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1 |Introduction    

Since cutting tools are the main component of machining processes, they eventually break down from wear 

and tear from removing metal components [1]. Because it comes into close contact with the workpiece 

throughout the production process, the cutting tool is extremely important [2, 3]. Eliminating surplus material 

in a piece of work in order to get an accurate form is the primary goal of machining operations [4]. It is crucial 

to switch out cutting tools before they break in order to guarantee both the reliability of the production 

process and the quality of the workpiece. Workpieces that require high-precision processing are in more 

demand right now. The workpiece's quality is closely related to the quality of the tool used; wear on the tool 

is the main cause of the subpar quality of the workpiece and higher reject percentages. There might be two 

main issues if the measurement of tool wear is not performed accurately. First of all, it can result in 
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unwarranted cost increases and tool waste when tools that are still functionally useful are replaced too soon. 

Second, the quality of the workpiece's surface may deteriorate if the tool is not changed right away, and a 

defective tool is used for processing the workpiece.  

As a result, the quality and accuracy of the finished product will be significantly impacted by the equipment's 

degradation and attrition. Research indicates that about 20% of machine tool failures are caused by tool 

problems [1]. Also, tool maintenance expenses account for a significant percentage between 15% and 40% 

of total production costs [5]. The fact that the quality of machining operations is adversely affected by tool 

wear is an essential factor to take into account [6]. The prevention of potentially disastrous incidents, such as 

tooling stoppage and scrapping of the workpiece, can be effectively achieved through the implementation of 

live machine tool condition tracking and accurate prediction of the remaining useful life (RUL) [7, 8]. As such, 

it is imperative that manufacturing organizations give top priority to precise live tracking and exact RUL 

forecast of tool wear. Thus, there has been a growing interest lately in RUL prediction for cutting tools [9, 

10]. This is essential to uphold the processing environment's stability, strengthen the workpiece's precision, 

safeguard the machine tool and processing safety, improve production efficiency, and reduce costs [11]. The 

demand for Live tool status tracking in contemporary manufacturing enterprises has risen as they are essential 

for cost reduction and quality improvement [12, 13]. 

Recently, Scholars have developed various research methodologies for assessing and predicting the state of 

tools. These strategies fall into three main categories: physics-based methods [14], data-driven methods [15, 

16], and hybrid methods [17]. Physics-based approaches focus on developing a theoretical framework that 

clarifies the functioning of cutting tools. The Physics-based approach looks into the physics to determine 

how tool conditions and parameters for machining are related to one another. These approaches assert that 

the wear and tear of the system may be precisely represented by mathematical formulas or methods. A popular 

adaptive decomposition technique for handling vibration data is empirical mode decomposition (EMD) [18], 

which depends on modal elements. By using the coefficient of correlation analysis and the intrinsic mode 

function (IMF) components that are broken down using the EMD approach, Geng et al. [19] were able to 

effectively accomplish the RUL prediction of bearings. Utilizing stress from contact in line with the fatigue 

conceptual modeling methodology, Gai et al. [20] presented a method for predicting the fatigue lifespan. 

The use of the contact fatigue life curve, which is this approach makes it possible to determine the peak 

contact stress given the provided axial and radial pressures operating on the bearing. This makes it easier to 

derive the contact fatigue lifetime. By carefully examining the instrument's failing process and creating 

mathematical models or semi-empirical formulae, the physical model-based forecast illustrates the 

deterioration of instrument efficiency [21, 22]. Scholars established a number of physical forecasting 

techniques that utilize the pattern of contact between the instrument and the piece of material for specific 

cutting settings, as well as the traditional Taylor instrument lifespan formula [23]. Through the clarification 

of deterioration mechanisms and their effects on the overall system, physics-based approaches aim to give 

precise RUL estimations that are pertinent to cutting instruments and are based on fundamental physics. 

However, system complexity, process variability, and uncertainty make it difficult to create realistic physics-

based models of machining. Furthermore, creating accurate physical models by trial and error to correspond 

with experimental data can be a drawn-out procedure that takes years. This problem is addressed by the data-

driven technique, which examines sensor data collected during the machining operation. With data-driven 

approaches, past data from equipment sensors and related measures are used to build prediction models. 

Generalization may be accomplished with data-driven approaches without the need for specialist knowledge. 

