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (17) 

28. End 

29. End if 

30. End for 

31. 𝑡 = 𝑡 + 1 

32. Assess the mantis, 𝑚⃗⃗ 𝑖
𝑡+1, and exchange 𝑚⃗⃗ 𝑖

𝑡 by, 𝑚⃗⃗ 𝑖
𝑡+1 if it is superior. 

33. A probability 𝑓𝑏  of failure is updated using Eq. (18) 

34. End for 

35. End If 

36. if n< 𝑃𝑐 %%% %%% Sexual cannibalism 

37. for i=1:N 

38. n₃: a random number in a range [0,1]. 



A Mantis Search Algorithm Integrated with Opposition-Based Learning and Simulated Annealing ... 

 

00

 

  

 

4 |Proposed Algorithm 

In this section, the suggested algorithm OBMSASA is going to be thoroughly examined and clarified. The 

feature in FS is binary; if it is picked, it is set to one; if not, it is set to zero. The goal of the Harris Hawks 

optimization technique is to resolve continuous issues that defy the binary character of the FS issue. Our 

suggested method consists of two primary steps: firstly, the integration of the MSA algorithm in conjunction 

with the Opposition Based Learning technique (OBMSA) for FS. Secondly, the integration of the SA and 

OBMSA will be covered in the second step. MSA becomes trapped in local optima, just like a lot of other 

metaheuristics do. Consequently, the SA seeks to keep the MSA algorithm out of local optima. The framework 

of OBMSASA is displayed in Figure 3, and Algorithm 2 expresses the framework of OBMSASA. 

39. n₄: a random number in a range [0,1]. 

40. if n₃< n₄  %% Mating phase 

41. Updating 𝑚𝑖
𝑡+1 using Eq. (21) 

42. Else 

43. if n₄< 𝑃𝑡 %% Attraction of partners 

44. Updating 𝑚𝑖
𝑡+1 using Eq. (19) 

45. Else %% Cannibalism process 

46. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (22) 

47. End 

48. End if 

49. 𝑡 = 𝑡 + 1 

50. Assess the mantis, 𝑚⃗⃗ 𝑖
𝑡+1, and exchange 𝑚⃗⃗ 𝑖

𝑡 with  𝑚⃗⃗⃗⃗ 𝑖
𝑡+1 if it is superior. 

51. Adapting 𝑃𝑡  with Eq. (20) 

52. End for 

53. End if 

54. End while 
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Figure 3. The OBMSASA framework. 

4.1 |Mantis Search Algorithm for Solving FS Problem 

There are two primary phases to the suggested OBMSASA for handling the FS problem. Initialization, 

transformation function, K- nearest neighbor (KNN) classifier, and assessment are the steps that make up 
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the first stage. Additionally, the opposition-based learning method is used to raise the standard of the solution. 

On the other hand, the hybridization of the first stage with simulated annealing occurs in the second stage. 

4.1.1 |Initialization 

In this stage, a random population of agents for searching (𝑚 mantis) is formed. Every Mantis in the 

population stands for a potential solution. A potential solution is represented by a vector of dimensions 𝐷. 

The size of a dataset's features is represented by d. The vector's values can all be either 1 or 0, signifying 

whether or not the feature is chosen. 

4.1.2 |KNN 

A Metaheuristic algorithm is used to produce newly discovered samples for dimensionality reduction. This 

new sample is not labeled yet. The primary goal of classification is to assign a class to newly discovered 

samples that lack a label for a particular class. In this context, numerous classifiers have been employed. KNN 

classifier [41] is among the most popular. Because it is simple to use and only requires one parameter, K, to 

specify a number of neighbors, this can be shown in Figure 4. 

 

Figure 4. The representation of a new possible Mantis labeling process. 

To allow the classifier to recognize the unique characteristics of the data, the relationship between the values 

of the attributes, and the label of the class, we must first train the classifier. We are unable to determine 

whether or not the classifier is successfully trained in real life. Thus, it is standard procedure to reserve some 

data that is labeled as a training dataset and some as a dataset for testing. The new database on which the 

classifier has not been trained still poses a dilemma. It is still necessary to ensure that the classifier performs 

well, and work has been done to use the training database to train the classifier to achieve better performance, 

the testing dataset is preserved at a distance. Each of the samples for the dataset being tested needs to use 

Euclidean distance to find its K nearest neighbors from the dataset used for training, as shown in Figure 5. 
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Figure 5. The representation Euclidian distance calculation. 

𝐸𝑐𝑙𝑢𝑑_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝐷) = √∑ (𝑆𝑡𝑟𝑎𝑖𝑛𝑗 − 𝑆𝑡𝑒𝑠𝑡𝑗)
𝐷
𝑗=1                                                                                  (23) 

here Euclidean distance is represented by 𝐸𝑐𝑙𝑢𝑑_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. The size of an attribute in a given dataset is 

denoted by 𝐷, and 𝑗 =1,…. 𝐷. The 𝑗𝑡ℎ𝑡ℎ𝑒 attribute in the sample from a training dataset is called 𝑆𝑡𝑟𝑎𝑖𝑛𝑗. 

The 𝑗𝑡ℎ𝑡ℎ𝑒 attribute in the sample from the dataset being tested is called 𝑆𝑡𝑒𝑠𝑡𝑗,. One measure that shows 

how well the classifier predicts the class labels is the accuracy of classification. This can be calculated by 

dividing the proportion of accurate occurrences by the overall number of instances in the data set being 

tested. Conversely, the classification rate of error is calculated by dividing the overall number of cases detected 

in the testing dataset by the percentage of inaccurate instances. 

4.1.3 |Assessment 

The accuracy rate of classification derived from the KNN classifier is used to evaluate a solution's efficiency. 

A solution that optimizes the rate of classification accuracy is the optimal one. There will be two competing 

objectives in the fitness function used to evaluate the mantis population: maximizing one and minimizing the 

second. To reduce the two goals, the function of fitness will focus on decreasing the rate of error in 

classification instead of accuracy. The function of fitness is made with the following two goals in mind: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡1 × 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 + 𝑤𝑒𝑖𝑔ℎ𝑡2 ×
|𝑠𝑙𝑒𝑐𝑡𝑒𝑑𝑓#|

|𝐷|
                                                                         (24) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = (1 − 𝑎𝑐𝑐𝑢𝑟)                                                                                                                         (25) 

𝑤𝑒𝑖𝑔ℎ𝑡1 ∈ [0, 1], 𝑤𝑒𝑖𝑔ℎ𝑡2 = 1 − 𝑤𝑒𝑖𝑔ℎ𝑡1                                                                                               (26) 

here (1 − 𝑎𝑐𝑐𝑢𝑟)represents the classification rate of error and 𝑎𝑐𝑐𝑢𝑟 denotes the accuracy of the 

classification determined using KNN. The total number of features selected is shown by the variable 

| 𝑠𝑙𝑒𝑐𝑡𝑒𝑑𝑓#|. The size of a dataset's features is denoted by |D|. The two weight parameters for every aim 

are denoted by 𝑤𝑒𝑖𝑔ℎ𝑡1 and 𝑤𝑒𝑖𝑔ℎ𝑡2. Decreasing the error of classification (the maximization of 

classification accuracy) takes precedence over decreasing the quantity of the chosen attributes. 

4.1.4 |Binary Representation (Transformation Functions) 

The searching agents, or solutions, of metaheuristic approaches, are expressed by real values and are intended 

to solve continuous optimization issues. For the algorithm to adjust to the nature of FS, the search agent 
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values need to be converted into binary values. For this, the transformation functions are accountable. The S 

and V shapes are two of the most significant and commonly used transformation functions [42]. 

Table 1. S-shape and V-shape transfer functions. 

 TF 

Name 
Mathematical Formula  

TF 

Name 
Mathematical Formula 

𝑆1 
1

1+𝑒−2𝑚                               (27) 𝑉1 |erf (
√𝜋

2
𝑚)| = |

√2

𝜋
∫ 𝑒−𝑡2

√𝜋

2
𝑚

0
𝑑𝑡|  (31) 

𝑆2 
1

1+𝑒−𝑚
                                (28) 𝑉2 |tanh𝑚|                                       (32) 

𝑆3 
1

1+𝑒(−
𝑚
2

)
                              (29) 𝑉3 

|
𝑚

√1+√𝑚
2
|                                       (33) 

𝑆4 
1

1+𝑒(−
𝑚
3

)
                              (30) 𝑉4 |

2

𝜋 
arc tan (

√𝜋

2
𝑚)|                         (34) 

 

4.1.5 |Opposition Based Learning Method (OBL) 

The initialization step for the majority of metaheuristic algorithms usually starts with a population that is 

produced randomly within the boundaries and has no prior knowledge of the search area. On the other hand, 

we can identify better solutions in the process of initialization potentially lessen the computing load, and 

improve global convergence if the starting population is produced by better methods. It is more beneficial to 

take into account both opposition and unpredictability, as opposed to pure randomness. An effective method 

for finding solutions in the opposite direction of the existing placements is opposition-based learning (OBL), 

which helps to improve an algorithm's search capabilities. The OBL strategy's primary concept is described 

as follows: 

𝑚′   𝑖
 𝑖𝑡 = (𝑢𝑏 + 𝑙𝑏) − 𝑚𝑖

𝑖𝑡                                                                                                                          (35) 

Both 𝑢𝑏 and 𝑙𝑏 are expressing  the lower and upper bounds, 𝑚𝑖
𝑖𝑡 is the original value. Actually, and 𝑚′   𝑖

 𝑖𝑡    

denotes the opposite value of 𝑚𝑖
𝑖𝑡 . The OBL technique can be applied at several updating stages to improve 

search ability as well as to improve the initialization population's quality. 

4.1.6 |MSA and SA Hybridization 

An algorithm called simulated annealing (SA) was introduced as a single solution to mimic the annealing 

process of metals. Metals are hardened by annealing, a physical process that involves heating the metal to an 

elevated temperature and allowing it to cool gradually.  Initial temperature ( 𝑇𝑒𝑚𝑝0), final temperature 

( 𝑇𝑒𝑚𝑝𝑓𝑖𝑛𝑎𝑙), and cooling rate 𝜏  are the initial parameters of SA. The maximum temperature is called the 

beginning temperature, and it is progressively lowered to the end temperature by the rate of cooling. The 

algorithm starts with a randomly generated solution. It depends on the present solution being gradually 

improved. Iterations select a new adjacent solution to the present solution. If the new, nearby solution proves 

to be superior, the current one is changed accordingly. Additionally, if an adjacent solution proves to be 

superior, the best solution is upgraded. When the target temperature has been met, the algorithm terminates. 

