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Abstract: This paper presents a new binary optimization technique for solving the 0–1 knapsack 7

problem. This algorithm is based on converting the continuous search space of the recently pro- 8

posed quadratic interpolation optimization (QIO) into discrete search space using various V- 9

shaped and S-shaped transfer functions; this algorithm is abbreviated as BQIO. To further im- 10

prove its performance, it is effectively integrated with a uniform crossover operator and a swap 11

operator to explore the discrete binary search space more effectively. This improved variant is 12

called BIQIO. Both BQIO and BIQIO are assessed using 20 well-known knapsack instances and 13

compared to four recently published metaheuristic algorithms to reveal their effectiveness. The 14

comparison among algorithms is based on three performance metrics: the mean fitness value, 15

Friedman mean rank and computational cost. The first two metrics are used to observe the accu- 16

racy of the results, while the last metric is employed to show the efficiency of each algorithm. 17

The results of this comparison reveal the superiority of BIQIO over the classical BQIO and four 18

rival optimizers. 19

Keywords: Quadratic interpolation optimization; 0–1 knapsack problem; Crossover operator; 20

Transfer functions. 21

1. Introduction 22

The 0–1 knapsack problem (KP01) and its variants are both considered to be a subset of the NP- 23

hard discrete optimization problems. The KP01 plays an essential part in a number of different 24

problems, including those pertaining to resource allocation, production planning, project se- 25

lection, computer science, and cutting stock [1]. There are two distinct categories of approaches 26

to solving KP01: (a) deterministic algorithms and (b) metaheuristic techniques. Exact algo- 27

rithms, such as dynamic programming and branch-and-bound, can provide precise and opti- 28

mal solutions; however, their performance is significantly degraded with increasing the dimen- 29

sion size. Therefore, the metaheuristic algorithms were proposed as a strong alternative for 30

solving those problems, regardless of their dimensions [2]. Several metaheuristic algorithms 31

were used in the literature for solving this problem, some of them will be discussed in the next 32

sections. 33

For the purpose of resolving KP01, a binary version of the Aquila optimizer (BAO) 34

has been presented in [3]. In this variant, eight transfer functions were tested to see which one 35

performed best in terms of boosting BAO's efficiency. Another form of BAO was proposed in 36

the same paper, to enhance its exploration and exploitation operators by using the crossover 37

operator and mutation operator. In a similar vein, Yildizdan developed a binary form of the 38
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artificial jellyfish search (AJS) to address the same issue; this variant is known as Bin_AJS [4]. 1 

To adapt AJS for use in the discrete search space, several transfer functions were studied to 2 

reveal the effect they had on AJS's efficiency. The experimental results have shown its ad- 3 

vantages over other optimizers. The reptilian search algorithm (RSA) has been modified in [5] 4 

to solve KP01 using a binary form dubbed BRSA, which takes advantage of a number of trans- 5 

fer functions. Additionally, a stochastic repair and improvement mechanism was incorporated 6 

with BRSA to further enhance its performance. In [6], the binary artificial bee colony algorithm 7 

(ABC) with differential evolution (DE) was integrated to present a new variant namely BABC- 8 

DE to solve KP01. 9 

The marine predators algorithm (MPA) was modified in [7] to handle 0-1 KP and other 10 

discrete issues. The binary extension of MPA (BMPA) was created by mapping continuous val- 11 

ues to binary with the use of various transfer functions. In [8], the binary slime mould algorithm 12 

(BSMA) was enhanced to more precisely solve KP01. Similarly, the binary variation of the 13 

standard EO has been developed in [9] for solving KP01 using various transfer functions. For 14 

solving KP01, a binary monarch butterfly optimization (BMBO) strategy was proposed in [10]. 15 

In this approach, three distinct individual allocation strategies were evaluated for their poten- 16 

tial to boost performance. The infeasible solutions are reworked while the feasible ones are 17 

optimized using a novel repair operator based on a greedy technique. The KP01 problem was 18 

addressed by presenting a novel binary bat algorithm (NBBA) in [11]. This method incorpo- 19 

rated the best features of the local search scheme (LSS) with the binary bat algorithm (BBA). By 20 

allowing bats to improve their exploration capacity and LSS to increase their exploitation incli- 21 

nations, the bat algorithm safeguards the BBA-LSS from becoming trapped in local optimum 22 

solutions.  23 

The monarch butterfly optimization (MBO) was fortified in [12] through the implemen- 24 

tation of chaotic maps to improve its global optimization capability and the Gaussian mutation 25 

operator to eliminate premature convergence of the optimization process by enhancing some 26 

poor individuals; this variant was called CMBO. CMBO, an enhanced variant, was imple- 27 

mented to solve the large-scale KP01 problem. There are several other metaheuristic algorithms 28 

for KP01, such as the whale optimization algorithm [13], rice optimization algorithm [14], gra- 29 

dient-based optimizer [15], harmony search algorithm [16],  binary dragonfly algorithm [17], 30 

