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1 |Introduction    

In recent years, accurate and reliable Solar Irradiance Forecasting (SIR) has been critical for optimizing 

renewable energy generation [1]. There is a growing awareness of the necessity of finding alternative means 

to generate electrical energy without depleting the Earth’s natural resources, as depleting those resources leads 

to environmental, social, and economic problems. Non-renewable resources, such as carbon-based fossil fuels 

[2], are formed by transforming organic matter under pressure and high heat to create fuels like gas or oil. 

However, using non-renewable resources poses significant environmental dangers due to their finite nature 

and the release of greenhouse gases during extraction and combustion. The overreliance on these resources 
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The accurate prediction of solar irradiance is essential for maximizing renewable energy production. Despite some 

researchers struggling to achieve sufficient prediction accuracy and model quality, we are working on developing a 

forecasting model for solar radiation using advanced artificial intelligence techniques. Solar energy offers a 

sustainable alternative to fossil fuels and has a wide range of applications, making the development of an effective 

forecasting model crucial. This paper proposes a hybrid model that combines deep learning and machine learning 

methods, denoted as CNN-LSTM-MLP-KNN. By combining Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), Multilayer Perceptron (MLP) and K-Nearest Neighbors (KNN), we aim to enhance the 

accuracy and effectiveness of time series forecasting models. The study focuses on extracting spatial and temporal 

patterns from sun irradiance data using CNN and LSTM and uses MLP to examine intricate connections. The 

KNN regressor algorithm is employed to make non-parametric forecasts based on the nearest neighbors, resulting 

in the final forecasting for solar irradiance. Our work relies on the historical Karachi dataset from 2017, 2018, and 

2019, sourced from the NSRDB, which provides sun irradiance measurements at a 15-minute time interval using 

accurate meteorological instrumentation. This dataset covers a 3-year period and comprises 105120 samples with 

24 features. Our proposed model provides more accurate predictions compared to the most recent published 

models, with an R2 Score of 0.9874, MSE of 0.0009, RMSE of 0.0311 and MAE of 0.0118. The source code is 

publicly accessible at https://github.com/Short-Term-Solar-Irradiance-Forecasting. 
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contributes to climate change [3], air pollution [4], health damage [5] and environmental degradation [6], 

emphasizing the need for sustainable and renewable energy alternatives [7].  

The creative solution is to employ renewable energy that is not reliant on fossil fuels. Renewable energy is the 

largest driver of CO2 abatement. One of the most significant renewable energy sources is solar energy, which 

uses sunlight to produce electricity. Furthermore, it serves as a sustainable, clean, and environmentally friendly 

option to restrict fossil fuel usage [8, 9]. Also, the 28th Conference of Parties (COP 28) for climate change 

comes to adopt the urgent need to mitigate fossil fuels. Moreover, it is the first time to observe an official 

health day in COP 28, which has not been seen in the past conferences [10].  

For generating solar energy, it is necessary to use Photovoltaic (PV) cells [11], as they play a critical role in 

converting solar irradiance into electricity. Solar radiation refers to the emission of electromagnetic radiation 

from the sun that can be received on the surface area of solar panels during certain periods of time. Predicting 

the strength of solar radiation in the coming hours and days helps a lot in saving electrical energy for many 

solar energy-based systems, such as heating systems [12], cooling systems [13], and lightening systems [14]. 

Thus, SIF is very important task that determines the efficiency and performance of solar energy systems. 

Predicting the time when the sun does not appear helps to regularly generate electricity for these systems by 

using batteries to store solar energy for later utilization during the time when the sun does not appear. 

Forecasting plays a crucial role in refining the operation of PV systems, leading to economic benefits. 

Due to its importance, predicting solar radiation has become a significant challenge for researchers to develop 

more accurate models. Predicting solar radiation has become a significant challenge for researchers to develop 

more accurate models. Recently, the spread of artificial intelligence, especially deep learning [15] and machine 

learning [16], has played a major role in improving the accuracy of solar radiation prediction. Although many 

linear and non-stationary solar radiation time series datasets are available that can be used to implement this 

system, some researches to date is still unsatisfactory in terms of prediction and model accuracy. 