𝑇𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝 ∗ 𝜏  , 𝜏 𝜖[0,1]                                                                                                                                 (36) 

To overcome the LO, SA is an algorithm based on probabilities that can accept the worst solution instead of 

the current surrounding solution. The likelihood that a worse alternative will be accepted depends on the 

degree to which it is worse and on how much the current temperature value is, which is as follows: 

𝑒𝑥𝑝 ( 
−∆

𝑇𝑒𝑚𝑝
 ) ≤ 𝑟𝑎𝑛𝑑                                                                                                                                              (37) 

V
-s

h
ap

e
 S

-s
h

ap
e

 



   Mandour et al.|Sustain. Mach. Intell. J. 8 (2024) 56-98 

 

56 

where ∆ represents the fitness differences between the existing fitness and the new fitness that results from 

the surrounding solution. The temperature right now is T. The value of the exponent for raising e to is 

( 
−∆

𝑇𝑒𝑚𝑝
 ), and 𝑒𝑥𝑝 is the function of the exponential form.  

The SA is used to enhance the MSA algorithm's effectiveness and keep it from entering local optima to 

achieve even greater gains. Because the SA algorithm usually admits better solutions, it is capable of accepting 

worse ones depending on how likely they are to be worse and how high the temperature is at the moment. 

The SA algorithm can now start after the MSA iteration is complete. SA begins with a mantis location bunny 

created from the initial hybridization of OBL with MSA (OBMSA), as opposed to a solution generated at 

random. 

The overall algorithm of the proposed can be expressed by the following Algorithm (2). 

Algorithm 2 The steps of OBMSASA 

Input: MaxT, Num, A, 𝑎, 𝑃𝑐, 𝜌, p, and Prob 

Output : 𝑚⃗⃗ ∗ 

1. The initialization process of mantises, 𝑚⃗⃗ 𝑖
𝑡(𝑖 = 1,2,…… . , 𝑁𝑢𝑚), using Eq.(1) 

2. Assess every 𝑚⃗⃗ 𝑖 to find the best one (𝑚∗⃗⃗ ⃗⃗  ⃗). 
3. 𝑡 = 1; //the function assessment. 

4. while (𝑡 < 𝑀𝑎𝑥𝑇) 

5. n: a random number in a range [0,1]. 

6. if n<p %%% Exploration phase 

7. n₄: a random number in a range [0,1]. 

8. Updating the recycling factor, RCF, using Eq. (10) 

9. for i=1:Num 

10. if r₄<RCF %% Smashers’ behavior 

11. Adapting 𝑚⃗⃗ 𝑖
𝑡+1 by Eq. (3) 

12. Else   %% Spearers’ behavior 

13. Adapting 𝑚⃗⃗ 𝑖
𝑡+1 by Eq. (9) 

14. End if 

15. 𝑡 = 𝑡 + 1 

16. Assess the mantis, 𝑚⃗⃗ 𝑖
𝑡+1, and exchange 𝑚⃗⃗ 𝑖

𝑡 with, 𝑚⃗⃗ 𝑖
𝑡+1 if it is superior. 

17. End for 

18. Else %%% Exploitation stage 

19. for i=1:Num 

20. for j=1:D 

21. n₂: a random number in a range [0,1]. 

22. if n₂< n₄ 

23. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (16) 

24. Else 

25. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (15) 

26. if r₄< 𝑃𝑓 

27. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (17) 

28. End 

29. End if 

30. End for 

31. 𝑡 = 𝑡 + 1 

32. Assess the mantis, 𝑚⃗⃗ 𝑖
𝑡+1, and exchange 𝑚⃗⃗ 𝑖

𝑡 by, 𝑚⃗⃗ 𝑖
𝑡+1 if it is superior. 

33. A probability 𝑓𝑏  of failure is updated using Eq. (18) 

34. End for 

35. End If 

36. if n< 𝑃𝑐 %%%%%% Sexual cannibalism 

37. for i=1:N 

38. n₃: a random number in a range [0,1]. 

39. n₄: a random number in a range [0,1]. 

40. if n₃< n₄  %% Mating phase 

41. Updating 𝑚𝑖
𝑡+1 using Eq. (21) 

42. Else 

43. if n₄< 𝑃𝑡 %% Attraction of partners 

44. Updating 𝑚𝑖
𝑡+1 using Eq. (19) 

45. Else %% Cannibalism process 

46. Updating 𝑚𝑖𝑗
𝑡+1 using Eq. (22) 

47. End 
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48. End if 

49. 𝑡 = 𝑡 + 1 

50. Initialize 𝑇𝑒𝑚𝑝0, 𝑇𝑒𝑚𝑝𝑓𝑖𝑛𝑎𝑙, and 𝜏. 

51. 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 =  𝑚⃗⃗⃗⃗ 𝑖
𝑡+1 

52. 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡) 

53. Temp=𝑇𝑒𝑚𝑝0. 

54. While (Temp<𝑇𝑒𝑚𝑝 𝑓𝑖𝑛𝑎𝑙  ) 

55. 𝑛𝑢𝑚𝑝𝑟𝑜𝑏=random number between [1,3]. 

56. If 𝑛𝑢𝑚𝑝𝑟𝑜𝑏 == 1 

57. If rand<rand 

58. New solution=𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡. 

59. Else  

60. New solution=𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 . 
61.  𝑏𝑖𝑡𝑠0 = 𝑓𝑖𝑛𝑑(𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 == 0); 

62. 𝑏𝑖𝑡𝑠1 = 𝑓𝑖𝑛𝑑(𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 == 1); 

63. 𝑙𝑒𝑛𝑔𝑡ℎ0 = 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑡𝑠0). 
64. 𝑙𝑒𝑛𝑔𝑡ℎ1 = 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑡𝑠1). 

65. If 𝑙𝑒𝑛𝑔𝑡ℎ0 ≅ 0 && 𝑙𝑒𝑛𝑔𝑡ℎ1 ≅ 0 

66. 𝑖𝑛𝑑𝑒𝑥0 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑙𝑒𝑛𝑔𝑡ℎ0] 
67. 𝑖𝑛𝑑𝑒𝑥1 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑙𝑒𝑛𝑔𝑡ℎ1] 
68. %% swap between the two index 

69. New solution(bits0(𝑖𝑛𝑑𝑒𝑥0) = 1). 

70. New solution(bits0(𝑖𝑛𝑑𝑒𝑥1) = 0). 

71. End 

72. Else if  𝑛𝑢𝑚𝑝𝑟𝑜𝑏 == 2 

73. If rand < rand 

74. New solution=𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡. 

75. Else 

76. New solution=𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 . 
77. 𝑏𝑖𝑡𝑠0 = 𝑓𝑖𝑛𝑑(𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 == 0); 
78. 𝑙𝑒𝑛𝑔𝑡ℎ0 = 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑡𝑠0). 
79. If 𝑙𝑒𝑛𝑔𝑡ℎ0 ~ = 0 

80. 𝑖𝑛𝑑𝑒𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑙𝑒𝑛𝑔𝑡ℎ0] 
81. New solution(bits0(𝑖𝑛𝑑𝑒𝑥) = 1). 

82. End 

83. Else if 𝑛𝑢𝑚𝑝𝑟𝑜𝑏==3 

84. If rand<5 

85. New solution=𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 . 
86. Else 

87. 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 . 
88. 𝑒𝑛𝑑 

89. 𝑏𝑖𝑡𝑠1 = 𝑓𝑖𝑛𝑑(𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 == 1); 

90. 𝑙𝑒𝑛𝑔𝑡ℎ1 = 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑡𝑠1). 

91.  𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ1 ≅ 0 

92. 𝑖𝑛𝑑𝑒𝑥 = 𝑟𝑎𝑛𝑑𝑜𝑚[1, 𝑙𝑒𝑛𝑔𝑡ℎ1] 
93. New solution(bits1(𝑖𝑛𝑑𝑒𝑥) = 0). 

94. end 

95. if 𝑛𝑢𝑚𝑝𝑟𝑜𝑏 == 4 

96. if rand <0 

97. New solution=𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑏𝑒𝑠𝑡 . 
98. Else 

99. 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 . 
100. End 

101. For d= 1 : Dim 

102. 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑑) = 1 − 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑑). 
103. End 

104. End 

105. Selected indices=find (𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 == 1) 

106. If length (selected indices==0) 

107.  J=random (Dim) 

108. 𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛( 𝑗) = 1 

109. 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑓𝑖𝑛𝑑(𝑁𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 == 1); 

110. 𝑒𝑛𝑑 

111. New selected features =length (selected indices). 

112. Evaluate the fitness  of the  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑛𝑒𝑤_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

113. If  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑛𝑒𝑤_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) <  𝑏𝑒𝑠𝑡_𝑓𝑖𝑡 

114. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑛𝑒𝑤_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 
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115. 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑛𝑒𝑤_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

116. Else  

117. ∆=  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑛𝑒𝑤_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) −  𝑏𝑒𝑠𝑡𝑓𝑖𝑡 

118. if (𝑒𝑥𝑝 ( 
−∆

𝑇
 ) ≤ 𝑟𝑎𝑛𝑑) 

119. 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑛𝑒𝑤_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

120. End 

121. End 

122. Update 𝑇𝑒𝑚𝑝0 = 𝑐𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝑇𝑒𝑚𝑝0. %%% 𝑐𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.93 

123. End while SSA 

124. End for %% for loop for all population 

125. End while OBMSASA 

 

5 |Results 

This section examines the comparative outcomes of the proposed improved algorithm and most of the well-

known meta-heuristic (MH) algorithms. Using MATLAB R2023 (b) on a personal computer running 

Windows 7/64-bit / Intel Core (TM) i7-3840QM, 2.80 GHz, and 16 GB RAM, all the algorithms used were 

coded and run in the same way. Each approach is implemented in the MATLAB 2023b environment. 

5.1 |Dataset Description 

The efficiency of the suggested OBMSASA algorithm was verified by experiments and assessments using 

twenty-one datasets as benchmarks. The UCI repository is the source of the datasets [43]. We concentrate on 

datasets that have a high dimension size (number of features), a high number of occurrences, or both. There 

are anywhere from 72 to 14980 instances. Additionally, there are 10 and 7129 features. Table 2 presents an 

explanation of the dataset. 

Table 2.  An explanation of the datasets. 

Datasets 

ID Name Features # Instances # Classes # 

1 Fri_c0_1000_10 10 1000 2 

2 Page blocks 10 5473 2 

3 Clean1 168 476 2 

4 DNA 180 3186 3 

5 Wisconsin 30 569 2 

6 Segment 19 2310 7 

7 Fri_c1_1000_10 10 1000 2 

8 liver_numeric2 11 583 2 

9 Ionosphere 35 351 2 

10 SpectEW 44 267 2 

11 WDBC 31 596 2 

12 Glass 10 214 7 

13 Australian 15 690 2 

14 fri_c1_1000_25 26 1000 2 

15 fri_c2_1000_25 26 1000 2 

16 Spambase 57 4601 2 

17 Eeg-eye-state 14 14980 2 

18 Waveform 40 5000 3 

19 Leukemia 7129 72 2 

20 Pendigits 16 10992 2 

21 Optdigits 64 5620 10 
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5.2 |Influence of V-shaped and S-shaped Transfer Functions on a Number of 

Recently Metaheuristic Algorithms 

Recently, a lot of new metaheuristic algorithms have been introduced in the last few years, achieving great 

success in solving global optimization problems. Accordingly, many researchers have taken advantage of the 

power of these algorithms to solve FS problems, due to their power in obtaining many appropriate solutions 

to the problems in a reasonable time. Seven recently published algorithms that have not yet been used to 

solve feature selection problems were selected for navigation to select the fittest one to be the basic core of 

our model, such as (Mantis Search Algorithm (MSA) [23], Nutcracker Optimizer (NOA) [44], Young’s 

Double Slit Experiment optimizer (YDSE) [45], Spider Wasp Optimizer (SWO) [46], Sinh-Cosh Optimizer 

(SCHO) [47], Exponential Distribution Optimization (EDO) algorithm [48], Zebra Optimization Algorithm 

(ZOA) [49] ). These algorithms are converted to binary versions to meet the nature of the feature selection 

problem. The transformation from continuous to binary is done by using nine transformation methods: eight 

functions are introduced in Table 2, and the last method is a threshold method. After applying these 

transformation functions the results will be navigated to select the best transfer function, which achieves the 

best result. A sample of seven feature selection datasets is used to evaluate performance. Tables (3-9) mirror 

the performance of the aforementioned algorithm, in order. Then tracked the algorithms' performance on 

the FS problem in terms of fitness so that a winner could be chosen, to be the place of study. 