Archimedes optimization algorithm [18], cuckoo search algorithm [19], and migrating birds 31 

optimization [20]. 32 

In this paper, a binary variant of a recently proposed metaheuristic algorithm known as 33 

the quadratic interpolation optimization (BQIO), which is inspired by the generalized quad- 34 

ratic interpolation method is presented for solving the 0-1 knapsack optimization problems; 35 

this variant is called BQIO. This variant is assessed using the best transfer function from V- 36 

shaped and S-shaped families to strengthen its performance when tackling those problems. In 37 

addition, to further enhance its performance, it is integrated with the uniform mutation opera- 38 

tor and swap operator to present a new variant, namely BIQIO. Both BQIO and BIQIO are 39 

investigated using 20 well-known KP01 instances and compared to four metaheuristic algo- 40 

rithms, including binary equilibrium optimizer, binary marine predators algorithm, binary 41 
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flower pollination algorithm, and binary generalized normal distribution optimization. The ex- 1 

perimental findings report that BIQIO is more effective. 2 

The remainder of this work is structured as follows: Section 2 covers the QIO's mathe- 3 

matical model; Section 3 covers the proposed algorithms; Section 4 presents the results and 4 

discusses them; and Section 5 covers the conclusion and future work. 5 

2. Quadratic Interpolation Optimization 6 

 7 

This algorithm, known as Quadratic Interpolation Optimization, has been recently developed 8 

for solving continuous optimization problems [21]. This algorithm was inspired by the general- 9 

ized quadratic interpolation (GQI) technique. This technique is used in the QIO algorithm as a 10 

searching mechanism for tackling several optimization problems. Similar to the other metaheu- 11 

ristic algorithms, this algorithm involves two phases: exploration and exploitation, which are 12 

described in detail within the next two sections. 13 

 14 

2.1. Exploration strategy 15 

This strategy is used by the QIO algorithm for two purposes: Avoiding falling into local minima 16 

and preserving the population diversity. In this strategy, the GQI method is used to update each 17 

solution in the population, according to the next formulas: 18 

𝒗⃗⃗ 𝒊
𝒕+𝟏 = 𝒙𝒊

∗⃗⃗⃗⃗ (𝒕) + 𝒘𝟏 ∙ (𝒙𝒓𝟑⃗⃗ ⃗⃗ ⃗⃗ − 𝒙𝒊
∗⃗⃗⃗⃗ (𝒕)) + 𝒓𝒐𝒖𝒏𝒅(𝟎. 𝟓 ∙ (𝟎. 𝟎𝟓 + 𝒓𝟏)) ∙ 𝐥𝐨𝐠

𝒓𝟐

𝒓𝟑
                        (1) 19 

where 𝒓𝟏, 𝒓𝟐, and 𝒓𝟑 are three different variables including numbers generated at random be- 20 

tween 0 and 1. 𝒙𝒓𝟑⃗⃗ ⃗⃗ ⃗⃗   is a random solution from the current population, 𝒙𝒊
∗⃗⃗⃗⃗ (𝒕) is estimated by the 21 

𝑮𝑸𝑰 function as defined in the following formula: 22 

𝒙𝒊
∗⃗⃗⃗⃗ (𝒕) = 𝑮𝑸𝑰 (𝒙𝒊

𝒕⃗⃗  ⃗, 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ , 𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ , 𝒇( 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ ), 𝒇( 𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ ))                                      (2) 23 

where 𝑮𝑸𝑰 is the GQI function, 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗  and 𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗  are random solutions from the current popula- 24 

tion, 𝒇(∙) is the fitness function, and 𝒙𝒊
𝒕⃗⃗  ⃗ is the 𝒊𝒕𝒉 solution. Regarding 𝒘𝟏, it is mathematically 25 

generated according to the following formula: 26 

𝒘𝟏 = 𝟑𝒏𝟏𝒃                                                                             (3) 27 

𝒃 = 𝟎. 𝟕 ∙ 𝒂 + 𝟎. 𝟏𝟓 ∙ 𝒂 ∙ (𝐜𝐨𝐬 (
𝟓𝝅𝒕

𝑻𝒎𝒂𝒙
) + 𝟏)                               (4) 28 

𝒂 = 𝐜𝐨𝐬 (
𝝅𝒕

𝟐𝑻𝒎𝒂𝒙
)                                                                         (5) 29 

where 𝒏𝟏 is a normal distribution-based random number, 𝒕 is the current function evaluation, 30 

