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1 |Introduction    

Brain Tumors are a significant public health issue that affects people of all ages and can cause neurological 

deficits, seizures, and cognitive impairment [1]. Lower-grade gliomas (LGGs) are a group of brain tumors 

with a World Health Organization (WHO) grade of II or III. These tumors are typically slow-growing and 

have a better prognosis than high-grade gliosis (HGGs) [2]. However, they remain a significant clinical 

challenge because they are infiltrative and can cause significant morbidity and mortality [3]. 

Surgical resection is the primary treatment for LLGs, but complete tumor removal is often not possible due 

to the tumor’s infiltrative nature, resulting in residual tumor cells [4]. Therefore, the evaluation of the extent 
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Brain tumors represent a significant public health issue worldwide, affecting individuals across all age groups and 

leading to severe neurological and cognitive deficits. Lower-grade gliomas (LGGs), classified by the World Health 

Organization (WHO) as grade II or III, are characterized by more diffuse infiltration into brain tissue compared to 

high-grade gliomas but exhibit a slower growth rate. Precise evaluation of tumor resection and detection of residual 

tumor cells are critical, as incomplete resection is associated with an increased risk of disease recurrence. This study 

reviews an automated, deep learning-based approach for brain tumor segmentation in Magnetic Resonance Imaging 

(MRI) using the U-Net architecture to improve diagnostic precision. Utilizing the Multimodal Brain Tumor Image 

Segmentation Benchmark (BRATS) dataset, the study applies preprocessing, data augmentation, and model training 

conducted on Google Colaboratory. Performance evaluation metrics, including the Dice Similarity Coefficient 

(DSC), sensitivity, and specificity, indicate the model’s effectiveness, with a DSC of 0.89, sensitivity of 0.87, and 

specificity of 0.99. The study also highlights the potential of radiogenomics, which correlates imaging features with 

tumor genomics, to enable personalized treatment strategies for LGG patients and improve survival outcomes. 

This work underscores the value of deep learning in automated MRI segmentation and its potential to significantly 

enhance patient outcomes in clinical practice.  
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of tumor resection is crucial as incomplete resection can lead to tum or recurrence and negatively affect 

parents’ outcomes [5]. Radiological imaging, especially magnetic resonance imaging (MRI) is used to evaluate 

the extent of the tumor resection and the effectiveness of treatment is given in Figure 1. 

 
Figure 1. Brain MRI Segmentation in Brain Tumor. 

 

Medical image segmentation is the process of extracting relevant information from medical images to support 

clinical decision-making [6]. Accurate segmentation of brain tumors on MRI is challenging due to the 

heterogeneity of the tumor shape, size, and location, as well as the presence of edema and necrosis [7]. Manual 

segmentation of MRI images is time-consuming, tedious, and subject to inter-observer variability. Therefore 

the development of automated segmentation methods is essential for facilitating accurate and efficient tumor 

detection and monitoring [8].  

In recent years, deep learning has revolutionized medical image analysis, and numerous studies have explored 

its use for MRI segmentation in brain tumor diagnosis and treatment planning [9, 10]. U-Net, a deep 

Convolutional Neural network architecture, has shown segmentation. U-Net uses a contracting path to 

capture the context and a symmetric expansive path to enable precise localization of the target structure [11].  

Radio genomics is an emerging field that investigates the relationship between genomic characteristics of 

tumors and medical imaging features. Recent studies have shown that tumor shape features extracted from 

MRI are associated with LGG’s genomic subtypes [12]. This association provides valuable information for 

predicting patients’ outcomes, especially in cases where surgical resection is not possible. Furthermore, radio 

genomes have the potential to identify novel therapeutic targets and biomarkers for LGGs [13].  

The development of automated brain tumor segmentation using deep learning techniques, particularly U-Net, 

has the potential to improve the accuracy and efficiency of tumor detection the monitoring, leading to better 

patient outcomes [14]. Furthermore, the integration of radio genomics into medical imaging analysis has the 

potential to provide personalized treatment strategies for LGG patients, which can improve survival rates 

and quality of life [15]. Therefore, continued research in this area is crucial to improving the management of 

LGGs and ultimately improving patient outcomes [16].  

