
SMIJ 2023, Vol. 4. https://doi.org/10.61185/SMIJ.2023.44106 

Integrating Machine Intelligence to Estimate PM2.5 1 

Concentration for Sustainable Urban Air Quality Management 2 

Ahmed Metwaly1,* , Ahmed Sleem2 , and Ibrahim Elhenawy3 3 

 1 4 
5 

2 6 
 3 7 

Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt; 
a.met-waly23@fci.zu.edu.eg;
Ministry of communication and information technology, Egypt; Asleem@mcit.gov.eg 
Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharqiyah, 44519, Egypt; 
ielhenawy@zu.edu.eg; 8 

* Correspondence: a.metwaly23@fci.zu.edu.eg. 9 

Abstract: Air quality degradation, particularly the proliferation of fine particulate matter 10 
(PM2.5), poses a critical threat to environmental sustainability and public health. This paper in- 11 
troduces a comprehensive machine learning (ML) framework designed to predict PM2.5 concen- 12 
trations, addressing the complexities inherent in heterogeneous urban environments. Drawing 13 
from a review of existing literature encompassing diverse ML methodologies applied to PM2.5 14 
prediction, this study proposes an innovative approach amalgamating various data sources, in- 15 
cluding meteorological, geographical, and anthropogenic factors. Leveraging ensemble learning 16 
techniques and novel algorithmic models, our framework aims to surpass limitations encoun- 17 
tered in current predictive models, enabling accurate and localized PM2.5 predictions. The sig- 18 
nificance of this research lies in its potential to offer a robust tool for environmental policymak- 19 
ers and urban planners, facilitating informed decisions towards mitigating PM2.5 pollution and 20 
fostering sustainable environments. Through evaluation of multiple ML algorithms, this paper 21 
contributes a novel predictive model crucial for enhancing air quality management. 22 

Keywords: PM2.5, Air quality, Machine intelligence, Urban environment, Sustainable develop- 23 
ment, Environmental monitoring, Artificial intelligence, Smart cities, Sensor networks, Predictive 24 
modeling, IoT (Internet of Things), GIS (Geographic Information System), Machine learning 25 
(ML). 26 

1. Introduction 27 
The decline in air quality, especially the hike in PM2.5 levels, is endangering the fu- 28 

ture of urban areas on every continent. Urbanization and industrialization that have hap- 29 
pened rapidly over the past years demands an effective approach to air management [1]. 30 
PM2.5 are tiny particles, 2.5 microns or smaller in diameter which are known to cause 31 
severe health effects and environmental impact [2]. Traditional air quality monitoring ap- 32 
proaches give important information but may not always be dynamic enough for such 33 
urbanized settings necessitating novel methods like integrating machines thinking into 34 
pollution control as a result of our new understanding of cities [3-4]. Emerging AI tech- 35 
nologies offer a number of prospects for addressing the issues associated with monitoring 36 
and predicting PM2.5 concentrations [5]. Machine learning algorithms have achieved con- 37 
siderable success in extracting meaningful patterns out of huge datasets. This potential 38 
has been demonstrated by AI-enabled solutions that can leverage various types of data 39 
including meteorological data, satellite imagery and ground-based sensor networks lead- 40 
ing to improved accuracy and efficiency of predictions for PM2.5 concentrations [6]. De- 41 
spite these advancements, there remains a need to explore the integration of AI technolo- 42 
gies into urban air quality management comprehensively. 43 
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1.1. Research Gaps 1 
Although the field has experienced significant progress due to artificial intelligence 2 

(AI) solutions, noticeable research gaps still exist. Therefore, the scalability and adaptabil- 3 
ity of existing models on different urban configurations should be critically analyzed [7]. 4 
Other challenges include data quality, sensor location and model interpretation that can 5 
affect the accuracy of PM2.5 concentration estimates. Additionally, societal-economic fac- 6 
tors as well as environmental elements that determine air quality have to be better accom- 7 
modated in AI models. In conclusion identifying these research gaps will result in more 8 
sustainable urban air quality management through robust and practical solutions [8]. 9 
1.2. Motivation & Contribution 10 