𝑻𝒎𝒂𝒙 is the maximum function evaluation. 31 

 32 

2.2. Exploitation strategy 33 

 34 

The QIO algorithm performs the exploitation operator using the GQI method to exploit the re- 35 

gions around the best-so-far solution for accelerating the convergence in the right direction of 36 

the near-optimal solution. The exploitation capabilities of QIO algorithm are performed accord- 37 

ing to the following formula for each solution in the population:  38 

𝒗⃗⃗ 𝒊
𝒕+𝟏 = 𝒙𝒃𝒆𝒔𝒕

∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒕) + 𝒘𝟐 ∙ (𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝒓𝒐𝒖𝒏𝒅(𝟏 + 𝒓𝟒) ∙
(𝑼−𝑳)

(𝑼𝒓𝑫−𝑳𝒓𝑫)
∙ 𝒙⃗⃗ 𝒊,𝒓𝑫

𝒕 )                         (6) 39 
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where 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the best-so-far solution, 𝒓𝟒 is a random number between 0 and 1, 𝑼 is the 1 

upper bound, and 𝑳 is the lower bound, 𝒙𝒊,𝒓𝑫
𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is a vector including random dimensions selected 2 

from the 𝒊𝒕𝒉 solution, and 𝒘𝟐 is generated according to the following formula: 3 

𝒘𝟐 = 𝟑 ∙ (𝟏 −
𝒕−𝟏

𝑻𝒎𝒂𝒙
) 𝒏𝟐                                                         (7) 4 

where 𝒏𝟐 is a normal distribution-based random number. Regarding 𝒙𝒃𝒆𝒔𝒕
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒕), it is com- 5 

puted using the 𝑮𝑸𝑰 function as shown in the following formula: 6 

𝒙𝒃𝒆𝒔𝒕
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒕) = 𝑮𝑸𝑰(𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ , 𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ , 𝒇( 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), 𝒇( 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ ), 𝒇( 𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ ))  (8) 7 

                                            8 

Finally, the pseudocode of the classical QIO is explained in algorithm 1. 9 

Algorithm 1: The classical QIO 

Input: N,  𝑇𝑚𝑎𝑥  

Output: 𝒄 

1.   Initialize randomly the solutions 𝑥 𝑖(𝑖 = 1,2, …… . , 𝑁) 

2.  Compute the objective value of those solutions  

3.  Identifying 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ that has the best objective value among all solutions 

4. 𝑡 = 1; //the current function evaluation 

5. while the termination condition is not achieved do 

6.       for each 𝑥 𝑖 , 𝑖 ∈ 1: 𝑁 

7.             Selecting two solutions 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ ≠  𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝒙𝒓𝟑⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝒙𝒊⃗⃗  ⃗  from the current solu-

tions 

8.             Generating random number 𝑟2 in (0, 1) 

9.             If 𝒓𝟐 > 𝟎. 𝟓 

10.                Applying Eq. (2) to get 𝒙𝒊
∗⃗⃗⃗⃗ (𝒕) 

11.               Performing the exploration operator using Eq. (1) 

12.            else 

13.                 Applying Eq. (8) to get 𝒙𝒃𝒆𝒔𝒕
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒕) 

14.                Performing the exploration operator using Eq. (6) 

15.            end 

16.              𝒊𝒇 (𝑓(𝑣 𝑖
𝑡+1) < 𝑓(𝑥 𝑖

𝑡)) 
17.                   𝑥 𝑖

𝑡 = 𝑣 𝑖
𝑡+1; 

18.               end 

19.               update 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  if 𝑣 𝑖
𝑡+1 is better 

20.         t = t + 1 
21.    End for 

22. End while 

3. The proposed algorithm: BIQIO 10 

The classical QIO algorithm was proposed for tackling continuous problems; thereby it is 11 

unsuitable to directly solve KP01. Therefore, it is converted into a binary algorithm using eight 12 

well-known transfer functions (TFs), belonging to V-shaped and S-shaped transfer functions. 13 

The first four functions according to this reference belong to the S-shaped and are symbolized 14 

in this study as TF1, TF2, TF3, and TF4, while the other functions belong to the V-shaped and 15 

are symbolized as TF5, TF6, TF7, and TF8. These TFs are first applied to normalize the continu- 16 

ous solutions between 0 and 1 that are then converted randomly into 1 and 0 according to the 17 

following formula: 18 

𝑥 𝑏𝑖𝑛 = {
1       𝑖𝑓 𝐹(𝑣𝑖𝑗

𝑡+1) ≥ 𝑟𝑎𝑛𝑑 

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
                           (9)                                                   19 

where 𝑭(𝒗𝒊𝒋
𝒕+𝟏) represents the normalized value of the 𝒋𝒕𝒉 dimension in the 𝒊𝒕𝒉 solution, 20 

which is obtained by one of the used transfer functions. After generating the binary solution  21 