The association between sensor data and system deterioration may be found using data-driven methodologies 

[24, 25], indicating a strong capacity to generalize and less dependence on empirical knowledge. By analyzing 

patterns in temporal data, data-driven techniques for RUL have the ability to produce precise forecasts and 

reduce the need for traditional technical expertise. This method has the benefit of enabling continuous, real-

time equipment tracking, which lowers the possibility of critical faults and enhances future production 

processes [26]. 
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Data-driven approaches are used in this work to assess the RUL of complex systems. Deep Learning (DL) 

and Machine Learning (ML) methodologies are included in these methods. With the use of ML techniques, 

computers are able to acquire knowledge from data by themselves and constantly increase their efficiency 

without the need for explicit programming, making them an invaluable tool in many facets of daily life. Our 

way of life, our work habits, and our interactions with technology are all changing as a result of machine 

learning's ability to autonomously complete tasks and derive information from data. We expect this field to 

grow and have much more impact on everyone involved. Massive quantities of sensor data, operating 

characteristics, and previous servicing histories may all be used using machine learning techniques. By using 

this systematic data-driven process, machine learning algorithms are able to understand complex correlations 

between many factors that affect the state. According to pertinent research, tool RUL may be reliably 

predicted from the retrieved signal characteristics using fuzzy neural networks (FNN) [16, 27], support vector 

regression (SVR) [28, 29], dynamic Bayesian networks (DBN) [30, 31], stochastic processes [32, 33], and 

relevance vector machines (RVM). In order to forecast RUL, Sohyung et al. [34] employed SVM with the 

greatest value taken from the cutting force as the eigenvector. Lin et al. [35] used the nonlinear relationship 

between high-dimensional feature vectors and tools wear based on the evolving connectionist system (ECoS) 

then the RUL prediction of the tool based on HMM is established. Good experimental results were achieved 

by Dong et al. [36] after they isolated 16 eigenvalues from the force data and used the ANN model to forecast 

tool wear. 

A prominent subset of machine learning called deep learning has significantly altered many aspects of our 

culture. It analyzes information by combining multiple-layered artificial neural networks, which imitate the 

cognitive functions of the human brain. Because deep learning techniques are so flexible, they have made 

remarkable progress. Models based on deep learning can autonomously derive feature representations, unlike 

machine learning models, hence they do not require feature engineering. One notable characteristic of deep 

learning is its intricate network architecture, which makes it easier to identify degrading traits from historical 

sensor data of equipment under observation [37]. Consequently, deep learning shows greater efficacy in 

handling high-dimensional, unstructured data types such as pictures and time series data. Interestingly, deep 

learning techniques outperform conventional machine learning approaches, especially when it comes to 

predictive maintenance. A multiscale convolution neural network (CNN) based estimation of the RUL 

approach for bearings was proposed by Zhu et al. [38], and the findings demonstrate that the approach 

performs better for the RUL estimation of bearings. The characteristics were extracted from the raw data 

using wavelet packet decomposition methods, and subsequently used as the input of a deep CNN-based 

model by Belmiloud et al. [39] to predict the health stage. In order to anticipate the RUL, Li et al. [40] proposed 

using a deep convolution neural network (DCNN), which incorporates the original sensor information into 

the model and allows DCNN to automatically create the features. Liu et al. [41] introduced a novel approach 

using adaptive variational mode decomposition (VMD) and a deep learning model combining one-

dimensional convolutional LSTM with an attention mechanism. Wan et al. [42] used the complete ensemble 

empirical mode decomposition with adaptive noise (CEEMDAN) to decompose vibration signals into 

intrinsic mode functions (IMFs). High-frequency and low-frequency IMFs are reconstructed using improved 

fine-to-coarse reconstruction (IFTC) and phase space reconstruction (PSR), then input into bi-directional 

long short-term memory (BiLSTM) and CNN models to construct an ensemble RUL prediction model. 

Recent research has integrated data-driven and physics-based models to solve the issues of data quality and 

distributional changes that significantly lower the accuracy of data-driven models. First, a physics-based 

approach is used to build the degradation system model. This approach is predicated on a thorough 

understanding of the behavior and degradation mechanisms of the system. This model incorporates the 

physical factors that lead to degradation. The RUL is then estimated using a data-driven approach using the 

created model and available data. The most effective elements of both strategies are combined in hybrid 

techniques to provide more accurate and consistent RUL predictions. The hybrid method optimizes its 

potential by combining the advantages of both the model-based approach, which incorporates fundamental 

physics ideas into the cutting tool system, and the data-driven strategy, which uses real data and statistical 
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approaches to improve the accuracy of RUL prediction. By combining these techniques, it is possible to gain 

a better knowledge of the system's performance and degradation patterns, which will improve the estimation 

of RUL. By using the empirical wear-time model and updating the state of the regularized particle filtering 

(RPF) approach, Hanachi et al. [43] made improvements. A data-driven approach utilizing an automated 

machine learning strategy that made use of the adaptive neuro-fuzzy inference system (ANFIS) was used by 

Liu et al. [44]. They also combined a semi-empirical degradation method with an adaptive centerless Kalman 

filter (ACKF) methodology to anticipate the remaining operating life. Within the discipline of PHM, the Least 

Squares SVM (LSSVM) is used in many different contexts. Yang et al. [45] created a hybrid strategy for tool 

wear prediction that combines model-informed and data-driven techniques. On bi-directional gate recurrent 

unit (Bi-GRU) networks, Wang et al. [46] investigated the use of feature fusion and data augmentation.  