Many proposed and recently published algorithms for prediction were tested, but the results were not 

satisfactory either, so a new proposed model was made with high accuracy to obtain satisfactory results. The 

proposed model CNN-LSTM-MLP-KN is a new predictive model for 15-minute forecast of solar radiation 

using hybrid CNN-LSTM-MLP models integrated with convergence regression (K-neighbors regressor) and 

error correction. Combining hybrid CNN-LSTM-MLP models with convergence regression, K-neighbors 

regressor, and error correction enhances predictive accuracy by leveraging convolutional, recurrent, and dense 

neural networks for comprehensive feature extraction and temporal dependency modeling. Error correction 

mechanisms further refine predictions, ensuring robust and precise results. This approach is maximizing the 

model's capability to handle complex relationships in the data, resulting in superior performance across 

various applications especially applications based on time series data. 

This study is based on the data recorded for 3 years from 2017 to 2019 using precise instruments, in Karachi, 

Pakistan. The proposed models and own proposed model will train, test, validate on the historical data 

Karachi and compare their performance by using different performance metrics, such as Coefficient of 

Determination (R2), Mean Square Error (MSE), Root Mean Square Error (RMSE), inference time. In the 

context of achieving sustainability, this paper aims to take advantage of advanced artificial intelligence, 

statistical models, deep learning models, hybrid models, and advanced data processing to provide more 

accurate predictions of solar radiation. Our main contributions are outlined as follows: 

 A novel architecture of hybrid CNN-LSTM-MLP-KN for GHI predication is proposed. 

 The proposed CNN-LSTM-MLP-KN is compared with some effective models published recently. 

 Various statistical analyses of the forecasting accuracy are conducted across the photovoltaic grid 

depending on the spatial position. 
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The rest of this article is organized as follows. In Section 2, a literature review. In section 3, we present an 

architectural design of proposed model. Section 4 introduces the materials and methods. Section 5 provides 

the result and discussion. Section 6 presents the conclusions and future directions. 

2 |Literature Review 

Solar radiation prediction has always been the subject of various studies, and it has attracted the attention of 

many researchers around the world [17-19]. We will review and discuss some of the related work that was 

published in SIF. Various DL models [20] and Machine Learning (ML) models [21, 22] are employed for SIF. 

The authors [23] suggested a deep learning approach that combines an improved stacked BiLSTM/LSTM 

model with the Bayesian approach for hourly day-ahead PV forecasting of GHI and POA irradiance. Haider 

et al. [24] performed a comparative study of artificial neural network methods, such as ANN, CNN, and 

LSTM for GHI forecasting using data collected over four years and nine months in Islamabad, Pakistan. The 

research concluded that LSTM is the best, with R2 score of 0.984.  

In [25], a heterogeneous ensemble dynamic selection model was proposed to forecast solar irradiance. 

Moreover, the model is capable of selecting the most appropriate forecasting algorithm from a group of seven 

well-known models, such as ARIMA, Random Forest (RF), Extreme Learning Machine (ELM), Support 

Vector Regression (SVR), Gradient Boosting (GB), multilayer perceptron neural network (MLP), and Deep 

Belief Network (DBN). The model has shown better results compared to the individual performance of the 

seven models. Lai, C.S., et al. [26] developed a hybrid deep learning model based on clustering by grouping 

GHI time series data into clusters. Then, the feature attention deep forecasting model assigns weights to the 

input features for better one-hour-ahead forecasting.  

In this context, Khan, Hammad Ali, et al. [27] presented a comparison of various DL models, such as 

Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Temporal Convolution Network 

(TCN), and Gated Recurrent Unit (GRU) for very short-term SIF in the city of Karachi. LSTM is shown to 

be the best model among them. Azizi, Narjes, et al. [28] implemented multiple DL models, including MLP 

(Multiple Layer Perceptron), LSTM, GRU, Convolution Neural Network (CNN), and CNN-LSTM for long-

term SIF and the results showed that CNN outperformed the other models. In [29], a comparative study is 

conducted using three types of SIF models, including image-based, time series-based, and hybrid models to 

forecast solar irradiance. Furthermore, the proposed hybrid MICNN-L model has proved to be more accurate 

for SIF. Another study [30] presented a DL model that predicts solar irradiance from one step (15 minutes) 

to six steps (1 hour and 30 minutes) ahead.  

Lara-Benítez, Pedro, et al. [31] suggested a new data streaming approach for very short-term real-time SIF 

with changing weather and cloud coverage. Moreover, the authors [32] utilized the DL models to optimize 

renewable energy resources and battery systems by capturing the variations in solar irradiance, wind speed, 

and load demand during the year. For further improvement of the efficacy of the forecasting model [33], the 

hybrid CNN-LSTM-MLP model is incorporated with Variational Mode Decomposition (VMD) and error 

correction for one-hour ahead forecasting. Also, a study performed by Chandel, Shyam Singh, et al. [34] 

proved that the LSTM model is more precise rather than DL networks for different time horizons, whereas 

the GRU model has fewer parameters and may be better for small datasets. 