The primary objective of this paper is to advance an automated framework for accurate brain tumor 

segmentation from MRI scans, specifically targeting lower-grade gliomas (LGGs). Accurate localization and 

volume determination of LGGs are essential for planning surgical interventions and evaluating therapeutic 

efficacy. This study aims to enhance segmentation reliability and precision by employing deep learning 

techniques, specifically utilizing a U-Net architecture. Traditional brain tumor segmentation methods are 

often complex, time-consuming, and heavily reliant on radiologist expertise. In contrast, this work leverages 

U-Net’s encoder-decoder architecture, tailored to accurately capture regions of interest, alongside 

preprocessing and data augmentation techniques to improve model robustness. Furthermore, the study 

integrates radiogenomic analysis, linking MRI-derived tumor characteristics with genetic markers to guide 

personalized treatment strategies. Through these advancements in segmentation and radiogenomic insights, 

the study contributes to developing a more automated, objective, and potentially prognostic model for brain 

tumor segmentation, facilitating improved diagnostic accuracy and individualized treatment. Experimental 

results on the BRATS dataset demonstrate high segmentation accuracy, underscoring the effectiveness of the 

proposed deep learning and radiogenomic approach in enhancing prognostic outcomes for LGG patients. 
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2 |Literature Review 

Lower-grade gliomas (LGGs) necessitate precise identification of their location and volume in MRI scans to 

inform surgical strategies, plan interventions, and evaluate treatment efficacy [17, 18]. Traditional approaches 

to brain tumor segmentation in MRI imaging are resource-intensive, relying heavily on radiologists' expertise 

and subjective observation, which has spurred interest in automated segmentation techniques, especially 

through deep learning frameworks [19]. Recent advancements in Convolutional Neural Networks (CNNs) 

have shown significant promise in medical imaging applications, with the U-Net model emerging as a robust 

architecture for efficient image segmentation [20]. 

2.1 |Deep Learning in Medical Image Segmentation 

Initial brain tumor segmentation techniques utilized machine learning algorithms focused on specific features, 

such as texture, intensity, and shape [21]. For example, Zhao et al. implemented Support Vector Machine 

(SVM) and Random Forest methods based on handcrafted features; however, these models struggled with 

generalization on unseen datasets due to the reliance on fixed feature sets [22]. The advent of deep learning 

has enabled CNNs to autonomously learn relevant features from raw images without manual feature 

extraction, effectively capturing hierarchical image patterns in a region-free and semi-supervised fashion. In 

this context, the U-Net architecture has gained prominence for brain tumor segmentation due to its 

adaptability and high accuracy [23]. 

2.2 |U-Net Architecture for Brain Tumor Segmentation 

The U-Net model, introduced by the Author revolutionized biomedical image segmentation with an encoder-

decoder structure that efficiently captures spatial and hierarchical features [24]. The architecture comprises a 

contracting path to extract context and an expanding path to achieve precise localization, allowing it to excel 

in medical imaging tasks [25]. U-Net has demonstrated substantial effectiveness in brain tumor segmentation 

tasks, achieving high accuracy with comparatively low computational demands. Recent modifications to the 

U-Net architecture have further improved its performance [26]. For instance, the Author introduced a multi-

scale U-Net, which incorporates additional contextual information from the encoder path, enhancing 

segmentation precision for complex tumor structures. 

Experimental studies on benchmark datasets, such as BRATS, have validated U-Net's ability to achieve high 

Dice Similarity Coefficient (DSC), sensitivity, and specificity for brain tumor segmentation. The author 

demonstrated that a modified U-Net with additional layers achieved a DSC of 0.85 or higher for LGG 

segmentation on the BRATS dataset [27]. The author reported substantial improvements by integrating 

Variational Autoencoders (VAEs) with U-Net, which helped capture the structural heterogeneity in gliomas, 

further establishing U-Net as a versatile and effective architecture for brain tumor segmentation [28]. 

2.3 |Benefits of Data Augmentation and Preprocessing Techniques 

Deep learning-based segmentation models are heavily reliant on the availability and quality of labeled datasets. 