Table 3 indicates the influence of different S-shape and V-shape functions, and also threshold method is used 

besides both S, and V shapes for transformation, so we operate the MSA algorithm on nine transformation 

methods.  The first 4 columns represent the effect of four S-shape functions, while the following 4 columns 

represent the V-shape formulas, and the last column in the table represents the effect of the threshold method 

on MSA on seven selected datasets. The total average of fitness (Total AVG), and total standard deviation 

(Total STD) of each transformation method are calculated, by observing the result, we can say that the 

threshold method is the best transformation method for MSA. 

Table 3. Influence of V-shaped and S-shaped transfer functions on MSA. 

BMSA 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 Threshold 

1 
AVG 0.155338 0.126973 0.122273 0.118163 0.12757 0.124448 0.12019 0.126625 0.12504 

STD 0.021303 0.011566 0.014084 0.01766 0.014225 0.017697 0.015745 0.011832 0.018711 

2 
AVG 0.040317 0.041731 0.039933 0.037902 0.040047 0.038147 0.039581 0.039193 0.04015 

STD 0.004404 0.003342 0.003489 0.002809 0.00273 0.003753 0.003483 0.004947 0.00342 

3 
AVG 0.054868 0.047699 0.065478 0.063313 0.044136 0.034936 0.047857 0.034853 0.026131 

STD 0.018134 0.0207 0.021594 0.017193 0.024105 0.024607 0.025229 0.020843 0.02058 

4 
AVG 0.157857 0.139931 0.153794 0.157402 0.149881 0.146718 0.150533 0.149466 0.11364 

STD 0.018433 0.009374 0.011694 0.010328 0.010309 0.011508 0.012915 0.006803 0.008282 

5 
AVG 0.245957 0.253814 0.267309 0.254486 0.248463 0.270467 0.258306 0.258368 0.254039 

STD 0.027087 0.044611 0.042388 0.038765 0.038889 0.032512 0.041031 0.052176 0.038746 

6 
AVG 0.001957 0.002271 0.002479 0.002741 0.00219 0.002032 0.001953 0.002056 0.001897 

STD 0.001127 0.001139 0.000844 0.000818 0.000983 0.000836 0.000814 0.000667 0.000555 

7 
AVG 0.097303 0.08602 0.08429 0.091068 0.089588 0.087505 0.08785 0.093548 0.08939 

STD 0.012817 0.015744 0.017446 0.012383 0.01502 0.00861 0.012039 0.019039 0.01816 

Total AVG 0.10765671 0.099777 0.105079 0.103582 0.100268 0.100608 0.100896 0.100587 0.092898 

Total STD 0.01475786 0.015211 0.015934 0.014279 0.01518 0.014218 0.015894 0.016615 0.015493 

 

Bold Values indicate the best average fitness values. 
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Figure 6. MSA total average for the average fitness values.                                Figure  7. MSA total average for STD values. 

Figure 6 indicates the influence of the nine transformation methods on the performance of MSA, in terms of 

total average. The threshold method outperforms all its peers. The total average STD is figured out in Figure 

7.  

Looking closely at the results obtained from Table 4, we can say that the threshold method is the best 

transformation method for NOA in terms of total average. 

Table 4. Influence of V-shaped and S-shaped transfer functions on NOA. 

BNOA 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 threshold 

1 
AVG 0.156665 0.119548 0.12514 0.12955 0.121035 0.124495 0.124943 0.12747 0.12049 

STD 0.01694 0.015619 0.018526 0.018344 0.02467 0.017824 0.016317 0.019179 0.015042 

2 
AVG 0.0409 0.040314 0.039635 0.040621 0.039419 0.040245 0.040652 0.04049 0.041441 

STD 0.002942 0.003698 0.00352 0.002976 0.003037 0.003035 0.002631 0.003217 0.003206 

3 
AVG 0.067001 0.065275 0.063745 0.067732 0.03064 0.032855 0.029279 0.038923 0.029877 

STD 0.018589 0.017236 0.022693 0.022668 0.027149 0.027946 0.027682 0.02917 0.013238 

4 
AVG 0.16978 0.161102 0.160039 0.160887 0.151118 0.151849 0.15096 0.149662 0.114245 

STD 0.016295 0.013836 0.011685 0.008763 0.008561 0.009996 0.009893 0.010963 0.010857 

5 
AVG 0.240684 0.292382 0.291835 0.283722 0.259937 0.254648 0.255513 0.256185 0.269701 

STD 0.028735 0.049 0.059397 0.041809 0.031369 0.036558 0.034524 0.031476 0.040554 

6 
AVG 0.002942 0.003722 0.003162 0.003145 0.002167 0.001842 0.002139 0.002056 0.002355 

STD 0.001327 0.001116 0.001062 0.000944 0.001124 0.00065 0.000908 0.000597 0.00121 

7 
AVG 0.100123 0.095775 0.09107 0.089833 0.090723 0.089433 0.08869 0.092505 0.0931 

STD 0.015067 0.018968 0.011271 0.015063 0.016878 0.01342 0.021593 0.014486 0.010018 

Total AVG 0.11115643 0.11116 0.110661 0.110784 0.099291 0.099338 0.098882 0.101042 0.095887 

Total STD 0.01427071 0.017068 0.018308 0.015795 0.016113 0.015633 0.016221 0.015584 0.013446 

 

Bold Values indicate the best average fitness value. 
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            Figure 8. NOA total average for the average 

fitness values 

 

                       Figure 9. NOA total average for the standard deviation 

values 

 

Figure 8 indicates the influence of the ninth transformation method on the performance of NOA, in terms 

of total average fitness. The threshold method outperforms all its peers. The total average STD is figured out 

in Figure 9. 

Looking closely at the results obtained from Table 5, we can say that the threshold method is the best 

transformation method for YDSE in terms of total average. 

Table 5. Influence of V-shaped and S-shaped transfer functions on YDSE. 

BYDSE 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 Threshold 

1 
AVG 0.154038 0.12628 0.118755 0.131973 0.131925 0.12598 0.128455 0.12494 0.119005 

STD 0.025278 0.014553 0.01463 0.01672 0.016651 0.016258 0.014219 0.015649 0.017018 

2 
AVG 0.041648 0.039845 0.039838 0.039793 0.040748 0.040336 0.038676 0.038947 0.039924 

STD 0.004543 0.003912 0.003382 0.004052 0.003829 0.003315 0.002966 0.002688 0.003754 

3 
AVG 0.059703 0.067612 0.058103 0.066348 0.046128 0.052625 0.055903 0.05958 0.039896 

STD 0.021832 0.022637 0.016755 0.019983 0.019133 0.018174 0.017454 0.014874 0.018687 

4 
AVG 0.171248 0.1646 0.157991 0.156724 0.136577 0.135353 0.13482 0.134845 0.135627 

STD 0.01557 0.006154 0.007695 0.010698 0.017818 0.013868 0.014835 0.013018 0.00661 

5 
AVG 0.253632 0.309232 0.28554 0.265548 0.248844 0.260833 0.272166 0.260724 0.256482 

STD 0.031562 0.056712 0.04368 0.04788 0.044815 0.034317 0.019531 0.041698 0.046139 

6 
AVG 0.002141 0.004214 0.003752 0.003141 0.001951 0.002058 0.001953 0.00222 0.002402 

STD 0.001018 0.000844 0.001308 0.000908 0.000694 0.00088 0.000833 0.000771 0.000893 

7 
AVG 0.095173 0.091518 0.09003 0.093643 0.089585 0.0931 0.085378 0.094338 0.088695 

STD 0.015475 0.018122 0.014166 0.016266 0.014762 0.01115 0.014664 0.015296 0.018203 

Total AVG 0.111083 0.114757 0.107716 0.108167 0.099394 0.101469 0.102479 0.102228 0.097433 

Total STD 0.016468 0.017562 0.014517 0.016644 0.016815 0.013995 0.012072 0.014856 0.015901 

 

Bold Values indicate the best average fitness values 
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Figure 10. YDSE total average of fitness values. 

 

Figure 11. YDSE total average of STD values. 

 

Figure 10 indicates the influence of the nine transformation methods on the performance of YDSE, in terms 

of total average fitness. The threshold method outperforms all its peers. The total average STD is figured out 

in Figure 11. 

Results from Table 6 indicate that a threshold method performs better than other functions for algorithm 

SWO.  

Table 6.  Influence of V-shaped and S-shaped transfer functions on SWO. 

BSWO 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 Threshold 

1 
AVG 0.170873 0.124153 0.128558 0.12534 0.125535 0.124003 0.12311 0.12717 0.12633 

STD 0.024308 0.018303 0.016008 0.016884 0.012473 0.020689 0.015941 0.016911 0.015379 

2 
AVG 0.040583 0.041367 0.039943 0.041131 0.040286 0.041074 0.040586 0.03935 0.040319 

STD 0.003022 0.003131 0.003195 0.003773 0.003448 0.003706 0.004582 0.003771 0.003659 

3 
AVG 0.066081 0.062694 0.062137 0.063727 0.065151 0.060175 0.049862 0.043406 0.04159 

STD 0.016402 0.02255 0.016795 0.020771 0.02374 0.02565 0.017374 0.018871 0.017595 

4 
AVG 0.180998 0.163187 0.164455 0.163405 0.155522 0.15325 0.152178 0.149823 0.132147 

STD 0.015495 0.009989 0.009366 0.008235 0.015046 0.008372 0.011878 0.013311 0.010715 

5 
AVG 0.253711 0.324885 0.288239 0.2682 0.274422 0.27276 0.272854 0.27698 0.270295 

STD 0.026821 0.035848 0.054628 0.040542 0.031813 0.035334 0.052076 0.045274 0.045571 

6 
AVG 0.002513 0.003528 0.003823 0.003487 0.002165 0.002511 0.002241 0.002432 0.001895 

STD 0.001007 0.00062 0.00083 0.001142 0.000694 0.001018 0.000807 0.001165 0.000465 

7 
AVG 0.109728 0.091868 0.092208 0.096025 0.09053 0.092505 0.09003 0.09162 0.09419 

STD 0.02024 0.019346 0.020814 0.016669 0.011683 0.01265 0.015048 0.01501 0.014222 

Total AVG 0.117784 0.115954 0.111337 0.108759 0.107659 0.106611 0.104409 0.104397 0.100967 

Total STD 0.015328 0.015684 0.017376 0.015431 0.014128 0.015346 0.016815 0.01633 0.015372 

 

Bold Values indicate the best average fitness values. 
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Figure 12. SWO total average of fitness values. 