Sivakumar, Mahima, et al. [35] concluded that the DL models (GRU, LSTM, bidirectional LSTM, CNN,  

Deep Neural Network (DNN)) are more accurate than the machine learning ones (Artificial Neural Network 

(ANN), Support Vector Machine(SVM)) for predicting the solar radiation across multiple cities in India. In 

addition, discrete wavelet transform and VMD techniques are employed for signal processing. Also, in [36], 

the authors proposed a three-stage hybrid model. The first stage typically employed the VMD, whereas the 

second stage applied the feature selection using a partial autocorrelation function. In the third stage, the data 

is passed to a Deep Belief Network-Online Sequential Extreme Learning Machine (DBN-OSELM) and a 

meta-heuristic algorithm is utilized to optimize the hyper-parameters of the model.  
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Neshat, Mehdi, et al. [37] integrated deep residual learning with GRU, LSTM, ResNet50 and an evolutionary 

strategy for one-hour ahead forecasting. The evolutionary strategy is used to tune ten hyper-parameters of 

the proposed hybrid model. Moreover, the authors in [38] adopted DNNs, such as AlexNet and ResNet-101 

to identify the relevant features of total sky imager images, which were then fed into ensemble learning for 

training and forecasting. The statistical results by Ledmaoui, Younes, et al. [39] revealed that ANN is more 

effective compared to its peers of machine learning models (SVR, Random Forest (RF), Extreme Gradient 

Boosting (XGBOOST), Decision Tree (DT) and Generalized Additive Model (GAM)). Additionally, the 

authors [40] focused on very short-term SIF with time horizon from five to 15 minutes. The study introduced 

CNN model to sequences of infrared images from All-Sky Imager to forecast GHI based on different time 

horizons.  

3 |Architectural Process Flow of the Proposed Model 

Figure 1 illustrates the comprehensive procedure of sequential forecasting with error correction and provides 

a more elaborate explanation of the proposed model, starting with the time series data of solar irradiance to 

the final performance evaluation. At the first stage, the data is collected. Secondly, the data is prepared to be 

ready for processing. The data is normalized and divided into training, validation and testing sets. At the third 

stage, the model is trained on the training data and validation sets, while the test set is kept away for final 

evaluation. Finally, the goodness of results for the different models is evaluated using various performance 

metrics.  
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Figure 1. The comprehensive view of the process flow of the proposed model. 

4 |Deep Neural Networks 

The utilization of deep learning algorithms such as convolutional neural network, recurrent neural network, 

long short-term memory, multilayer perceptron, and hybrid models that combine deep learning and machine 

learning methods has demonstrated its efficacy in predicting solar irradiance due to its capacity to comprehend 

complex patterns and interconnections in time-series data. The objective in this particular situation is to 

predict the values of solar irradiance by utilizing Karachi dataset and pertinent meteorological variables. 

4.1 |Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a specialized deep learning model designed specifically, for 

analyzing different datasets, such as images and time series data. Figure 2 describes the architecture of the 

CNN model. Convolutional layers are employed to automatically capture and extract features from the input 

data. The convolutional layers utilize filters to process the input, enabling the network to detect patterns and 

spatial relationships. The convolutional layers produce an output which is then sent to fully connected layers 

to carry out classification or regression tasks. It has shown considerable potential in managing time series 

data, such as forecasting wind speed [41], solar irradiance and stock prices [42]. In the context of 1D 
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convolution, the kernel serves as a filter that extracts features and uses max pooling to reduce the size of the 

input representation by selecting the highest value within a specified pool size window. The activation 

function used for one-dimensional convolutional feature extraction employs the Rectified Linear Unit (ReLU) 

activation function, where the activation function for the output layer is sigmoid for regression. 

 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)                                                 (1) 

𝜎(𝑥) =
1

1+𝑒−𝑥                                                          (2) 

𝜎 is a sigmoid function and 𝑒 is e is the mathematical constant of 2.718. 

 
Figure 2. Architecture of CNN. 

 

4.2 |Long Short-term Memory 

Long Short-Term Memory (LSTM) is a specific form of Recurrent Neural Network (RNN) that has 

exceptional proficiency in handling sequential input [43]. The vanishing gradient problem is resolved by 

integrating memory cells with gating mechanisms. LSTM models have the ability to retain information 

throughout extensive sequences, which makes them well-suited for tasks involving natural language 

processing and time series analysis. They possess an inherent memory state that grants them the ability to 

deliberately discard or retain information, so facilitating the acquisition of long-term connections. LSTMs 

consist of input, forget and output gates that regulate the information flow inside the network in addition the 

activation function is tanh. 