For brain tumor segmentation tasks, datasets such as BRATS provide multimodal MRI scans with detailed 

annotations, offering a valuable resource [29]. However, to enhance the generalization capability of the model, 

data augmentation techniques such as denoising, random rotation, scaling, and elastic deformations are 

essential. Novelists emphasized that such augmentations improve model robustness, especially in medical 

imaging contexts where annotated data is often scarce [30]. Furthermore, preprocessing techniques, including 

normalization and intensity standardization, reduce variations across images from different scanners, as 

shown by the author who demonstrated that these standardization methods can substantially enhance 

segmentation performance [31]. 

2.4 |Radiogenomics and Personalized Medicine 
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Radiogenomics, the correlation of imaging-derived features with genomic data, presents significant potential 

for personalized glioma treatment. This approach enables treatment planning based on both imaging 

characteristics and molecular profiles of the tumor. For instance, a writer identified MRI features associated 

with genetic mutations in gliomas, such as IDH1/IDH2 mutations and MGMT methylation, which have 

diagnostic and therapeutic significance [32]. Radiogenomics also offers prognostic value, as imaging features 

linked with genetic mutations have been used to construct predictive models for progression-free survival in 

glioma patients. 

2.5 |Integrating Deep Learning with Radiogenomics 

Recent research explores combining deep learning-based segmentation with radiogenomic data to improve 

segmentation accuracy and predict molecular tumor characteristics from imaging alone. Novelists developed 

a CNN model that integrates both imaging and radiogenomic data, enabling accurate prediction of glioma 

genetic profiles, as further validated [33]. This approach is especially relevant in LGG cases where complete 

tumor resection is challenging due to infiltration into critical brain regions. The combination of segmentation 

outputs from deep learning with radiogenomic insights allows clinicians to better understand the tumor's 

microenvironment and biological behavior, facilitating personalized treatment strategies. This research aims 

to use deep learning for automatic brain MRI segmentation, specifically using the Dice Similarity Coefficient 

as the evaluation. 

3 |Method and Experiment 

This method used to realize brain MRI segmentation involves the use of deep learning, Specifically the U-

Net architecture, to train a model to automatically segment brain tumors on MRI images. Google collaborator 

was used to train the model.  

The Process of realization includes the following steps: 

3.1 |Data Preparation 

The first step is to prepare the data by dividing the available data into training, validation, and testing sets 

used to evaluate the model’s performance. The Hyperparameters and the test set are used to evaluate the 

model’s performance. The dataset used in this study is the Multimodal Brain Tumor Image Segmentation 

Benchmark (BRATS) dataset given in Figure 2, which contains preoperative MRI scans and manual 

annotations of brain tumors [34-36]. 

 
Figure 1. Overview of data set. 
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3.2 |Preprocessing 

The MRI images are preprocessed by rescaling the pixel values to the range of [0,1] and normalization the 

images to have zero means and unit variance. Additionally, data augmentation techniques such as random 

rotation, flipping, and scaling are applied to increase the model’s robustness and prevent overfitting.  

If Ioriginal is the original pixel intensity, then the rescaled pixel value Irescaled in the range [0,1] can be calculated 

as:  

𝐼𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
                (1) 

where 𝐼max and 𝐼min are the maximum and minimum pixel values in the original image.  

After rescaling the given data normalization is used to bring the data to the mean zero, standard deviation 

one which could stabilize the model during the process of training.   

Let Irepresent the pixel values after rescaling, with mean 𝜇 and standard deviation 𝜎. The normalized pixel values 

Inormalized can be obtained using:  

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼−𝜇

𝜎
               (2) 

where 𝜇 =
1

𝑁
∑ 𝐼𝑖

𝑁
𝑖=1 and 𝜎 = √

1

𝑁
∑ (𝐼𝑖 − 𝜇)2𝑁

𝑖=1 , with N being to total number of pixels in the image. 

3.3 |U-Net Architecture 

The U-Net architecture is a popular deep learning Model (DL) for medical image segmentation. It consists 

of a contracting path that captures context and a symmetric expansive path that enables precise localization 

of the target structure. The contracting consists of repeated application of convolutional layers, followed by 

max polling, while the expansive path uses transposed convolutional layers to up-sample the feature maps to 

the organic image size (see Figure 3).  

 

Figure 2. U-Net architecture. 
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The U-Net architecture's mathematical foundation can be understood by breaking down its two main paths: 

the contracting (encoder) path on the other hand is the path that deals with a widening of the input signal. 