 

 

 

Figure 13. SWO total average of fitness values. 

 

Figure 12 indicates the influence of the nine transformation methods on the performance of SWO, in terms 

of total average fitness. The threshold method outperforms all its peers. The total average STD is figured out 

in Figure 13. 

Results from Table 7 indicate that the second V-Shape formula performs better than other functions for 

algorithm SCHO in terms of the average fitness. 

Table 7.  Influence of V-shaped and S-shaped transfer functions on SCHO. 

BSCHO 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 Threshold 

1 
AVG 0.163258 0.132818 0.124148 0.125835 0.138003 0.133303 0.132263 0.142708 0.138403 

STD 0.030124 0.020254 0.015601 0.01661 0.025384 0.021024 0.014844 0.025394 0.0294 

2 
AVG 0.041738 0.039483 0.040333 0.039957 0.043191 0.042667 0.041784 0.042269 0.041467 

STD 0.003515 0.003014 0.002434 0.002116 0.004672 0.002594 0.00334 0.004194 0.002954 

3 
AVG 0.068543 0.067842 0.06705 0.074473 0.03664 0.024843 0.045953 0.028419 0.015333 

STD 0.013216 0.025273 0.015947 0.023741 0.038943 0.025796 0.035872 0.031402 0.023235 

4 
AVG 0.187118 0.164527 0.165861 0.164101 0.12299 0.123318 0.115444 0.120895 0.150341 

STD 0.014133 0.009224 0.010541 0.008009 0.020562 0.020253 0.017394 0.019962 0.015894 

5 
AVG 0.25878 0.296368 0.287124 0.290673 0.308218 0.292789 0.326595 0.299287 0.282384 

STD 0.03651 0.050003 0.047736 0.038721 0.053797 0.055777 0.045799 0.054946 0.056775 

6 
AVG 0.002752 0.003615 0.003803 0.003429 0.00294 0.002617 0.002618 0.002966 0.002889 

STD 0.001619 0.000834 0.001267 0.001002 0.001825 0.000974 0.001187 0.001281 0.001468 

7 
AVG 0.103043 0.090428 0.095428 0.088895 0.099035 0.098245 0.092303 0.091215 0.101708 

STD 0.016509 0.017835 0.01795 0.01403 0.018981 0.012992 0.014777 0.015589 0.018462 

Total AVG 0.11789 0.113583 0.111964 0.11248 0.107288 0.10254 0.108137 0.103966 0.104646 

Total STD 0.016518 0.018063 0.015925 0.01489 0.023452 0.019916 0.01903 0.021824 0.02117 

  

Bold Values indicate the best average fitness values. 

 

Figure 14 indicates the influence of the nine transformation methods on the performance of SCHO, in terms 

of total average fitness. The V-Shape second transformation method outperforms all its peers. The total 

average STD is figured out in Figure 15. 

Results from Table 8 indicate that the first V-Shape formula performs better than other functions for 

algorithm EDO in terms of the average fitness. 
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Table 8.  Influence of V-shaped and S-shaped transfer functions on EDO. 

EDO 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 Threshold 

1 
AVG 0.178938 0.131033 0.128905 0.131038 0.123118 0.13356 0.133465 0.13213 0.127965 

STD 0.02664 0.018439 0.015774 0.015377 0.011161 0.018974 0.013548 0.016413 0.019211 

2 
AVG 0.042186 0.04176 0.042079 0.038916 0.039378 0.040736 0.040871 0.040843 0.0409 

STD 0.00336 0.004026 0.003737 0.00229 0.003586 0.003783 0.003874 0.003537 0.003563 

3 
AVG 0.051519 0.054754 0.064579 0.063668 0.057582 0.060482 0.07322 0.064177 0.069366 

STD 0.02566 0.024086 0.025056 0.022957 0.021617 0.025715 0.023862 0.02579 0.016385 

4 
AVG 0.180293 0.164649 0.165884 0.167557 0.172648 0.171365 0.172529 0.171317 0.154907 

STD 0.016389 0.007474 0.012893 0.008189 0.010434 0.014485 0.009554 0.007103 0.012797 

5 
AVG 0.256519 0.273182 0.273729 0.278861 0.260724 0.286474 0.272775 0.25656 0.295905 

STD 0.040662 0.050895 0.036708 0.049554 0.041728 0.029536 0.035641 0.040518 0.050873 

6 
AVG 0.003021 0.003626 0.00309 0.003464 0.002904 0.00293 0.002718 0.002746 0.002957 

STD 0.002065 0.00169 0.001029 0.00122 0.001406 0.001198 0.00138 0.001395 0.000783 

7 
AVG 0.109133 0.10117 0.08963 0.095028 0.096618 0.099638 0.093395 0.093993 0.10429 

STD 0.024661 0.01786 0.013998 0.018408 0.013007 0.017286 0.017457 0.014947 0.018823 

Total AVG 0.117372 0.110025 0.109699 0.111219 0.107567 0.113598 0.11271 0.108824 0.113756 

Total STD 0.019919 0.017782 0.015599 0.016856 0.014706 0.015854 0.015045 0.015672 0.017491 

Bold Values indicate the best average fitness values. 

 

 

Figure 16. EDO total average of fitness values for 7 

datasets. 

 

            Figure 17. EDO total average of fitness values for 7 

datasets. 
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Figure 14. SCHO total average of fitness of values 

 

Figure 15. SCHO total average of fitness values. 
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Figure 16 indicates the influence of the nine transformation methods on the performance of EDO, in terms 

of total average fitness. The V-Shape first transformation method outperforms all its peers. The total average 

STD is figured out in Figure 17. 

Results from Table 9 indicate that the threshold formula performs better than other functions for algorithm 

ZOA in terms of average fitness.  

Table 9.  Influence of V-shaped and S-shaped transfer functions on ZOA. 

BZOA 

Dataset 

id 
Fitness S1 S2 S3 S4 V1 V2 V3 V4 Threshold 

1 
AVG 0.151968 0.132913 0.124445 0.130543 0.12806 0.124595 0.129545 0.131028 0.134293 

STD 0.0185 0.015798 0.018307 0.013607 0.013723 0.022187 0.015369 0.017029 0.024505 

2 
AVG 0.042015 0.040907 0.040305 0.040155 0.040259 0.0401 0.041264 0.04034 0.04206 

STD 0.003277 0.004699 0.002932 0.004241 0.002888 0.003845 0.003392 0.003665 0.004287 

3 
AVG 0.059161 0.05824 0.072377 0.074277 0.048436 0.053039 0.045411 0.05654 0.029601 

STD 0.018875 0.022413 0.02362 0.019558 0.020794 0.019786 0.021654 0.015327 0.029665 

4 
AVG 0.163392 0.16081 0.159092 0.157906 0.143909 0.137721 0.13916 0.145386 0.119009 

STD 0.017092 0.011558 0.011506 0.009539 0.015292 0.010427 0.017089 0.01372 0.01878 

5 
AVG 0.247322 0.282535 0.27972 0.287604 0.265465 0.269436 0.272182 0.264741 0.286183 

STD 0.027258 0.047421 0.041589 0.029877 0.036032 0.0396 0.03804 0.050452 0.039943 

6 
AVG 0.002406 0.003814 0.00291 0.003543 0.002782 0.002113 0.002273 0.002271 0.00262 

STD 0.001118 0.001183 0.001324 0.001644 0.001095 0.000797 0.001179 0.001202 0.001427 

7 
AVG 0.109478 0.10033 0.098545 0.093695 0.091515 0.096365 0.08904 0.09137 0.103985 

STD 0.01939 0.014643 0.013562 0.012361 0.015497 0.01622 0.014374 0.015646 0.02015 

Total AVG 0.11082 0.111364 0.111056 0.112532 0.102918 0.103338 0.102696 0.104525 0.102536 

Total STD 0.015073 0.016816 0.01612 0.012975 0.015046 0.016123 0.015871 0.01672 0.019822 

Bold Values indicate the best average fitness values. 

 

Figure 18 indicates the influence of the nine transformation methods on the performance of ZOA, in terms 

of total average fitness. It is clear that the S-shape fourth transformation method outperforms all its peers. 

The total average STD is figured out in Figure 19. 

By tracking past performance, the Algorithm mantis search was chosen to be the subject of the study. 

 

 

 

Figure 18. ZOA total average of fitness 

values for 7 datasets. 

 

 

Figure 19. ZOA total average of fitness 

values for 7 datasets. 
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5.3 |Tuning of Parameters 

Any algorithm's performance can be impacted by how its parameter values are configured. In practice, a lot 

of experiments are needed to investigate the impact of parameter adjustment on the suggested algorithm. As 

a result, the parameter values are determined by trial and error or by following the advice of earlier research. 

The suggested algorithm's efficacy is contrasted with that of other algorithms already in use. We evaluate each 

method over twenty separate runs. Furthermore, for every experiment, a maximum number of iterations is 

fixed at thirty. We observe that adding more search agents doesn't substantially change the findings, so we 

limit the number of mantis or search agents to 5. In this case, 80% of every dataset is used for training while 

the remaining 20% is used for testing, as indicated by [50-53]. To guarantee the same ranking of the instances 

number across all algorithms, the dataset's instances were randomly seeded before splitting. Compared to 

other classifiers, the KNN classifier using the Euclidean distance measurement has just one parameter (k) 

that needs to be tuned, making it a popular wrapping approach. The optimal outcomes are attained when k 

= 5, and other earlier research also supports this number [54-56]. In  [57], 𝑊𝑒𝑖𝑔ℎ𝑡1 and 𝑊𝑒𝑖𝑔ℎ𝑡2have values 

that are 0.01 and 0.99, correspondingly.  

A comparison is made between the suggested algorithm OBMSASA and some well-known methods, such as 

hybrid Harris Hawks with Simulated Annealing(HHSA)[18], hybrid Slime Mould algorithm with Marine 

Predators algorithm(SMAMPA)[19], Two-phase Mutation Gray wolf algorithm(TMGWO)[17]. hybrid 

Opposition Based with Salp Swarm algorithm (OBSSA)[21], hybrid Crossover and Cooperative with Whale 

Optimization algorithm (CCWOA)[22], Hybrid Equilibrium Optimizer with Simulated Annealing 

(EOSA)[16], Sine Cosine Algorithm(SCA), and the standard Mantis Search Algorithm(MSA)[23]. All previous 

algorithms used in the comparison are in the form of binary versions. The parameter configuration is 

introduced in Table 10. 

Table 10. The parameter configuration. 