In this work, we provide a unique data-driven deep learning technique designed to forecast cutting tool wear 

prediction. In order to anticipate tool wear estimation, a unique method called a convolution neural network 

paired with a gated recurrent unit (CNN-GRU) network is proposed. This method takes sensor data, extracts 

spatial properties, and finds temporal relationships. The GRU architecture has been combined with a CNN 

to assign weight values to the extracted features. This helps to highlight important information and improves 

the model's RUL forecast. The well-known IEEE PHM 2010 Challenge Dataset [43] is used to evaluate the 

effectiveness of the CNN-GRU model for forecasting cutting tool wear. Our experimental results show that 

the suggested method outperforms other current models in terms of accuracy and reduces uncertainty in 

multi-step prediction tasks. The significant contributions of the study may be summed up as follows: 

 An innovative framework for data-driven deep learning that is intended to comprehend temporal 

correlations in time series data. This is accomplished by combining a gated recurrent unit (GRU), 

which effectively detects degradation patterns in the cutting instruments, with a convolutional neural 

network (CNN). 

 In order to circumvent the problems associated with single-domain features that lack appropriate 

tool status data, a multi-domain combination technique was used to develop candidate features. 

 By using the dataset from the IEEE 2010 PHM data challenge, the validity of the model was 

confirmed [47], showing that it performed better than other models in estimating the tool wear. 

The portions of this paper are arranged as follows. A description of the suggested DL model is provided in 

Section 2. Section 3 then goes into great depth on the experimental settings. Section 4 explores the Discussion 

and Results. Finally, the study's conclusions are outlined in Section 5. 

2 |The Proposed DL Model 

2.1 |CNN-GRU Components 

2.1.1 |Convolutional Neural Network 

It seems improbable that Convolutional Neural Networks would be able to automatically identify important 

qualities from unprocessed time series data, hence removing the need for manual feature extraction. This 

enables the model to reveal patterns that people might not be able to recognize and does away with the need 

for domain-specific expertise when choosing features. CNNs can recognize high-level characteristics like 

temporal patterns and intricate relationships in deeper layers and low-level features like local trends as well as 

patterns in early layers, much to how they are used in picture data. CNNs are capable of capturing both global 

and local features of time series data, such as local patterns and dependencies, because of their hierarchical 

feature learning capability. CNNs are able to recognize trends such as spikes, recurrent themes, or sudden 

changes in the time series by applying convolutional filters with narrow receptive fields. The ability to identify 

local patterns is essential for identifying pertinent aspects that may point to noteworthy occurrences or 

abnormalities in the data. By using the same set of weights (filters) at different temporal points in the time 



 A Novel Deep Learning Model for Tool Wear Estimation of Cutting Tools 

 

51

 

  
series, CNNs use parameter sharing. By reducing the number of trainable parameters in the network, this 

parameter sharing improves generalization and learning efficiency. Additionally, methods like dropout 

regularization and pooling can strengthen the network's resistance to noise and overfitting. In some cases, 

CNNs can provide faster training on time series data since they can process data at the same time and use 

GPU capabilities to extract features more effectively. 

2.1.2 |Gated-Recurrent Unit 

One kind of recurrent neural network (RNN) architecture called the Gated Recurrent Unit (GRU) is intended 

to alleviate the vanishing gradient problem and identify relationships in sequential input. It is a less 

complicated and more computationally effective substitute for the widely used Long Short-Term Memory 

(LSTM) network type of RNN. GRUs are faster to train and more computationally efficient than LSTMs 

because of their more straightforward architecture and fewer gates. GRUs are very helpful for jobs involving 

sequences, such as speech recognition, language modeling, and time series forecasting. The GRU consists of 

two main gates the update gate 𝑧𝑡, and reset gate 𝑟𝑡. The update gate 𝑧𝑡 regulates how much of the present 

concealed state gets filtered through from the preceding hidden state and determines the amount of historical 

data that must be kept. The update gate 𝑧𝑡 calculated from Eq. (1). The reset gate 𝑟𝑡 establishes how much 

of the prior concealed state should be forgotten and how much historical data should be disregarded. The 

reset gate 𝑟𝑡 calculated from Eq. (2). The content that has to be added to the existing hidden state is 

represented by the candidate's hidden state ℎ′𝑡. It is in the running to become the next secret state. The 

candidate's hidden state is calculated by Eq. (3). The current hidden state ℎ𝑡, which is determined by the 

update gate, is the combination of the candidate hidden state and the previous hidden state for the current 

time step. The current hidden state is calculated by Eq. (4). 