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                                     (3) 

The components of the system include the forget gate (ft), the memory state (Ct), the input gate (it), the 

output gate (ot), the hidden state (h) and the memory state (c), as shown in Figure 3. 
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Figure 3. Architecture of LSTM. 

 

4.3 |Multilayer Perceptron Network 

Multilayer Perceptron (MLP) is a specific type of feedforward neural network and its architecture is illustrated 

in Figure 4. The architecture has an input layer, one or more hidden layers and an output layer [44]. Every 

layer consists of several interconnected artificial neurons or nodes. MLPs employ non-linear activation 

functions to incorporate non-linearity into the model, allowing for the acquisition of intricate patterns within 

the data. The training process involves utilizing backpropagation which is a technique in which the error is 

propagated in a reverse manner across the network to make adjustments to the weights and biases. MLPs are 

extensively employed for tasks such as classification, regression, and pattern recognition.  

 
Figure 4. The structure of MLP. 

 

4.4 |Multilayer Perceptron Network 

Hybrid models are created by integrating various neural network architectures to capitalize on their own 

strengths and tackle unique issues. Hybrid models, which incorporate various models like CNNs, LSTMs, or 

their variations, have the ability to capture both local and global features, manage sequential or temporal 

dependencies, and handle diverse forms of input. These models are extensively utilized in many fields, such 

as computer vision, natural language processing, and time series analysis. Hybrid models utilize the combined 
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strengths of different architectures to improve efficiency and flexibility. This allows for more precise and 

thorough modeling of intricate data [45]. Figure 5 describes the structure of CNN-LSTM model. 

 
Figure 5. The structure of CNN-LSTM. 

 

5 |The Proposed Hybrid CNN-LSTM-MLP-KNN Model 

In this section, we described the proposed hybrid model, as can be shown in Figure 6. The structure of the 

proposed CNN-LSTM-MLP-KNN model is defined as follows: 

 Convolutional layers 

- The first Conv1D layer consists of 128 filters with a kernel size of 3 units and ReLU activation 

function. 

- The second Conv1D layer consists of 128 filters with a kernel size of 3 and uses ReLU activation 

function. 

- Dropout layer with a dropout rate of 0.3. 

- The MaxPooling1D layer has a pool size of 1. 

 LSTM layers  

- First LSTM layer with 64 units and returning sequences. 

- The second LSTM layer consists of 64 units. 

 Flatten layer  

- It compresses the output prior to forwarding it to the dense layers. 

 MLP layers  

- First dense layer consists of 64 units with ReLU activation function. 

- The second dense layer consists of 32 units with ReLU activation function. 

- The third dense layer consists of 16 units with a 'sigmoid' activation function. 

The output from the last layer is utilized as input for a KNN regressor model with the specified parameters. 

The model contains a parameter K, which determines the number of neighbors to be taken into consideration. 

The K value is set to 20. The weights are set to 'uniform', indicating that all points are given identical weight 

in the regression. The model automatically chooses the most suitable algorithm based on the training data. 
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Figure 6. The structure of the proposed Model CNN-LSTM-MLP-KNN. 

 

6 |Results and Discussion 

6.1 |Experiment Setup 

The various deep learning models are implemented within the same environment. Also, the Kaggle platform 

is employed for conducting and training all algorithms using the Nividia Tesla P100 GPU and 16 GB of RAM. 

Furthermore, the models are programmed in Python language of version 3.10.12. All deep learning algorithms 

were developed under identical conditions: Keras API Version 2.12.0, a window length of 288 and the 

AdamW optimizer with a learning rate of 0.01. The AdamW optimizer is a version of the Adam optimizer 

that integrates weight decay or L2 regularization directly into the update process. It is intended to enhance 

generalization performance and minimize overfitting in comparison to conventional weight decay techniques. 

The loss is calculated using Mean Squared Error when the model is compiled. The training and validation 

datasets are iterated through for 300 epochs. 

6.2 |Models Evaluation 

Evaluating the proposed models by using test data and assessing its performance using several evaluation 

metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) 

and R2 Score [46]. In addition to illustrative charts displaying the accuracy of the model in the training process, 

the time spent, and a box plot of the predicted values to know the level of data concentration and summarize 

data distributions, detect skewness, identify outliers and compare distributions. 