Parameter Value 

Number of mantis 𝑵 5 

Number of function evaluations 30 

Dimension number 𝑫 Number of features 

𝒘𝒆𝒊𝒈𝒉𝒕𝟏 0.99 

𝒘𝒆𝒊𝒈𝒉𝒕𝟐 0.01 

K 5 

𝝀 1.5 

Starting temperature 𝑻𝒆𝒎𝒑𝟎 30 

End temperature 𝑻𝒆𝒎𝒑𝒇𝒊𝒏𝒂𝒍 0.01 

Cooling rate 𝝉 0.5 

 

5.4 |Metrics of Performance 

5.4.1 |Accuracy 

It is a measure of efficiency that assesses how well the classifier chooses the best subset of attributes after 

executing the algorithm N rounds. One can compute the optimal categorization accuracy as follows:  

𝐵𝑒𝑠𝑡𝐴𝑐𝑐𝑢𝑟𝑎 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑐𝑐𝑢𝑟𝑎𝑖
∗                                                                                                          (38)                                                     

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑖
∗ represents the optimal rate of classification at run 𝑖 after the algorithm has been run M 

rounds. 𝑖 represents the method's 𝑖𝑡ℎrun, and 𝑖 =1,...,N. One can calculate the average accuracy of 

classification as follows: 

𝐴𝑣𝑔𝐴𝑐𝑐𝑢𝑟𝑎 =  
1

𝑁
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑖

𝑁
𝑖=1                                                                                                                    (39) 

The final accuracy can be expressed by 𝐴𝑐𝑐𝑢𝑟𝑎. 
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5.4.2 |The Selected Features Number 

It is about how big the features that are chosen for a solution are. Here we consider two distinct 

measurements. The first metric, called Selected Features (SF), measures how big the chosen features are in a 

solution that has the highest fitness value. The Average Selected Features (𝐴𝑣𝑔 𝑠𝑙𝑒𝑐𝑡𝑒𝑑𝑓), the second metric, 

can be computed in the manner described below. 

𝐴𝑣𝑔 𝑠𝑙𝑒𝑐𝑡𝑒𝑑𝑓 = 
1

𝑁
∑

𝑠𝑙𝑒𝑐𝑡𝑒𝑑𝑓𝑖

𝐷
𝑁
𝑖=1                       

The best subset of features obtained by the algorithm is expressed by 𝑒𝑐𝑡𝑒𝑑𝑓 . 

5.4.3 |Fitness Function 

There are three fitness metrics used: best value, average value, and worst value. The lowest fitness value 

reached after executing the algorithm N times is represented by the best value or best fitness.  

𝐵𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖
∗                                                                                                          (40) 

where 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖
∗ is the lowest fitness value reached when running the algorithm N times at run 𝑖. 

The total of all fitness values obtained by executing the algorithm N times is represented by the average fitness 

(𝐴𝑣𝑔𝐹𝑖𝑡𝑛𝑒𝑠𝑠), which is then divided by the total number of runs (N). The calculation for it is as follows: 

𝐴𝑣𝑔𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑁
∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑁
𝑖=1                                                                                                                   (41) 

The greatest fitness value attained after executing the algorithm M times is known as (𝑤𝑜𝑟𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠), and it 

can be calculated as follows: 

𝑊𝑜𝑟𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖
∗                                                                                                      (42)    

where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 represents the final value of fitness obtained. 

5.5 |Evaluation of the Suggested Algorithm OBMSASA and other Algorithms 

5.5.1 |Fitness Function 

The current subsection examines how well the HHOBSA algorithm performs in comparison to a number of 

other metaheuristic algorithms, including CSA, CCWOA, OBSSA, TPGWO, EOSA, SAMPA, HHOSA, and 

MSA. The optimal, average, and worst fitness values as well as the standard deviation attained by each method 

are listed in Table 12. The average value of fitness (AVG) is what's gained when all of the dataset's features 

are chosen. It aids in quantifying the progress achieved by every method in the table. Based on the table's 

results, it is evident that in the majority of the datasets, OBMSASA outperforms all other methods. When 

compared to other algorithms, it can achieve more promising solutions. In 16 of the 21 datasets, we can see 

that OBMSASA can outperform its counterparts. Figures 20-40 express the convergence curves for all 

algorithms on all 21 datasets.  

By observing Figures (20-40), we notice that the proposed OBMSASA outperforms its peers in terms of the 

convergence curve to the average fitness in Figs. (20-22,24-34,36,39), so, the proposed algorithm came in first 

place, outperforming 16 datasets out of 21 datasets, achieving the minimum value of the total average fitness, 

which is 0.092476. Furthermore, EOSA comes in second place with a value of 0.097641, concerning the total 

average fitness, but it achieves superiority on only one dataset (Spambase). Exploring the numerical results in 

Table 11, we can see that, although TPGWO reaches the best total average fitness on three datasets (DNA, 

Waveform, Optdigits), it comes in the third rank. CCOWA comes in the last rank with a value of 0.124347. 

Fig.24 shows that TPGWO Algorithm came in first place, followed by Algorithm OBSSA, followed by 

Algorithm HHOSA in third place, then Algorithm EOSA in fourth place, and the proposed algorithm 

OBMSASA came in fifth place. By analyzing Fig. 36 the superiority went to EOSA, followed by TPGWO, 

then HHOSA in third place, MSA in fourth place, followed by SMAMPA, and the proposed OBMSASA 
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came in sixth place. Fig.38 shows that TPGWO converges to the best solution, followed by EOSA, then 

SMAMPA, and MSA came in fourth place, while OBMSASA came in fifth place. Moving to Fig. 39, HHOSA 

is the best one and converges to the best solution, Algorithm OBMSASA is exhausted in reaching the best 

solution, occupying second place in achieving it, while CCWOA is followed to arrive at the best solution. 

Lastly, Fig.41 shows that TPGWO outperforms all algorithms, then EOSA follows it, followed by OBMSASA 

in the third place. The total average of best values of all algorithms for all datasets, which is shown in Fig. 

42(a, b), goes to the proposed OBMSASA with a value of 0.063793, while EOSA came in second place, and 

CCWOA comes in the last rank with a value of 0.081452. Moving to fig.43(a, b), we can say that the proposed 

OBMSASA outperforms all other algorithms, achieves the total average fitness on all datasets with a value of 

0.092476, while EOSA came in second place, and CCWOA comes in last rank with a value of 0.124347. The 

superior results obtained by OBMSASA result from the advantages of the integration of the SA, which boosts 

the convergence of OBMSASA, and the opposition-based learning method helps the algorithm to explore 

the search space more effectively, reaching to best solution areas. 

Table 11. The results of best fitness, average fitness, worst fitness, and STD for all algorithms. 

Dataset 

ID 

Criteria 

(Fitness) 
CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OBMSASA 

 

1 

 

Best 0.09905 0.0941 0.0941 0.0842 0.10795 0.09905 0.0842 0.10995 0.09015 

AVG 0.131062 0.158397 0.135885 0.127137 0.131822 0.135358 0.12324 0.132817 0.121478 

Worst 0.16735 0.20105 0.1654 0.1634 0.16045 0.1743 0.15845 0.1624 0.14755 

STD 0.02126 0.023281 0.01792 0.01683 0.014226 0.019439 0.016281 0.014726 0.017411 

 

2 

Best 0.033863 0.034768 0.034673 0.033863 0.032053 0.033863 0.034768 0.034768 0.033673 

AVG 0.043623 0.040426 0.041007 0.041379 0.039961 0.040534 0.040205 0.041301 0.039335 

Worst 0.050437 0.046342 0.046532 0.048342 0.046342 0.047532 0.045627 0.047437 0.048247 

STD 0.003693 0.003011 0.002849 0.003485 0.003567 0.003072 0.003325 0.003983 0.003044 

 

3 

Best 5.95E-05 5.95E-05 0.002738 0.003274 0.012028 0.016254 5.95E-05 5.95E-05 5.95E-05 

AVG 0.081747 0.061805 0.031933 0.03077 0.058143 0.058711 0.031405 0.055968 0.01599 

Worst 0.150299 0.119274 0.065919 0.055855 0.116893 0.11058 0.084083 0.098432 0.095932 

STD 0.025946 0.028202 0.017752 0.014551 0.023617 0.025711 0.026943 0.023823 0.026915 

 

4 

Best 0.147816 0.112847 0.086591 0.082872 0.091308 0.120784 0.085923 0.124501 0.098083 

AVG 0.179087 0.163374 0.111434 0.10822 0.120149 0.152335 0.118027 0.158444 0.130176 

Worst 0.21276 0.203599 0.142655 0.130997 0.155141 0.175735 0.163251 0.180845 0.162192 

STD 0.013642 0.020229 0.014693 0.010975 0.012493 0.014596 0.019919 0.011058 0.01588 

 

5 

Best 0.235411 0.209984 0.184243 0.183618 0.183618 0.212484 0.183306 0.185181 0.132451 

AVG 0.34875 0.277213 0.288947 0.285276 0.277241 0.294217 0.291963 0.276073 0.227845 

Worst 0.443832 0.316069 0.417467 0.417467 0.341184 0.367862 0.365362 0.342747 0.286891 

STD 0.04971 0.029584 0.048249 0.055684 0.043021 0.040971 0.044875 0.03779 0.036836 

 

6 

Best 0.001053 0.002105 0.001053 0.001053 0.001053 0.001053 0.001053 0.001053 0.001053 

AVG 0.002505 0.004929 0.002939 0.00245 0.002343 0.002927 0.002648 0.002358 0.002289 

Worst 0.005338 0.009586 0.005301 0.004248 0.005338 0.006917 0.004774 0.004774 0.004774 

STD 0.001053 0.002148 0.000945 0.000948 0.000993 0.001468 0.001149 0.000977 0.001132 

 

7 

Best 0.05745 0.06835 0.06835 0.0733 0.0723 0.06835 0.0624 0.0535 0.0515 

AVG 0.095175 0.121352 0.096962 0.094352 0.093497 0.096368 0.093432 0.094585 0.085798 

Worst 0.1505 0.18915 0.1228 0.1218 0.12675 0.12875 0.13665 0.1228 0.11685 

STD 0.01819 0.027336 0.01406 0.013794 0.013364 0.016013 0.016678 0.016281 0.014357 

 

8 

Best 0.199293 0.224897 0.200293 0.182224 0.182224 0.216362 0.183224 0.208828 0.191759 

AVG 0.237029 0.261961 0.235438 0.238985 0.238936 0.242114 0.236443 0.234149 0.232982 

Worst 0.282638 0.283638 0.275103 0.276103 0.267569 0.293172 0.275103 0.265569 0.266569 

STD 0.021524 0.016581 0.018748 0.017326 0.021303 0.015464 0.022609 0.015917 0.021485 

 

9 

Best 0.015025 0.043605 0.015613 0.015319 0.015025 0.030345 0.015025 0.015319 0.000588 

AVG 0.051177 0.088772 0.07236 0.044557 0.040069 0.066065 0.055676 0.0576 0.036917 

Worst 0.100765 0.142605 0.116672 0.07395 0.101353 0.128168 0.099588 0.100765 0.071008 

STD 0.022721 0.022283 0.024862 0.016027 0.020796 0.020957 0.02181 0.019489 0.015391 

 

10 

Best 0.095669 0.137573 0.118894 0.113894 0.05922 0.11753 0.061038 0.097487 0.113439 

AVG 0.194304 0.233315 0.197095 0.173572 0.174439 0.179873 0.170807 0.187676 0.168912 

Worst 0.264237 0.338499 0.246921 0.264691 0.263782 0.230515 0.246921 0.266964 0.226878 
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STD 0.038108 0.042874 0.028468 0.045927 0.042837 0.034644 0.043041 0.033947 0.030452 

 

11 

Best 0.009428 0.030283 0.010428 0.009428 0.009761 0.018855 0.018189 0.011428 0.001 

AVG 0.038166 0.049364 0.038047 0.043737 0.040177 0.042036 0.036931 0.038468 0.031827 

Worst 0.062661 0.072422 0.072755 0.097372 0.070755 0.071755 0.0539 0.064661 0.063327 

STD 0.014189 0.011078 0.016716 0.019342 0.017499 0.015381 0.010748 0.013698 0.013903 

 

Bold Values indicate the best average fitness values. 