𝒙⃗⃗ 𝒃𝒊𝒏 the 𝒊𝒕𝒉 solution, it is evaluated using the following objective function to measure its qual- 22 

ity: 23 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥 𝑏𝑖𝑛) = ∑  𝑥𝑏𝑖𝑛
𝑘𝑛

𝑘=1 ∗ 𝑝𝑟𝑘                                                              (10) 24 
      𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑘

𝑛
𝑧=1 ∗ 𝑥𝑘 ≤ 𝑐                                                     25 
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           𝑥𝑏𝑖𝑛
𝑘 = 0 𝑜𝑟 1, 𝑘 = 0,1……𝑛                                         1 

where 𝒑𝒓𝒌 represents the profit of the 𝐤𝐭𝐡 item, 𝒙𝒃𝒊𝒏
𝒌  is the binary value used to deter- 2 

mine whether the 𝐤𝐭𝐡 item will be added to the knapsack or not, 𝒏 is the number of items, 𝒘𝒌 3 

represents the weight of each item, and 𝒄 is the capacity of the knapsack. After evaluating the 4 

binary solutions, they are compared with each other, and the solution with the highest objective 5 

value and subject to the required constraint is considered the best-so-far solution 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. The steps 6 

of adapting the QIO algorithm for solving KP0 are listed in Algorithm 2. 7 

Algorithm 2: The binary QIO (BQIO) 

Input: N,  𝑇𝑚𝑎𝑥  

Output: 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

1. Initialize randomly the solutions 𝑥 𝑖(𝑖 = 1,2, …… . , 𝑁) with binary values 

2. Compute the objective value of those solutions according to (10) 

3. Identifying 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ that has the best objective value among all solutions 

4. 𝑡 = 1; //the current function evaluation 

5. 𝑥 𝑖
𝑡𝑏 = 𝑥 𝑖(𝑖 = 1,2, …… . , 𝑁) % storing the binary solutions 

6. while the termination condition is not achieved do 

7.       for each 𝑥 𝑖 , 𝑖 ∈ 1: 𝑁 

8.             Selecting two solutions 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ ≠  𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝒙𝒓𝟑⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝒙𝒊⃗⃗  ⃗ from the current solutions 

9.             Generating random number 𝑟2 in (0, 1) 

10.             If 𝒓𝟐 > 𝟎. 𝟓 

11.                Applying Eq. (2) to get 𝒙𝒊
∗⃗⃗⃗⃗ (𝒕) 

12.               Performing the exploration operator using Eq. (1) 

13.            else 

14.                 Applying Eq. (8) to get 𝒙𝒃𝒆𝒔𝒕
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒕) 

15.                Performing the exploration operator using Eq. (6) 

16.            End 

17.            Generate the binary solution 𝑥 𝑏𝑖𝑛 of  𝑣 𝑖
𝑡+1 using (9) 

18.              𝒊𝒇 (𝑓(𝑥 𝑏𝑖𝑛) > 𝑓(𝑥 𝑖
𝑡𝑏)) 

19.                   𝑥 𝑖
𝑡 = 𝑣 𝑖

𝑡+1; 

20.                    𝑥 𝑖
𝑡𝑏 = 𝑥 𝑏𝑖𝑛 

21.               end 

22.               update 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  with 𝑥 𝑏𝑖𝑛 if the last is better 

23.         t = t + 1 
24.    End for 

25. End while 

However, BQIO still needs further improvements to strengthen its ability to find near-optimal 8 

solutions for the KP01 instances. Therefore, it is integrated with the uniform crossover operator, 9 

which uniform 𝒙⃗⃗ 𝒃𝒊𝒏 from the 𝒊𝒕𝒉 solution and 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ based on a predefined crossover probabil- 10 

ity (CR) to generate a new binary solution, namely 𝒙⃗⃗ 𝒃𝒊𝒏𝟐. 𝒙⃗⃗ 𝒃𝒊𝒏𝟐 is further improved by selecting 11 

two positions with the condition that one of them includes 1 and the other includes 0, and swap- 12 

ping them to aid in achieving better outcomes. The proposed binary improved QIO (BIQIO) after 13 

adding those improvements is described in Algorithm 3. 14 

Algorithm 3: The proposed  BIQIO 

Input: N,  𝑇𝑚𝑎𝑥  

Output: 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

1. Initialize randomly the solutions 𝑥 𝑖(𝑖 = 1,2, …… . , 𝑁) with binary values 

2. Compute the objective value of those solutions according to (10) 

3. Identifying 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ that has the best objective value among all solutions 