 Mean squared error  

For calculating the MSE, take the real value, subtract the predicted value, and square that difference. 

Repeat that for all samples. Then, summation all of those squared values and divides by the number 

of samples. It is computed as follows: 

MSE =
Σ(𝑦𝑖−𝑝𝑖)2

𝑛
                                                                    (4) 

 Root mean square Error 

The Root Mean Squared Error (RMSE) is most performance indicators for a regression models. It 

measures the average difference between predicted values and real values. The lower the RMSE, the 

better the model and its predictions are. It can be calculated by: 
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RMSE = √∑ .𝑁
𝑖=1 (𝑥𝑖−𝑥

^
𝑖)2

𝑁
                                                          (5) 

Where 𝑥𝑖 denotes the real values and 𝑥
^

𝑖 determines the predicted values and N is the number of 

samples. 

 Mean absolute error 

The Mean Absolute Error (MAE) is defined as the average variance between the real and predicted 

values. It can be mathematically formulated by: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦1 − 𝑦

^

𝑖|2
𝑛

𝑖=1
                                                         (6) 

Where 𝑦𝑖 indicates the predicted value, 𝑝𝑖 refers to the real values, 𝑛 indicates the number of samples. 

 R2 Score 

The regression coefficient determines the best possible score is 1.0, and less than that is less efficient 

and gets worse. R2 score can be calculated by: 

𝑅2 = 1 −
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇
= 1 −

Σi(𝑦𝑖−𝑦
^

𝑖)2

Σi(𝑦𝑖−𝑦)2                                               (7) 

6.3 |Dataset Description 

The Karachi dataset from 2017, 2018 and 2019, obtained from [47], offers solar irradiance readings with a 

time resolution of 15 minutes for getting meteorological parameter by using precise meteorological 

instruments. The dataset spans a duration of 3 years and contains a total of 105,120 samples with 24 features 

[Year, Month, Day, Hour, Minute, Temperature, Clearsky DHI, Clearsky DNI, Clearsky GHI, Cloud Type, 

Dew Point, DHI, DNI, Fill Flag, GHI, Ozone, Relative Humidity, Solar Zenith Angle, Surface Albedo, 

Pressure, Perceptible Water, Wind Direction, Wind Speed and date [48]. Figure 7 depicts the distribution of 

data values over time. 

 
Figure 7. The distribution of data values over time. 

 

6.4 |Dataset Distribution 

Different statistical measures, such as mean, standard deviation, and quartiles (minimum, 25th percentile, 

median, 75th percentile, maximum) provides more insights into the central tendency, spread and distribution 

of the data. Additionally, it enables to identify the outliers and anomalies through the range of values and it's 

useful for data cleaning, quality assessment, exploratory data analysis to use it in predictions. The mean (  ) 

and Standard Deviation (SD) of these values are calculated by the following equations, respectively. 

𝜇 =
∑𝑥𝑖

𝑛
                                                                                            (8) 
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𝑆𝐷 = √
∑(𝑋−𝜇)2

𝑛
                                                                                (9) 

where 𝜇  refers to the mean and xi = ith observation, 1 ≤ i ≤ n. n is Number of observations. SD is the standard 

deviation. Box plots are employed to summarize data distributions, detect skewness, identify outliers, and 

compare distributions. They offer a graphical depiction of 5 quarters, as shown in Figure 8. The minimum 

(Min) value is the smallest value in the dataset not including any outliers. The first quartile (Q1), also known 

as the lower quartile, represents the number below which 25% of the data lies. The median (Q2) represents 

the value that divides the dataset into two equal halves. It divides the values into two equal parts, with half 

below and half above. The Third Quartile (Q3) represents the point at which 75% of the data falls below it. 

The maximum (Max) contains the highest value in the dataset, not including any outliers. 

Table 1 records the statistical analysis for the distribution of data for Karachi dataset, in terms of their values 

count, mean, Min, Max, first quartile, third quartile and SD. The dataset have different distributions, where 

some variables have a wide range of values with significant variations, such as GHI, DNI, while other variables 

have smaller ranges and lower variations, such as Temperature, Wind Speed and Perceptible Water. 

 

Figure 8. Box plot diagram. 

Table 1. The statistical analysis for data distributions of Karachi dataset. 