Bold Values indicate the best average fitness values 

Dataset ID 
Criteria 

(Fitness) 
CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OMSASA 

 

12 

 

Best 0.144762 0.193016 0.191905 0.143651 0.148095 0.148095 0.170556 0.148095 0.167222 

AVG 0.24918 0.269489 0.245881 0.255688 0.240907 0.247008 0.258008 0.240981 0.235156 

Worst 0.335556 0.360238 0.358016 0.380476 0.355794 0.332222 0.336667 0.309762 0.309762 

STD 0.048929 0.040646 0.036368 0.052231 0.047189 0.041639 0.039354 0.039124 0.041887 

 

13 

Best 0.079627 0.101149 0.081056 0.093975 0.073882 0.081056 0.081056 0.060963 0.072453 

AVG 0.126778 0.18345 0.127803 0.130747 0.121681 0.131702 0.125629 0.119482 0.111953 

Worst 0.181491 0.263261 0.159969 0.24677 0.218075 0.175031 0.175031 0.159969 0.152081 

STD 0.025535 0.051497 0.019265 0.03127 0.024178 0.022594 0.025931 0.022084 0.017834 

 

14 

Best 0.0511 0.0812 0.0911 0.0709 0.08535 0.08575 0.061 0.06635 0.0705 

AVG 0.110763 0.177725 0.159778 0.103775 0.100885 0.145058 0.110835 0.124523 0.099355 

Worst 0.1798 0.28105 0.22555 0.1691 0.1212 0.2202 0.16455 0.19625 0.13485 

STD 0.025861 0.045708 0.028285 0.018945 0.011834 0.030254 0.026336 0.02812 0.015517 

 

15 

Best 0.061 0.08615 0.06555 0.0511 0.04575 0.0808 0.07585 0.05605 0.05525 

AVG 0.093728 0.160252 0.135332 0.085848 0.085255 0.11556 0.107013 0.104662 0.08208 

Worst 0.1394 0.2428 0.18635 0.11585 0.1303 0.1818 0.15465 0.1604 0.1204 

STD 0.017174 0.042558 0.028256 0.018801 0.019146 0.022985 0.018132 0.02459 0.01645 

 

16 

Best 0.070051 0.079291 0.076261 0.053184 0.059418 0.065278 0.059921 0.06708 0.076507 

AVG 0.09025 0.099136 0.092898 0.072219 0.069532 0.082033 0.07579 0.076617 0.087375 

Worst 0.113597 0.12058 0.117726 0.093175 0.083443 0.095233 0.103514 0.089502 0.10121 

STD 0.009915 0.010745 0.010215 0.008655 0.006142 0.008176 0.007777 0.006114 0.006877 

 

17 

Best 0.041615 0.037427 0.036051 0.036382 0.03506 0.035444 0.034399 0.035391 0.029122 

AVG 0.052195 0.043626 0.04621 0.042049 0.040261 0.042379 0.041623 0.041442 0.03743 

Worst 0.080778 0.049269 0.056379 0.051252 0.044643 0.049322 0.047286 0.047009 0.042393 

STD 0.008827 0.002732 0.004973 0.002974 0.002893 0.003159 0.003059 0.003054 0.003353 

 

18 

Best 0.15472 0.1555 0.15078 0.13048 0.13221 0.15278 0.14141 0.14363 0.14137 

AVG 0.17516 0.179651 0.178562 0.150158 0.151876 0.16502 0.168567 0.16526 0.174106 

Worst 0.19656 0.19904 0.20078 0.1676 0.16539 0.1847 0.18172 0.18051 0.19284 

STD 0.010732 0.011087 0.010735 0.008164 0.008556 0.008483 0.008956 0.008258 0.011001 

 

19 

Best 0.000203 1.40E-06 4.21E-06 0.001659 0.000227 3.51E-05 1.40E-06 3.09E-05 1.40E-06 

AVG 0.000492 0.007825 0.003614 0.004152 0.002811 0.000661 4.16E-06 0.003245 0.000195 

Worst 0.001124 0.071124 0.074318 0.072478 0.070971 0.002459 9.82E-06 0.071181 0.000783 

STD 0.000192 0.021418 0.013499 0.012905 0.012876 0.000578 2.07E-06 0.012863 0.000206 

 

20 

Best 0.004825 0.00545 0.005901 0.005276 0.005101 0.005901 0.005276 0.005276 0.002151 

AVG 0.006562 0.008182 0.006834 0.006225 0.0061 0.007015 0.006555 0.006428 0.004539 

Worst 0.008879 0.011306 0.008429 0.007427 0.007427 0.008226 0.009228 0.007252 0.006728 

STD 0.000916 0.001222 0.000657 0.000554 0.000642 0.000654 0.000892 0.000561 0.001225 

 

21 

Best 0.012245 0.012728 0.012984 0.009816 0.009716 0.012103 0.014021 0.012216 0.011322 

AVG 0.023453 0.021048 0.022194 0.014046 0.014377 0.017883 0.018028 0.016962 0.01626 

Worst 0.032873 0.029576 0.029719 0.018368 0.020598 0.021848 0.02476 0.022686 0.02469 

STD 0.005117 0.003789 0.003565 0.002226 0.002882 0.00257 0.0026 0.002391 0.003007 

Rank 8 9 7 3 2 6 4 5 1 

Average Fitness 0.111009 0.124347 0.10815 0.097873 0.097641 0.10785 0.100611 0.103764 0.092476 

Average best Fitness 0.072108 0.081452 0.072789 0.065689 0.064826 0.076294 0.065366 0.068436 0.063793 
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Figure 20. The average of fitness values for  

Fri_c0_1000_10 dataset. 

 

 

Figure 21. The average of fitness values for  Page blocks 

dataset. 

 

 

 

 

 

 

 

 

 

Figure 22. The average of fitness values for  Clean1 dataset. 

 

 

 

 

 

 

 

 

 

Figure 23. The average of fitness values for  DNA dataset. 

 

 

Figure 24. The average of fitness values for  Wisconsin 

dataset. 

 

 

Figure 25. The average of fitness values for  Segment dataset. 
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Figure 26. The average of fitness values for  Fri_c1_1000_10 
dataset 

 

 

Figure 27. The average of fitness values for  liver_numeric2 
dataset. 

 

 

 

Figure 30. The average of fitness values for the WDBC dataset. 

 

 

Figure 31. The average of fitness values for the Glass 
dataset. 

 

Figure 28. The average of fitness values for  Ionosphere 
dataset. 

 

Figure.29. The average of fitness values for  SpectEW 
dataset. 
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Figure 32. The average of fitness values for the Australian 
dataset. 

 

Figure 33. The average of fitness values for the 

Fri_c1_1000_25 dataset. 

 

 

Figure 34. The average of fitness values for the 

Fri_c2_1000_25 dataset. 

 

Figure 35. The average of fitness values for the Spambase 
dataset. 

 

 

Figure 36. The average of fitness values for Eeg-eye –state 
dataset 

 

 

Figure 37. The average of fitness values for the Waveform 
dataset. 
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Figure 38. The average of fitness values for the Leukemia 
dataset. 

 

Figure 39. The average of fitness values for the Pendigits 
dataset 

 

Figure 40. The average of fitness values for Optdigits dataset. 

 

 
Figure 41 (a). The total of best values for all datasets. 
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Figure 41 (b). The total of best values for all datasets. 

 

 

Figure 42 (a). The total average of fitness values for all datasets. 
 

 
Figure 42 (b). The total average of fitness values for all datasets. 

 

0.072
0.081

0.073 0.066

0.065

0.076
0.065 0.068 0.064

0.03

0.04

0.05

0.06

0.07

0.08

0.09

A
cc

u
ra

cy

Algorithm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Fri_c0_1000_10

Page blocks

Clean1

DNA

Wisconsin

Segment

Fri_c1_1000_10

liver_numeric2

Ionosphere

SpectEW
WDBCGlass

Australian

fri_c1_1000_25

fri_c2_1000_25

Spambase

Eeg-eye-state

Waveform

Leukemia

Pendigits

Optdigits

Average Criterion

SCA

CCWOA

OBSSA

TPGWO

EOSA

SMAMPA

HHOSA

MSA

OMSASA

0.11

0.12

0.11

0.10 0.10

0.11

0.10

0.10

0.09

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

A
ve

ra
ge

Fi
tn

e
ss

Algorithm



A Mantis Search Algorithm Integrated with Opposition-Based Learning and Simulated Annealing ... 

 

56

 

  
5.5.2 |Accuracy 

within this subsection, we discuss the comparison between the proposed method and all other algorithms in 

terms of classification accuracy. According to Table 12, four criteria are used for assessment best classification 

accuracy, average classification accuracy, worst classification accuracy, and STD. The numerical results in the 

following table indicate that OBMSASA is the best model for achieving the best average classification rate. 

Figure 43 displays that the proposed OBMSASA achieves the total best classification accuracy rate with a 

value of 0.879874, followed by HHOSA, and EOSA comes in last place with a rate of 0.557036. Figure 44 

shows that sixteen out of twenty-one datasets, OBMSASA is recording the maximum total average 

classification accuracy with a value of 0.909478667, followed by TPGWO, and then EOSA comes in the last 

rank with a value of 0.655656238. 

Table 12. The results of classification accuracy criteria for all algorithms. 