4. 𝑡 = 1; //the current function evaluation 

5. 𝑥 𝑖
𝑡𝑏 = 𝑥 𝑖(𝑖 = 1,2, …… . , 𝑁) % storing the binary solutions 

6. while the termination condition is not achieved do 

7.       for each 𝑥 𝑖 , 𝑖 ∈ 1: 𝑁 

8.             Selecting two solutions 𝒙𝒓𝟏⃗⃗ ⃗⃗ ⃗⃗ ≠  𝒙𝒓𝟐⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝒙𝒓𝟑⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝒙𝒊⃗⃗  ⃗ from the current solutions 

9.             Generating random number 𝑟2 in (0, 1) 
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10.             If 𝒓𝟐 > 𝟎. 𝟓 

11.                Applying Eq. (2) to get 𝒙𝒊
∗⃗⃗⃗⃗ (𝒕) 

12.               Performing the exploration operator using Eq. (1) 

13.            else 

14.                 Applying Eq. (8) to get 𝒙𝒃𝒆𝒔𝒕
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒕) 

15.                Performing the exploration operator using Eq. (6) 

16.            End 

17.            Generate the binary solution 𝑥 𝑏𝑖𝑛 of  𝑣 𝑖
𝑡+1 using (9) 

18.             Generating random number 𝑟3 in (0, 1) 

19.              𝑖𝑓 𝑟3 ≤
𝑡

𝑇𝑚𝑎𝑥
 

20.                  𝑥 𝑏𝑖𝑛2=Applying the uniform crossover operator between 𝑥 𝑏𝑖𝑛  and 

𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ under Cr 

21.                  Selecting two unique positions from 𝑥 𝑏𝑖𝑛2 and swap them 

22.                  𝑥 𝑏𝑖𝑛=𝑥 𝑏𝑖𝑛2 

23.              𝑒𝑛𝑑 
24.              𝒊𝒇 (𝑓(𝑥 𝑏𝑖𝑛) > 𝑓(𝑥 𝑖

𝑡𝑏)) 
25.                   𝑥 𝑖

𝑡 = 𝑣 𝑖
𝑡+1; 

26.                    𝑥 𝑖
𝑡𝑏 = 𝑥 𝑏𝑖𝑛 

27.               end 

28.               update 𝒙𝒃𝒆𝒔𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  with 𝑥 𝑏𝑖𝑛 if the last is better 

29.         t = t + 1 
30.    End for 

31. End while 

 1 

4. Results and Discussion 2 

The proposed BQIO and BIQIO are assessed using 20 well-known KP01 instances with a num- 3 

ber of items ranging between 4 and 75 to observe the ability to estimate the near-optimal solu- 4 

tions under different scenarios. The properties of those instances are listed in Table 1. Those 5 

proposed algorithms are also compared to five well-known optimization algorithms, such as 6 

binary equilibrium optimizer (BEO), binary marine predators’ algorithm (BMPA), binary 7 

flower pollination algorithm (BFPA), and binary generalized normal distribution optimization 8 

(BGNDO). The parameters of those algorithms are set as suggested in the cited papers. Regard- 9 

ing the parameters of the proposed BIQIO, it has only one parameter, namely CR, which is 10 

heuristically set to 0.9 in all experiments conducted in this paper. The maximum function eval- 11 

uations and population size for all algorithms are set to 50000 and 100, respectively, to achieve 12 

a fair comparison. All algorithms are implemented in MATLAB over the same device. 13 

Table 1: Properties of KP01 instances 14 

In-

stances 

Items Knapsack 

capacity 

Known opti-

mum 

In-

stances 

Items Knapsack 

capacity 

Known op-

timum 

In-

stances 

Items Knapsack 

capacity 

Known op-

timum 

K1 10 269 295 K8 23 10000 9767 K15 50 882 2440 

K2 20 878 1024 K9 5 80 130 K16 55 1050 2651 

K3 4 20 35 K10 20 879 1025 K17 60 1006 2917 

K4 4 11 23 K11 30 577 1437 K18 65 1319 2817 

K5 15 375 481.06937 K12 35 655 1689.0 K19 70 1426 3223 

K6 10 60 52 K13 40 819 1821 K20 75 1433 3614 

K7 7 50 107 K14 45 907 2033     

 15 

 16 
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4.1. Performance analysis of various TFs with BQIO 1 