3.4 |Contracting Path (Encoder) 

The encoder path is for handling of spatial context of the input picture. It is made of a bunch of Convolution 

– layers and a few ReLU nonlinearity followed by a Max-Pooling layer for downsampling.  

3.4.1 |Convolutional Layers 

Since convolutional stages and layers are typically referred to, each convolutional layer convolves over the 

input to produce feature maps. Suppose that X is the input feature map of the layer, W is the convolutional 

filter weights and b is the corresponding biases. Then, each convolution operation can be represented as:  

𝑌 = 𝜎(𝑊 ∗ 𝑋 + 𝑏)               (3) 

where ∗ denotes the convoluting operation and 𝜎 is an activation function, typically ReLU. 

3.4.2 |Downsampling with Max-Pooling 

A max-pooling is performed after each of the convolutional blocks to downsample the feature maps to lessen 

the spatial dimension. If X is a feature map, max-pooling can be represented as:  

𝑌[𝑖, 𝑗] = max
𝑚,𝑛∈𝑝𝑜𝑜𝑙

𝑋 [2𝑖 + 𝑚, 2𝑗 + 𝑛]             (4) 

where m and n range over the dimensions of the pooling window, usually 2×2.  

3.4.3 |Expansive Path (Decoder)  

The decoder path is aimed at reconstructing high spatial resolution feature maps and increasing their 

dimensionality for accurate structure definition.  

3.4.4 |Transposed Convolution (Up-sampling) 

To reintroduce spatial extent, transposition, also referred to as deconvolution is employed in up sampling of 

features. The transposed convolution for an input feature map X with filter weights W and bias b can be 

represented as:  

𝑌 = 𝜎(𝑊𝑇 ∗ 𝑋 + 𝑏)               (5) 

where 𝑊𝑇Stands for the filter weights when the filter is transposed.  

3.4.5 |Skip Connections 

Active reader recapitulation In U-Net, skip connections are employed on one hand to concatenate feature 

maps originating from the contracting path to be connected to the expansive path. If Yencoder and Ydecoder 

are feature maps from the encoder and decoder paths, respectively, then the skip connection operation can 

be represented as:  

Yskip = Concat(Yencoder , Ydecoder)             (6) 

where 𝐶𝑜𝑛𝑐𝑎𝑡 corresponds to the concatenate along the channel axis.  

3.4.6 |Final Output Layer  

The last component is an additional 1 × 1 convolution in U-Net to map out the feature maps to the number 

of the class number (such as foreground and background for binary classification).  

Let Y denote the output of the last layer of the decoder, and Wout and bout denote the weights and biases 

of the 1×1 convolution layer respectively. Then the final output Z, is given by:  

𝑍 = 𝜎(𝑊𝑜𝑢𝑡 ∗ 𝑌 + 𝑏𝑜𝑢𝑡)          (7) 
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Here Z is the segmentation map. 

Such a structure also allows U-Net to maintain the integration of context from the contracting path and 

localization from the expansive path for precise segmentation in various medical imaging.  

Training: The model is trained using stochastic gradient descent with the binary cross entropy loss function. 

The learning rate, batch size=14, and number of epochs =200 are hyperparameters that need to be optimized 

during the validation phase. The validation set is used to select the optimal hyperparameters by monitoring 

the validation loss. Early stopping is used to prevent overfitting, and the model with the lower validation loss 

is selected as the final model.  

Testing: the final model is evaluated on the testing set using the Dice Similarity Coefficient (DSC) matric. The 

DSC measures the overlap between the predicted segmentation and ground truth segmentation, with values 

ranging from 0 to 1, where 1 indicates a perfect overlap. Other metrics such as sensitivity, specificity, and 

accuracy are also calculated to assess the model’s performance. The results of training loss and accuracy are 

given in the following Figure 4. 

  

 

 

 

 

 

 

Figure 3. Training Loss and Training Accuracy. 

4 |Results and Discussion 

4.1 |Results 

The deep learning model utilizing the U-Net architecture was trained and assessed on the Multimodal Brain 

Tumour Image Segmentation Benchmark (BRATS) dataset, which offers multimodal MRI scans 

accompanied by manual annotations for brain tumors. The model was developed to segment lower-grade 

gliomas (LGGs) in MRI scans, emphasizing precise localization and volumetric assessment of tumor areas. 