𝑧𝑡 = 𝜎(𝑊𝑧 𝑥𝑡 + 𝑈𝑧 ℎ𝑡−1 +  𝑏𝑧) (1) 

𝑟𝑡 = 𝜎(𝑊𝑟  𝑥𝑡 +  𝑈𝑟  ℎ𝑡−1 +  𝑏𝑟) (2) 

ℎ′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎  𝑥𝑡 + 𝑈𝑎 ⊙ ℎ𝑡−1 + 𝑏𝑎)  (3) 

ℎ𝑡 = (1 −  𝑧𝑡) ⊙ ℎ𝑡−1 +  𝑧𝑡 ⊙ ℎ′𝑡 (4) 

Where the symbol 𝜎 denotes the sigmoid function, t represents the time step, 𝑥𝑡 signifies the input feature at 

time t, ℎ𝑡−1 denotes the output hidden state from the previous time sample, the operator ⊙ indicates 

element-wise multiplication, the parameters 𝑊𝑧, 𝑊𝑟 , 𝑊𝑎 , 𝑈𝑧, 𝑈𝑟 , 𝑈𝑎 , 𝑏𝑧, 𝑏𝑟, 𝑏𝑎 are optimized during the 

training process. 

2.2 |CNN-GRU Model 

Since cutting tool wear estimate is considered a supervised regression problem, deep learning models must 

be trained and evaluated using data from the challenge of the 2010 PHM Data dataset. For tool wear 

assessment of cutting tools, this work proposes a novel data-driven deep learning technique called CNN-

GRU, which combines CNN and GRU, as shown in Figure 1. To extract features from the input features, 

the CNN component is used. Time-domain, frequency-domain, and time-frequency-domain characteristics 

are among the input features; they will be covered in more detail in section 3.3. There are three convolution 

blocks in the CNN-GRU. A BatchNormalization layer is placed after three Conv1D layers with 64 filters and 

three kernel sizes in the first block. In order to lower the dimensionality and preserve the most important 

characteristics, the second block consists of two Conv1D layers with 128 filters and three kernel sizes, 

followed by a BatchNormalization layer and MaxPooling1D with a pool size of equal to two. Two Conv1D 

layers with 256 filters and three kernel sizes are included in the third block. A BatchNormalization layer and 

MaxPooling1D with a pool size of two are next. The GRU, which consists of three GRU layers, receives the 

CNN's output after that. A GRU layer consists of 32 units. Through memory cells and gates, each GRU layer 

in the sequence transmits information after processing the input in a sequential fashion. The model can more 

easily capture hierarchical representations of the input data since the output of one GRU layer serves as the 
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input for the subsequent layer. The model can capture intricate temporal correlations and provide more 

abstract data representations because of the addition of additional GRU layers. Subsequently, the 

GlobalAveragePooling1D layer processes the GRU layer's output, thereby reducing it so that the dense layer 

can handle it. This facilitates the development of a model that is more effective and maybe more generalizable. 

For the ultimate tool wear estimation, the combined and processed data from the hidden layer is sent to the 

fully connected (FC) network. The FC network is composed of a 32-unit dense layer and a dropout layer with 

a 0.1 dropout rate. Algorithm 1 concludes by outlining the suggested model's pseudocode. 

 
Figure 1. Flowchart of the proposed CNN-LSTM. 

 

Algorithm 1 Pseudo-code of CNN-GRU 

Input: Input data (D), batch size (Bs),  maximum epoch (T), and learning rate (lr) 

Output: loss (𝑀𝑆𝐸), RMSE 

1: Conducting the preprocessing step 
/* Create the proposed CNN-GRU model */ 

2: Input: Construct an input layer to receive the input data 
/* feature extraction based on the LSTM */ 

/* first convolution block*/ 

3: x: Create a Conv1D layer with 64 filters, 3 kernel sizes, the same padding, and a Relu activation function to 
take the data from the input layer. 

4: x:  Add a Conv1D layer with 64 filters, 3 kernel sizes, the same padding, and a Relu activation function to x. 

5: x:  Add a Conv1D layer with 64 filters, 3 kernel sizes, the same padding, and a Relu activation function to x. 

6: x:  Add a BatchNormalization to x. 

/* second convolution block*/ 

7: x: Add a Conv1D layer with 128 filters, 3 kernel sizes, the same padding, and a Relu activation function to x. 

8: x: Add a Conv1D layer with 128 filters, 3 kernel sizes, the same padding, and a Relu activation function to x. 
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9: x:  Add a BatchNormalization to x. 

10: x:  Add a MaxPooling1D with pool size equals 2 to x. 

/* third convolution block*/ 

11: x: Add a Conv1D layer with 256 filters, 3 kernel sizes, the same padding, and a Relu activation function to x. 

12: x: Add a Conv1D layer with 256 filters, 3 kernel sizes, the same padding, and a Relu activation function to x. 

13: x:  Add a BatchNormalization to x. 