 Count Mean Min First quartile Median Third quartile Max Std 

Year 105120 2018 2017 2017 2018 2019 2019 0.8165 

Month 105120 6.526027 1 4 7 10 12 3.447868 

Day 105120 15.72055 1 8 16 23 31 8.796289 

Hour 105120 11.5 0 5.75 11.5 17.25 23 6.922219 

Minute 105120 22.5 0 11.25 22.5 33.75 45 16.77059 

Temperature 105120 26.56804 11.1 23.4 27.2 30 40.1 4.880504 

Clearsky DHI 105120 101.3397 0 0 0 195 603 128.7611 

Clearsky DNI 105120 223.9575 0 0 0 487 957 280.521 

Clearsky GHI 105120 251.9437 0 0 0 546 1039 325.4948 

Cloud Type 105120 1.332544 0 0 0 2 12 2.373412 

Dew Point 105120 18.75525 -10.6 13.4 21.6 25.1 28.5 7.557533 

DHI 105120 100.9 0 0 0 191 603 132.7869 

DNI 105120 186.825 0 0 0 383 957 265.8622 

Fill Flag 105120 0.17519 0 0 0 0 5 0.764574 

GHI 105120 225.1345 0 0 0 464 1039 303.9781 

Ozone 105120 0.270101 0.217 0.261 0.273 0.281 0.341 0.016094 

Relative Humidity 105120 66.10673 9.1 48.88 68.785 85.0025 100 21.82006 

Solar Zenith Angle 105120 89.74373 1.6 52.93 89.45 126.76 178.59 43.10112 

Surface Albedo 105120 0.177836 0.16 0.18 0.18 0.18 0.2 0.006577 

Pressure 105120 1008.235 991 1002 1009 1014 1026 6.720981 

Perceptible Water 105120 2.839464 0.3 1.6 2.4 3.9 8 1.657345 

Wind Direction 105120 219.4983 0 219 245 263 360 83.69508 

Wind Speed 105120 3.535639 0.2 2.3 3.3 4.6 10.2 1.64857 

Date 105120 
2/7/2018 

52:30.0 

1/1/2017 

0:00 
1/10/2017 17:56 

2/7/2018 

11:52 
2/4/2019 5:48 

31/12/20

19 23:45 
NaN 

 

6.5 |Data Preparation 

Initially, the process of data cleaning is executed to eliminate any discrepancies, null values, and extreme values 

that have an impact on the effectiveness of the model. Additionally, doing data normalization is crucial to 
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guarantee that all features are standardized to a comparable scale, hence avoiding the dominance of any 

specific feature during model training. In addition feature selection to select features that have positive 

correlation and this enhance quality of data. Subsequently, the data is subjected to window sizing to enable 

the model to effectively capture temporal patterns in solar irradiance data. Ultimately, the dataset is divided 

into three distinct sets: training, testing, and validation. This division allows the model to be trained on one 

piece of the data, evaluated on another section, and validated on a separate portion to examine its capacity to 

generalize. The last ten days of data were exclusively allocated for testing, while the remaining dataset was 

divided into 80% for training and 20% for validation. 

Exploratory data analysis uncovered a significant quantity of roughly 52,986 GHI values that are equal to 

zero. These values correspond to nighttime measurements and are clearly 0 because there is no solar radiation 

present. Hence, it is advisable to delete the values during nighttime. This may be achieved by opting to clear 

the data between 7:00 PM and 5:00 AM, during which the sunset occurs till sunrise at 5:00 AM. Utilize 

exclusively the data collected during daylight hours when solar radiation is present. Upon completion of these 

procedures, the values were lowered to 28,004. This number is considered quite large and considering the 

data spans a period of three years, encompassing a minimum of nine winter months. Each year consists of 

three months, namely December, January, and February. During this period, the duration of daylight is 

reduced and the skies are frequently overcast. According to the examination of exploratory data, the minimum 

temperature recorded is 11.1 degrees, suggesting that it corresponds to the winter season. This suggests 

occasional cold weather and insufficient visibility of the solar radiation 

As mentioned there are various distributions with a wide range and small range in the dataset. It is crucial to 

perform data normalization by min–max normalization to scaled data in the range (0, 1) for several reasons: 

to standardize features, prevent biased results, enhance the stability and convergence of deep learning 

algorithms, mitigate the impact of outliers, and reduce computational complexity and storage needs.  

𝑥scaled =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                          (10) 

𝑥scaled  defines scaled data in the range (0, 1). X determines sample. 𝑥𝑚𝑖𝑛 represents the minimum value. 𝑥𝑚𝑎𝑥 

indicates the maximum value. 