Dataset 

ID 

Criteria 

(Accuracy) 
CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OMSASA 

 

1 

 

Worst 0.835 0.805 0.785 0.84 0.6 0.83 0.845 0.84 0.855 

AVG 0.872833 0.846333 0.862833 0.877 0.677833 0.869167 0.880667 0.871667 0.881167 

Best 0.905 0.91 0.91 0.92 0.81 0.905 0.92 0.895 0.915 

STD 0.021603 0.023191 0.026771 0.017201 0.068086 0.019302 0.016543 0.014933 0.017503 

 

2 

Worst 0.95521 0.954296 0.946069 0.957038 0.914077 0.957038 0.957038 0.95521 0.954296 

AVG 0.963406 0.960481 0.961335 0.962249 0.937386 0.962828 0.963193 0.962188 0.963985 

Best 0.971664 0.969835 0.968921 0.968007 0.961609 0.969835 0.968921 0.968921 0.969835 

STD 0.00402 0.00363 0.004961 0.003085 0.014173 0.003215 0.003568 0.003991 0.00319 

 

3 

Worst 0.884211 0.852632 0.863158 0.936842 0.842105 0.894737 0.915789 0.905263 0.905263 

AVG 0.943158 0.922105 0.919649 0.970526 0.967368 0.945263 0.970526 0.948421 0.985965 

Best 0.989474 1 0.957895 1 1 0.989474 1 1 1 

STD 0.023554 0.025725 0.02237 0.017787 0.05627 0.025843 0.026283 0.023021 0.026563 

 

4 

Worst 0.846154 0.792779 0.799058 0.861852 0.298273 0.827316 0.844584 0.825746 0.841444 

AVG 0.88001 0.825118 0.832444 0.89079 0.489273 0.851701 0.882051 0.84584 0.873208 

Best 0.908948 0.855573 0.861852 0.915228 0.819466 0.882261 0.913658 0.875981 0.905808 

STD 0.012248 0.013502 0.014494 0.0141 0.177762 0.014398 0.018509 0.010169 0.016172 

 

5 

Worst 0.657895 0.552632 0.447368 0.578947 0.447368 0.631579 0.631579 0.657895 0.710526 

AVG 0.721053 0.65 0.648246 0.709649 0.532456 0.705263 0.70614 0.723684 0.771053 

Best 0.815789 0.763158 0.736842 0.815789 0.657895 0.789474 0.815789 0.815789 0.868421 

STD 0.043489 0.050855 0.071648 0.049103 0.056009 0.041695 0.045361 0.038941 0.037312 

 

6 

Worst 0.995671 0.993506 0.989177 0.997835 0.80303 0.995671 0.997835 0.997835 0.997835 

AVG 0.999206 0.998052 0.999062 0.999351 0.882973 0.999134 0.999062 0.999467 0.999495 

Best 1 1 1 1 0.995671 1 1 1 1 

STD 0.001204 0.002368 0.002178 0.001009 0.076396 0.001345 0.001091 0.000881 0.000931 

 

7 

Worst 0.85 0.815 0.845 0.88 0.69 0.875 0.865 0.88 0.885 

AVG 0.9075 0.881833 0.894167 0.9085 0.741833 0.906833 0.909833 0.9085 0.9165 

Best 0.945 0.935 0.935 0.93 0.795 0.935 0.94 0.95 0.95 

STD 0.018465 0.027433 0.022325 0.014212 0.026925 0.015892 0.016891 0.01672 0.014273 

 

8 

Worst 0.715517 0.715517 0.637931 0.724138 0.62069 0.706897 0.724138 0.732759 0.732759 

AVG 0.763506 0.738793 0.739655 0.762069 0.69454 0.758908 0.764368 0.766954 0.767241 

Best 0.801724 0.775862 0.801724 0.818966 0.767241 0.784483 0.818966 0.793103 0.810345 

STD 0.022145 0.017115 0.043394 0.017624 0.037929 0.015764 0.023124 0.016401 0.022297 

 

9 

Worst 0.9 0.857143 0.785714 0.928571 0.357143 0.871429 0.9 0.9 0.928571 

AVG 0.949524 0.912381 0.858095 0.956667 0.680952 0.935238 0.944762 0.943333 0.96381 

Best 0.985714 0.957143 0.928571 0.985714 0.857143 0.971429 0.985714 0.985714 1 

STD 0.023045 0.022738 0.037316 0.016129 0.18654 0.021464 0.02211 0.019668 0.015798 

 

10 

Worst 0.735849 0.584906 0.566038 0.735849 0.490566 0.773585 0.754717 0.735849 0.773585 

AVG 0.806289 0.75283 0.757233 0.828302 0.598113 0.822642 0.831447 0.815723 0.832075 

Best 0.90566 0.867925 0.886792 0.886792 0.754717 0.886792 0.943396 0.90566 0.886792 
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STD 0.03836 0.066358 0.069499 0.046837 0.052939 0.035246 0.0443 0.034572 0.030685 

 

11 

Worst 0.938053 0.929204 0.920354 0.902655 0.80531 0.929204 0.946903 0.938053 0.938053 

AVG 0.962537 0.953392 0.954867 0.956932 0.89115 0.960177 0.963717 0.963422 0.969322 

Best 0.99115 0.973451 0.99115 0.99115 0.955752 0.982301 0.982301 0.99115 1 

STD 0.014266 0.011129 0.017752 0.019683 0.043176 0.015719 0.010738 0.013892 0.013892 

 

 

Dataset 

ID 
Accuracy CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OBMSASA 

 

12 

 

Worst 0.666667 0.642857 0.571429 0.619048 0.380952 0.666667 0.666667 0.690476 0.690476 

AVG 0.752381 0.73254 0.750794 0.746032 0.546032 0.754762 0.743651 0.761111 0.765873 

Best 0.857143 0.809524 0.809524 0.857143 0.738095 0.857143 0.833333 0.857143 0.833333 

STD 0.049865 0.04085 0.044973 0.052438 0.104053 0.042477 0.039882 0.039784 0.042446 

 

13 

Worst 0.818841 0.73913 0.710145 0.753623 0.427536 0.826087 0.826087 0.84058 0.847826 

AVG 0.873913 0.81715 0.841304 0.870048 0.533333 0.869565 0.875362 0.881884 0.888647 

Best 0.92029 0.898551 0.913043 0.905797 0.731884 0.92029 0.92029 0.942029 0.927536 

STD 0.025645 0.05066 0.050217 0.031496 0.089937 0.022756 0.026189 0.022609 0.017799 

 

14 

Worst 0.82 0.725 0.61 0.83 0.59 0.78 0.835 0.805 0.865 

AVG 0.889667 0.8225 0.75 0.896833 0.718167 0.855833 0.8895 0.876333 0.9015 

Best 0.95 0.92 0.86 0.93 0.795 0.915 0.94 0.935 0.93 

STD 0.02616 0.045557 0.058339 0.019275 0.059051 0.03026 0.026664 0.028037 0.015928 

 

15 

Worst 0.86 0.76 0.71 0.885 0.685 0.82 0.845 0.84 0.88 

AVG 0.906833 0.8405 0.795 0.914833 0.7535 0.885333 0.893333 0.896167 0.918667 

Best 0.94 0.915 0.89 0.95 0.825 0.92 0.925 0.945 0.945 

STD 0.017394 0.042271 0.050034 0.018914 0.037832 0.022967 0.018399 0.024659 0.016606 

 

16 

Worst 0.890217 0.883696 0.88587 0.909783 0.38913 0.909783 0.902174 0.917391 0.903261 

AVG 0.912536 0.906703 0.911486 0.931304 0.464167 0.923949 0.930616 0.929964 0.916775 

Best 0.932609 0.927174 0.929348 0.95 0.816304 0.942391 0.946739 0.940217 0.927174 

STD 0.009928 0.010922 0.010463 0.008823 0.152159 0.008383 0.008074 0.006265 0.006753 

 

17 

Worst 0.9249 0.959613 0.950267 0.95761 0.525367 0.96028 0.961615 0.962617 0.960948 

AVG 0.955118 0.965866 0.962072 0.966834 0.582221 0.966644 0.967312 0.967279 0.967 

Best 0.966622 0.972296 0.972964 0.97263 0.967957 0.974299 0.974633 0.973632 0.975634 

STD 0.00951 0.002797 0.005748 0.003107 0.130408 0.003222 0.003222 0.003112 0.003313 

 

18 

Worst 0.806 0.804 0.803 0.835 0.3 0.819 0.822 0.826 0.809 

AVG 0.826867 0.825967 0.8241 0.853267 0.3571 0.840333 0.837567 0.841 0.8289 

Best 0.847 0.85 0.853 0.873 0.823 0.853 0.866 0.863 0.862 

STD 0.010881 0.011174 0.011081 0.008267 0.125152 0.009121 0.009507 0.008404 0.011177 

 

19 

Worst 1 0.928571 0.857143 0.928571 0.5 1 1 0.928571 1 

AVG 1 0.992857 0.985714 0.997619 0.690476 1 1 0.997619 1 

Best 1 1 1 1 1 1 1 1 1 

STD 0 0.021795 0.039347 0.013041 0.143267 0 0 0.013041 0 

 

20 

Worst 0.99545 0.993631 0.995905 0.997725 0.876251 0.99727 0.99636 0.99727 0.99818 

AVG 0.998044 0.997543 0.998226 0.998468 0.902002 0.998574 0.998514 0.998726 0.999287 

Best 1 1 0.999545 0.999545 0.999545 1 0.999545 1 1 

STD 0.001076 0.001509 0.000913 0.000514 0.038903 0.000651 0.000877 0.00067 0.000556 

 

21 

Worst 0.97153 0.978648 0.975979 0.986655 0.097865 0.983986 0.983986 0.985765 0.980427 

AVG 0.980961 0.986862 0.983155 0.99051 0.127906 0.989176 0.989739 0.990985 0.988582 

Best 0.991103 0.993772 0.992883 0.994662 0.987544 0.993772 0.993772 0.995552 0.993772 

STD 0.00496 0.003823 0.003642 0.002158 0.16236 0.002675 0.002671 0.002567 0.003002 

AVG best accuracy 0.861335 0.82332 0.794081 0.860239 0.557036 0.860803 0.86843 0.865585 0.879874 

AVG accuracy 0.89834 0.8728479 0.8680684 0.904180143 0.655656238 0.895301095 0.901969524 0.899541286 0.909478667 



A Mantis Search Algorithm Integrated with Opposition-Based Learning and Simulated Annealing ... 

 

56

 

  

 
Figure 43. The total average of best accuracy for all datasets. 

 

 
Figure 44. The total average of accuracy values for all datasets. 

 

5.5.3 |Selected Features 

The minimization of features is a crucial goal that is pursued to uphold the optimization of classification 

precision. It has been observed previously that OBMSASA surpasses alternative algorithms based on the 

appropriateness of values related to fitness and accuracy in classification. At this juncture, it is imperative to 

evaluate the capacity of OBMSASA to reduce features when juxtaposed with other metaheuristics. Table 13 

presents the quantitative outcomes of the specified criteria regarding features. Performance monitoring 

incorporates four distinct criteria: the optimal subset of selected features, the average subset of selected 

features (AVG), the suboptimal subset of selected features, and the standard deviation (STD). Based on the 

numerical findings, it can be inferred that HHOSA demonstrates the most favorable average subset of 

selected features, registering a value of 12.280952. Following HHOSA, CSA performs well, while the 

proposed OBMSASA ranks third with a value of 25.728573. The overall average of selected features across 

all datasets is illustrated in Figure 45. Consequently, OBMSASA exhibits promising outcomes with the average 

selected features. 

Table 13. The results of best SF, average SF, worst SF, and STD for all algorithms. 