14: x:  Add a MaxPooling1D with pool size equals 2 to x. 

/* GRU  block*/ 

15: x: Add GRU layer with 32 units, 0.1 dropouts, and Tanh activation function to x. 

16: x: Add GRU layer with 32 units, 0.1 dropouts, and Tanh activation function to x. 

17: x: Add GRU layer with 32 units, 0.1 dropouts, and Tanh activation function to x. 
/* Prediction Block */ 

18: x:  Add a GlobalAveragePooling1D to x. 

19: x: Add a dense layer with 32 nodes, and a Relu activation function to x. 

20: x: Add a Dropout layer with 0.1 value as a dropout rate to x. 

21: x: Add a dense layer with 1 node to x. 
/* Optimization process */ 

22: N = Size(D)/Bs /* Estimate the number of batches */ 

23: 𝑡 =  0, Current epoch 

24: while 𝑡 < 𝑇 

25:               𝒊 =  𝟎, the current batch size. 

26:               while 𝒊 <  𝑵 
        Optimize the MSE function by updating the weights according to Adam. 

27:                      𝒊 = 𝒊 + 𝟏  

28:                end while. 

29:               𝒕 = 𝒕 + 𝟏  

30: end while 

 

3 |Experimental Settings 

3.1 |PHM 2010 Dataset 

The IEEE PHM 2010 dataset [47] is used as a benchmark in this part to show how the created monitoring 

system is applied. Data on experimental samples were acquired at the Roders Tech RFM760 milling facility. 

Figure 2 shows a schematic illustration of the experimental setup. Throughout the procedure, none of the 

tools' cutting settings are altered. Three sets of tool run-to-failure tests are included in the dataset. A stainless-

steel block measuring 108 mm in the tool feed direction served as the workpiece. The cutting process was 

done sporadically while the tool was set to mill 108 mm of the workpiece in each cycle. The feed rate was set 

to 1555 mm/min, the spindle speed was set to 10,400 rpm, the radial depth was set to 0.125 mm, and the 

axial depth was set to 0.2 mm. These characteristics were unchanged for the duration of the instruments' life. 

On the machining table were the dynamometers for measuring the cutting force in three directions. To 

monitor the vibration of the tool in three different directions, three Kistler Piezo accelerometers were 

mounted on the workpiece. Sensor data was saved using the DAQ NI PCI1200 at a sampling frequency of 

50 Hz. The sensor data comprises three types of vibration in three directions (Vx, Vy, and Vz), cutting force 

(Fx, Fy, and Fz), and acoustic emission (AE). The goal output is the VB value of three flutes measured offline 

with the LEICA MZ12 microscope after each surface is finished. The objective is to forecast the real VB 

value. The test instruments that comprised our dataset, c1, c4, and c6, were documented. The three tools are 

identified as C1, C4, and C6 in the IEEE PHM 2010 dataset. Figure 3 displays the measures of tool wear. 

There are 315 data samples in each tool, and each data sample has an associated wear value. 
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Figure 2. PHM 2010 competition operating platform. 

 
Figure 3. Measurements of tool wear are (a) C1, (b) C4, and (c) C6. 

3.2 |The Measurement of the Tool Wear 

The total length for every pass is 108 mm, and every tool requires full 315 processing. Every cutting's tool 

wear value is calculated and noted. Tools 1, 4, and 6's VB wear curves, which illustrate the correlation between 

the number of cuts and the VB value, are displayed in Figure 4 after the study's full-time wear data of 

Tools was reviewed. Three phases of the tool VB value change are depicted in Figure 4. Tool wear increases 

quickly in the first stage because of the new cutting-edge sharpness. Wear moves into a steady state and begins 

to rise gradually as the tool's contact area with the workpiece increases. Tool wear moves into the Sharp stage 

once the threshold is reached.  

 
Figure 4. The number of cuts and tool wear (VB) relationship. 
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3.3 |Signal Analysis 

Figure 5 displays a visualization and examination of the cutting force signals along the x, y, and z axes using 

the complete lifespan data of Tool 1, which was obtained by analysis of the experiment's full-life sensors data 

of Tool 1, Tool 4, and Tool 6 involving 315 cuts. The vibration signal is especially susceptible to acute wear 

of the tool, as seen in Figure 6, which displays the original acceleration vibration signals in x, y, and z 

directions. Figure 7 displays the first few data points of the cutting force signals along the x, y, and z axes 

using the complete lifespan data of Tool 1. 

 
Figure 5. The cutting force signals along the x, y, and z axes using the complete lifespan data of Tool 1. 

 

 

Figure 6. The original acceleration vibration signals in x, y, and z directions of Tool 1. 

 

Figure 7. The first few data points of the cutting force signals using the complete lifespan data of Tool 1. 