This study is motivated by the urgent requirement to fill those gaps and advance 11 
machine intelligence integration in assessing PM2.5 concentrations for urban air quality 12 
management. Accurate and timely predictions can bring about wide-ranging environ- 13 
mental and societal benefits apart from health considerations. Enhancements in air quality 14 
not only support public health but also promote sustainable urbanism as well as resilience 15 
communities. The aim of this study is to enhance understanding of how AI can be applied 16 
in environmental science policy, leading to improved mitigation strategies against PM2.5 17 
pollution in cities [9-11]. 18 

2. Literature Review 19 
This part of the paper focuses on how machine intelligence has been linked with 20 

PM2.5 estimation and considers both the success and failure in those methodologies that 21 
have helped in laying foundations for the current study. Lv et al. [11] delved into the en- 22 
hancement of numerical simulation predictions of PM2.5 and its chemical components 23 
through the application of machine learning algorithms. The study explored the effective- 24 
ness of these algorithms in refining the accuracy of simulations, shedding light on their 25 
potential for improving the understanding of PM2.5 dynamics. In addition, Qiao et al. [12] 26 
proposed a hybrid model that integrates wavelet transform and an improved deep learn- 27 
ing algorithm for forecasting PM2.5. By incorporating wavelet transform, the model 28 
aimed to capture temporal patterns in PM2.5 data effectively. The study contributes to the 29 
exploration of novel hybrid approaches in improving the precision of PM2.5 predictions. 30 
More, Zamani Joharestani et al. [13] focused on PM2.5 prediction, employing random for- 31 
est, XGBoost, and deep learning techniques. Notably, the study leveraged multisource 32 
remote sensing data, showcasing the importance of integrating diverse data streams to 33 
enhance prediction accuracy and robustness. Besides,Pak et al. [14] addressed PM2.5 pre- 34 
diction with a deep learning-based approach that considered spatiotemporal correlations. 35 
The study specifically focused on the case study of Beijing, China, illustrating the im- 36 
portance of accounting for spatial and temporal dynamics for accurate predictions in ur- 37 
ban environments. Zhan et al. [15] developed a spatially explicit machine learning algo- 38 
rithm for spatiotemporal prediction of continuous daily PM2.5 concentrations across 39 
China. The study contributed insights into the geographic variations and temporal dy- 40 
namics of PM2.5, emphasizing the need for location-specific models. Kumar et al. [16] 41 
presented a machine learning-based model tailored for estimating PM2.5 concentration 42 
levels in Delhi's atmosphere. The study likely considered the unique environmental and 43 
geographical characteristics of Delhi to develop a model suitable for the specific chal- 44 
lenges faced by this urban area. Moreover, Choi and Kim [17] applied Principal Compo- 45 
nent Analysis (PCA) to deep learning forecasting models for predicting PM2.5. The incor- 46 
poration of PCA aimed to enhance the interpretability of deep learning models, providing 47 
insights into the underlying factors influencing PM2.5 concentrations. Enebish et al. [18] 48 
focused on predicting ambient PM2.5 concentrations in Ulaanbaatar, Mongolia, utilizing 49 
various machine learning approaches. Given the specific environmental conditions of 50 
Ulaanbaatar, the study likely addressed region-specific challenges and contributed to the 51 
understanding of PM2.5 dynamics in the context of Mongolia. Further, Ejohwomu et al. 52 
[19] contributed to the literature by modeling and forecasting temporal PM2.5 53 
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concentrations using ensemble machine learning methods. Ensemble methods combine 1 
multiple models to improve predictive performance, and this study likely explored the 2 
advantages of such an approach for PM2.5 forecasting. Shen et al. [20] adopted the 3 
Prophet forecasting model, a machine learning approach, to predict the concentrations of 4 
various air pollutants, including PM2.5, in Seoul, South Korea. The study likely consid- 5 
ered the unique characteristics of Seoul's air quality and demonstrated the applicability of 6 
the Prophet model to diverse pollutants in an urban setting. 7 