Dataset 

ID 

(Selected 

Features) 
CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OMSASA 

 

1 

 

Best 4 4 4 4 1 4 4 4 4 

AVG 5.166667 6.266667 5.833333 5.366667 6.5 5.833333 5.1 5.766667 5.666667 

Worst 7 9 9 7 20 9 7 8 8 

STD 0.874281 1.229896 1.234094 0.808717 4.804811 1.234094 0.884736 0.897634 0.884087 

 

2 

Best 2 2 2 2 1 2 2 3 3 

AVG 3.733333 4.5 4.266667 3.633333 7.1 3.733333 3.766667 3.866667 4.666667 

Worst 5 8 7 5 12 6 5 6 7 

STD 0.73968 1.479748 1.201532 0.718395 3.555957 1.048261 0.678911 0.730297 1.124441 
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3 

Best 12 1 71 34 1 42 1 1 1 

AVG 31.4 77.8 84.4 46.26667 44.13333 75.96667 37.4 82.4 10.86667 

Worst 65 138 98 61 168 107 132 145 78 

STD 12.50545 23.67073 6.79046 6.741193 69.86822 16.70739 40.28827 33.71135 17.75646 

 

4 

Best 11 58 80 40 1 42 4 31 6 

AVG 24.46667 107.1667 90.16667 59.7 48.86667 99.33333 22.63333 104.8667 21.33333 

Worst 51 166 101 118 180 148 169 161 98 

STD 10.37814 27.47674 5.977448 18.70488 70.51375 21.39341 43.03205 28.26809 24.18083 

 

5 

Best 1 1 9 2 1 3 1 1 2 

AVG 3.466667 7.2 14.76667 4.8 12.43333 7.766667 3.333333 8.066667 5.233333 

Worst 8 23 19 17 32 13 7 21 18 

STD 1.357821 6.104831 2.661129 2.721561 12.0907 3.103761 1.561019 5.112077 3.370085 

 

6 

Best 2 2 4 2 1 2 2 2 2 

AVG 3.266667 5.7 7.433333 3.433333 10.96667 3.933333 3.266667 3.666667 4.633333 

Worst 5 9 11 5 19 7 5 6 14 

STD 0.907187 1.878187 2.144493 0.678911 7.014681 1.311312 0.827682 1.124441 2.579539 

 

7 

Best 2 3 3 3 1 3 3 3 3 

AVG 3.6 4.366667 4.466667 3.766667 6.466667 4.133333 4.166667 4 3.733333 

Worst 5 7 7 5 15 6 6 6 5 

STD 0.674665 1.217214 1.074255 0.678911 3.980412 0.730297 0.985527 0.982607 0.639684 

 

8 

Best 1 1 2 2 1 1 1 1 1 

AVG 2.9 3.366667 3.933333 3.433333 6.733333 3.433333 3.166667 3.433333 3.266667 

Worst 5 7 7 6 14 6 6 7 6 

STD 0.844863 1.828573 1.387961 0.971431 4.076284 1.104328 1.261727 1.524135 1.172481 

 

9 

Best 2 1 11 3 1 2 1 2 2 

AVG 4.1 6.9 17.16667 5.633333 13.13333 6.633333 3.366667 5.1 4.366667 

Worst 8 15 22 11 34 16 6 11 9 

STD 1.493665 4.130208 2.93708 2.008316 12.5251 3.189242 1.217214 2.090207 1.473521 

 

10 

Best 1 1 6 4 1 1 2 6 3 

AVG 5.566667 9.933333 11.46667 7.9 11.5 9.433333 8.666667 11.53333 7.3 

Worst 10 22 16 13 25 14 19 18 16 

STD 2.192201 6.119124 2.596195 2.426151 9.198013 3.16972 4.936377 2.763473 3.249934 

 

11 

Best 1 2 6 2 1 4 2 2 2 

AVG 3.233333 9.666667 12.73333 3.3 14.13333 7.833333 3.033333 6.766667 6.033333 

Worst 6 23 20 6 30 14 6 14 15 

STD 1.222866 4.655981 3.609693 1.316998 12.35602 2.889736 0.964305 2.528231 3.242852 

 

Datas

et ID 

(Selected 

Features) 
CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OMSASA 

 

12 

 

Best 2 1 2 2 1 2 2 2 2 

AVG 
3.633

333 
4.23333 4.3 3.83333 7.233333 3.8 3.8 4.033333 4.5 

Worst 6 8 7 7 20 6 6 6 7 

STD 
1.098

065 
1.612095 1.118805 1.17688 4.775536 1.242911 1.063501 0.964305 1.358244 

 

13 

Best 1 1 1 1 1 1 1 1 1 

AVG 
2.733

333 
3.4 4.966667 2.933333 7.833333 3.6 3.133333 3.566667 3.6 

Worst 4 11 9 5 24 6 5 6 6 

STD 
1.172

481 
2.672981 2.042367 1.112107 6.454527 1.248447 0.973204 1.304722 1.328728 

 

14 

Best 2 2 5 2 1 3 3 3 3 

AVG 
3.833

333 
5 10.7 4.1 9.866667 5.833333 3.6 5.233333 4.2 

Worst 5 22 16 5 25 11 5 9 5 

STD 
0.592

093 
3.895178 2.793465 0.758856 9.863668 1.801978 0.563242 1.50134 0.550861 

 Best 2 1 4 2 1 2 3 2 3 
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15 

AVG 
3.733

333 
5.866667 10.1 3.833333 12.06667 5.1 3.533333 4.666667 3.966667 

Worst 7 19 15 5 25 10 5 9 5 

STD 
1.048

261 
4.083046 2.795933 0.833908 11.0514 1.78789 0.62881 1.647011 0.556053 

 

16 

Best 15 26 24 16 1 19 26 34 18 

AVG 
20.86

667 
38.6 30.03333 24 23.96667 38.43333 40.46667 41.5 30.3 

Worst 33 51 36 35 81 51 55 50 45 

STD 
3.857

222 
6.71899 2.785224 4.250761 25.05646 6.521494 8.997062 4.431471 7.278452 

 

17 

Best 9 13 10 11 1 12 11 11 12 

AVG 
10.86

667 
13.76667 12.33333 12.9 17.56667 13.1 12.96667 12.66667 13.4 

Worst 13 14 14 14 59 14 14 14 14 

STD 
1.136

642 
0.430183 1.212957 0.711967 15.52458 0.711967 0.614948 0.660895 0.563242 

 

18 

Best 10 20 17 14 1 15 15 26 8 

AVG 
15.03

333 
29.43333 23.06667 19.56667 15.36667 27.8 31.03333 31.4 19.13333 

Worst 21 40 33 26 40 35 38 38 33 

STD 
2.953

471 
6.179406 3.512866 2.800041 12.37206 4.342254 6.088334 3.450137 7.532611 

 

19 

Best 145 1 3396 1183 1 25 1 22 1 

AVG 
350.6

667 
537.5 3480.767 1279.333 1693.467 471.5333 2.966667 633.1333 325.8667 

Worst 801 2789 3556 1548 7129 1753 7 2322 1657 

STD 
136.8

708 
706.1939 38.98778 79.45475 3051.48 412.0221 1.473521 642.9884 462.2105 

 

20 

Best 6 6 6 6 1 7 6 7 8 

AVG 7.4 9.2 8.7 7.533333 12.3 8.966667 8.133333 8.266667 11.46667 

Worst 9 13 11 9 29 11 10 10 15 

STD 
0.813

676 
1.627352 1.118805 0.681445 9.180752 1.033352 1.074255 0.73968 1.814374 

 

21 

Best 21 33 30 22 1 35 32 33 36 

AVG 
29.46

667 
51.46667 35.53333 29.76667 16 45.86667 50.36667 51.43333 46.76667 

Worst 39 61 43 37 64 56 62 59 59 

STD 
4.651

535 
7.977267 3.401149 3.720246 18.80389 5.001609 7.608903 4.973609 4.789956 

Average SF 
25.67

30179 

44.82539

8 

184.62541

2 

73.09680

9 

95.12541

3 

40.574601

4 
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2 
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5 
25.728573 

Rank    2 5 9 8 7 4 1 6 3 

 

 
Figure 45. The total average of selected features for all datasets. 
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5.5.4 |Time Execution for OBMSASA 

Table 14 indicates how much time each algorithm takes to execute all the datasets, from the numerical analysis, 

TPGWO comes in first place, followed by HHOSA, and OBMSASA comes in sixth place.  

Table 14. The time execution for all algorithms. 

Algorithm CSA CCWOA OBSSA TPGWO EOSA SMAMPA HHOSA MSA OBMSASA 

Time 1.981428 2.107838 2.023919 1.841559 1.943561 1.985466 1.966042 2.055254 2.008919 

 

6 |Conclusions and Future Work 

In the present investigation, a hybrid methodology integrating the Mantis Search Algorithm with the 

Opposition-based learning technique and SA algorithm OBMSASA is utilized to explore the optimal subset 

of features through a wrapper method. The algorithm put forward incorporates the use of KNN due to its 

widespread application, simplicity in implementation, and the presence of a solitary parameter for adjustment. 

The OBMSASA technique is utilized for 21 standardized datasets, with the potential for their dimensions to 

extend into the thousands. Within the context of the Feature Selection (FS) issue, the decision must be made 

whether to include a particular feature, resulting in a binary problem. Consequently, an adaptation function is 

integrated into the original MSA algorithm. The examination of the impact of V-shaped functions, S-shaped 

functions, and the threshold method on the proposed algorithm is initiated. Firstly, the selection of the Mantis 

Search algorithm was based on its demonstrated efficacy compared to numerous recently developed 

algorithms that have not been previously applied to address the research problem at hand, thus justifying its 

inclusion as the focal point of study. the threshold method demonstrates superior performance and rapid 

convergence towards the optimal solution throughout iterations in comparison to the S-shaped and V-shaped 

approaches. Secondly, to mitigate the risk of encountering local optima, the incorporation of the Opposition-

based learning (OBL) technique within the framework of MSA is implemented in the initialization phase. 

OBL is used to better improve the spread of sample solutions in the research area. Thirdly, incorporating 

algorithm SA into algorithm MSA enhances the MSA algorithm's capacity to achieve optimal solutions as the 

SA algorithm is the local search component within the framework. The analysis of OBMSASA's performance 

is thoroughly scrutinized with seven highly esteemed metaheuristics published in this publication. The 

findings demonstrated the excellence of the suggested algorithm and its capacity to effectively address the 

issue under its remarkable skill in navigating the trade-off between exploration and exploitation, evading local 

optima, and enhancing population diversity. This superiority results from observing how well the algorithm 

performs with a number of parameters, including fitness, classification accuracy, and the chosen features. 

There are four numerical results for each criterion (best, worst, average, and STD). Future research should 

evaluate the suggested algorithm's performance using a variety of classifiers, such as support vector machines, 

and other classifiers. Another noteworthy development is the application of the FS classification to financial 

data, and the Internet of Things. One of the main drawbacks of the proposed algorithm is the computational 

time. To leverage computational resources and minimize processing time, we want to create a parallel version 

of OBMSASA, which will improve the algorithm's performance when handling large data dimension sizes. 
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