A multi-domain combination approach was utilized to create candidate features, avoiding the drawbacks of 

single-domain features with insufficient tool status data. From every channel signal, we have extracted a few 

characteristics: 12 time-domain features, 4 frequency-domain features, and 8 time-frequency domain features. 

The time-domain features include absolute mean, max, root mean square, square root amplitude, skewness, 

kurtosis, shape factor, pulse factor, skewness factor, crest factor, clearance factor, and kurtosis factor. The 

equations of these features are calculated from Eq. (5) to Eq. (16). Figure 8 displays the time-domain features 
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for Tool 1. The frequency-domain features include the center of gravity frequency (FC), mean square 

frequency (MSF), root mean square frequency (RMSF), and variance Frequency (VF). The time-frequency 

domain features are generated using Wavelet Packet Transform (WPT) by calculating the norms of the 

resulting wavelet packet coefficients. Figure 9 displays the time-frequency domain features for Tool 1. 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 =  
∑  |𝑥𝑖|𝑁

𝑖=1

𝑁
 (5) 

𝑀𝑎𝑥 =  𝑚𝑎𝑥𝑖= 1,2,….,𝑁 (𝑥𝑖) (6) 

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 = √
∑  𝑥𝑖

2𝑁
𝑖=1

𝑁
 (7) 

𝑆𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  (
∑  √|𝑥𝑖|𝑁

𝑖=1

𝑁
)

2

 (8) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
1

𝑁
∑(|𝑥𝑖|

𝑁

𝑖=1

−  𝑋) 3    𝑊ℎ𝑒𝑟𝑒 𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

(9) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =   
1

𝑁
∑ 𝑥𝑖

4

𝑁

𝑖=1

 (10) 

𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒
 

(11) 

𝑃𝑢𝑙𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑀𝑎𝑥

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒
 

(12) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠

(𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒)3
 

(13) 

𝐶𝑟𝑒𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑀𝑎𝑥

𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒
 

(14) 

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑀𝑎𝑥

𝑆𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 

(15) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠

(𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒)4
 

(16) 

 
Figure 8. The time-domain features for C1 (Tool 1). 
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Figure 9. The time-frequency domain features for C1 (Tool 1). 

 

3.4 |Data Normalization 

The uniformity of the inputs is crucial for the deep learning model since any significant discrepancy may 

negatively impact the model's performance. Therefore, before being included in the model, the vibration 

signals collected at each time period should be normalized. Z-score normalization, also known as 

standardization, is a popular method for this that standardizes the values of various parameters. This scaling 

technique is very important in the field of machine learning, particularly when dealing with characteristics that 

have different scales or units. This method guarantees that the features are rescaled to provide a mean of 0 

and a standard deviation of 1 by transforming the data to a standardized range. The mathematical formula 

for z-score scaling is presented as Eq. (17). where 𝜇𝑗 , 𝑎𝑛𝑑 𝜎𝑗 donate to the mean and standard deviation of 

the 𝑗𝑡ℎ feature, respectively. 

𝑥′
𝑖,𝑗 =  

𝑥𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
 (17) 

3.5 |Evaluation Metrics 

The network parameters are improved in this study by utilizing the mean square error (MSE) loss, which can 

be found using Eq. (18), and the Adam optimization [41] approach. 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 −  𝑦′

𝑖)
2

𝑁

𝑖=1

 (18) 

 The true and predicted labels of the ith sample are represented 𝑦𝑖 and 𝑦′
𝑖, respectively, while N stands for 

the total sample size. The suggested model has been evaluated using the root mean square error (RMSE) 

evaluation measure, which compares the RMSE values between each dataset's real and projected labels for 

each data point. Eq. (19) provides the mathematical method used to determine the RMSE value.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦′

𝑖)
2

𝑁

𝑖=1

 (19) 

The reduction of both MSE and RMSE is essential for enhancing the accuracy in predicting the tool wear 

estimation of cutting tools. 
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4 |Experiment Results and Discussion 

4.1 |Hyperparameter Tuning 

Several hyper-parameters are included in the CNN-GRU model suggested in this paper, including the number 

of units inside each GRU layer, the number of filters and kernel size within each convolutional layer, the 

GRU dropout rate, and the learning rate. To improve the model's efficiency and lower the RMSE, these 

parameters must be carefully defined. Thus, Table 1 shows that several experiments were carried out in this 

research to investigate various configurations for each parameter in order to get the most ideal values that 

result in a significant improvement in the model's performance. Figures 10 through 18 show how these 

hyperparameters affect the CNN-GRU approach's effectiveness. For example, the number of filters in each 

convolutional layer has a big impact on the model's performance. As a result, several tests were run, ranging 

from 64 to 256, to determine the optimal number of filters for each convolutional layer. Figures 10, 11, and 

12 illustrate how the number of filters in each convolutional layer affects the results.  

Table 1. Experimental analysis of the influence of Hyperparameter on RMSE of the estimation value in mm. 