The model's performance was assessed using various critical measures, including the Dice Similarity 

Coefficient (DSC), sensitivity, specificity, and accuracy (see Figure 5). 

4.1.1 |Segmentation Accuracy 

The model attained a Dice Similarity Coefficient (DSC) of 89% on the test set, indicating its precision in 

segmenting tumor locations within the MRI scans. The DSC value reflects a significant overlap between the 

projected tumor segmentation and the ground truth annotations, illustrating the model's efficacy in precisely 

defining the tumor boundaries. 

4.1.2 |Sensitivity 

The model attained a sensitivity of 87%, indicating it accurately recognized 87% of the tumor locations. 

Sensitivity is an essential statistic in medical imaging, especially for tumor detection, since it indicates the 

model's capacity to accurately identify tumor tissue in MRI images. A high sensitivity score signifies that the 

model is proficient in detecting and delineating tumor regions, hence reducing the likelihood of false 

negatives. 
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Figure 4. Output of results. 

4.1.3 |Specificity 

The model had a specificity of 99%, signifying its efficacy in differentiating between tumor and non-tumor 

regions. The elevated specificity indicates that the model infrequently generates false positives, rendering it 

exceptionally accurate for detecting non-tumor tissue. Accurate segmentation of non-tumor regions is crucial 

for reducing needless interventions and facilitating precise treatment planning. 

4.1.4 |Accuracy 

The model demonstrated great accuracy in segmenting tumor locations, indicating its proficiency in 

distinguishing between tumor and background tissue. Although accuracy was not the principal criterion for 

assessment, it nonetheless corroborates the results indicating superior segmentation quality throughout the 

dataset. 

4.2 |Discussion 

This study's findings indicate that deep learning, particularly via the U-Net architecture, markedly improves 

the accuracy and efficiency of brain tumor segmentation in MRI scans. The model's attainment of a Dice 

Similarity Coefficient (DSC) of 89%, alongside elevated sensitivity (87%) and specificity (99%), signifies its 

potential utility in clinical applications. The performance measures indicate that the U-Net model can 

accurately identify and segment tumor locations, representing a substantial enhancement over conventional 

manual segmentation techniques, which are labor-intensive and susceptible to inter-observer variability. 

4.2.1 |Clinical Relevance of the Results 

In clinical practice, precise tumor segmentation is essential for assessing tumor extent, planning surgical 

procedures, and evaluating treatment efficacy. The model's exceptional accuracy and precision in delineating 

tumor locations may aid radiologists and oncologists in making more informed judgments for surgical 

interventions and subsequent treatment. Automating the segmentation process would conserve significant 

time and diminish the likelihood of human mistakes, resulting in more consistent and reproducible treatment 

programs. The model's high specificity and sensitivity are crucial for identifying small and subtle tumor 

locations, which is vital for early-stage identification and reducing the chance of tumor recurrence. The 
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incorporation of this model into standard clinical practices may facilitate the early detection of tumor 

advancement and enhance the precision of treatment effectiveness evaluations. 

4.2.2 |Potential for Personalized Medicine through Radiogenomics 

A compelling facet of this research is the possibility of amalgamating the U-Net-based segmentation model 

with radiogenomics to facilitate personalized therapy approaches for LGG patients. Radiogenomics, which 

associates imaging properties with the genetic and molecular attributes of tumors, may yield significant 

insights into the tumor's biological behavior and therapeutic response. Imaging characteristics from MRI 

scans, including tumor morphology and texture, may be associated with genetic markers such as IDH1/IDH2 

mutations or MGMT methylation, which are recognized to affect prognosis and treatment response in glioma 

patients. Integrating this information into the segmentation process may result in more focused and 

personalized therapy, enhancing survival rates and quality of life for patients with LGGs. 

4.3 |Limitations and Future Research Directions 

The suggested deep learning model utilizing the U-Net architecture exhibited encouraging outcomes for brain 

tumor segmentation in MRI data; nevertheless, certain limitations must be recognized. These restrictions 

affect the model's generalization and robustness while providing opportunities for future enhancement and 

refinement. 