Figure 9 displays the heatmap correlation of all features. The darker degree of red and blue colors indicates a 

strong correlation, while the brighter one indicates weak correlation. Pearson correlation coefficient finds the 

correlation between all the features. Our investigation revealed the existence of multiple attributes, including 

"year", "month", "day", "hour", and "minute". These attributes can be consolidated into a single feature that 

encompasses both date and time. Consequently, they can be extracted from the individual attributes and 

included into one unified feature, thereby eliminating redundancy. Some variables, such as "Cloud Type", 

"Ozone", "Solar Peak Angle", "Surface Albedo", "Clearsky DHI", "Clearsky DNI", "Clearsky GHI", "DHI", 

"DNI", and "Fill the tag", have a negative correlation. From this analysis, the variables with the strongest 

correlation to the target variable were chosen. These variables include "Temperature", "Dew Point", "Wind 

Speed", "Relative Humidity", "Pressure", "Precipitable Water", "Wind Direction", and "GHI". A heat map 

can be used to visually represent these variables. 
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Figure 9. The heatmap correlation of the features. 

 

In neural networks, a window size refers to the number of past time steps used as input to predict the next 

time step considered at each iteration (see Figure (10)). It is an important parameter that affects the model's 

ability to capture temporal dependencies and make accurate predictions when dealing with time-series data. 

By selecting a suitable window size, the model has the ability to capture both short-term and long-term 

patterns in the time-series data. A reduced window size prioritizes recent information and is appropriate for 

capturing temporary relationships. Conversely, a bigger window size enables the model to take into account 

a wider range of information and capture dependencies that span over a longer period of time. As we 

mentioned that the Karachi dataset provides solar irradiance readings at a time resolution of 15 minutes. For 

our analysis, we will focus on the past 3 days because we deal with short term task, resulting in a total of 288 

readings. Each day consists of 24 hours, with each hour having 4 readings. Multiplying 4 readings per hour 

by 24 hours per day gives us 96 readings per day. Multiplying this by 3 days gives us a total of 288 readings. 

 
Figure 10. The window size of the neural networks. 

 

6.6 |The Findings of the Proposed Model Against other Deep Learning Models 

This subsection investigates the performance of the proposed model compared to nine models of the most 

well-known and recent deep learning models. Table 2 displays the results of the different deep learning model, 

Time 
Series 
Points Time 

0 4 8 12 

1 4 

2 5 

3 6 

4 7 

5 8 

6 9 

7 10 

8 11 

12 9 

Window size for time step 
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including CNN [28], LSTM [27], CNN-LSTM [30], MLP [31], CNN-LSTM-MLP [33], TCN [27], Attention 

mechanism [49], BI-LSTM [50] and CNN-Attention LSTM [51] compared to the proposed model (CNN-

LSTM-MP-KNN) for short-term solar irradiance forecasting. It reveals that the proposed model attained the 

highest R2 value of 0.9874 and the lowest values for MSE, RMSE and MAE with values of 0.0311, 0.0009 

and 0.0118, respectively. These values indicate the superiority of our proposed model over the other models. 

The LSTM model achieved a second-place ranking with an R2 value of 0.9695, followed by the CNN model. 

Although MLP takes the least training time with a value of 115.6595 seconds, its performance is poor with 

R2 score value = 0.7799. Unfortunately, the CNN-LSTM model has the worst performance with R2 value of 

0.7520.  

Figure 11 presents the ranks of each model for predicting the solar irradiance based on the four performance 

metrics: R2 score, MSE, RMSE and MAE to give us a general view for the models performance. We can see 

that the proposed CNN-LSTM-MLP-KNN model has the best ranks for all metrics. Figure 12 displays the 

models' prediction plots, demonstrating their performance and variations in the context of short-term solar 

irradiance forecasting. The figure shows that the predicted data of the proposed model better fits the actual 

data than the other models, whereas CNN-LSTM predictions doesn't fit well with the actual data. 

Tables 3-5 bring graphs depicting the historical loss values and RMSE for all previous models. The data 

history across 300 epochs and show the loss function values from both the training and validation phases of 

the models. After examining the table, it is clear that the suggested model has outstanding stability and 

accuracy. The graphs depicting the loss values show steady and slight variations during both the training and 

validation stages. The stability demonstrates that the suggested model effectively learns from the input and 

generates dependable outcomes. The CNN-LSTM model also shows steady outcomes, although not as 

consistently as the suggested model. Although the CNN-LSTM model may experience slight changes in the 

loss values, it demonstrates strong performance. The charts clearly show that the proposed model 

outperforms other neural network models in terms of predictions. 