In this section, the performance of eight transfer functions with the proposed BQIO will be 2 

investigated to find the most effective one. The proposed BQIO with each transfer function is 3 

executed 20 independent times. Then, the mean fitness values (Mean), the Friedman mean rank 4 

(FRK), and the computational cost (Time) are estimated and presented in Tables 2 and 3. Those 5 

tables illustrate that BQIO with TF8 could achieve competitive and superior outcomes in terms 6 

of Mean and FRK metrics for the majority of the solved instances. Therefore, this transfer func- 7 

tion is considered for both BQIO and BIQIO in the experiments conducted in the next section. 8 

 9 

Table 2: Performance observation of various TFs with BQIO (K1-K10)  10 

Inst  TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 

K1 Mean 295.0000 295.0000 295.0000 295.0000 295.0000 295.0000 295.0000 295.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 1.082E-03 4.367E-04 7.523E-04 1.947E-03 4.411E-03 5.463E-04 9.301E-04 1.768E-03 

K2 Mean 1024.0000 1024.0000 1024.0000 1024.0000 1024.0000 1024.0000 1024.0000 1024.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 8.849E-02 1.004E-02 9.117E-02 3.302E-02 1.911E-02 5.182E-03 4.808E-02 2.471E-03 

K3 Mean 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 4.799E-05 4.696E-05 4.496E-05 4.269E-05 4.625E-05 4.454E-05 4.457E-05 4.410E-05 

K4 Mean 23.0000 23.0000 23.0000 23.0000 23.0000 23.0000 23.0000 23.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 5.736E-05 4.456E-05 4.463E-05 4.035E-05 4.301E-05 4.249E-05 4.285E-05 4.175E-05 

K5 Mean 481.06937 481.06937 481.06937 481.06937 481.06937 481.06937 481.06937 481.06937 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 4.774E-03 1.794E-02 2.694E-03 6.386E-02 2.942E-03 1.168E-01 9.296E-03 3.791E-02 

K6 Mean 52.0000 52.0000 52.0000 52.0000 52.0000 52.0000 52.0000 52.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 4.264E-04 4.584E-05 4.744E-05 1.450E-03 4.592E-05 6.915E-04 4.626E-05 7.566E-04 

K7 Mean 107.0000 107.0000 107.0000 107.0000 107.0000 107.0000 107.0000 107.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 4.369E-05 5.798E-05 4.587E-04 4.102E-04 5.548E-05 4.572E-05 3.619E-04 3.041E-04 

K8 Mean 9766.7500 9767.0000 9766.8000 9767.0000 9767.0000 9766.8000 9767.0000 9767.0000 

FRK 4.800 4.400 4.600 4.400 4.400 4.600 4.400 4.400 

Time 1.548E-01 9.007E-02 2.028E-01 6.090E-02 3.321E-01 1.072E-01 1.136E-01 2.930E-01 

K9 Mean 130.0000 130.0000 130.0000 130.0000 130.0000 130.0000 130.0000 130.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 4.58E-05 4.76E-05 4.58E-05 4.55E-05 4.30E-05 4.41E-05 4.63E-05 0.0003309 

K10 Mean 1025.0000 1025.0000 1025.0000 1025.0000 1025.0000 1025.0000 1025.0000 1025.0000 

FRK 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 

Time 4.705E-02 5.166E-02 4.915E-02 3.311E-02 1.304E-01 4.689E-02 2.947E-02 8.882E-02 

 11 
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Table 3: Performance observation of various TFs with BQIO (K11-K16)  1 

Inst  TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 

K11 Mean 1427.9500 1428.3500 1429.1000 1429.2000 1420.6500 1432.2500 1431.5000 1431.8000 

FRK 4.750 4.725 4.575 4.425 6.300 3.675 3.850 3.700 

Time 4.632E-01 4.706E-01 1.713E-01 4.802E-01 5.102E-01 4.104E-01 5.009E-01 1.702E-01 

K12 Mean 1683.3500 1682.5000 1683.3500 1680.7000 1679.0500 1688.1000 1687.8500 1688.5000 

FRK 4.950 5.300 5.075 5.450 6.450 3.050 3.050 2.675 

Time 5.341E-01 5.439E-01 4.919E-01 5.703E-01 5.815E-01 3.595E-01 2.565E-01 6.381E-01 

K13 Mean 1803.3000 1802.5000 1797.7500 1798.8000 1786.6000 1812.6500 1807.0500 1814.4000 

FRK 4.625 4.250 5.375 5.100 6.825 2.900 4.200 2.725 

Time 6.333E-01 6.580E-01 6.805E-01 6.595E-01 1.503E+00 1.468E+00 7.747E-01 1.673E+00 