The efficacy of deep learning models is significantly dependent on the quality and diversity of the training 

data. This study utilized the Multimodal Brain Tumour Image Segmentation Benchmark (BRATS) dataset for 

training and evaluating the model, serving as a significant resource for tumor segmentation tasks. This dataset, 

while thorough, reflects a restricted range of situations. The dataset comprises solely MRI images of brain 

tumours from a particular cohort of patients, perhaps failing to represent the comprehensive diversity of brain 

tumor variations observed in actual clinical settings. The BRATS dataset may inadequately represent the 

variability of MRI pictures across various imaging centers, scanners, or methods. Discrepancies in imaging 

quality, resolution, and scanner calibration may affect the model's efficacy. MRI images obtained from various 

institutions, scanners, or patients may differ in noise, contrast, and quality, thereby affecting the model's 

accuracy. Consequently, the model's ability to generalize to data from alternative sources may be constrained. 

MRI scans are influenced by numerous parameters, including scanner settings, patient location, and magnetic 

field strength, resulting in considerable diversity in image quality. Variations in contrast and signal-to-noise 

ratio (SNR) among images, even within the same imaging technique, might result in inconsistent outcomes 

during segmentation. Tumors that are poorly delineated or that intersect with adjacent anatomical structures 

may present challenges for correct segmentation, particularly when tumor margins are ambiguous or when 

significant edema or necrosis is present. The inconsistency in picture quality among various MRI scanners 

and institutions is a substantial obstacle to the use of the model in clinical settings. Despite the implementation 

of data augmentation techniques (including rotation, flipping, and scaling) to mitigate variability, these 

methods may inadequately include the spectrum of variances present in clinical imaging, resulting in possible 

mis-segmentation in specific instances. 

The model was explicitly created for the segmentation of lower-grade gliomas (LGGs) and was not trained 

on other brain tumor types, including high-grade gliomas (HGGs) or metastatic tumors. Brain tumors have 

considerable variability in their shape, growth patterns, and infiltrative characteristics. Consequently, the 

model's efficacy may not extend effectively to other tumor types that display distinct traits or include more 

intricate imaging aspects. Moreover, the model has not been rigorously evaluated using real-world clinical 

data, where tumor burden may fluctuate significantly, or where patients may have received prior therapies like 

as chemotherapy or radiotherapy, potentially modifying tumor characteristics. This constrains the capacity to 

anticipate the model's performance when utilized across a broader spectrum of clinical circumstances or 

treatment phases. 
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Gliomas, particularly low-grade gliomas (LGGs), are characterized by their diverse nature, encompassing 

changes in tissue architecture, necrosis, oedema, and contrast enhancement shown in MRI scans. Although 

U-Net is proficient in segmenting intricate structures, the model may encounter difficulties in precisely 

delineating heterogeneous regions, especially when the tumor exhibits indistinct margins or extensive 

infiltration into surrounding brain tissues. The difficulty of including the complete range of tumor 

heterogeneity is particularly pertinent in infiltrative tumors, where the demarcation between the tumor and 

normal brain tissue may be indistinct. These regions frequently provide issues for conventional segmentation 

methods and may significantly hinder deep learning models. While the incorporation of multi-scale 

information in U-Net mitigates certain challenges, the model may still exhibit deficiencies in precisely 

recognizing small or subtle tumor areas, especially when extensive edema or necrotic tissue is present. 

The model was trained on cross-sectional data from MRI images acquired at a single time point, restricting 

its capacity to manage longitudinal data or tumor growth over time. In clinical practice, it is crucial to monitor 

tumor growth and alterations in response to treatment for appropriate treatment planning and follow-up care. 

The existing model fails to account for temporal variations in tumor size, form, or morphology, which could 

be crucial for evaluating treatment effectiveness and forecasting tumor recurrence. Integrating longitudinal 

MRI scans into the model may provide more dynamic and context-sensitive tumor segmentation, thereby 

enhancing the model's capacity to forecast tumor behavior and track progression. Subsequent iterations of 

the model may gain from training on datasets comprising time-series MRI data, facilitating the monitoring of 

tumor progression and the modification of predictions accordingly. 