3. Material and Method 8 
In this section, the research methodology and the materials employed play a crucial 9 

role in ensuring the credibility and replicability of the study. 10 
 11 

3.1. Material 12 
To do this research we used a big database that had been collected from January 1st, 13 

2010 to December 31st, 2014, which consisted of the most important atmospheric variables 14 
required in the forecasting of PM2.5 concentration. The dataset includes eight significant 15 
attributes contributing for a unique purpose to the model, namely: PM2.5 concentration 16 
(ug/m^3), dew point (°C), temperature (°C), pressure (hPa), cbwd – wind direction, wind 17 
speed (m/s), and cumulative counts of hours characterized by snowfall ("Is") and rainfall 18 
("Ir"). Such diverse variables contribute towards understanding various atmospheric con- 19 
ditions that underlie fluctuations in PM2.5 levels. This dataset is comprised of data points 20 
each with a given year, month, day and hour thus allowing us to carry out temporal anal- 21 
ysis of factors influencing PM2.5 concentrations within the specified period of time. In 22 
addition, it should be noted that missing values are represented as “NA,” and the time 23 
granularity provided by the temporal data supports our machine learning based pursuit 24 
of sustainable urban air quality management practices. 25 

 26 
Figure 1 gives an overview through a diagram illustrating how different variables 27 

relate to one another over a given period with respect to the levels of PM2.5 in Beijing city. 28 
The visualization serves as a crucial exploratory step, providing a clear overview of the 29 
patterns, trends, and potential correlations within the data. 30 

Figure 1: Temporal Visualization of Key Atmospheric Factors Influencing PM2.5 Concentrations. 
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 1 
3.2. Method 2 

In this study, we leverage the power of Long Short-Term Memory (LSTM) networks, 3 
a type of recurrent neural network (RNN), renowned for its efficacy in capturing intricate 4 
temporal dependencies within sequential data. LSTMs are particularly well-suited for 5 
time-series forecasting tasks due to their ability to retain and selectively utilize infor- 6 
mation over extended periods. This becomes crucial in our context, as we aim to predict 7 
PM2.5 concentrations, which exhibit intricate patterns and dependencies influenced by 8 
various atmospheric factors. 9 

To provide a solid theoretical foundation, we delve into the core components of 10 
LSTM networks. Memory cells, input gates, forget gates, and output gates collectively 11 
empower LSTMs to store and process information over time. We emphasize how LSTMs 12 
address the vanishing gradient problem, a common challenge in training deep neural net- 13 
works, by enabling the effective capture of both short and long-term dependencies. Un- 14 
derstanding these components is pivotal for grasping how the LSTM network transforms 15 
raw input data into meaningful predictions. 16 

 17 
Moving to the practical application, we outline our approach to applying LSTM for 18 

PM2.5 concentration estimation. Our dataset is meticulously structured to facilitate time- 19 
series forecasting, ensuring that temporal relationships and dependencies are faithfully 20 
represented. Input features encompass critical atmospheric parameters such as PM2.5 21 
concentrations, dew point, temperature, pressure, wind direction, wind speed, and cumu- 22 
lative hours of snow and rain. By incorporating these features, we enable the LSTM net- 23 
work to discern intricate patterns within the data, ultimately enhancing the accuracy of 24 
our PM2.5 predictions. 25 

   26 
 1 
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# Import necessary libraries 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM, Dropout, Dense 

 

# Design the LSTM network 

model = Sequential() 

# Add the first LSTM layer with 100 units, returning sequences, and specifying the 

input shape 

model.add(LSTM(100, return_sequences=True, input_shape=(train_X.shape[1], 

train_X.shape[2]))) 

# Add dropout layer to prevent overfitting 

model.add(Dropout(0.3)) 

# Add a second LSTM layer with 50 units and returning sequences 

model.add(LSTM(units=50, return_sequences=True)) 

# Add dropout layer 

model.add(Dropout(0.2)) 

# Add a third LSTM layer with 50 units and returning sequences 

model.add(LSTM(units=50, return_sequences=True)) 

# Add dropout layer 

model.add(Dropout(0.2)) 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

# Add a fourth LSTM layer with 50 units 

model.add(LSTM(units=50)) 

# Add dropout layer 

model.add(Dropout(0.2)) 

# Add a Dense (fully connected) layer with 1 unit and linear activation function 

model.add(Dense(1, activation='linear')) 

# Compile the model using mean squared error as the loss function and the Adam op-

timizer 

model.compile(loss='mse', optimizer='adam') 