K14 Mean 2007.2500 2007.5500 2007.2000 2005.2000 1981.0500 2018.8500 2006.6000 2018.7500 

FRK 4.750 4.650 4.325 4.875 7.150 3.225 4.350 2.675 

Time 1.453E+00 1.482E+00 1.448E+00 1.483E+00 1.521E+00 1.514E+00 1.555E+00 1.744E+00 

K15 Mean 2412.0000 2399.5500 2408.1500 2399.6000 2374.8000 2424.4000 2420.6000 2424.5000 

FRK 3.900 5.350 4.525 5.575 6.950 3.125 3.475 3.100 

Time 8.466E-01 2.729E-01 8.705E-01 9.095E-01 8.887E-01 8.714E-01 8.516E-01 9.167E-01 

K16 Mean 2591.5000 2596.2000 2589.2500 2581.9500 2534.1000 2609.6500 2585.6000 2614.0000 

FRK 4.575 3.950 4.500 5.325 7.650 2.875 4.700 2.425 

Time 8.87E-01 9.17E-01 1.07E+00 9.96E-01 1.09E+00 1.03E+00 1.50E+00 1.25E+00 

4.2. Performance evaluation of BIQIO with four rival optimizers 2 

All algorithms are executed 20 independent times, and then the mean, FRK, and times are com- 3 

puted and reported in Table 4. In comparison to all the rival algorithms, this table shows that 4 

BIQIO is competitive in terms of Mean and FRK for 10 instances and superior for the other 5 

instances. Also, from this table, BQIO could be competitive with both BEO and BGNDO for the 6 

majority of the instances, while both BFPA and BMPA appear as the worst algorithms. Finally, 7 

those experiments show the effectiveness of BIQIO in comparison to the classical BQIO and 8 

four rival algorithms, so it could be considered as an alternative algorithm for solving the 0-1 9 

knapsack instances.  10 

Table 4: Performance observation of BQIO and BIQIO with four rival algorithms  11 

Inst  BIQIO BQIO BEO BMPA BFPA BGNDO  BIQIO BQIO BEO BMPA BFPA BGNDO 

K1 Mean 295.00 295.00 295.00 294.55 295.00 295.00 K11 1437.00 1425.55 1431.50 1379.00 1244.80 1418.00 

FRK 3.45 3.45 3.45 3.75 3.45 3.45 1.53 2.73 2.15 5.00 6.00 3.60 

Time 2.E-03 2.E-03 1.E-03 1.E-03 1.E-03 8.E-04 2.E-01 2.E-01 2.E-02 2.E-01 1.E-01 2.E-01 

K2 Mean 1024.00 1024.00 1024.00 1017.85 930.25 1024.00 K12 1689.00 1681.55 1686.95 1625.35 1375.75 1673.40 

FRK 2.70 2.70 2.70 4.20 6.00 2.70 1.55 2.78 2.05 4.75 6.00 3.88 

Time 5.E-02 3.E-02 1.E-03 2.E-02 2.E-01 4.E-02 1.E-01 6.E-01 3.E-02 2.E-01 1.E-01 2.E-01 

K3 Mean 35.00 35.00 35.00 35.00 35.00 35.00 K13 1820.60 1794.70 1812.05 1727.35 1475.95 1779.05 

FRK 3.50 3.50 3.50 3.50 3.50 3.50 1.13 3.10 2.13 4.80 6.00 3.85 

Time 7.E-05 6.E-05 2.E-04 6.E-05 7.E-05 5.E-05 2.E-01 6.E-01 4.E-02 2.E-01 1.E-01 2.E-01 

K4 Mean 23.00 23.00 23.00 23.00 23.00 23.00 K14 2031.70 2007.00 2013.95 1871.45 1579.15 1952.05 
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FRK 3.50 3.50 3.50 3.50 3.50 3.50 1.05 2.73 2.23 5.00 6.00 4.00 

Time 5.8E-05 7.0E-05 1.3E-04 6.4E-05 8.1E-05 8.1E-05 6.E-01 7.E-01 4.E-02 2.E-01 1.E-01 2.E-01 

K5 Mean 481.07 481.07 481.07 469.03 473.69 481.07 K15 2441.15 2401.85 2429.95 2272.25 1871.10 2345.40 

FRK 2.90 2.90 2.90 4.15 5.25 2.90 1.25 2.95 1.95 4.85 6.00 4.00 

Time 1.1E-02 3.4E-02 2.9E-03 2.4E-03 2.2E-01 6.3E-03 2.E-01 8.E-01 5.E-02 3.E-01 2.E-01 3.E-01 

K6 Mean 52.00 52.00 52.00 51.95 52.00 52.00 K16 2643.25 2592.75 2602.85 2430.35 2027.10 2504.00 