Hyper-parameter Value C1 C4 C6 Average 

Number of filters in Conv_block_1 

64 0.0017 0.0011 0.0012 0.0013 

128 0.0527 0.0511 0.0515 0.0517 

256 0.0736 0.0741 0.0755 0.0744 

Number of filters in Conv_block_2 

64 0.0167 0.0159 0.0162 0.0162 

128 0.0017 0.0011 0.0012 0.0013 

256 0.0215 0.0199 0.0201 0.0205 

Number of filters in Conv_block_3 

64 0.0264 0.0259 0.0261 0.0261 

128 0.0140 0.0149 0.0155 0.0148 

256 0.0017 0.0011 0.0012 0.0013 

Number of units of GRU 

32 0.0017 0.0011 0.0012 0.0013 

64 0.0025 0.0020 0.0021 0.0022 

128 0.0084 0.0075 0.0074 0.0077 

Kernel size 

2 0.0023 0.0020 0.0018 0.0020 

3 0.0017 0.0011 0.0012 0.0013 

4 0.0031 0.0028 0.0029 0.0029 

Optimizer 

Adam 0.0017 0.0011 0.0012 0.0013 

SGD 0.0214 0.0220 0.0236 0.0223 

RMSprop  0.0157 0.0174 0.0201 0.0177 

Batch size 

64 0.0049 0.0041 0.0045 0.0045 

128 0.0017 0.0011 0.0012 0.0013 

256 0.0035 0.0029 0.0031 0.0031 

Learning rate 

0.001 0.0021 0.0019 0.0020 0.0017 

0.002 0.0017 0.0011 0.0012 0.0013 

0.006 0.0019 0.0026 0.0018 0.0021 

0.01 0.0159 0.0161 0.0124 0.0148 

Dropout rate 

0.1 0.0017 0.0011 0.0012 0.0013 

0.2 0.0039 0.0036 0.0041 0.0038 

0.3 0.0057 0.0049 0.0054 0.0053 

 

During neural network training, the dropout rate is a crucial hyperparameter that helps to prevent overfitting. 

Overfitting is the phenomenon when a model adds noise and complexities that are ineffective when applied 

to fresh, unknown data, on top of the underlying patterns seen in the training data. To determine the ideal 

dropout rate, several studies are carried out. Figure 18 illustrates how various dropout rates affect the situation. 

A critical hyperparameter in deep learning model training is the learning rate, which determines how much of 

the optimization process's modifications are made to steer the method's parameters in the direction of 

minimizing the loss function. From the alternatives of 0.0001, 0.001, 0.006, and 0.01, several tests were 

conducted to determine the most appropriate learning rate. The findings indicate that 0.006 is the ideal 
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learning rate. Figure 17 depicts the impact of various learning rate values. The final hyperparameters of the 

proposed model are detailed in Table 2. 

Table 2. The CNN-GRU hyperparameters. 

Parameter value 

Number of filters in Conv_block_1 64 

Number of filters in Conv_block_1 128 

Number of filters in Conv_block_3 256 

Number of units of GRU 32 

Kernel size 128 

Learning rate 0.002 

Batch size 128 

Max no. of epoch 500 

Dropout rate 0.1 

Loss MSE 

Optimizer Adam 

 

 

  

Figure 10. The impact of conv_block_1 filter 

number through experimentation. 

Figure 11. The impact of conv_block_2 filter 

number through experimentation. 

  

Figure 12. The impact of conv_block_3 filter 

number through experimentation. 

Figure 13. The impact of GRU unit number 

through experimentation. 
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Figure 14. The influence of kernel size through 

experiments. 

Figure 15. The influence of optimizer through 

experiments. 

            

Figure 16. The influence of batch size through 

experiments. 

Figure 17. The influence of learning rate through 

experiments. 

 
Figure 18. The influence of dropout rate through experiments. 

4.2 |Results for Cutting Tools 

The CNN-GRU model's outcomes over the three tools (C1, C4, and C6) are shown in this section. Using C4 

and C6 tools, the CNN-GRU model was trained for C1. The tool wear estimation's root mean square error 

(RMSE) was 0.0017 when the CNN-GRU was evaluated using the C1 tool. C1 and C6 tools were used to 

train the CNN-GRU model for C4. The tool wear estimation's root mean square error (RMSE) was 0.0011 

when the CNN-GRU was evaluated using the C4 tool. Using C1 and C4 tools, the CNN-GRU model was 

trained for C6. The tool wear estimation's root mean square error (RMSE) was 0.0012 when the CNN-GRU 

was evaluated using the C6 tool. Then, for three tools (C1, C4, and C6) from the PHM 2010 dataset, the 
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average RMSE for tool wear estimation was 0.0013. The CNN-GRU model's total findings are shown in 

Table 3, and Figure 19 provides an illustration of it. 