Figure 13 and 14 illustrate the models' inference and training time. The charts indicate that the proposed 

model requires a significant amount of time for training, approximately 2097.1165 seconds, but significantly 

less time for prediction of MLP, around 115.6596 seconds. CNN-LSTM has the worst training value of 

2468.7109. Although the proposed model comes in the seventh rank, it has the lowest inference time with 

value of 0.1703. Figure 15 shows the boxplot of loss values of the six models. As mentioned that the boxplots 

are used to summarize data distributions, detect skewness, identify outliers and compare distributions. They 

provide a visual representation of five metrics. We used it to summarize the distribution of model loss during 

training to identify skewness and detect outliers. MLP and CNN models exhibit outliers, but the proposed 

model shows a more even distribution of data. The loss values of the proposed model are distributed in a 

dense concentration. 

Table 2. The numerical results obtained by the different deep learning models. 

Model Name # Parameters Model training time R2 Score MSE RMSE MAE 

CNN-LSTM-MLP-KNN 141313 2097.1165 0.9874 0.0009 0.0311 0.0118 

CNN [28] 716201 526.9438 0.9589 0.0031 0.0563 0.0265 

CNN-LSTM [30] 2484609 542.6634 0.7520 0.1227 0.1385 0.1227 

LSTM [27] 51521 1210.9236 0.9705 0.0022 0.0477 0.0172 

MLP [31] 65217 115.6596 0.7799 0.0170 0.1304 0.0646 

CNN-LSTM-MLP [33] 71713 1572.2155 0.8850 0.0088 0.0943 0.0890 

CNN-Attention-LSTM [51] 2351713 1529.9048 0.9357 0.0561 0.2370 0.0561 

Attention [49] 28929 865.3272 0.9817 0.0091 0.0957 0.0091 

TCN [27] 2435073 2198.6368 0.9822 0.0145 0.1205 0.0145 

BI- LSTM [50] 260097 2468.7109 0.9786 0.0246 0.1571 0.0246 

Bold font indicates the best results 
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Figure 11. The ranks of the different models based on various performance metrics. 

Table 3. Loss functions values and RMSE values during epochs for CNN, CNN-LSTM and the proposed CNN-

LSTM-MLP-KNN models. 
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Figure 12. Predictions plots of the different deep learning models. 
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Table 4. Loss functions values and RMSE values during epochs for LSTM, MLP and the CNN-LSTM-MLP models. 

Model  Loss graphs RMSE graphs 

LSTM 

  

MLP 

  

CNN-

LSTM-MLP 

  

 

 

 

 

 

 

 

 

 

 

 



 A Hybridized CNN-LSTM-MLP-KNN Model for Short-Term Solar Irradiance Forecasting 

 

08

 

   

Table 5. Loss functions values and RMSE values during epochs for CNN Attention LSTM, Attention, TCN and BI-

LSTM models. 

Model  Loss graphs RMSE graphs 

CNN 

Attention 

LSTM 

  

Attention 

  

TCN 

  

Bi-LSTM 
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Figure 13. The Inference time of different models. 

 

 
Figure 14. The training time of different models. 

 

 
Figure 15. Boxplot of loss values for the different models. 
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7 |Conclusions and Future Works 

This study aims to create a model for predicting solar radiation using advanced artificial intelligence methods.  

Solar energy is a sustainable alternative to fossil fuels with a broad range of applications. This study utilized a 

unique dataset named Karachi. The Karachi dataset obtained from the NSRDB, offers precise sun irradiance 

readings at a 15-minute frequency using reliable meteorological equipment. The dataset spans a 3-year period 

and consists of 105120 samples with 24 characteristics. The model being proposed is a hybrid that integrates 

deep learning and machine learning techniques. The project aims to identify spatial and temporal patterns 

from solar irradiance data by utilizing CNN and LSTM. Additionally, the proposed model employs MLP to 

analyze and comprehend complex relationships. The KNN regressor algorithm is utilized for non-parametric 

forecasting by using the nearest neighbors to provide the ultimate solar irradiance projection. Five recently 

published models were compared with the proposed model. The results showed that the proposed model is 

more efficient compared to the other five models. 

In the future, we aim to apply our model to other forecasting issues, such as weather forecasting [52] and 

wind power forecasting [53]. Hyperparameter tuning is a crucial task, as it impacts the model efficiency. 

Hence, we hope to utilize a specific hyperparameters tuning technique to find the optimal parameters' values. 
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