FRK 3.48 3.48 3.48 3.63 3.48 3.48 1.10 2.65 2.25 4.90 6.00 4.10 

Time 4.1E-03 4.4E-03 1.4E-04 1.6E-04 6.2E-03 8.7E-05 7.E-01 1.E+00 5.E-02 3.E-01 2.E-01 2.E-01 

K7 Mean 107.00 107.00 107.00 106.80 107.00 107.00 K17 2915.70 2852.85 2874.95 2666.65 2124.95 2748.75 

FRK 3.45 3.45 3.45 3.75 3.45 3.45 1.10 2.68 2.23 5.00 6.00 4.00 

Time 1.0E-04 6.4E-05 1.4E-04 9.1E-05 5.6E-04 6.9E-05 3.5E-01 9.9E-01 5.2E-02 2.9E-01 1.7E-01 2.6E-01 

K8 Mean 9767.00 9766.90 9766.15 9754.60 9758.40 9767.00 K18 2814.95 2738.20 2787.65 2562.50 2048.40 2643.70 

FRK 2.33 2.43 3.00 5.63 5.30 2.33 1.00 3.00 2.00 4.95 6.00 4.05 

Time 4.E-02 2.E-01 3.E-02 2.E-01 1.E-01 5.E-02 4.E-01 1.E+00 6.E-02 3.E-01 2.E-01 2.E-01 

K9 Mean 130.00 130.00 130.00 130.00 130.00 130.00 K19 3217.65 3156.70 3186.55 2944.95 2339.10 3056.70 

FRK 3.50 3.50 3.50 3.50 3.50 3.50 1.00 2.85 2.15 5.00 6.00 4.00 

Time 6.E-05 6.E-05 3.E-04 6.E-05 5.E-05 4.E-05 1.E+00 1.E+00 6.E-02 3.E-01 2.E-01 3.E-01 

K10 Mean 1025.00 1025.00 1025.00 1017.00 934.70 1025.00 K20 3602.00 3486.45 3526.75 3249.95 2581.00 3344.75 

FRK 2.78 2.78 2.78 3.90 6.00 2.78 1.00 2.70 2.35 4.80 6.00 4.15 

Time 3.E-02 4.E-03 3.E-03 3.E-01 3.E-01 2.E-02 1.E+00 1.E+00 7.E-02 3.E-01 2.E-01 3.E-01 

 1 

5.  Conclusion 2 

In this article, we introduce a novel binary optimization strategy for the 1-in-0 knapsack prob- 3 

lem. BQIO is an algorithm that uses a variety of V-shaped and S-shaped transfer functions to 4 

transform the continuous search space of the recently introduced quadratic interpolation optimi- 5 

zation (QIO) into a discrete search space. Its performance is enhanced by the incorporation of a 6 

uniform crossover operator and a swap operator, which allow for more efficient exploration of 7 

the discrete binary search space. The name "BIQIO" describes this upgraded version. Twenty 8 

well-known knapsack examples are used to evaluate BQIO and BIQIO, and their performance is 9 

compared to that of four recently published metaheuristic methods. Mean fitness value, Fried- 10 

man mean rank and computing cost are the three performance indicators used for the algorithms’ 11 

comparison. The first two measures are intended to evaluate the precision of the outcomes, while 12 

the third is used to compare the effectiveness of various algorithms. The comparison shows that 13 

BIQIO is better than the classical BQIO and four other optimizers.  14 

In the future, both BQIO and BIQIO will be employed for solving multidimensional knapsack 15 

problems, while the performance of the standard QIO will be assessed for solving several other 16 

optimization problems, including: 17 

• 3-D Routing Planning for Unmanned Aircraft Vehicle 18 

• DNA Fragment assembly problem 19 

• Lost Target Search with Unmanned Aircraft Vehicle 20 

• UAV-Assisted IoT Data Collection System 21 



SMIJ 2023, Vol. 4. 10 of 11 
 

 

• Joint mining decision and resource allocation in an MEC-enabled wireless blockchain 1 

network. 2 

• Tuning hyper-parameters of machine learning algorithms and deep neural networks 3 

• Task Scheduling in Cloud Computing 4 

• Energy efficiency in the IoT networks 5 

• Placement Optimization for Multi-IRS-Aided Wireless Communications 6 

• Energy-Efficient Trajectory Planning for Multi-UAV-Assisted MEC System 7 

 8 
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