 1 

4. Empirical Findings and Analysis  2 
This section serves as the cornerstone for understanding the outcomes of our research 3 

efforts, presenting a detailed analysis of the data generated through the application of ma- 4 

chine learning algorithms. The empirical findings embrace the effectiveness and efficiency 5 
of the proposed methodology in predicting PM2.5 levels, revealing patterns, relationships 6 
and nuances in the data. In Figure 2, we have presented a correlation map that sum up all 7 
these related parameters affecting PM2.5 concentrations on a visual basis. This is a picture 8 
meaning that it can be used to quickly see how different atmospheric factors relate to each 9 
other completely. Through use of color codes, the correlation map offers important aspects 10 
about how closely associated things are which are significant when looking for possible 11 
drivers or influencers of PM2.5 conditions. This visualization is then an essential aid for 12 
our empirical analysis as it aids in understanding connections within the dataset as well as 13 
being used as a basis for future discussions regarding sustainable urban air quality man- 14 
agement in relation to these variables’ influences on it. 15 

Figure 2: Correlation Map of Key Atmospheric Parameters and PM2.5 Concentrations. 
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In Figure 3, we present the learning curves for Long Short-Term Memory (LSTM) 1 
models, offering a visual representation of the model's training and validation performance 2 
over successive epochs. The curves depict the evolution of training and validation errors, 3 
providing a dynamic insight into the convergence and generalization capabilities of the 4 
LSTM algorithm. This graphical representation is crucial for assessing the model's training 5 
dynamics and understanding its ability to learn complex patterns within the dataset. The 6 
learning curves serve as a key diagnostic tool, aiding in the optimization of model hyperpa- 7 
rameters and contributing to the overall evaluation of the LSTM's efficacy in estimating 8 
PM2.5 concentrations. 9 

 10 
In Figure 4, we present the prediction curve versus the actual curve, offering a side- 11 

by-side comparison of the LSTM model's predictions against the observed PM2.5 concen- 12 
trations. This visual representation allows for a direct assessment of the model's accuracy 13 
in capturing the temporal variations and trends present in the actual data. The alignment 14 
between the prediction and actual curves serves as a critical benchmark for evaluating the 15 

Figure 3: Learning Curves for LSTM Models. 

Figure 4: Prediction Curve vs. Actual Curve for LSTM Model 
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model's performance, highlighting its capacity to generate reliable estimates. Figure 4 plays 1 
a pivotal role in gauging the predictive power of the LSTM algorithm and contributes to 2 
the broader discussion on the effectiveness of machine intelligence in estimating PM2.5 3 
concentrations. 4 

5. Conclusions and Future Directions 5 
Our study underscores the pivotal role of machine intelligence, specifically the ap- 6 

plication of Long Short-Term Memory (LSTM) networks, in advancing the estimation of 7 
PM2.5 concentrations for sustainable urban air quality management. Through a meticu- 8 
lous exploration of atmospheric parameters and their temporal dynamics, our findings 9 
reveal the efficacy of LSTM models in capturing intricate patterns and dependencies 10 
within the dataset. Exponentiation with public dataset, spanning from 2010 to 2014, facil- 11 
itated a nuanced exploration of urban air quality dynamics. The outcomes not only show- 12 
case the practical viability of LSTM networks but also emphasize the importance of con- 13 
sidering various meteorological factors for accurate PM2.5 predictions. These findings 14 
hold significant implications for environmental monitoring and policy-making, highlight- 15 
ing the potential of advanced machine learning techniques to enhance our capabilities in 16 
managing and mitigating air pollution in urban areas.  17 

Towards the future, the study offers several future directions for integrating machine 18 
intelligence for PM2.5 concentration estimation and sustainable urban air quality manage- 19 
ment. For instance, further research could explore how to incorporate more data sources 20 
(i.e real-time traffic patterns, land-use data and demographic information) in order to en- 21 
hance predictive accuracy of models. Furthermore, beyond LSTMs, it may be necessary to 22 
consider integrating superior machine learning techniques aimed towards comparing 23 
their effectiveness in dealing with inherent complexities of air quality dynamics. Moreo- 24 
ver, creating explainable AI models would help make predictions more transparent and 25 
therefore get greater acceptance from stakeholders including decision-makers. Besides 26 
that, expanding the temporal range of the dataset and incorporating more recent data will 27 
help assess these models in terms of changes in urban environments over time. 28 
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