4.3.1 |Future Research Directions 

The present investigation into brain tumor segmentation utilizing the U-Net architecture has yielded 

encouraging outcomes. The incorporation of fuzzy set theory can markedly improve the model's ability to 

manage uncertainty and ambiguity in the data. Furthermore, the integration of fuzzy extensions might 

enhance decision-making processes in clinical applications, yielding more resilient and individualized 

treatment options. We delineate prospective research avenues, specifically emphasizing the expansion of the 

current investigation to encompass fuzzy set extensions, including Pythagorean fuzzy sets, neutrosophic sets, 

hypersoft sets, and other sophisticated fuzzy systems. Additionally, we examine how these extensions might 

be utilized in decision-making to enhance patient outcomes in brain tumor therapy. 

Pythagorean fuzzy sets (PFS) are increasingly acknowledged for their capacity to model uncertainty by 

integrating both membership and non-membership degrees for each element, together with a degree of 

reluctance [37]. By augmenting U-Net with PFS, each pixel in the segmented image can possess three values: 

the degree of tumor affiliation, the degree of non-affiliation, and the degree of uncertainty, so yielding a more 

comprehensive and adaptable segmentation result. This would be particularly beneficial in instances where 

the tumor invades surrounding tissues or when MRI scans exhibit low contrast [38]. 

Neutrosophic sets enhance conventional fuzzy sets by offering a framework to represent ambiguity in truth, 

indeterminacy, and untruth inside data. Neutrosophic logic is particularly applicable in scenarios where data 

may be incomplete or ambiguous, such as when tumor characteristics are not distinctly observable in MRI 

scans due to low contrast or artifacts. The incorporation of neutrosophic fuzzy sets into U-Net might enhance 

the model's capacity to manage uncertainty, especially in intricate tumor areas. This approach can augment 

the model's resilience in difficult scenarios, hence refining the segmentation of indistinct or infiltrative tumor 

margins [39-45]. A fuzzy decision rule may assert: “If tumor size is substantial and MGMT methylation is 

present, then the probability of a favorable chemotherapy response is moderate. This form of fuzzy modeling 

might provide more individualized, adaptable, and precise therapy suggestions based on imaging and genetic 

profiles [46-49].  A promising avenue for future research is the amalgamation of fuzzy logic with hybrid 

decision models that integrate deep learning and expert knowledge. Integrating fuzzy-based decision support 

systems with neural networks or genetic algorithms enables the development of a more adaptive decision-

making model that responds to new data and enhances patient outcomes over time. A hybrid model may 

integrate deep learning segmentation results with fuzzy logic rules for post-operative monitoring and decision-
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making. These models might analyze past data and continuously enhance fuzzy rules based on actual clinical 

outcomes, facilitating dynamic updates to treatment regimens and progressively enhancing the accuracy of 

clinical decision-making [50-51]. AI is being widely used in accessing education for example political education 

[52], and deep learning to assess English material readability [53]. The study of enhanced trade risk assessment 

using edge computing by [54] and the use of CNNs for text readability has been done by [55]. The method 

of iris detection for pandemic attendance systems was introduced by [56]. Recent advancements in fuzzy 

systems and machine learning have tackled uncertainty across diverse fields [57-59]. In the future, hybrid 

approaches combining machine learning with fuzzy logic could offer robust, interpretable solutions for ML 

analyses. 

5 |Conclusion 

This paper demonstrates that deep learning, particularly through the U-Net architecture, can significantly 

improve the automated segmentation of brain tumors in MRI with high accuracy and precision. The proposed 

model effectively segments tumor regions, achieving a Dice Similarity Coefficient of 89%, alongside sensitivity 

of 87% and high specificity of 99%. These findings underscore the model’s potential as a valuable tool in 

clinical applications. Automated segmentation not only saves time and reduces inter- and intra-observer 

variability but also enhances consistency in treatment planning and monitoring. Furthermore, integrating 

radiogenomics into this framework could advance personalized medicine by providing insights into tumor 

molecular characteristics and informing targeted treatment strategies for lower-grade gliomas (LGGs). 

Continued research in automated segmentation and radiogenomics has the potential to further enhance 

diagnostic accuracy and treatment outcomes for brain tumor patients. This work aims to establish deep 

learning as a transformative approach to improving patient care for LGG management. 
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