Table 3. CNN-GRU performance (tool wear estimation error (mm)) for 3 tools based on RMSE. 

 C1 C2 C3 Average 

CNN-GRU 0.0017 0.0011 0.0012 0.0013 

 

 
Figure 19. CNN-GRU performance for C1, C2, and C3. 

4.3 |Comparison Results 

In this part, CNN-GRU's results for the average of the three tools (C1, C4, and C6) in the 2010 PHM Data 

Challenge Dataset are compared with competing models to demonstrate their performance. The RMSE 

metric is used to quantify these results in order to show how successfully the models close the difference 

between the intended and predicted tool wear estimation. The model presented in the 2010 PHM Data 

Challenge Dataset is compared to a number of rival models, including CNN-LSTM [48], CTNN [49], Bi-

LSTM [50], ANN, [35] HSMM [35], Probabilistic model [51], Approach_3 IMM [52], and Approach_5 IMM 

[52]. The results are presented in a way that demonstrates the system's higher efficacy, as demonstrated by 

the RMSE values listed in Table 4.  

A bold style is used to highlight the major outcomes. With RMSE values of 0.0013, Table 4 shows that CNN-

GRU beats all other models examined when compared to the average of the three tools (C1, C4, and C6). 

When our results are compared to the best results obtained by several cited models, our proposed model 

exhibits a 13.3% reduction in RMSE for the 2010 PHM Data Challenge Dataset. Because it can function most 

effectively based on the RMSE measure, which gives equal weight to predictions made sooner and later, the 

suggested model is thought to be a strong option for handling this situation. Figure 20 shows the RMSE 

values for the average of the three tools (C1, C4, and C6) that were derived using different algorithms in order 

to graphically demonstrate the effectiveness of the suggested model. 

Table 4. Performance (tool wear estimation error (mm)) comparison with competing models  

based on the average of 3 tools. 

Models RMSE 

CNN-LSTM 0.0026 

CTNN 0.0070 

Bi-LSTM 0.0155 

ANN 0.0413 

HSMM 0.0148 

Probabilistic model 0.0020 

Approach_3 IMM 0.0019 

Approach_5 IMM 0.0015 

Proposed model 0.0013 
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Figure 20. Shows how RMSE values obtained from various models are shown. 

 

4.4 |Ablation Study Results 

Using the suggested technique, ablation experiments are carried out to evaluate the impact of each CNN-

GRU component separately. Three experiments that are carried out under the same circumstances as the 

CNN-GRU are described in this section. Several neural network topologies are used in the experiments: a 

CNN model without a GRU, a GRU model without a CNN, and a CNN-GRU model that combines both 

CNN and GRU. In addition, Table 5 presents the results of the studies in detail, and Figure 21 provides a 

visual representation of the results. Over the course of the three tools dataset, the CNN-GRU outperforms 

CNN and GRU in the RMSE statistic. For C1 (Tool 1), the CNN-GRU approach's RMSE value is recorded 

at 0.0017, demonstrating improvements of 98.8% and 98.1% over CNN and GRU, respectively. Additionally, 

the suggested CNN-GRU technique for C4 (Tool 4) is reported at 0.0011, suggesting improvements over 

CNN and GRU of 99.1% and 98.1%, respectively. The suggested CNN-GRU strategy for C6 (Tool 6) is 

registered at 0.0012, suggesting improvements over CNN and GRU of 99.2% and 98.7%, respectively. 

Additionally, the suggested method CNN-GRU is registered at 0.0013 across the average of the three tools 

(C1, C4, and C6), demonstrating improvements of 99.1% and 98.4% over CNN and GRU, respectively. 

 
Figure 21. The representation of RMSE values acquired through ablation experiments. 
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  Table 5. The results of the ablation study performance (tool wear estimation error (mm)) for 3 tools based on RMSE. 

 C1 C2 C3 Average 

CNN 0.1531 0.1327 0.1684 0.1514 

GRU 0.0931 0.0583 0.0997 0.0837 

CNN-GRU 0.0017 0.0011 0.0012 0.0013 

 

5 |Conclusion 

This paper introduces CNN-GRU, a novel data-driven deep learning technique intended for cutting tool wear 

estimation. CNN and GRU are combined in the CNN-GRU paradigm. CNN was employed for feature 

extraction from multi-domain input data, circumventing the limitations of single-domain features with 

inadequate tool status data, by employing a multi-domain combination strategy to generate candidate features. 

GRUs are useful for collecting complicated temporal correlations in time series data because they are used to 

capture and maintain patterns throughout lengthy durations. The projections for tool wear are produced via 

a Fully Connected (FC) network. The PHM 2010 Challenge dataset was used to conduct the experimental 

evaluation. Our suggested model, when compared to other well-known models in the field, reduced the root 

mean square error (RMSE) for the average of the three tools (C1, C4, and C6) by 13.3%.  
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